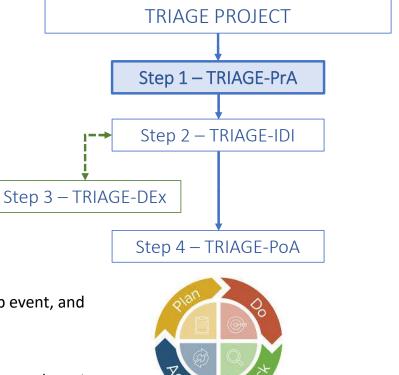
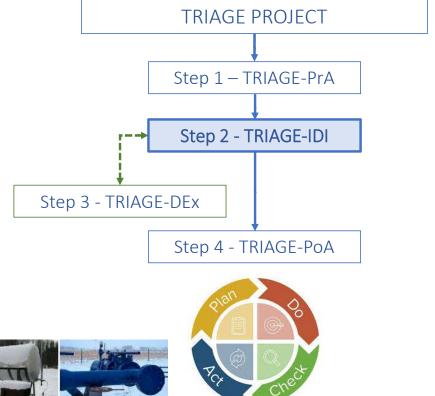
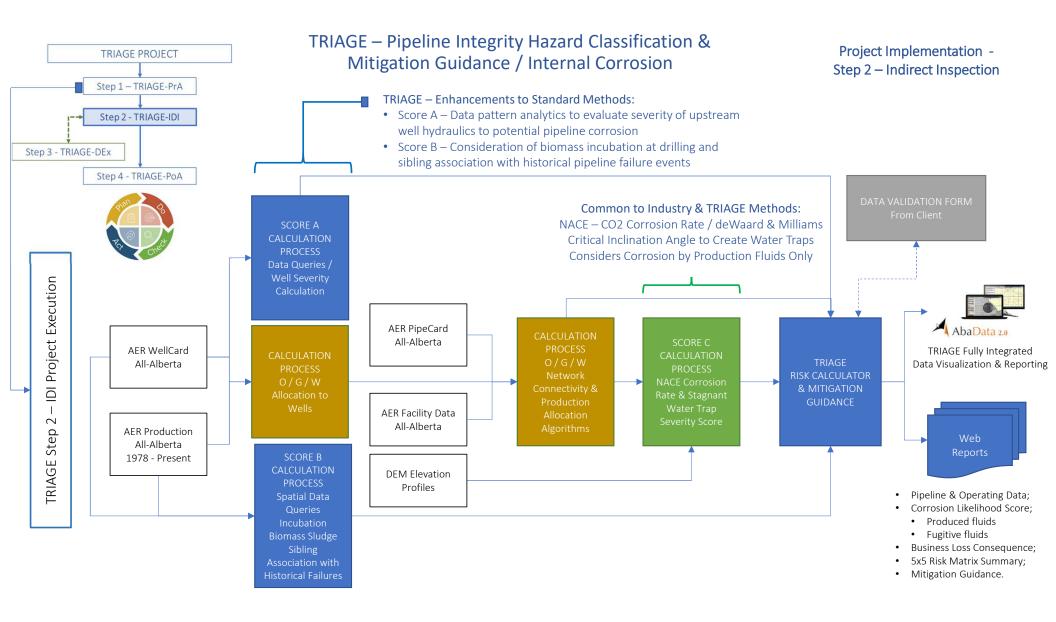

PROJECT EXECUTION TRIAGE – Pipeline Integrity Hazard Classification & Mitigation Guidance

Internal Corrosion

			Increasing L	ikelihood of P	Pipeline Leak				SEGMENT CO	UNT	
SEGMENT CO	UNT	1	2	3	4	5	SUM	PERCENT		Corporte Sum	mary
	5	685	502	278	159	223	1847	21%	SEGMEN	T COUNT	RISK CLASS
Consequence	4	216	212	244	167	135	974	11%	2336	32%	SERIOUS
Business Loss	3	449	341	308	206	141	1445	17%	2761	38%	MODERATE
(\$)	2	632	551	605	394	247	2429	28%	2129	29%	LOW
	1	197	131	95	74	34	531	6%	7226	100%	TOTAL


