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Grasp planning and motion synthesis for dexterous manipulation tasks are tradition-

ally done given a pre-existing kinematic model for the robotic hand. In this paper, we

introduce a framework for automatically designing hand topologies best suited for ma-
nipulation tasks given high level objectives as input. Our pipeline is capable of building

custom hand designs around specific manipulation tasks based on high level user input.

Our framework comprises of a sequence of trajectory optimizations chained together to
translate a sequence of objective poses into an optimized hand mechanism along with a

physically feasible motion plan involving both the constructed hand and the object. We
demonstrate the feasibility of this approach by synthesizing a series of hand designs op-

timized to perform specified in-hand manipulation tasks of varying difficulty. We extend

our original pipeline [12] to accommodate the construction of hands suitable for multiple
distinct manipulation tasks as well as provide an in depth discussion of the effects of
each non-trivial optimization term.

Keywords: manipulation; trajectory optimization; motion planning; mechanism design

1. Introduction

Dexterous manipulation has long been a topic of interest in robotic manipulation

due to its association with fine motor skills in humans, and the advantages that

it can confer upon factory robots and general purpose robots[13]. Dexterous ma-

nipulators are able to accomplish motions more efficiently and operate in limited

workspace environments more easily[19]. Additionally, we want to develop manip-
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ulators that work in intuitive and human-like ways, particularly if they are meant

to work alongside humans.

One line of research in dexterous manipulation focuses on the design of manipu-

lators to mirror the kinematics of the human hand[18][17]. These hands have shown

impressive capabilities with regards to dexterous manipulation [27] tasks, however

the problem of dexterous manipulation remains unsolved [5]. One reason for this is

that we cannot yet fully replicate the capabilities of the human hands and choices

made to simplify the design may end up limiting capabilities of the hand. We have

experienced this in our own research when the thumb of a dexterous hand does

not have sufficient range of motion or the geometry of the hand’s inner surfaces

impedes rather than aids performing a manipulation. Progress in this domain is

further burdened by the fact that these hands are prohibitively costly.

Rather than trying to approach manipulation from the perspective of human

hand kinematics and dynamics, we focus on accomplishing some critical dexterous

human hand functions and optimizing mechanisms to perform specific in-hand ma-

nipulation tasks. Our vision is to create an optimization pipeline for generating low

cost hands that are well tuned for specific tasks or families of tasks. The possibility

of creating useful low-cost hands has been well demonstrated, as in [20][7][8]. In

several cases, optimization has been used to tune some of the design parameters for

these types of hands [10]. We go beyond previous work by constructing our hands

from scratch based on a given task definition. Our goal is to allow even novice users

to easily design a variety of hands for their intended use cases.

In this paper, we introduce an optimization pipeline that takes high level user

specifications such as a sequence of goal poses for a manipulated object and builds

a mechanism specifically designed for the given task with no additional parameter

tuning required on the part of the user. In this work, we limit ourselves to the

class of in-hand manipulations that can be wholly described as reorientation of

the object with respect to the palm, however the pipeline we have developed is

extensible to other classes of in-hand manipulations. We show that our pipeline

is able to synthesize a wide variety of useful specialized manipulators for various

tasks. We build on our previous work [12] by extending our original pipeline to build

hands for multiple distinct tasks. We have also generated a comprehensive list of

failure cases that arise when each of our non-trivial optimization terms is removed,

thereby justifying their inclusion in our final pipeline.

2. Related Work

A large body of work revolves around classifying human manipulation behaviors and

replicating them with robotic manipulators inspired by the human hand. Works such

as [1] and [30] attempt to classify the spectrum of human hand manipulations into a

hierarchy of grasps and in-hand manipulations covering various phenomena such as

rolling motions, controlled slipping, grasp repositioning, and finger gaiting [25] with

the intention of mimicking these motions on robotic hands. Platforms such as the
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NASA Robonaut hand [18], GIFU III [23], and Shadow Dexterous Hand [17] have

become standard models on which manipulation algorithms and controllers have

been implemented to mimic these types of behaviors. These hands are meant to be

generic manipulators that should be able to carry out virtually any manipulation

task given an appropriate control policy.

Low DOF hands have the advantage of being easier to build and maintain, eas-

ier to control, less expensive, and less prone to mechanical failure since they have

fewer moving parts[10][9]. Due to the fact that they are cheaper and easier to build,

specifics of the design can be optimized to tune or specialize a given hand. Various

works [4][6][3] have optimized continuous parameters such as component lengths,

tendon stiffness, and pulley radii to address kinematic concerns such as reachabil-

ity constraints, avoidance of Jacobian singularities within the workspace, limits on

individual joint torques, etc. [28] addresses the problem of discrete optimization

of gripper design by chaining together individual modules to build fingers until a

desired grasp quality is reached.

We build on previous work by optimizing both discrete and continuous char-

acteristics of hand design to suit specific tasks. A significant portion of our design

process consists of trajectory optimizations to test the competence of our hands in

performing different tasks. Trajectory optimization methods have shown remarkable

ability to synthesize complex motions in both robot locomotion and manipulation,

allowing the user to create complicated physically feasible motions from high level

goal specifications. [15] and [14] develop optimization routines in which an initial

grasp pose is specified with a given hand model along with kinematic goals for an

object, and a numerical optimizer constructs physically feasible motion plans to

synthesize target manipulations. Other work in trajectory optimization for manip-

ulation captures demonstrated manipulations and finds contact forces that explain

the motion[31].

Recent work in trajectory optimization has explored the use of discontinuous

contacts in locomotion and manipulation tasks [21][26]. Mordatch et. al. [21] intro-

duced the concept of contact invariance, in which contact is treated as a contin-

uous variable, to facilitate optimization with changing contacts. Our work draws

inspiration from [22], which applies the contact invariant method to the domain of

manipulation.

Trajectory optimization methods for motion synthesis assume a fixed robot mor-

phology. We do not know of any prior work that attempts to optimize the manipu-

lator design while also creating a motion plan for physically feasible manipulations.

Such a task is challenging for in-hand manipulation tasks due to the fact that these

tasks are very contact dependent and hard to model or simulate.

