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Introduction
When simulating numerically certain problems arising in geomechanics and soil mechanics, such as excavation stability in 

mining or civil engineering, the surrounding ground is often modelled as a half-space. The numerical approach to be used then 
needs to be able to deal in some way with unbounded domains. Several numerical methods with that feature exist [1]. Among 
them, a good alternative is the use of finite elements in combination with exact boundary conditions provided by the Dirichlet-
to-Neumann map on an artificial boundary, that is, a DtN-FEM approach [2]. In general, this type of procedure can be applied as 
long as that an explicit, analytical closed-form expression for the DtN map exists. Such is the case for most exterior problems, that 
is, when the involved domain corresponds to the whole space minus some bounded region [3,4]. However, applying a DtN-FEM 
approach to solve a problem formulated in a half-space could be tricky, mainly due to the lack of closed-form expressions for the 
DtN map in most cases of interest, so some approximation of it becomes necessary [5, 6]. In a relatively recent research [7,8], 
the authors presented an axisymmetric DtN-FEM approach for the elastic half-space, based on a semi-analytical approximation 
in series form of the associated DtN map. Its coupling with the finite element scheme is carried out directly on the discretised 
variational formulation of the boundary-value problem [8], specifically on the boundary integral terms on a semi-spherical 
artificial boundary. The method exhibited an excellent performance in terms of speed, precision and robustness. Its accuracy 
was investigated by solving a benchmark problem with explicit analytical solution, proposed by the authors and based upon 
the same procedure to obtain the semi-analytical approximation to the DtN map. In this paper, the accuracy of the DtN-FEM 
approach is further assessed by solving the classical Boussinesq problem, consisting in the elastic response of a half-space subject 
to a vertical point load applied on its surface [9]. The numerical solution is then compared to the analytical solution, and the 
agreement between both solutions is investigated. The relative errors of displacements and stresses are analysed for different 
artificial boundary locations, series truncation orders and finite element mesh sizes. The convergence of the method in terms of 
these three parameters is numerically studied.

Overview of the DtN-FEM

In what follows, an overview of the DtN-FEM approach is given. Full details are found in [8]. Let us consider the lower 
half-space, described in cylindrical coordinates (ρ, θ, z) as the region in R3 where ρ ≥ 0 and z < 0, or alternatively in spherical 
coordinates (r, θ, φ) as the region in R3 where r > 0 and π/2 < φ < π. Notice that this semi-infinite region is axisymmetric with 
respect to the z-axis, and in particular it does not depend on the azimuthal angle θ. The lower half-space will be described in 
cylindrical coordinates (ρ, z) or spherical coordinates (r, φ) as appropriate. The associated unit vectors are denoted by (ρˆ, zˆ) 
and (rˆ, φˆ), respectively. Let us denote by u = (uρ, uz)

T the displacement field and by ε = (ερ, εz, εθ, ερz)
T the strain tensor. In the 

axisymmetric case, ε has four components (cf. [10]), which are defined as

Volume 3 Issue 3, 2022
Article Information
Received date: Aug 25, 2022 
Published date: Sep 27, 2022

*Corresponding author
Eduardo Ignacio Godoy Riveros, 
INGMAT R&D Centre, Jose Miguel de la 
Barra 412, 4to piso, Santiago, Chile

Keyword
Geomechanics; Axisymmetric; DtN Finite 
Element; Boussinesq Problem

Distributed under Creative Commons 
CC-BY 4.0

Research Article

Accuracy of a DtN Finite Element 
Approach for the Elastic Half-Space

Mario Duran1 and Eduardo Godoy2*

1Departamento de Ingenierıa Matematica, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
2INGMAT R&D Centre, Jose Miguel de la Barra 412, 4to piso, Santiago, Chile