SUM	2179	1737	1530	1000	780
PERCENT OF TOTAL	30%	24%	21%	14%	11%


Step 1 – Preassessment – PrA


- AER Public Data Sources
 - Well License Data / Well Monthly Production Data (1978 2020)
 - hours / oil / gas / water
 - PL-100 Pipeline License Data
- Data Conditioning & Analysis
 - Apply Well-Pipeline-Facility Network Connectivity Algorithm
 - Apply Network (O/G/W) Production Allocation Algorithm
 - Apply Well Production Data Queries and Scoring Algorithm
 - Score A Well Severity Score
 - Profile over-life hydraulic behaviour and consider likelihood well behavior will contribute to pipeline corrosion
 - Likelihood of biomass sludge incubation at time of drilling
 - Score B Well Pipeline Severity Score
 - Consideration of well dynamics, fugitive fluid up-lift at well start-up event, and spatial and sibling association with historical pipeline failure event
- Digital Elevation Data (DEM) / Create Elevation Profiles / Inclination Angle Profiles
- Spatial Data Interaction Queries (not mandatory) water features / roadways / soil type / pipelines
- Client Data TRIAGE Data Validation Form (not mandatory)

Step 2 – Indirect Inspection – IDI / Internal Corrosion

- TRIAGE Hazard Classification Likelihood Scoring Algorithm
 - Calculate maximum expected corrosion rate by application of NACE deWaard & Milliams corrosion rate model
 - Consider factors contributing to acceleration of corrosion rate
 - Environmental factors bacteria / H2S / oxygen ingress
 - Fugitive fluid ingress upstream facility upsets / biomass sludge ingress attributed to upstream well hydraulics
 - Calculation of water-film transport severity using NACE ICDA critical inclination angle models as a determination of potential isolated pitting corrosion damage
 - Establish expected over-life unmitigated cumulative metal wall loss
- TRIAGE Consequence Algorithm
 - Consideration of business losses associated with a failure event; loss of asset / replacement cost / environmental impact and remediation cost
- TRIAGE Mitigation Guidance
 - Publish a hierarchy of prioritized mitigation options (versus singular directives) for consideration by field, operation / chemical teams

TRIAGE - Business Value Proposition INDUSTRY STANDARD Project Implementation - Step 2 - Indirect Inspection Both methods **DEM** algorithm NACE standard Data pattern analytics Hierarchy of apply NACE applies data applied onto AER data preferred mitigation corrosion rate is ш options provided to G standard corrosion interpolation included as baseline. considers ingress of RIA field teams from rate models to algorithm to increase In addition a detailed corrosive fugitive which they consider hydraulics and to devolution establish expected data spacing to consideration of associated with \vdash maximum CO2 create a more water-film transport detrimental well Т corrosion rate detailed elevation within water trap incubation of biomass ΤΡΑ attributed to profiles improving regions creates a realschedules. sludge during drilling produced fluids. accuracy of corrosion world pitting for determining over likelihood ops. assessment. life metal loss. S Single NACE corrosion Both methods A single corrosion rate is Standard – DEM Data management & Δ data with 10rate uniformly applied apply NACE used to evaluate risk assessment is 0 metre data I standard corrosion to pipeline structure. corrosion severity based the focus of most н spacing applied. rate models to No consideration of upon normal fluid methods to satisfy establish expected pitting corrosion rates. production. compliance Σ maximum CO2 Corrosion attributed to requirements. DUSTRY corrosion rate upstream well Provision of attributed to hydraulics remains mitigation guidance produced fluids. within the "blind-spot" not within scope – field teams continue z to rely upon chemical supplier. **Baseline** Elevation & **Corrosion Rate** Non-Conforming **Support to Pipeline Corrosion Rate Inclination Angle Profiling & Over-Life Operations &** Integrity Model Profile Metal Loss **Fugitive Fluids** Management (SLMS)