3. Optimization Pipeline Description

We focus on precision in-hand manipulation where the hand manipulates an object

with the fingertips in order to change the object’s configuration with respect to the
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Fig. 1: Given the required user input, our ”floating” optimization generates a phys-

ically feasible motion plan using disembodied contacts points. We then synthesize

a mechanism with fingertips designed to follow these trajectories and provide the

required forces. Finally, we combine the floating motion plan with the hand design

to adapt the motion to the designed mechanism, outputting the mechanism and a

physically valid motion.

base of the hand. The object may be partially supported by the environment. This

type of manipulation is fundamental to acquiring and placing objects, and moving

from one grasp to another [24]. Our examples demonstrate 2 and 3-fingered hands,

however our approach can be applied to accommodate hands with more fingers.

Our optimization pipeline has three parts, as shown in Figure 1. The input to

our system is a sequence of objective poses for the object, a trajectory for the base,

and an initial placement (subject to change) of the contact points on the object.

The output of our system is an optimized mechanism, contact points, and forces

that meet our objectives in a physically valid motion. The sections below discuss the

components of this pipeline originally introduced in [12], followed by an extension

of our original methodology to build hands meant to execute multiple distinct tasks

(we refer to these as ”multi-objective” designs, whereas hands designed for single

manipulations are ”single objective” designs).

3.1. Floating Contact Optimization

The floating contact optimization computes optimal contact points and forces that

can move the object to its desired objective poses. No information about the robot

mechanism is used (or even available) at this point. Specifically, let

St = [xO fj rj cj ] (1)
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be the state at time t of the object, with xO denoting the object’s position and

orientation in the world frame, and ẋO being the derivative at time t of position and

orientation. fj denotes the force vector at contact point j for j ∈ {1, 2, ..., Ncontacts}
expressed w.r.t. the world frame, and rj denotes the location of contact point j in

the local frame of the object. cj is the contact invariant term described in [21] that

is constrained to lie in the interval [0,1], with 0 representing an inactive contact and

1 being fully active.

We wish to find a trajectory S = {S1,S2, ...,SNkeyframes
} such that

S = argmin
S

ΣtΣi wi ∗ Li(t) (2)

s.t. cj ∈ [0, 1] for 0 ≤ t ≤ T (3)

where each cost Li is in the set {Lphysics, LforceReg, LfrictionCone, Ltask, Lci object,

LfloatingContactAccel, LobjectAccelReg, LangularAccelReg}, which we detail below.

• Physics terms:

Lphysics(t) = LlinMom(t) + LangMom(t) (4)

(5)LangMom(t) = ||Σi ci(t)∗(ri×fi,local)−(ω×(I localobjectω)+Iω̇)||2

LlinMom(t) =
∑
i

ci(t)fi −mẍ (6)

where Iobject is the moment of inertia of the object in its own local frame, ω

is angular velocity, and m is the object mass. The Lphysics term is respon-

sible for ensuring that the forces acting on the object impart the necessary

accelerations to move the object to its destination.

LforceReg(t) =
∑
i

||ci(t)fi||2 (7)

(8)LfrictionCone(t) =
∑
i

ci∗exp(α(||fi,local−n∗(fi ·ni)||−µfi ·ni))

where n is the local surface normal, µ is the coefficient of friction, and α is

a sharpening factor for the exponent that controls how much we penalize

contact forces that are close to the friction cone bounds. LfrictionCone is

responsible for ensuring that our contact forces are physically feasible, while

LforceReg is a regularization term to discourage excessive contact forces.

• Task objectives:

(9)Ltask =
1

k

∑
k

||pos(k)− posgoal(k)||2 + dist(o(k), ogoal(k))2

where k is the set of keyframes for which we define object goal positions

posk and orientations ok. The function dist(q1,q2) refers to the quaternion
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distance formula, which is essentially the angle required to rotate from one

frame of reference to the other. This particular task objective dictates a set

of objective poses (position and orientation) that our object is required to

meet. Other task objectives can be specified depending on the behavior we

want to see from our system: for example, we can also specify goals such as

tracing out a desired path with an end effector point on the manipulated

object.

• Contact Invariant Costs:

Lci object(t) =
∑
i

ci||rproj − ri||2 (10)

where rproj is the projection (in local coordinates) of the contact point ri
onto the object

eobject(i, t) = ri,proj object(t)− ri(t) (11)

The Lci object cost dictates that the contact points lie on the object surface.

• Additional regularization terms:

LfloatingContactAccel(t) =
∑
i

||r̈i(t)||2 (12)

LobjectAccelReg(t) =
∑
i

ẍ2 (13)

(14)LangularAccelReg(t) =
∑
i

((ω × (Iworldω) + Iworldω̇)/tstep)
2

where x is the manipulated object’s position. LfloatingContactAccel regular-

izes the movement of the floating contact points, preventing them from tele-

porting on the object, while LobjectAccelReg and LangularAccelReg encourage

smooth movement of the object.

The motions output by a first pass through the floating optimization have con-

tact invariant values ci between 0 and 1, and typically cluster around higher values

(above .7) and low values (.3 and below), indicating the importance of the contact

point in the optimization. After this first pass, we ”de-fuzzify” our ci values by

setting each ci to either 0 or 1 based on a threshold of either .1, .2, or .3. We pick

our threshold by testing each one and re-optimizing our floating motion with the

contact values held fixed, ultimately picking the ”de-fuzzed” motion with the best

objective value to pass to the synthesis optimization. Future steps in the pipeline

hold these contact values fixed.

3.2. Mechanism Synthesis Continuous Optimization

The synthesis step involves both the optimization of the discrete structure of the

hand (the number of joints per finger) as well as the optimization of continuous pa-

rameters governing the mechanism design. In this section we describe the continuous
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optimization, which is used by the discrete optimization procedure described in the

next section. The optimization below assumes that we have all discrete parameters

(i.e. the kinematic structure) fixed.

We optimize a set of morphological parameters M = {L A B}, a set of joint

angle poses Q = {Q1,Q2, ...,QNkeyframes
}, and a set of contact points P on the

constructed fingertips such that:

M,Q,P = argmin
M,Q,P

ΣkΣi wi ∗ Li(k) (15)

for k ∈ {1, 2, ..., Nkeyframes} (16)

where L, A, and B respectively represent the finger segment lengths, joint axis

orientations, and positioning of fingers on the base/palm of the hand and Li are

the costs in the set {LeeTarget, LcontactDistSurface, Lcollision,

LfingerLengthRegularization, LfingerMinLength, LjacNull,

Ltorque, LfingerPositions, LfingerAcceleration, LjointLimits}. To discourage slipping on

the fingertips, we restrict contact points p to remain fixed in the fingertip’s local

frame when that contact is active. The term ”fingertip” used throughout this paper

refers to the surface of the last segment on a given finger, not the actual tip of that

finger segment. Our contact points are therefore able to lie anywhere on the surface

of these finger segments.