Abstract

In this work, the accuracy of a DtN finite element approach is numerically assessed. This procedure allows an efficient 
and accurate numerical solution of boundary-value problems of axisymmetric elasticity in semi-infinite domains. For 
this kind of problems, no explicit closed-form expression for the associated DtN map exists, so a suitable semi-analytical 
approximation of it, in series form, is used to impose exact boundary conditions on a semi-spherical artificial boundary. The 
procedure is tested by solving the classical Boussinesq problem, whose exact solution is known analytically. The computed 
numerical solution is compared to the analytical solution, achieving an excellent agreement between both solutions, both for 
displacements and stresses. The convergence of the analytical solution to the numerical solution is numerically demonstrated, 
in terms of artificial boundary location, series truncation order and finite element mesh size. 
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The stress tensor σ = (σρ, σz, σθ, σρz)
T is given in terms of ε by the isotropic Hooke law. Its components are

σρ = λ(ερ + εz + εθ) + 2µερ,	    (2a)
σz = λ(ερ + εz + εθ) + 2µεz,	    (2b)
σθ = λ(ερ + εz + εθ) + 2µεθ,	    (2c)
 σρz = 2µερz,	                               (2d)

(2)

where λ, µ are Lame’s constants of the medium, which is also characterised by Young modulus E and Poisson ratio ν. Both pairs 
of elastic constants are linked by

( )( )1 1 2

Eν
λ

ν ν
=

+ −
, ( )2 1

E
µ

ν
=

+
(3)

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Page 2/11

Copyright  Eduardo Godoy

Citation: Duran M and Godoy E (2022) Accuracy of a DtN Finite Element Approach for the Elastic Half-Space. J Miner Sci Materials.. J Miner Sci Materials 3: 
1045

The Boussinesq problem is stated in the axisymmetric case as follows: Find a displacement field u defined in the half-space, with values in R2, such that

∇ · σ = 0	                    in {ρ > 0, z < 0},	   (4a)
σzˆ = −Pδ0zˆ	 on {z = 0},	                 (4b)
σρz = uρ = 0	 on ρ = 0 ,	                (4c)
|u| = O (r−1)	  as r → ∞,	                 (4d)

(4)

where in the right-hand of (4b), P is the point load magnitude and δ0 stands for the Dirac delta distribution at the origin. The problem is completed with a boundary condition on 
the vertical axis (4c), which in order to preserve the axisymmetry must be constrained against horizontal displacement and free of shear traction, and a standard decaying condition 
at infinity for u (4d). The Boussinesq problem (4) has and analytical solution, which is exhibited later. To solve (4) with the DtN-FEM approach, a semi-spherical artificial boundary is 
used to truncate the half-space, dividing it into a bounded interior computational domain Ω and an unbounded exterior domain Ωe, as indicated in Figure 1. The truncation radius is 
denoted by R. Notice that the artificial boundary, denoted by ΓR, simply corresponds to a quarter of circumference. The vertical and horizontal boundaries of Ω are denoted by Γi and Γs, 
respectively, where the latter forms part of the vertical axis of rotational symmetry. The Boussinesq problem is then restated in Ω as follows: Find u : Ω → R2 such that

∇ · σ = 0	 in Ω,	              (5a)
σzˆ = −Pδ0zˆ on Γi,	 (5b)
σρz = uρ = 0 on Γs,  	 (5c)
σrˆ = −Mu on ΓR,	                (5d)

(5)

where M denotes de DtN map of the elastic half-space, which for the moment is assumed to be known. To state a variational (or weak) formulation of (5), we consider the Sobolev space 
V consisting of physically admissible vector functions v : Ω → R2, with both components vρ, vz in H1(Ω) and vρ with zero trace on Γs. The variational formulation of (5) reads: Find u ∈ 
V such that

( ) ( ), R
R

a u v Mu vd f v
Γ

+ ⋅ Γ =∫
	 Vυ∀ ∈  

(6)

where a corresponds to the bilinear form of axisymmetric linear elasticity and f is a linear operator related to external forces, in this case the vertical point load. The integral term accounts 
for the contribution of DtN map and corresponds to the non-standard part of the variational formulation.

Figure 1: Truncated domain.

