Part 2: Starting to Work in R

Katie McCoy and Noah Vanderhoeven

University of Western Ontario

GAPS R Workshop

Introduction

The goals for this session are for participants to be able to...
e Develop an understanding of how to explore and describe a dataset.

e Be able to understand the mathematical and logical language of R and make use of
these operators in R Studio.

e Develop an understanding of tidy data practices that will allow them to manage data
and prepare their dataset for future work.

Slide 2 of 35

Loading our packages

e [t seems to be best practice to load your packages at the start of your script, to help keep
your script organized.

e Sometimes you will find that you need a package later on and you did not load it when you
first started your script. Not a problem! You can load a package at any point.

e Once we have installed a package, it will be loaded under the packages window forever (or
until we uninstall it or something else major happens to our RStudio).

e You will notice that we have included the install.packages () specifying "rio" but with
a hashtag in front of it. This "comments out" the code.

e In other words, this is a way to write code that won't run when we execute our code. It is
also a way to comment on our code - which is an important step for writing good code.

install.packages("rio")
library(rio)
We LOAD the rio() package which we use to import our data into R

Slide 3 of 35

Setting our working directory

Your working directory is what R can access (e.g. what datasets it can load for you to work
on). It follows the path of folders your computer stores things in.

e Ifyou load a script with R studio closed beforehand your working directory will be the
same as the file path where you retrieved the script from.

o [fyou want set a different working directory, to access other files without having to shut
down R studio and lose all of your saved objects in your global environment, there are
multiple ways to set our working directory.

e The point and click method involves clicking "Session" in the toolbar at the top of your
screen and then clicking "Set working directory" and there are multiple options in that menu
for setting it. Eg. set it "to source file location" meaning to the same location where this R
Script is saved. "Choose Directory..." where you can navigate to this folder (similar to when
you do "Save As" in Word etc.)

Slide 4 of 35

e Or you can also use the functions in the code chunk below

rm(list = 1s()) # removes everything from memory
getwd() # will return your current working directory

setwd("C:/Users/noahv/OneDrive - The University of Western Ontario/Documents/P

will set you working directory to be
whatever you tell it to within the quotation marks

« I —— >

Slide 5 of 35

Please take a moment to run getwd() in your script to check that everything is in order.

e You want to make sure the R script you are working in and the sample dataset we have
shared with you are stored in the same place. If they are not you won't be able to load the
data and work with it. If you need to change your working directory try one of the methods
below.

e The point and click method involves clicking "Session" in the toolbar at the top of your
screen and then clicking "Set working directory" and there are multiple options in that menu
for setting it. Eg. set it "to source file location" meaning to the same location where this R
Script is saved. "Choose Directory..." where you can navigate to this folder (similar to when
you do "Save As" in Word etc.)

rm(list = 1s()) # removes everything from memory
getwd() # will return your current working directory

setwd("C:/Users/noahv/OneDrive - The University of Western Ontario/Documents/P
will set you working directory to be
whatever you tell it to within the quotation marks

e Do not be hesitant to ask for assistance if something is amiss!

Slide 6 of 35

Loading our data

e We will now use the import () function from the rio package or read.csv() from base
R package utils to import our data. This is the same data that we used earlier.

ces <- import(file = "ces_for_intro to _r.csv")
or
ces <- read.csv(file = "ces_for_intro_to_r.csv")

o Either way we load the data, if we don't "assign" (using the assign arrow <-) what we are
doing to a name (object), R will not "store" or "save" our data for use. You should see "ces"
listed under your global environment in the top right corner of your screen.

Slide 7 of 35

Remember that we can use the “View() function to lLook at
our data. Here I have # out the function so that it doesn't
run. If you want it to run, remove the # in front of View

#View(ces)

Slide 8 of 35

Starting to explore and describe our data

dim() function for matrices and dataframes

We can use dim() to check the dimensions of a dataframe or matrix.
dim(ces)

[1] 749 13

The dimensions of this dataframe are:
(remember, always rows x columns)
749 rows (observations) and 13 columns (variables).

Slide 9 of 35

length() function for vectors and the $, the selection operator

e Here we would like to learn about the length of the dob variable.
e We can select the dob variable using the $ operator.

e This is a common task: selecting a particular variable from a dataframe or matrix using the
$ operator.

length(ces$dob)

[1] 749

Slide 10 of 35

Types of variables

e There are four main types of variables you will deal with in R (we will talk about the fourth
when we talk about logical/boolean values).

o First is a numeric variable which deals with all real numbers (both those with and
without decimals).

o Second, there are integers. Integers are real numbers that do not have decimal points.
The suffix L is used to specify integer data.

o Character values are used to represent character or string values. Characters are
generally considered single letters whereas a string is a set of letters.

What type of variable would you say the date of birth, dob, variable is?