• Contact point costs:

LeeTarget(k) =
∑
i

ci ∗ ||pi − ptarget||2 (17)

LcontactDistSurface(k) =
∑
i

||pproj − pi||2 (18)

where ci represents the binarized contact invariant term (either 0 or 1) for

fingertip i at keyframe k. LeeTarget is the distance between the contact

point pi on fingertip i and the corresponding point on the given trajectory

for that contact, encouraging our selected contact points to line up with

the trajectories from the floating motion plan. LcontactDistSurface is the

distance between the contact point and its projection onto the surface of

the fingertip it is attached to: this is paired with a high coefficient to force

contact points to lie on the surfaces of the fingertips.

• Collision

For collision penalty calculations, we use a second order smooth piecewise

cubic spline that interpolates between the functions f(x) = 0 for x < 0 and

f(x) = x2 for x > 0 as follows: g(x) =


0 x ≤ −ε
x3

6ε + x2

2 + εx
2 + ε2

6 −ε ≤ x ≤ ε
x2 + ε2

3 ε ≤ x
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Lcollision(k) =
∑

i,j∈bodies

g(pen(bodyi, bodyj)) (19)

where penetration distances are calculated such that non-penetrating bod-

ies have negative penetration distance (hence no collision cost) and ε is

simply a small arbitrary constant (ε = 10−6)

• Finger length costs:

LfingerLengthRegularization =
∑
i

(li)
2 (20)

LfingerMinLengthCost =
∑
i

g(lmin − li) (21)

where i ranges over all the capsules present in the hand, li denotes the

length of the principle axis of capsule i, and g denotes the piecewise cubic

spline defined above. These two costs are meant to keep the finger lengths

within a reasonable range of values.

• Controllability related costs:

We require that our mechanisms be able to actively supply the necessary

forces needed to accomplish the target motion. This is done through two

terms: one to penalize the component of the applied force that lies along

the null space of our mechanism’s Jacobian (requiring our mechanism to

actively supply the necessary force) and another to regularize the torque

applied at the joints (encouraging efficient mechanisms).

LjacNull =
∑
i

ci ∗
√∑

k

(f · ek)2 (22)

where the vectors ek consist of an orthonormal basis of the null space of

the manipulator Jacobian for each given finger/contact point pair i, f being

the force required for the finger to provide at the end effector, and ci being

the contact invariant weight (either 0 or 1) for the given contact.

Ltorque =
∑
i

‖~α‖2 (23)

where ~α is the vector of torque magnitudes that must be supplied by the

mechanism to actively provide the desired force. Note that this torque

penalty does not take into account the torque required to compensate for

gravity, nor does it account for a hard maximum on the allowed torque to

be supplied by a given motor (although this could be added if necessary).

We calculate this as follows: for any given finger we have T = r × F ,

where T is the torque applied with respect to a given joint, F is the force

at the selected contact point (the end effector), and r is the lever arm.
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We can decompose this into F = T × rperp/‖ ~rperp‖2 + k ∗ rperp where

rperp = r − (r · a) ∗ a is the component of r perpendicular to the unit

vector a aligned with the rotation axis of the joint in question. In the

above equation, k is a constant, and k ∗ rperp represents the passive force

applied to this joint: setting k = 0, we have F = X ∗ α where X is the

matrix consisting of column vectors T × rperp/‖ ~rperp‖2 concatenated for

each joint and α is the vector of torque magnitudes actively applied at the

joints. Then ~α = (XTX + λ2I)−1XTF is the singularity robust psuedo-

inverse [2] solution with lambda being a small constant (λ = .001). Note

that this torque penalty does not take into account the torque required to

compensate for gravity, nor does it account for a hard maximum on the

allowed torque to be supplied by a given motor (although this could be

added if necessary).

• Additional costs:

LfingerPositions =
∑
i

||projbase(bi)− bi||)2 (24)

where i ranges over all the bases of the fingers and we find the closest pro-

jected point onto the base. This term ensures that our fingers are attached

to the surface of the base and can be applied to a variety of base shapes

as long as a smooth projection formula exists for the surface. In this work

we limit ourselves exclusively to circular bases although this can be readily

extended.

LfingerAcceleration(k) =
∑
i

(1− ci) ∗ ẍi2 (25)

where ẍi is acceleration of fingertip i and ci is the contact invariant term

for that fingertip in frame k. Fingertip acceleration only applies to contacts

that are inactive in order to encourage smooth transitions for lifted fingers.

LjtLimit(k) =
∑
i

∑
j

g(j(i)− jmax) + g(jmin − j(i)) (26)

where j runs over our set of joints. The terms jmax and jmin are constant

joint limits set to π/2 and −π/2 respectively and g is our piecewise cubic

spline introduced earlier for smooth interpolation.

3.3. Mechanism Synthesis Discrete Optimization

The process by which we optimize the discrete structure of our hand designs is

relatively simple. We optimize fingers independently for computational efficiency

and treat joints as being independently controlled. We keep adding additional fin-

ger segments (and joints) to each of our fingers until the combined LeeTarget and

LjacNull scores for our finger fall below a predefined threshold or until we reach an

upper limit on the number of joints allowed per finger.
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After optimizing each finger independently for multiple trials, we enter a recom-

bination step in which we combine the top performing fingers into a complete hand

design. Upon recombination, we must re-optimize our hand due to the fact that we

may incur self-collision among the recombined fingers (since they were optimized

independently, their motions can easily overlap). The first recombination trial al-

ways takes the top performing fingers from each set of fingers meant to track the

end effector points. Additional recombination trials randomly select fingers from

each set according to a weighting that is inversely proportional to their combined

LeeTarget and LjacNull scores (so that fingers with lower costs have higher chances

of being selected). We then take our best performing hand, and if the combined

LeeTarget and LjacNull scores for each finger fall below our threshold we return this

design as our constructed hand. Otherwise, we add an additional joint to each of

the fingers with scores still above this threshold and repeat the loop again until

either that finger hits the maximum number of joints allowed per finger or it meets

our objective criteria.