Let us consider a standard FEM discretisation of (6) using P1 triangular elements. Given a triangular mesh of Ω, its size is 

denoted by h. The components of the discrete vector solution ( ),
Th h h

zu u uρ=  are then sought in a finite-dimensional space Vh 
⊂ V consisting of continuous, piecewise linear functions, whose dimension is denoted by Nh. The usual basis for Vh is composed 

by nodal shape functions { } 1

Nh
i i

ψ
=

such that ψi = 1 at node i and ψi = 0 at all node j i≠ . The solution is thus expressed as
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1

ˆ ˆ
Nhh

i zi i
i

u d d zρ ρ ψ
=
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where dρi and dzi are the unknown nodal values associated with components 
huρ  and 

h
zu  of the discrete solution uh, respectively. 

Substitution of (7) in (6) leads to its matrix form, expressed as

Kd = F, (8)

where the right-hand side F comes from the discretisation of the right-hand side of (6) and d is a vector containing the unknown coefficients dρi, 
dzi. The matrix of the system is written as:

K = Ka + Kb, (9)

where Ka comes from the discretisation of the bilinear form a and Kb is related to the integral term in (6). Matrix Ka and vector F are 
computed by Gauss numerical integration, whereas the evaluation of matrix Kb requires a special procedure. This matrix has size 2Nh, and is 
defined by blocks as

b b
zb

b b
z zz

K K
K

K K

ρρ ρ

ρ

=
 
 
  

(10)

These four blocks are defined through their ij-components as

ˆˆb
i j Rij

R

K M dαβ ψ α ψ β
Γ

= ⋅ Γ∫  
	 α, β = ρ, z,

(11)

which are nonzero only if both nodes i and j lie on the artificial boundary ΓR. Therefore, and recalling that there is no explicit closed-form 

expression for the DtN map M, highly accurate numerical approximations of terms ˆjMψ ρ  and ˆjM zψ , for every node j lying on ΓR, are 
required in order to fully solve the boundary-value problem (5). To produce such approximations, we start by giving the mathematical DtN 

map definition. Given any displacement v ∈V, with trace ( )
21

2| R Rv HΓ ∈ Γ 
    , we define ( )

21
2ˆ | R RM r Hυ σ

−
= − Γ ∈ Γ 

  
, where 

σ is the stress tensor whose components are computed through (1) and (2) from the displacement u, the solution of the following boundary-
value problem stated in the exterior domain: Find u : Ωe → R2 such that:

0 einσ∇ ⋅ = Ω       (12a)
ˆ 0 e

iz onσ = Γ           (12b)

Ru v on= Γ              (12c)
0 e

z su onρ ρσ = = Γ      (12d)

( )1u O r as r−= → ∞
   (12e)

(12)

which needs to be solved for ˆjυ ψ ρ=  and ˆj zυ ψ= . The technique to do so, fully described in [7,8], is based upon an enhanced version of 
the solution originally proposed by Eubanks [11]. By using Papkovich-Neuber potentials and separation of variables in spherical coordinates 
(r, φ), it is possible to find a general analytical solution to (12) in series form, which is expressed as
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where the vector functions 
( ) ( )A
nω ⋅  and 

( ) ( )B
nω ⋅  are known and coefficients An and Bn are arbitrary. The associated stress tensor σ is 

written as
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where the tensor functions 
( ) ( ).A
nτ  and 

( ) ( ).B
nτ  are known. This solution, in its series form (13)-(14), satisfies (12a), (12b), (12d) and (12e). 

In order for it to satisfy (12c), coefficients An and Bn needs to be determined as a function of the Dirichlet datum v. This is not possible in a fully 
analytical way, so it is done numerically. To that purpose, we define the following quadratic energy functional J:

( ) 1 1
ˆ ˆ

2 R R
R R

J u r ud r d
R R

σ σ υ
Γ Γ

= − ⋅ Γ + ⋅ Γ∫ ∫ (15)

which is positive definite (notice that the unit normal vector pointing outwards Ωe corresponds to −rˆ) and reaches its minimum when 
(12c) holds. Substituting (13)-(14) in (15), with the series truncated at a finite order N and expanding, we arrive at a quadratic form, which is 
expressed as