ш

VALU

S

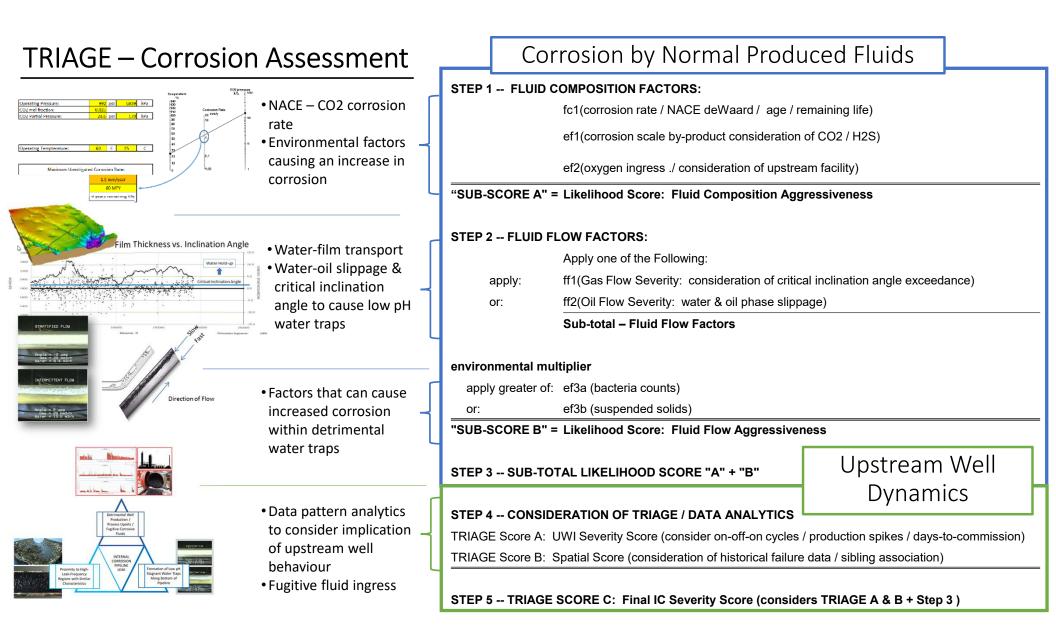
S

ш SIN

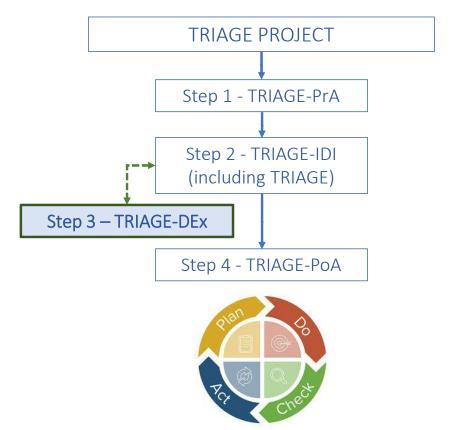
 \supset

ш

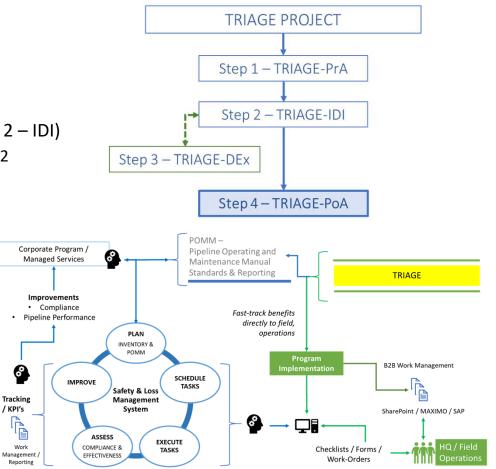
ш


CUMULATIV

TRIAGE

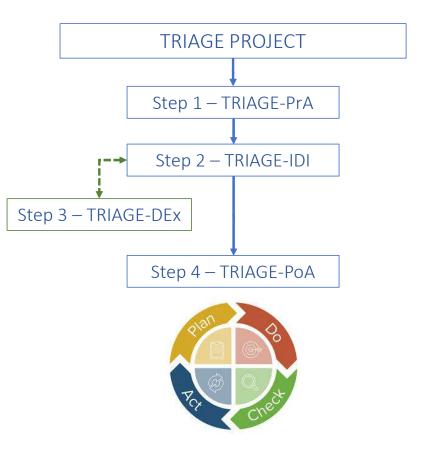

TRIAGE considers former blindspot integrity hazards associated with detrimental well hydraulics during start-up events

TRIAGE – Summary of Benefits


- TRIAGE provides a hierarchy of applicable mitigation options for consumption by field, operations teams from which they apply their knowledge to create the best mitigation strategy
- Field, operations are positioned to modify mitigation as changes to the hazard profile occur over time.

- Step 3 Direct Examination DEx
- Execute Integrity Validation Plan
 - Pipeline excavations at most probable locations (MPL's)
 - Apply non-destructive (NDE) techniques to measure pipeline wall thickness
 - Perform in-line inspection of pipeline with coverage of MPL's