3.4. Whole Hand Optimization

As the final stage in our motion optimization pipeline, we take the generated motion

plan for the object and the hand mechanism constructed for it to go about a trajec-

tory optimization similar to the one used in step 1. We introduce several additional

terms to the objective function to create a physically realistic motion with respect

to the hand and we add the joint angles at each keyframe to the list of variables

that we intend to optimize. We do not restrict contact points to be stationary with

respect to the fingertips as we did in the synthesis step, thereby allowing us to per-

form some small degree of slipping and rolling. We do not explicitly model slipping

or rolling on the fingertips, though we discourage these via the imposition of soft

constraints. Below we detail the additional terms added to the objective function:

• LjointLimits: this is equation 26, taken from the synthesis step

• LfingerAcceleration: equation 25 taken from the synthesis step

• Lcollision: equation 19 from synthesis

• LjacNull and Ltorque: equations 22 and 23 from the synthesis step

• Finger contact invariant term: Lci finger mirrors the contact invariant term

introduced in the floating contact optimization, but applied to the finger

instead of the object to encourage the contact point to lie on the finger.

This works alongside Lci object to encourage the finger to be in contact with

the object without over-constraining the optimization problem.

Lci finger(t) =
∑
i

ci||rproj − ri||2 (27)

where rproj is the projection (in world coordinates) of the contact point ri
(world coordinates) onto the finger
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(a) (b) (c) (d) (e) (f)

Fig. 2: Here we reproduce still-frames of several example hands/motions generated

by our system (refer to accompanying video for complete motions): (a) A vertical

flipping motion, as if feeding a part (b) Rotate from horizontal to vertical and bow

out the capsule (c) Drawing a box with a pen on the ground (d) Rotating a capsule

180 degrees (e) Tabletop rotation with hand above the object (f) Tabletop rotation

with the hand on the side of the object

• Slippage constraints: We do not explicitly penalize contact slippage on ei-

ther the object or the fingertip since this would be overly restrictive and pre-

vent our motions from naturally exhibiting interesting slipping and rolling

behaviors. Instead we adapt a pair of soft constraints introduced in [22] to

our pipeline that work to implicitly regularize slippage. These constraints

essentially require that the distance a given contact slips with respect to

the object and the fingertip is equal with respect to the world frame.

Lci finger slippage(t) =
∑
i

||cifi||2∗||(ėfinger(i, t))||2 (28)

where efinger(i, t) = ri,proj finger(t)− ri(t)

Lci object slippage(t) =
∑
i

||cifi||2∗||(ėobject(i, t))||2 (29)

• LfrictionConeHand: since our finger may not be perfectly tangent to the

object it makes contact with, we introduce an additional friction cone term

that mirrors the friction cone with respect to the object, but using the

outgoing normal from the fingertip at the contact point instead (similar to

equation 8). This prevents us from exerting unrealistic forces with respect

to the fingertip surface.

(30)
LfrictionConeHand(t) =

∑
i

ci ∗ exp(α(||fi

− n ∗ (fi · ni)||−µfi · ni))

where n is the surface normal to the fingertip (world frame), µ is the coef-

ficient of friction, and α is a sharpening factor for the exponent
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Fig. 3: To demonstrate the feasibility of our designs, we fabricated a hand with

3d-printed parts scaled with regard to the embedded motors. This particular design

is meant to rotate a 4 inch diameter ball 180 degrees either way.

4. Results for Single Objective Hands

In the first part of our accompanying video, we demonstrate a set of example motions

ranging from simple object re-orientations to multi-step motions. In Figure 2, we

demonstrate the ability of our pipeline to generate feasible mechanisms on a variety

of in-hand manipulation tasks. Figure 4 demonstrates two sequences in which we

build up progressively more complex motions from a set of simple primitive motions.

From these examples we can see a variety of different mechanisms arise to meet our

task specifications rather than a generic one-size-fits-all design, and we note that

the complexity of these mechanisms scales directly with the complexity of the given

task.

Our pipeline is robust in the sense that we use the same fixed set of optimization

weights for each step regardless of the motion. In the vast majority of cases, the

final result of our ”whole hand” optimization yields very low physics error penalties

and near zero Jacobian null space projection penalties, indicating that the pipeline

generates a motion plan that fits very well the designed mechanism, ensuring that

the mechanism is capable of performing the motion in a physically realistic way.

Our optimization program is able to discover interesting aspects of our motions

that lead to non-trivial mechanical designs. For example, in Figure 2(b), our opti-

mization was able to suggest a mechanism in which we use one of our upper fingers

to push out our capsule to bow it out while rotating it 90 degrees perpendicular

to our palm surface, using the other two fingers to pivot the object. Our mecha-

nism originally bows out the mechanism beyond the 45 degree target, then slides

the pushing finger upward and reduces the force it exerts to achieve the desired

position. In Figure 2(c), we replace our usual pose objective with an objective that

attempts to track the shown goal points with the tip of the gripped ”pencil”. In

this motion, our optimization discovered a cyclic manipulation in which the finger

on the bottom left of the pencil automatically resets itself while still maintaining

contact on the object. In the middle motion shown in Figure 4(b) we dictate that

our mechanism is to rotate the sphere 180 degrees either way followed by a trans-

lation in and out from the palm. Surprisingly, our optimization found a way to do

this with only two degrees of freedom per finger by discovering that our hand can

”lock” in our object by folding the distal joints. Normally one would expect such a
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Fig. 4: Here we demonstrate 2 sequences of progressively more complex motions

(refer to accompanying video for complete motions): (above) we demonstrate a hor-

izontal side to side motion (without gravity, so that we don’t require our mechanism

to actively provide counter-gravitational force), a circular planar motion (no grav-

ity), and a hemispherical motion (with gravity). (Below) we demonstrate a line of

motions (all with gravity enabled) beginning with a sphere rotation 180 degrees

either way, followed by a sphere rotation with the ability to translate in and out,

and finally a sphere rotation with the ability to translate in the plane.

manipulation to require at least 3 DOF’s per finger as in the succeeding motion, in

which we require that the sphere also be able to translate side to side as well as in

and out.