Slide 11 of 35

class() function

e We can use the class () function to check class of objects in our global environment. This
function, and many of the other functions we will talk about in this part of the workshop,
are included in base R meaning we don't need to install a package in order to use these
functions.

o (Eg. the basic "Calculator" app on your phone allows you to add/subtract/multiply and
perform other "functions").

class(ces)

[1] "data.frame"
class(ces$dob)
[1] "integer"
class(ces$educ)

[1] "character"

Slide 12 of 35

head() function

We can use the head () function to look at the first 6 rows of the ces dataset, or the first 6 values

of the DOB variable.

head(ces)

Hit X dob gender province educ relig
1 63 1998 Female ON Some uni Other
2 93 1978 Male QC Some uni None
3 103 1972 Male ON Bachelors Catholic
4 117 1954 Male SK Some uni Catholic
5 143 1972 Male NS Postgrad None
6 189 1954 Male ON Some uni Catholic
natret leftright feel trudeau vote
1 Better 4 85 Liberal
2 Worse 7 12 Green
3 Same 7 @ Conservative
4 Same 3 79 Liberal
5 Worse 7 21 Conservative
6 Worse 8 41 Conservative
H#H keepcarbontax

1 Strongly agree

2 Somewhat agree

3 Strongly disagree

4 Somewhat agree

5 Strongly disagree

6 Somewhat disagree

mostimp

climate change/ carbon emmissions

Economie
ECONOMY

tax breaks for seniors

Taxes

The economy and immgration

changefptp
Strongly disagree
Neutral

Neutral

Somewhat agree
Somewhat agree
Strongly agree

Slide 13 of 35

unique() function
The unique function allows us to look at the unique values in a variable.
unique(ces$educ)

[1] "Some uni" "Bachelors" "Postgrad" "HS or less"

Slide 14 of 35

Using Indexing to select

Now, let's try selecting a specific variable from our dataframe so that we can look at it.

selecting the 5th variable from our dataset, education Level
ces[5]
ces[[5]]

[1] "Some uni" "Some uni" "Bachelors" "Some uni" "Postgrad" "Some uni"

Slide 15 of 35

e Since the ces object is a multi-dimensional object (dataframe with rows x columns), we can
index (select) rows by columns to pull out a specific cell from our dataframe.

for example, we will select the 5th value in the second column
ces[5,2]

[1] 1972

e We could also look at this person's gender.

Remember we are LookRing at the 5th observation.
So let's select the 5th observation in the third column.
ces[5,3]

[1] "Male"

Slide 16 of 35

Logical or boolean values

e Boolean values in R tell us whether a given expression is TRUE or FALSE.

e Here we are asking if there are any NAs and what this returns is a boolean value for each
obs.

e FALSE meaning the value does not equal NA and TRUE if the value equals NA.
is.na(ces$gender)

o [wrapped this in head() to see only the first five NA obs.
head(is.na(ces$gender))

[1] FALSE FALSE FALSE FALSE FALSE FALSE

Slide 17 of 35

Starting to work with our data

The factor () function

e When we have categorical variables, we store them as a variable class called 'factor' in R.

» A factor cannot have decimal points. It can be either a character (string, think letters) or
integer (numeric, as long as there are no decimal points).

e What differentiates a factor from an integer variable, for instance, is that a factor has
"levels" or order.

e We don't know the distance between these levels, however. Whereas the numbers 1 and 2
have a quantifiable difference between them (1 point), a factor does not (eg. male, female).

e We COULD store the factor as numbers. Eg. we could code male as 1 and female as 2, but
that does not mean that there is 1 point difference between them, we are simply using the
numbers to store the categories.

Slide 18 of 35

By wrapping ces$gender in the factor () function, we are asking R to store the gender variable
from the ces dataframe as a factor. We can see there are two unique categories or "levels" (male
and female).

factor(ces$gender)
We could also wrap this in head() to see only the first 5 obs and the levels of the factor.
head(factor(ces$gender))

[1] Female Male Male Male Male Male
Levels: Female Male

head(factor(ces$vote))

[1] Liberal Green Conservative Liberal Conservative
[6] Conservative
Levels: Bloc Quebecois Conservative Green Liberal NDP Other PPC

Slide 19 of 35

Assignment operator <-

(Alt + - on Windows, Option + - for Mac)

We can use the assignment operator to assign values to an object. First, let's start by assigning
some numbers to an object.

one <- 1
we assigned the number 1 to an object called "one".
LooR 1in your global environment to see it saved.

numbers <- c¢(1,2,3,4,5) # here we create a vector of numbers 1-5.

numbers <- c(1:5)
we could do the same thing above using a simpler method
where the colon tells R "through", in this case, 1 through 5.