( ) 1

2
T TJ x x Qx x y= − (16)

where x is a vector containing coefficients An, Bn up to the truncation order N, Q is a symmetric and positive definite matrix 

containing integrals of products between functions 
( )A
nω , 

( )B
nω  and 

( )A
nτ , ( )B

nτ  and y is a vector containing integrals of products 

between functions 
( )A
nτ , 

( )B
nτ  and v. The entries of matrix Q are computed analytically, and the components of vector y are 

computed by Gauss numerical integration for v = ψjρˆ, ψjzˆ. The quadratic functional J in (16) reaches its minimum when x 
satisfies the linear system Qx = y, which is solved by exploiting the block structure of Q, in such a way that the coefficients An 
and Bn are in practice computed by simple forward and backward substitutions. This procedure allows us to evaluate the entries 
of matrix Kb given in (11), and thus to fully solve the boundary value problem (5). Numerical experiments are presented in the 
next section.

Numerical Experiments

The analytical solution of the Boussinesq problem (4) is provided next. The components of the displacement field u are given by

( ) 2
1 2

,
4

P z
u z

r r r zρ
ρ ν

ρ
πµ

−
= − +

−

 
 
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and the component of the stress tensor σ are given by

( ) ( ) ( )
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The procedure described in the previous section was thus applied to the Boussinesq problem. Triangular meshes of the domain Ω, depicted 
in Figure 1, were generated for different radii R. As the solution to the Boussinesq problem has a singularity at the origin, the point load cannot 
be directly applied to a single mesh node in the numerical implementation. To approximate numerically such singularity, the point load is 
instead distributed along a small segment of length d << R, at which a smaller mesh size needs to be set. An example of mesh is presented in 
Figure 2, for a radius R = 5 m and a segment length d = 0.1 m (indicated in red). The whole mesh is presented on the left, and a zoom-in on the 
origin is shown on the right. The local mesh size was set to 0.15 m on ΓR, and to 0.01 m on the small segment at the origin. 

Figure 2: Example of mesh: whole mesh (left) and zoom-in on the origin (right).

To make a preliminary verification of the DtN-FEM accuracy, a numerical example was simulated for an elastic medium with Young’s 
modulus E = 80 GPa and Poisson’s ratio ν = 0.25. A point load magnitude P = 40 GPa was assumed. Given a radius R = 5 m, a mesh was generated, 
with the local mesh size set to h = 0.01 m at the origin and to h = 0.1 m on ΓR. The infinite series were truncated at N = 40. Comparisons of 
displacement components uρ and uz are provided in Figures 3 & 4, respectively. In both cases, the analytical solution, evaluated in the mesh, 
is presented on the left, whereas the numerical DtN-FEM solution is presented on the right. These four plots cover a square region in the (ρ, 
z)-plane defined by 0 m ≤ ρ ≤ 3 m and −3 m ≤ z ≤ 0 m. It is observed that the numerical solution approximates the analytical solution correctly. 
Some minor discrepancies arise at the origin, due to the numerical approximation of the singularity.
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Figure 3: Comparison of displacement component uρ: analytical (left) and numerical (right).

Figure 4: Comparison of displacement component uz: analytical (left) and numerical (right).

In order to study numerically the convergence of the DtN-FEM approach, the L2-relative error on the artificial boundary 

ΓR is utilised. Given a displacement field ( ),
Th h h

zu u uρ= , numerically computed in a mesh of size h > 0, and the analytical 

displacement ( ),
T

zu u uρ= defined in (17), the L2-relative error associated with each displacement component is defined as