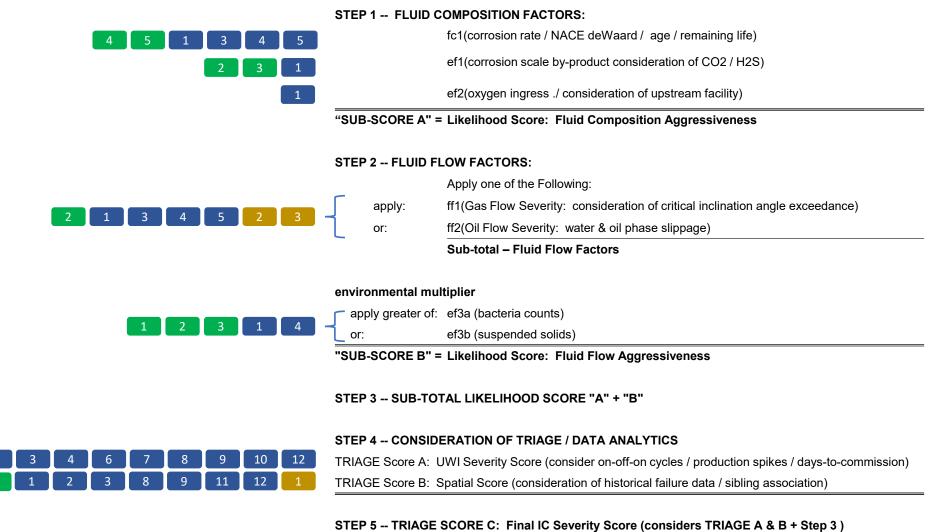
- Step 4 Post Assessment PoA
- TRIAGE Project Report
 - Effectiveness of TRIAGE
 - Implementation of Mitigation Guidance (from TRIAGE Step 2 IDI)
 - Application of Mitigation Guidance published from IDI Step 2
 - Workshops with field, operations teams
 - Consideration of system knowledge and operating experience to create final mitigation schedules
 - Ongoing support to implementation of performance-based (SLMS) pipeline integrity management process
 - Pipeline operating manuals
 - Activity tracking vs schedule
 - Compliance and tracking & KPI reporting
 - Implementation of Corrosion Monitoring Plan
 - Project management & field implementation
 - Liaise with client engineering & field, operations teams


> David Richardson, P.Eng. (403) 880-2835 david@trustedpipelineadvisor.com

www.trustedpipelineadvisor.com/q-icda-profiling

			Increasing L	ikelihood of P	Pipeline Leak		1		SEGMENT CO	DUNT	
SEGMENT COUNT		1	2	3	4	5	SUM	PERCENT		Corporte	
Consequence	5	685	502	278	159	223	1847	21%	SEGMEN	NT COUNT	
	4	216	212	244	167	135	974	11%	2336	32%	
Business Loss	3	449	341	308	206	141	1445	17%	2761	38%	
(\$)	2	632	551	605	394	247	2429	28%	2129	29%	
	1	197	131	95	74	34	531	6%	7226	100%	

SUM	2179	1737	1530	1000	780
PERCENT OF TOTAL	30%	24%	21%	14%	11%


	SEGMENT COUNT								
SUM	PERCENT	Corporte Summary							
1847	21%	SEGMENT COUNT		RISK CLASS					
974	11%	2336	32%	SERIOUS					
1445	17%	2761	38%	MODERATE					
2429	28%	2129	29%	LOW					
531	6%	7226	100%	TOTAL					

TRIAGE – Corrosion Likelihood Scoring Internal Corrosion

Technical Reference

Likelihood – Internal Corrosion

Data Conditioning – Physical & Operating Data

- Data conditioning license data
 - construction date / diameter / length / material / status / internal protection / operating temperature / operating pressure / CO2 / H2S / chlorides / facility code start / field separation
- 2 Data conditioning year of construction / calculate age
- 3 Data conditioning network connectivity algorithm wells, pipelines, facilities
- Data conditioning oil / water / gas production flow apportionment algorithm
- 5 Data conditioning establish operating temperature vs time profile
 - consider water allocation vs regional geothermal gradient to establish operating temperature
 - tally years vs temperature severity exposure classification (<25C / 25C 35C / >35C)
- Data conditioning tally count on-off-on (hot-cold-hot) production / thermal cycles
- Data conditioning ratio non-operating days vs total operating life
- Data conditioning tally days between end-drilling and first-production
- Data conditioning incremental production at start-up events vs production at associated shut-in
- Data conditioning identification of production decline discontinuities versus natural decline
- Data conditioning identification of increased water-cut post start-up versus associated shut-in
- 12 Data conditioning exposure to deviated well sources / fractured versus non-fractured well completions

Likelihood – Internal Corrosion

- GIS Spatial Data Queries
- Data query count of historical IC failures events in proximity with shared sibling association
- 2 Data query digital elevation mapping elevation profile
- Bata query digital elevation mapping inclination angle profile tally length by severity groups
 - <2 degrees / 2 5 degrees / 5 10 degrees / 10 15 degrees / 15 20 degrees / >20 degrees

Calculations

- Calculation calculate number of operating years beyond expected failure date
 - Consider sibling association with historical failure events
- 2 Calculation operating parameters
 - pCO2 / pH2S / ratio pCO2:pH2S / gas velocity (superficial) / NACE ICDA critical inclination angle to accumulate thick-water film / water-film velocity (actual) / oil-film velocity (actual) / oil-water slippage / residence time of water within stagnant water accumulation
- Calculation suspended solids loading / iron sulphide corrosion scale
- Calculation NACE-CO2 corrosion rate (NACE deWaard & Milliams)
- Calculation pipeline remaining life (based upon NACE CO2)