We are often able to create distinctly different mechanisms for the same motion

simply by varying the initial contacts placed on the object or by varying the initial

position of the base. We demonstrate this in Figures 2(e) and 2(f) in which we

place our contacts in the same positions but placed our base differently: the result

is that our floating motion plans are identical, but we get two completely different

mechanisms out of the initial conditions. Similarly, we can get distinct mechanisms

from placing our initial contacts differently. The fact that our pipeline gives different

results for different initial conditions means that the user can select their ideal

mechanism by trying out different initial conditions, as well as gain intuition about

how the base and contact initialization affect the optimal mechanism design in

general.

To demonstrate the feasibility of our designs, we fabricated a physical prototype

for a hand that is meant to rotate a sphere 180 degrees forward and backward

(shown in Figure 3). Given a design generated by our pipeline, we programmatically

generate a set of individual parts represented via constructive solid geometry, which

are then converted to a set of 3d printable CAD files. Due to the fact that we have

embedded the motors in the fingers, we have scaled our design according to the size

of the individual motors. Our prototype hand (equipped with the computed set of
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poses) is capable of reliably rotating a 4 inch Styrofoam ball from a variety of initial

palm orientations. This motion involves a significant amount of rolling between the

fingertips and the object, which is made possible by its unique design.

5. Extension to Multi-Objective Hands

In this paper, we extend upon our previous work in [12] by making our pipeline

capable of designing hands meant for multiple separate motions. To do this, we

have added a set of terms designed to couple contact trajectories to be similar to

one another in both location and shape. We have also added a term that iterates over

the contact points and deactivates the contact force, replacing it with a perturbed

version of the computed contact force that acts along the same direction as in

the unperturbed case, causing the other contact forces to re-balance to reject the

disturbance.

In Figure 5, we demonstrate the need for our trajectory coupling terms for multi-

objective motions on a combination of the sphere rotation and capsule rotate and

bow out motions. With our coupling terms, our pipeline generates a design that

is similar to our single objective sphere rotation motion with two dofs per finger.

Without the coupling terms, it either generates an under-actuated hand that can’t

provide the required force to move the object as intended, or it provides an overly

complicated hand that yields a brittle motion.

To accommodate multi-objective motions, we introduce a set of trajectory cou-

pling terms and perturbing force objectives into our floating contact optimization.

These coupled trajectories are then sent to the synthesis step, in which we optimize

the structure of our hand to minimize the sum of the individual costs incurred for

each target motion. In other words, our synthesis step runs a single optimization for

each motion with the constraint that all morphological variables are shared among

the individual synthesis optimization problems. This allows for efficient parallel

processing. Once the synthesis step has found a hand design that is optimal in the

combined case, we run our ”whole hand” optimization on each motion individually,

where the hand design is fixed and each motion is independent. This means that we

no longer use the trajectory coupling objective nor do we use the perturbing force

objective in the ”whole hand” optimization.

We will now derive our trajectory coupling terms. First we must group together

the floating contact trajectories for each fingertip between motions: that is, we must

find which trajectory in Motion 2 matches finger trajectory 1 in Motion 1. Suppose

we have m motions {M1,M2, ...,Mm} and each motion has contact trajectories

{T1, T2, ..., Tf} where we have f total fingertip contacts. We will denote trajectory j

from motion i as Mi,j , each of which has a mean value of ai,j . Our coordinate frame

for these contact points is always defined with respect to the palm of the hand.

A trajectory grouping is defined as a set of mappings from the set of trajectories

from M1 to each of the other motions {M2, ...,Mm}. To find our initial grouping,

we enumerate all possible trajectory groupings to find the one that minimizes the
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(a) (b)

(c) (d)

(e)

Fig. 5: In this example we combine the sphere rotation motion with the rotate and

bow out motion from earlier. (a) shows the result of our multiobjective floating

optimization with the coupling terms enabled as well as the overlaid contact tra-

jectories. (b) demonstrates the same optimization with the coupling terms removed

(initial conditions were kept the same as in (a)), resulting in dissimilar sets of con-

tact trajectories. (c) shows the results of the coupled trajectories at the end of the

”whole hand” optimization. The resulting hand that is capable of both motions

is nearly identical to our earlier single objective example for sphere rotation. (d)

demonstrates the best scoring proposed hand design from the second level of the

synthesis step for the trajectories in (b) after passing through the ”whole hand”

optimization: this design is physically infeasible since 22% of the magnitude of the

total force applied by the fingers lies in the Jacobian null space. (e) shows the next

level synthesis design for the uncoupled trajectories after passing through the fi-

nal optimization step. This design is physically feasible according to our objective

function, however it is clearly an awkward and brittle mechanism.

objective
∑
t∈{T1,...,Tf}

∑
i∈M

∑
j∈M |i 6=j (ai,imi(t) − aj,imj(t))

2 where imi(t) denotes

the image of trajectory t from M1 to motion Mi under mapping dictated by our

trajectory grouping. Put simply, we minimize the squared distance of the means of

each trajectory pair that we match up from each motion.

We now calculate three optimization terms given our grouping (which stays

the same from here on out) in our multiobjective floating contact optimization,

namely Lvariance,Lmean, and Lsimilarity. For each trajectory Mi,j we perform prin-

ciple components analysis to find eigenvectors {vi,j,1, vi,j,2, vi,j,3} and eigenvalues
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λi,j,1, λi,j,2, λi,j,3 as well as normalized eigenvalues λi,j,1, λi,j,2, λi,j,3 where we divide

by the sum of the eigenvalues for the trajectory in question. Now given a trajectory

grouping {g1, ..., gm} where gi denotes the mapping from trajectories in motion 1

to motion i, we compute the terms:

• Lvariance =
∑
i

∑
j

∑
k λi,j,k

• Lsimilarity =∑
Ti

∑
gj

∑
gk

∑
m

∑
n λj,gj(Ti),m · λk,gk(Ti),n(vj,gj(Ti),m · vk,gk(Ti),n)2

• Lmean =
∑
Ti

∑
gj

∑
gk

(aj,gj(Ti) − ak,gk(Ti))
2

where gk(Ti) denotes the mapping from trajectory i in motion 1 to its corresponding

trajectory in motion k under our trajectory grouping g. These three additional

optimization terms are added to the linear combination objective function used

for our floating contact optimization, thus our total objective is the sum of the

individual floating objectives plus the coupling terms. Lsimilarity encourages contact

trajectories to take the same shape and is optimal when each trajectory lies along

the same principle component, while Lvariance encourages contact points to remain

close to their mean if possible, and Lmean encourages contacts to be centered in the

same region relative to the palm.

