

¢,+ ½15¢12+ 37 = 0

 $\phi_{t} + \frac{1}{2} |\nabla \phi|^{2} + 97 = 0$ $\phi_{t} + \frac{1}{2} |\nabla \phi|^{2} + 97 = 0$ $\phi_{t} + \frac{1}{2} |\nabla \phi|^{2} + 97 = 0$

DEEP-WATER SPECTRAL WAVE DATABASE

-

SIPROL®: Four-Dimensional (4D) Virtual Geophysical Technology

SIPROL® is a Chilean Four-Dimensional (4D) Virtual Geophysical Technology, based on the conservative treatment of energy, mass, and momentum transfer processes, devoted to describing complex geophysical phenomena in the atmosphere, the ocean, and soil / subsoil / earth's crust in the continent.

Using information on a planetary scale, mathematical modeling, highperformance computing, artificial intelligence, engineering science, earth science, and high-level management, **SIPROL®** generates and puts in the market <u>frontier technological products</u>. Namely <u>4D VIRTUAL GEOPHYSICAL</u> <u>DEVICES</u>, such as: rain gauges, anemometers, thermometers, barometers, weather stations, thermocouples, tide gauges, current gauges, pressure sensors, displacement sensors, etc. They describe complex dynamics in an extremely precise and timely manner, especially on a local scale anywhere in the world, to provide standard geophysical information, as well as defining specific key management indicators for each business area and customized for each client. This information is designed to be generated in remote data centers and to be hosted in the virtual cloud.

SIPROL® service offering consists, among others, in establishing historical records, generating forecasts, projecting weather trends, monitoring and raising early warnings/alerting of extreme events due to natural hazards, developing studies with high added value, to understand, explain or describe complex geophysical phenomena -past, present, or future-, in the fields of thermodynamics, meteorology, hydrology, limnology, operational oceanographic hydrodynamics, environment, hydrogeology, structural geology, geomechanics, geotechnics, prospecting and related areas.

<u>SIPROL®-Wave-Hindcasting-v01</u>

The deep-water spectral wave database *SIPROL®-Wave-Hindcasting-v01*, is the result of mathematical and computational modeling of wave generation and propagation in the Pacific Ocean Basin. This is carried out based on a third-generation spectral wave model, exhaustively calibrated to represent multimodal wave conditions on the American Continent's West Coast. The simulations were forced using 10-meter wind data and sea ice concentrations from the reanalyzed data sets CFSR and CFSv2 (Saha et al., 2010) (Saha et al., 2014).

Available Information

This database, which covers from 1980 to 2020, includes two-dimensional spectral information and a complete set of wave parameters (see Table 1) at 188 points located in deep waters off the American Continent's West Coast, including Continental and Insular Chile, in addition to a complete set of wave parameters in 2DH format in the entire Pacific Ocean Basin (see Table 2).

Spectral parameters Expression $m_n = \int_0^\infty \int_0^{2\pi} f^n S(f,\theta) df d\theta$ *n*th order moment $[m_n]$ Wave heigh of zero order $H_{m0} = 4\sqrt{m_0}$ moment $[H_{m0}]$ Mean period $[T_{m01}]$ $T_{m01} = m_0/m_1$ Mean period equivalent to zero-crossing mean period $T_{m02} = \sqrt{m_0/m_2}$ $[T_{m02} \approx T_z]$ Energetic period $[T_{m-10}]$ $T_{m-10} = m_{-1}/m_0$ Frequency corresponding to the energy peak in Peak frequency $[f_p]$ frequency spectrum. Peak period $[T_p]$ $T_p = 1/f_p$ $D_m = \operatorname{atan} \frac{\int_0^\infty \int_0^{2\pi} \sin(\theta) S(f, \theta) df d\theta}{\int_0^\infty \int_0^{2\pi} \cos(\theta) S(f, \theta) df d\theta}$ Mean direction $[D_m]$ Mean direction of the frequency segment of the Peak direction $[D_p]$ bidirectional spectrum containing the peak frequency.

Table 1. Spectral parameters used to characterize a sea state (UNICAN, 2000).

Table 2. 2DH output parameters available for postprocessing.