( ) || || ,0
|| ||0,

h
Rh

R

u u
E u

u
α α

α
α

− Γ
=

Γ
 , α = ρ, z 

(19)

where || · ||0,ΓR stands for the scalar L2-norm on ΓR, defined as

1
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2
,0|| || RR
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dυ υΓ
Γ
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for any scalar function ( )2
RLυ ∈ Γ . The L2-relative error associated with the whole displacement uh is also considered, 

which is defined as

( )
1

22 2
,0 0, 0,|| || || || || ||zR R Rρυ υ υΓ Γ Γ= + (21)

where this time, || · ||0,ΓR denotes the vector L2-norm on ΓR, that is,

( )
1

22 2
,0 0, 0,|| || || || || ||zR R Rρυ υ υΓ Γ Γ= + (22)

for any vector function v with components ( )2, z RLρυ υ ∈ Γ . The L2-relative error of stress on ΓR is also analysed. The numerical 

stress ( ), , ,
Th h h h h

z zρ θ ρσ σ σ σ σ=  is computed from the numerical displacement uh, by first evaluating strain components through 
(1), with the displacement derivatives computed by numerical derivation on the mesh, and then by evaluating stress com- ponents 

through (2). The analytical stress ( ), , ,
T

z zρ θ ρσ σ σ σ σ= , on the other hand, is given by (18). The L2-relative errors associated 

with each stress component and the whole stress σh, denoted respectively by ( )( ), , ,hE z zασ α ρ θ ρ=  and E(σh), are defined in 
analogous way to (19) and (21), respectively. In the convergence studies that follow, the same elastic parameter values E = 80 
GPa and ν = 0.25 were kept, as well as the point load magnitude P = 40 GPa. Firstly, we studied numerically the convergence in 
terms of the radius R, which determines the artificial boundary location. To that purpose, a set of 20 decreasing radius values was 
defined as follows: R1 = 30 m and Ri+1 = 0.9Ri, for i = 1, . . . , 19. For each one of them, a mesh was generated, keeping the local 
mesh size set to h = 0.01 m at the origin and to h = 0.15 m on ΓR, independently of the value of R. For the numerical solution, 
the infinite series were truncated at N = 40 in all the cases. The computed relative errors in function of R are presented in loglog- 
scale, in which the chosen radius values are equispaced. Figure 5 presents separate plots with the L2-relative error curves of each 
displacement component (left) and stress component (right). Figure 6 shows a single plot with the L2-relative error curves of the 
whole displacement field and stress tensor. It is observed that the relative error decreases as the radius increases. This is explained 
by the fact that as the artificial boundary is placed at an increasing distance from the origin, the singularity generated by the point 
load has a decreasing influence on the numerical solution evaluated at ΓR. In the case of the displacement field, which is directly 
the solution of (5), the relative errors of each component remain below 0.1%, which further demonstrates the accuracy of the 
DtN-FEM approach. For the largest considered radius, R = 30 m, the relative error of displacement is about 0.0024%. In addition, 
and as expected, the relative error of stresses is larger than that of displacements, mainly since the stress tensor is not directly the 
solution of (5), but it depends on displacement derivatives, which are computed through numerical derivation on the mesh. For 
the largest considered radius, R = 30 m, the relative error of stress is about 1.4%. Moreover, it is clearly observed that the relative 
error curves shown in Figures 5 & 6 are nearly straight lines in loglog-scale. Their respective approximate slopes were computed 
by linear regression and the resulting values are presented in Tables 1 & 2 for displacement (vector and its components) and stress 
(tensor and its components), respectively. The slope of displacement error curves is nearly −2, whereas that of stress error curves 
is nearly −1, which provides strong numerical evidence that the convergence of our DtN-FEM approach, in terms of artificial 
boundary location R, is of second order.
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Figure 5: L2-relative error curves in function of R by components: displacement (left) and stress (right).

Figure 6: Displacement field and stress tensor L2-relative error curves in function of R.

Displacement (Vector or Component) u  uρ     zu

Approximate slope −1.9738 −1.9735 −1.9904

Table 1: Approximate slopes of displacement L2-relative error curves in function of R.

Table 2: Approximate slopes of stress L2-relative error curves in function of R.