Due to the fact that our coupling terms tend to pull contacts away from the

object to make trajectories more similar, our coupling term can end up making

motions more brittle. To prevent this, we need to add in a measure for robustness

of our motions. One way to do this is to calculate a different set of forces (keeping

contact locations the same) under an additional scenario in which a particular

perturbing force is applied to the object throughout its motion. Though we have

successfully experimented with this approach, it does require that we manually

specify sets of perturbing forces for each motion since no single set of perturbing

forces works in all cases.

Since we want to require as little user input as possible, we instead introduce

an additional contact-wise perturbing force objective and an additional set of op-

timization variables to determine the applied forces in each additional perturbing

scenario. We iterate through each contact point (each of these is considered a dif-

ferent perturbing force scenario) and apply a small perturbing force in the same

direction as the contact force at that point in the unperturbed case: now we re-

calculate the applied force at each of the other contact points (which are included

as additional optimization variables) in order to balance this disturbing force such

that our net force and torque on the object remains unchanged. If we have a total

of N contacts, then we add 3∗ (N −1) additional optimization variables per contact

per keyframe to give us our resulting contact forces for a total additional 3N(N−1)

variables per keyframe. For each of the N new sets of forces acting on the object,

we calculate LfrictionCone and Lphysics (equations 4 and 8) and add them to our

objective with the same weighting as in the unperturbed case and normalize the

sum by N + 1. The point-wise perturbing forces encourage placement of opposing
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(a) (b)

(c) (d)

(e) (f)

Fig. 6: Here we demonstrate several examples of motion combinations passed

through our multi-objective pipeline. Each row shows a single hand design that

has been optimized for three different target motions. We refer the reader to our

accompanying video for the full motions. (a) is optimized for a case in which we want

to rotate a sphere around three orthogonal axes. (b) translation of a capsule along

three orthogonal axes. (c) rotation of several different sized spheres (i.e. multi-scale

sphere rotation). (d) accomplishes three dis-similar tasks, namely sphere rotation,

capsule translation, and rotating and bowing out a capsule. (e) is optimized for the

individual motions comprising our progressive sphere motion sequence from Figure

4: note that this hand requires fewer degrees of freedom since the motions are no

longer required to execute in sequence. Finally (f) shows a capsule rotated around

3 orthogonal axes.

contacts to make motions more robust and the Lphysics and LfrictionCone calcu-

lated for these perturbing cases encourage contacts to remain active via the contact

invariant weighting ci.

Figure 7 demonstrates the ability of our coupling terms to reduce different trajec-

tories to similar trajectories. In this example, we take five different physically valid

floating motions each created from a separate initial contact seed for the sphere

rotation task. Running these combined motions through our multi-objective float-

ing optimization causes similar contacts between motions to converge to the same

trajectory. This demonstrates that the coupling terms have the potential to remove

unnecessary complexity from the floating contact optimization, thereby simplifying

the synthesis optimization problem.

6. Analysis of Individual Optimization Terms

In this section, we demonstrate the necessity of each group of terms in our opti-

mization framework and show examples of failures caused by the removal of each
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(a) (b) (c)

Fig. 7: (a) We illustrate five different valid floating motions that are capable of

executing the sphere rotation example from earlier. (b) We see the overlaid inde-

pendent trajectories, where contacts from seperate motions have been matched up

on a nearest neighbors criteria (shown with the same color). This is equivalent to

a multi-objective floating contact result in which the trajectory coupling terms in-

troduced in this section are disabled. (c) This is the set of trajectories produced

by the multi-objective optimization with coupling terms enabled. Since the desired

motions are equivalent in this scenario, the contact trajectories for each random

seed end up converging to the same set of trajectories to minimize the coupling

score.

of these terms. While terms such as Ltask and Lphysics in our first and third op-

timization steps are obviously necessary for our pipeline to produce meaningful

physically feasible designs and motions, the effects of several of our optimization

terms are not quite as obvious. Due to the large number of terms in our optimiza-

tion pipeline, we will restrict this discussion to only the non-trivial optimization

terms with non-obvious utility and/or interesting behavior. Figures for each of the

examples discussed in this section are shown in Appendix B.

In the preceding section, we established the need for our coupling terms in

Figure 5. As mentioned earlier, the perturbing forces heuristic helps to give us more

robust motions by counteracting the tendency of our coupling terms to lift contacts

unnecessarily: we present an example of this in Figure 8. In the case where we do

not include perturbing forces, some contacts become inactive during the floating

optimization step. Since contacts are binarized after the floating step, it rare for

the ”whole hand” optimization to re-establish inactive contacts unless they are

absolutely necessary.

The other non-trivial terms we would like to highlight are the Jacobian null

space penalty (equation 22), the friction cone with respect to the hand (30), applied

torque regularization (23), and the contact slippage constraints (28 and 29).

Figure 9 shows that if we remove the Jacobian null space term, our optimization

shows no regard for whether or not the hand can actually provide required forces

for the motion. Figure 10 shows the need for the LfrictionConeHand term in cases

where minor collision occurs between rigid bodies. If contacting rigid bodies were

always perfectly tangent, LfrictionConeHand would just duplicate LfrictionCone, but

this can not be guaranteed since we penalize collision as a soft cost. Figure 12 shows

a case in which the bottom contact point in a capsule translation motion teleports

on the finger due to the lack of a large enough contact surface. Increasing our slip-
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page penalty coefficients causes our finger to change its configuration to provide a

larger surface for the contact to realistically slip on (note that the weight change

is unique to this example for the purposes of demonstration). The torque regular-

ization LtorqueReg term helps the pipeline generate mechanisms that can efficiently

accomplish the task. Figure 11 demonstrates the ability of our optimization to build

mechanisms that require as little joint torque as possible for actuation.

7. Discussion of Pipeline Limitations

There is a disconnect between the floating optimization and synthesis optimization

in our pipeline due to the simple fact that the floating optimization has no con-

cept of what a finger is or how kinematic constraints can limit motion capability.

It is therefore not possible for our system to generate manipulations like finger

gaiting motions or meaningful grasp transitions organically, although we can force

this behavior to occur if we manually set the initial contacts at every frame. This

disconnect is the cause of most of the failure cases we have observed. Sometimes

the floating contact optimization gives a non-collision free trajectory: in general this

can be addressed by providing multiple initial seeds for contacts. Additionally, poor

selection of base location can give awkward looking mechanisms.

