
Plebbit: A Serverless, Adminless, Decentralized Reddit
Alternative 

(Whitepaper v0.2.0)

Written by Esteban Abaroa 

Published 16th September 2021

Abstract

A decentralized social media has 2 problems: How to store the entire 
world's data on a blockchain, and how to prevent spam while being 
feeless. We propose solving the data problem by not using a blockchain,
but rather "public key based addressing" and a peer-to-peer pubsub 
network. A blockchain or even a DAG is unnecessary because unlike 
cryptocurrencies that must know the order of each transaction to 
prevent double spends, social media does not care about the order of 
posts, nor about the availability of old posts. We propose solving the 
spam problem by having each subplebbit owner run a "captcha service"
node over peer-to-peer pubsub. Peers who fail too many captchas are 
blocked from pubsub.



Public Key Based Addressing

In Bittorrent, you have "content based addressing". The hash of a file 
becomes its address. With "public key based addressing", the hash of a 
public key becomes the address of the subplebbit. Network peers 
perform a DHT query of this address to retrieve the content of the 
subplebbit. Each time the content gets updated, the nonce of the 
content increases. The network only keeps the latest nonce.

Peer-to-Peer Pubsub

Pubsub is an architecture where you subscribe to a "topic", like "cats", 
then whenever someone publishes a message of topic "cats", you 
receive it. A peer-to-peer pubsub network means that anyone can 
publish, and anyone can subscribe. To publish a post to a subplebbit, a 
user would publish a message with a "topic" equal to the subplebbit 
public key (its public key based addressing).

Captcha Service over Peer-to-Peer Pubsub

An open peer-to-peer pubsub network is susceptible to spam attacks 
that would DDOS it, as well as makes it impossible for moderators to 
manually moderate an infinite amount of bot spam. We solve this 
problem by requiring publishers to first request a captcha challenge 
from the subplebbit owner's peer. If a peer or IP address relays too 
many captcha challenge requests without providing enough correct 



captcha challenge answers, it gets blocked from the pubsub. This 
requires the subplebbit owner's peer to broadcast the result of all 
captcha challenge answers, and for each peer to keep this information 
for some time.

Note: The captcha implementation is completely up to the subplebbit 
owner. He can decide to prompt all users, first time users only, or no 
users at all. He can use 3rd party services like Google captchas.

Subplebbit Creation Process

Subplebbit owner starts a Plebbit client "node" on his desktop or server.
It must be always online to serve content to his users.

-He generates a public key pair, which will be the "address" of his 
subplebbit.

-He configures captcha options, like how often and what kind of 
captchas to show.

-He publishes the metadata of his subplebbit to his public key based 
addressing. This includes subpebblit title, description, rules, list of 
public keys of moderators, etc.

Note: It is possible to delegate running a client to a centralized service, 
without providing the private key, which makes user experience easier, 
without sacrificing censorship resistance.



THE PROCESS OF READING THE LATEST POSTS ON A SUBPLEBBIT

1. User opens the Plebbit app in a browser or desktop client, and sees 
an interface similar to Reddit.

2. His client joins the public key addressing network as a peer and 
makes a DHT query for each address of each subplebbit he is a member 
of. The queries each take several seconds but can be performed 
concurrently.

3. The query returns the latest posts of each subplebbit, as well as their 
metadata such as title, description, moderator list and captcha server 
URL.

4. His client arranges the content received in an interface similar to 
Reddit.



THE PROCESS OF PUBLISHING A POST ON A SUBPLEBBIT

1. User opens the Plebbit app in a browser or desktop client, and sees 
an interface similar to Reddit.

2. The app automatically generates a public key pair if the user doesn't 
already have one.

3. He publishes a cat post for a subplebbit called "Cats" with the public 
key "Y2F0cyA..."



4. His client joins the pubsub network for "Y2F0cyA..."

5. His client makes a request for a captcha challenge over pubsub.

6. His client receives a captcha challenge over pubsub (relayed from the 
subplebbit owner's peer).

7. The app displays the captcha challenge to the user in an iframe.

8. The user completes the captcha challenge and publishes his post and 
captcha challenge answer over pubsub.

9. The subplebbit owner's client gets notified that the user published to 
his pubsub, the post is not ignored because it contains a correct captcha
challenge answer.