Stress (Tensor or Component) ρσ   ρσ   zσ
  θσ   zρσ  

Approximate slope −0.9923 −0.9962 −0.9918 −0.9839 −1.0245

Secondly, we studied numerically the convergence in terms of the mesh size h. The artificial boundary location was set to R = 
10 m and a set of 20 decreasing mesh sizes was defined as follows: h1 = 0.5 m and hi+1 = 0.9hi, for i = 1, . . . , 19. The local mesh size 
on ΓR was set to each one of these values and meshes were generated, with the local mesh size at the origin set to h = 0.01 m in all 
the cases. For the numerical solution, the infinite series were truncated again at N = 40. The computed relative errors in function 
of h are presented again in loglog-scale, in which the chosen mesh size values are equispaced. Figure 7 presents separate plots 
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containing the L2-relative error curves of each displacement component (left) and stress component (right). Figure 8 includes 
a single plot with the L2-relative error curves of the whole displacement field and stress tensor. It is observed that the relative 
error decreases as h decreases, just as expected. A finer mesh size results in a better numerical approximation of the analytical 
solution. For the displacement field, the computed relative errors of its components remain inferior to 0.02% for the values of h 
considered, which further confirms the precision of the method. For the smallest mesh size, the whole displacement field has a 
relative error of 0.0038%. On the other hand, a larger stress relative error is again obtained, which is explained by the same reasons 
as the previous convergence study in terms of R. Furthermore, it is noticed from Figures 7 & 8 that, once again, the relative error 
curves correspond to nearly straight lines in loglog-scale. Their approximate slopes, computed by linear regression, are presented 
in Tables 3 & 4 for displacement (vector and its components) and stress (tensor and its components), respectively. The slope of 
displacement error curves is nearly 2, and that of stress error curves is nearly 1. This fact gives strong numerical evidence that the 
convergence of this DtN-FEM approach, in terms of the mesh size h, is of second order, which reinforces what had been found 
in the previous research [8].

Displacement (Vector or Component) u  uρ   zu
 

Approximate slope 1.9729 1.9723 1.9864

Table 3: Approximate slopes of displacement L2-relative error curves in function of h.

Table 4: Approximate slopes of stress L2-relative error curves in function of h.

Stress (Tensor or Component) σ   ρσ   zσ
  θσ   zρσ  

Approximate slope 0.9837 0.9982 0.9889 0.9690 1.0357

Figure 7: L2-relative error curves in function of h by components: displacement (left) and stress (right).

Figure 8: Displacement field and stress tensor L2-relative error curves in function of h.
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Finally, we analysed numerically the convergence in terms of the series truncation order N . For this, a single mesh was employed, with 
a radius of R = 10 m, and local mesh sizes of h = 0.01 m at the origin and h = 0.15 m on ΓR. The truncation order was varied from N = 2 to 
N = 200, with increments of ∆N = 2. Figure 9 presents separately the L2 relative error curves of displacement components (left) and stress 
components (right), this time in linear scale. We note that, even if the relative error of displacement decreases with increasing truncation order, 
just as expected, N has little influence on it. A higher dependance is observed at low values of N, however, the curve tends to a constant value 
for higher values of N. Moreover, both displacement components have small relative errors, their values are at most 0.03%. In the case of the 
stress components, the dependance of relative error on N is even less significant. In fact, nearly constant values are obtained. And as usual, these 
values are greater than those of displacement relative error. Therefore, this DtN-FEM approach is robust, since even for low series truncation 
order, precise results are obtained.

Figure 9: L2-relative error curves in function of N by components: displacement (left) and stress (right).

Concluding Remarks

The accuracy of a DtN-FEM approach for the axisymmetric elastic half-space has been demonstrated by solving the Boussinesq problem, 
a classical benchmark problem of elasticity whose exact solution is known analytically. The numerical solution shows an excellent agreement 
with the analytical one. The numerical results presented show that the numerical approach approximates the correct solution of the Boussinesq 
problem. In particular, this approach is able to compute accurately the solution on a semi-spherical artificial boundary that truncates the 
half-space in an arbitrary location. The numerical evidence shows that the convergence of this method is of second order, both in terms of the 
artificial boundary location R and the mesh size h. Moreover, the method shows robustness with respect to the series truncation order N , as it 
computes accurate results even for low values of N . Thanks to these advantages, the proposed DtN-FEM approach shows high potentiality to 
be applied to certain problems arising in geomechanics and soil mechanics, as allows for reducing the computational domain size and therefore, 
improving the computation time.
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