Slide 20 of 35

Assignment operator <-

We can also use the assignment operator to assign a variable from a df (a vector) to a new object
name.

party <- factor(ces$vote)
#Let's check the class...it 1s a factor as we expected!
class(party)

[1] "factor"

Slide 21 of 35

Arithmetic operators

min(ces$feel trudeau)

[1] o

max(ces$feel trudeau)

[1] 100

median(ces$feel trudeau) # middle value
[1] 56

mean(ces$feel trudeau)

[1] 47.89453

another way to calculate the mean
sum(ces$feel trudeau)/nrow(ces)

[1] 47.89453

Slide 22 of 35

Arithmetic operators

3+2 #addition
[1] 5
3*2 # multiplication
[1] 6
3/2 # division
[1] 1.5
(10+10)*2 # addition and multiplication

[1] 40

Slide 23 of 35

Summary: Arithmetic operators
. Addition +
. Subtraction -
. Multiplication *
. Division /

. Exponent *

Relational operators

class(ces$leftright)
[1] "integer"

obs_two <- ces[2,10]
use the assign operator to save this single cell value as a new object.

obs three <- ces[3,10]

obs _two > obs three
[1] TRUE

returns a boolean (true/false)
telling us whether observation 2 1s greater than observation 3
on specifically the age variable (dob).

obs five <- ces[5,15]
obs_five >= obs_three # greater than or equal to?

logical(@)

Slide 25 of 35

Summary: Relational operators

. Less than <

. Greater than >

. Less than or equal to <=

. Greater than or equal to >=
. Equal to ==

. Not equal to =

Missingness

ces$gendre
NULL

here 1t returns NULL because this doesnt exist.
We've misspelled gender and so nothing returns.

ces[750,2]# NA = Not available
[1] NA

0/0

[1] NaN

zero divided by zero: not a number/ impossible value

Slide 27 of 35

Summary: Types of missingness

. NA Not available
. NULL None

. NaN Not a number/impossible value.

A brief introduction to the tidyverse

e Filter
e Arrange

e Select

install.packages("tidyverse")
library(tidyverse)

##
##
##
##
##

#H

#H

#H#

##

T TREE]

— Attaching packages

v ggplot2 3.4.0

v tibble
v tidyr
v readr

Warning:
Warning:
Warning:

Warning:

3.1.8
1.2.1
2.1.2

package
package
package

package

v purrr
v dplyr

'ggplot2' was built under R version
'tidyr' was built under R version 4.
"purrr' was built under R version 4.

"dplyr' was built under R version 4.

1 .

0.3.5
1.0.10
v stringr 1.5.0
v forcats 0.5.2

. .* " L ...

4.

2.

tidyverse 1.3.2 —

2

Slide 29 of 35

Filter

 Filter includes all rows that fit into the rule applied to a specific column or columns.

cesl <- ces %>%
filter(leftright > 5)
summary(cesl$leftright)

Min. 1st Qu. Median Mean 3rd Qu. Max.
6.000 7.000 7.000 7.492 8.000 10.000

CheckRing the number of rows or columns in the data versus the filtered data,
nrow(ces) - nrow(cesl)

| 4

[1] 418

Slide 30 of 35

Binding

e We can also bind dataframes by columns if the rows are alike using cbind() or by the
rows using rbind() if the columns are matching perfectly.

ces2 <- ces %>%
filter(leftright <= 5)
binding the two filtered dataframes by row

ces3 <- rbind(cesl, ces2)
Checking the number of rows or columns in the original data versus the merge

nrow(ces) - nrow(ces3)

4
[1] ©

e We will see an example of using cbind () when we discuss select()

Slide 31 of 35

Arrange

e By default, arrange will sort the vector on ascending order.

cesl <- cesl %>%
arrange(leftright)
head(cesl$leftright)

[1] 6 6 6 6 6 6

e Descending order

cesl <- cesl %>%
arrange(desc(leftright))
head(cesl$leftright)

[1] 10 10 10 10 10 10

Slide 32 of 35

Select

e Using select(), you will reduce your original number of columns into a shorter total by
picking out certain variables.

cesd <- ces %>%

dplyr::select(gender, dob, province, leftright)
ncol(ces) - ncol(ces4)

[1] 9

e We canuse cbind() to add a variable from our original dataset to this more selective
dataset.

selecting the vote variable from our original dataset
ces5 <- ces %>%

dplyr::select(vote)

using cbind to add this variable to our more selective dataset
ces6 <- cbind(ces4, ces5)

ncol(ces6) - ncol(ces4)

[1] 1

Slide 33 of 35

Tidy data practices

e Ignoring the commands, the tidyverse comes down to the concept of Tidy Data.

e The goal is your data are arranged so each row contains an observation, and each column
contains a variable about that observation.

head(ces6)
gender dob province leftright vote
1 Female 1998 ON 4 Liberal
2 Male 1978 QC 7 Green
##t 3 Male 1972 ON 7 Conservative
4 Male 1954 SK 3 Liberal
5 Male 1972 NS 7 Conservative
6 Male 1954 ON 8 Conservative

e Data organized this way are considered to be wide data, which is useful because the pivot ()
family of functions can be used to transform the data from long to wide data and vice versa.
This will be quite useful as you add more skills to your R toolkit and learn to make graphs
and perform statistical analysis.

Slide 34 of 35

Thank you for listening!

Questions or comments?