10. The subplebbit owner's client publishes a message over pubsub 
indicating that the captcha answer is correct or incorrect. Peers relaying 
too many messages with incorrect or no captcha answers get blocked to
avoid DDOS of the pubsub.

11. The subplebbit owner's client updates the content of his 
subplebbit's public key based addressing automatically.

12. A few minutes later, each user reading the subplebbit receives the 
update in their app.

(If the user's post violates the subplebbit's rules, a moderator can 
delete it, using a similar process the user used to publish.)

Note: Browser users cannot join peer-to-peer networks directly, but 
they can use an HTTP provider or gateway that relays data for them. 
This service can exist for free without users having to do or pay 
anything.



What is a "Post"?

Post content is not retrieved directly by querying a subplebbit's public 
key. What is retrieved is list of "content based addressing" fields. 
Example: latest post: "bGF0ZXN0...", metadata: "bWV0YWRhdGE...". 
The client will then perform a DHT query to retrieve the content. At 
least one peer should have the data: the subplebbit's owner client 
node. If a subplebbit is popular, many other peers will have it and the 
load will be distributed, like on Bittorrent.

Anti-Spam Strategy beside Captcha Service

The captcha service can be replaced by other "anti-spam strategies", 
such proof of balance of a certain cryptocurrency. For example, a 
subplebbit owner might require that posts be signed by users holding at
least 1 ETH, or at least 1 token of his choice. Another strategy could be 
a proof of payment, each post must be accompanied by a minimum 
payment to the owner of the subplebbit. This might be fitting for 
celebrities wanting to use their subplebbit as a form of "onlyfan", where
fans pay to interact with them. Both these scenarios would not 
eliminate spam, but they would bring them down from an infinite 
amount of spam, to an amount that does not overwhelm the pubsub 
network, and that a group of human moderators can manage. Proof of 
balance/payment are deterministic so the P2P pubsub network can 
block spam attacks deterministically. Even more strategies can be added
to fit the need of different communities if found, but at this time the 
captcha service remains the most versatile strategy.



Improving Efficacy of Public Key Based Addressing

A public key based addressing network query is much slower than a 
content addressing based one, because even after you find a peer that 
has the content, you must keep searching, in case another peer has 
content with a later nonce (more up to date content). In content based 
addressing, you stop as soon as you find a single peer, because the 
content is always the same. It is possible to achieve the same speed in 
Plebbit, by having public key based addressing content expire after X 
minutes, and having the subplebbit owner republish the content after 
the same X minutes. Using this strategy, there is only ever one valid 
content floating around the network, and as soon as you find one peer 
that has it, you can deterministically stop your search.

Unlinking Authors and IP Addresses

In Bittorrent, an attacker can discover all the IP addresses that are 
seeding a torrent, but he can't discover the IP address of the originator 
of that torrent. In Bitcoin, an attacker can directly connect to all peers in
the network, and assume that the first peer to relay a transaction to 
him is the originator of that transaction. In Plebbit, this type of attack is 
mitigated by having the author encrypt his comment or vote with the 
subplebbit owner's public key, which means that while the attacker can 
know a peer published something, he doesn't know what or from what 
author.



Conclusion

We believe that the design above would solve the problems of a
serverless, adminless decentralized Reddit alternative. It would allow
unlimited amounts of subplebbits, users, posts, comments and votes.

This is achieved by not caring about the order or availability of old data.
It would allow users to post for free using an identical Reddit interface.

It would allow subplebbit owners to moderate spam semi-automatically
using their own captcha service over peer-to-peer pubsub. It would
allow for all features that make Reddit addictive: upvotes, replies,

notifications, awards, and a chance to make the "front page". Finally, it
would allow the Plebbit client developers to serve an unlimited amount

of users, without any server, legal, advertising or moderation
infrastructure.

If you would like to get involved in the development of Plebbit, we are
currently hiring JS Devs, please contact me either on:

Telegram: @estebanabaroa 

Discord: estebanabaroa#2853 