In future work, we may try to combine the design optimization with the contact

planner to resolve these issues. Doing so may allow our pipeline to correct for poor

motion planning or design choices made earlier on by the pipeline. Although the final

optimization has the capacity to re-plan contact trajectories, it is not always able

to successfully re-plan a given motion to fix a flawed contact trajectory/mechanism

pair, as demonstrated in Figure 14. We envision a feedback loop in which we it-

eratively design a mechanism and re-plan its motion until we reach a satisfactory

solution. Our pipeline is limited to placing contacts on the distal finger segments,

the palm, and objects in the environment, however a planning/design feedback loop

may allow us to use intermediate finger segments as contact surfaces, allowing us

to model motions like power grasps.

Another important limitation of our pipeline is that we do not explicitly model

rolling constraints on the fingertips. In most cases our choice to not model rolling

does not introduce any noticeable physical infeasibility. In some cases, such as the

sphere rotation motions, feasible rolling behavior seems to emerge anyway due to

our other optimization terms. As Figure 13 demonstrates, our method has difficulty

planning for rolling motions where rolling is the central focus of the particular ma-

nipulation. Our pipeline is able to generate reasonable floating contact trajectories,

but our synthesis step is designed around the premise that a single contact point on

the fingertip should be able to track the contact trajectory matched to that finger

(this is done to make the synthesis optimization tractable). It is therefore up to the

”whole hand” optimization to adjust contact positions between frames to account

for any slipping or rolling that may occur, which is not always possible given the

mechanism design.
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Future work should also improve upon the way we measure and optimize for

robust motions. Although we have observed that sets of manually specified per-

turbing forces can encourage robustness, this solution is not general enough. This

led us to develop our point-wise perturbing force heuristic introduced in Section 5.

This heuristic encourages robust contact placement, however it is not a perfect so-

lution either since it can add unnecessary constraints on contact placement. While

the heuristic is necessary for multi-objective hands to counter the negative effects

of our coupling terms, we do not strictly need it and therefore do not include it in

our single objective examples. Our heuristic tends to make contact points line up

such that they oppose one another, however this can be too restrictive for some of

our more complex single objective motions like our pen drawing motions.

8. Concluding Remarks and Additional Directions for Future

Work

In this work we have presented a methodology for generating task specific manip-

ulators for both single motions and multiple motions. We believe that the pipeline

introduced in this paper can serve as the basis for development of a scalable and in-

creasingly sophisticated design tool that is intuitive, user-friendly, and allows users

to generate designs to suit their particular needs. One of the benefits to our ap-

proach is that our pipeline can be further outfitted with self-contained modules

that can be separately developed before being incorporated into our final pipeline.

A particular module that may prove useful is an automatic linkage designer [29] to

reduce degrees of freedom after the ”whole hand” optimization step.

The main shortcoming of our methodology is that it does not adequately plan

for robustness under environmental uncertainty. Issues with building robust manip-

ulators can possibly be addressed by adding a simulation based optimization to the

end of our pipeline in which we take the trajectory optimization based design and

put it in a physics engine to carry out the intended motion in various scenarios.

Our generated hands are optimized with respect to a single known starting config-

uration as well as known object size and weight. In future work, we plan to design

mechanisms that are robust to sensor noise, variations in object geometry, friction,

mass, etc.
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wphysics 10 wci object 100

wtask 50 wforceReg .01

wfloatingContactAccel .01 wobjectAccelReg .1

wobjectAngAccelReg 1 wfrictionCone .1

α(frictionsharpen) 5 wcoupling similarity .25

wcoupling mean 10 wcoupling variance .01

Table 1: Table of common weights for floating contact optimization

9. Appendix A: Implementation Details

Although our optimization has very few parameters for a user to tune, there are

internal weights and other details required to duplicate these results. Weights were

set the same for all examples. We observe that these weights lead to qualitatively

similar motions as long as they are set to within an order of magnitude of the listed

values. Our implementation for each segment of the pipeline is multi-threaded wher-

ever possible. Most examples in the paper completed between 15 and 30 minutes

each through the pipeline from start to finish on a quadcore Intel I7 laptop.

9.1. Floating Contact Optimization

When calculating our objective in the floating contact optimization, we interpolate

between the keyframes and calculate the sum at each time according to a time step

tstep = .1 seconds. Weights for the objective terms are given in Table I. Depending

on the number of steps involved, we set our motions to last between 4 and 12 seconds

for most of our example manipulations (more complex manipulations require longer

time horizons for smooth motions). The number of keyframes we use for a given

motion is dependent upon the number of objective keyframes specified (which is also

a measure of the motion’s complexity): we typically use 1-3 additional keyframes

between each of our objective keyframes, spaced uniformly over time. The object

position component of xO and contact positions rj are interpolated via catmull-rom

splines, object orientations are computed via the exponential map[11], and ẋO are

calculated via finite differences. The contact forces fj are linearly interpolated and

the cj are evaluated as piecewise-constant terms.

In our optimization, we allow for one point contact on each fingertip on our

hand and a single point contact to allow the object to interact with the ground. We

optimize our objective with a standard L-BFGS solver [16].

Except for the Ltask term, we normalize each of our cost terms by the number of

keyframes in our motion. We initialize the object poses in our keyframes by inter-

polating between our objective goal positions and determine contact positions by
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keeping the same initial contacts with respect to the objects local frame (i.e. initial

contacts are just translated and rotated with the object). This initialization gives

zero Ltask cost on the first step of the optimization, prompting the optimizer to

focus on solving for the forces and contact positions needed to satisfy the Lphysics
term. The result is that we tend to see an optimization procedure in which Ltask
remains small while the Lphysics term dominates the optimization, eventually lead-

ing to a solution with only slight deviation from the original task objective and low

physics penalty.

9.2. Mechanism Synthesis Continuous Optimization

In our continuous mechanism optimization (whether we are optimizing entire hands

or individual fingers), we apply a three step annealing schedule (shown in Table 2)

in order to deal with errant collisions such that our gradient updates do not be-

come unstable. Our annealing schedule initially assigns a low penalty for collisions,

and gradually increases it to the full value to generate a mechanism that tracks

trajectories as well as possible while avoiding collision.