2DH outputs						
ID	Variable	ID	Variable			
DPT	Depth	DP	Peak direction			
WND	Wind	HIG	Infragravity wave height			
HS	Significant height	CGE	Energy flux			
T02	Mean period	PHS	Partitioned height			
TOM 1	Mean period	PTP	Partitioned peak period			
TO 1	Mean period	PDIR	Partitioned direction			
FP	Peak frequency	PSPR	Partitioned spread			
DIR	Mean direction	PNR	Number of partitions			
SPR	Mean directional spread					

Some Validations

The database was validated with instrumental information recorded by a buoy located 1500 kilometers to the West-Southwest of Arica, Chile, and a buoy belonging to the Hydrographic and Oceanographic Service of the Chilean Navy, located 20 kilometers off the Bay of Valparaíso, Chile.

To illustrate the database performance in deep waters, graphs of dispersion for the spectral significant height are shown below, between the mentioned instrumental records and **SIPROL®-Wave-Hindcasting-v01**.

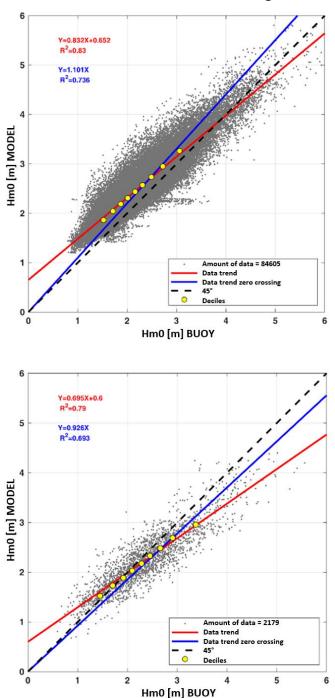


Figure 1. Dispersion graph of H_{m0} between instrumental records and SIPROL®-Wave. Up, instrument located in deep water off Arica, Chile. Down, instrument located off the Bay of Valparaíso, Chile.

Information Acquisition and License Agreement

Values indicated are net, taxes are not considered.	Wave Parameters	Bidimensional Spectra
Any year	USD 600	USD 1200
Additional year	USD 100	USD 200

Number of Years	Wave Parameters	Bidimensional Spectra
1	USD 600	USD 1200
5	USD 1000	USD 2000
10	USD 1500	USD 3000
20	USD 2500	USD 5000
30	USD 3500	USD 7000
40	USD 4500	USD 9000

The purchase of a data set of *SIPROL®-Wave-Hindcasting-v01* constitutes a license agreement between the client and the company SIPROL SpA, which allows the client to use that information set for any purpose related to the areas of science and engineering for a single and determined project.

The purchase of a data set of **SIPROL®-Wave-Hindcasting-v01** allows the client to request an information update for a period of up to 2 years, assuming the corresponding cost per additional year. This update is only applicable to the original project.

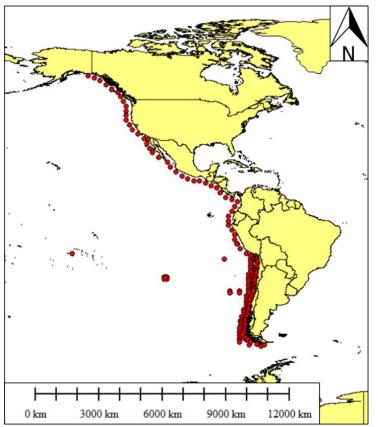


Figure 2. Location of the 188 virtual nodes with information on deep-water spectral waves in the American Continent's West Coast.

Address in Chile: SIPROL SpA

José Miguel de la Barra 412, Piso 4 Santiago, Chile, CP 832 0110 Phone: +56 2 2247 4905

Address in Ecuador: SIPROL Ecuador S.A.

Finlandia N35-51, Depto. 4B, Edificio Finlandia 1 Iñaquito, Quito, Ecuador, CP 170135

E-mail: info@siprol.com

Web Site: www.siprol.com

Contacts:

Mario Durán Toro General Manager Mobile Phone Chile: +56 9 9731 1904 Mobile Phone Ecuador: +593 98 995 0585 <u>mario.duran@siprol.com</u>

Diego Calderón Novillo Operations and Projects Manager Mobile Phone Ecuador: +593 98 443 2447 <u>diego.calderon@siprol.com</u>