Variable Step 1 Step 2 Step 3

weeTarget 50 10 50

wcollision .1 5 100

Table 2: Weights for the annealing schedule: we gradually increase the trade off

between end effector tracking and collision to encourage stable gradients

Additionally, to check for collisions between keyframes, we evaluate collision

costs for intermediate poses in which the object position and orientation are splined

between keyframes. We fix the position and orientation of the base to the trajectory

specified by the user: this prevents accomplishing the motion by trivially reorienting

the base while holding a static grasp.

weeTarget varies wcollision varies

wfingerLengthRegularization .1 wcontactDistSurface 1000

wfingertipAcceleration .001 wjacNull 1

wtorque .05 wjointLimits 1

wfingerPositions 1 wfingertipMinLength 1

Table 3: Common weights for mechanism synthesis continuous optimization: note

that weeTarget and wcollision vary with the annealing schedule
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wci finger 100 wci finger slippage 10

wci object 100 wci object slippage 10

wfingerAcceleration .001 wcollision 100

wtask 50 wphysics 10

wjacNull 1.0 wtorque .05

wfrictionCone .1 wfrictionConeHand .1

α(frictionsharpen) 5 wkinematic 1

Table 4: Table of weights for the whole hand optimization: weights for terms not

mentioned above are kept the same as in the floating contact optimization.

9.3. Mechanism Synthesis Discrete Optimization

On a given iteration of our outer loop, we typically optimize 10 different randomly

seeded fingers, generate 5 recombined hands, and limit ourselves to a maximum of 3

joints per finger. In generating our initial seeds for the fingers, we randomly reseed

the finger pose, finger segment lengths, the initial joint angles, joint axes, and the

points at which the fingers connect to the base of the hand as well as the contact

points on the fingertips (expressed in the local coordinate frame of the fingertip).

We propagate the same random initial pose for the finger across all of the keyframes

in our optimization.

9.4. ”Whole Hand” Optimization

A table of common weights is shown in Table 4. Prior to optimization, we reinitialize

each contact location to be the closest point on the object to its assigned fingertip.

By default, the user specified base trajectory is held fixed, however in various ex-

amples where it is appropriate we allow the ”whole hand” step of our optimization

to adjust the base motion. This helps to avoid collision with the ground in several

cases.

10. Appendix B: Leave-One-Out Examples and Failure Cases

In this appendix, we present the figures referred to in Sections 6 and 7 of the paper,

in which we discussed the effects of removing each non-trivial term from our pipeline

and discussed several limitations of our existing framework.
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Fig. 8: (a) shows the multiobjective sphere rotation, capsule rotation, and translate

motion presented earlier after going through our normal pipeline. In (b), we run

the same example through but without using perturbing forces in our multiobjec-

tive floating optimization. As a result, contacts that are not strictly necessary are

lifted in the floating optimization to increase the coupling similarity, resulting in

unnecessarily brittle motions.

Fig. 9: The above example shows one of the motions comprising the capsule trans-

lation multi-objective example presented in 6 with the Jacobian null space penalty

LjacNull removed from the pipeline. With this constraint removed, the synthesis

step is content with finding a hand capable of tracking the end effector trajectories

from our floating step for each component motion. As a result, the ”whole hand”

optimization (from which LjacNull is also removed) produces a motion that allows

the object to unrealistically float up and down with no way for the hand to actuate

the motion.

Fig. 10: As figures (a) and (b) show (on our rotate and bow out single objective

motion), with LfrictionConeHand removed from our whole hand optimization, even

slight collision between the fingertip and object can cause very unrealistic contact

forces with respect to the fingertip’s frame. Figure (c) shows the same optimization

with LfrictionConeHand included, indicating that it prevents this type of inconsis-

tency from occurring.
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Fig. 11: In (a), we have a scenario in which a single finger in the synthesis stage

must exert an upward force originating from the center of the fingertip. In this

example, we disabled all parameters except joint axis directions and provided a

manually constructed initial design. In (b), we fit our hand to a stationary contact

trajectory: the optimization aligns both axes perpendicular to the exerted force to

balance the torque load on the joints. In (c) and (d) we fit our finger to a motion in

the plane perpendicular to the force, requiring one joint for actuation and one for

movement. In (c) we set our distal joint to be slightly off axis from the direction of

the exerted force while the first joint is set parallel to the force: this configuration

incurs a very high torque penalty and no Jacobian null space penalty. (d) shows

the global optimum design that our optimization finds, in which the distal axis is

perpendicular to the force while the base joint is parallel to it, allowing the hand to

actuate with minimal torque and match the desired trajectory. If LtorqueReg were

excluded from the synthesis step, (c) and (d) would have identical objective values.

(a)

(b)

Fig. 12: To demonstrate the effectiveness of the slipping constraints

Lci finger slippage and Lci object slippage in our ”whole hand” optimization we build

on the example shown in part (b) of Figure 8. The bottom contact in the transla-

tion motion (reproduced above as (a)) for this particular example displays a very

large slippage error. The contact point essentially teleports to another location on

the fingertip since there is only a small contact surface available. For demonstration

purposes, in (b) we increased the normal weighting (in Appendix A) of both slippage

terms by one order of magnitude, causing the optimization to find an acceptable

solution with a much lower slippage penalty.
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Fig. 13: In this example, we optimized a hand for the task of rolling capsules of

various sizes around their principle axes. Since we are requiring a single hand design

to accomplish these motions, this is only possible if the pipeline plans for or learns

the rolling behavior. Our pipeline is able to plan reasonable contact trajectories, but

the ”whole hand” optimization is unable to adjust the contact positions to generate

the necessary rolling motion since the mechanism is ill-suited for this type of motion.

This is due to the fact that our mechanism was constructed with the premise that a

single contact point on the fingertip should be responsible for tracking each contact

trajectory. We refer the reader to our accompanying video for the complete motions.

Fig. 14: (a) displays the floating contacts for the acceptable sphere rotation, capsule

rotation and translation motion example, while (b) displays a different version of

this motion obtained via a different set of initial contact points. The contacts in (a)

do not cause the attached fingers to self-collide, while it is impossible to construct

fingers to follow the trajectories in (b) without self collision. (c) displays the non-

colliding example, while (d) displays the colliding example after the ”whole hand”

optimization stage. The ”whole hand” planner was unable to find an alternate

solution in (d) with the mechanism given to it that did not involve finger collision,

and as a result the solution it found involves the fingers passing through one another.


