

ASX RELEASE

5th January 2023

LOCKSLEY RESOURCES LIMITED ACN 629 672 144

Level 8, London House 216 St. Georges Terrace Perth Western Australia 6000 Tel: +61 (08) 9481 0389 Faxsimile: +61 (08) 9463 6103 Website:

www.locksleyresources.com.au

Contact:

Mr Stephen Woodham **Managing Director** Tel: +61 417 293 449 woodhams@locksleyresources.com.au

Directors

Adam Giles Stephen Woodham Stephen Brockhurst

Ticker ASX: LKY

Shares on Issue 56,000,001

MULTIPLE ANOMALIES FROM RECONNAISSANCE SAMPLING

- Results received for 71 rock samples
- Multiple anomalies identified
- Anomalies supported by historic mine workings and geophysics
- New anomalies identified at Lacey's Tank, Jimmy Woodser Mine, Underlay Mine and Nelsons Mine
- **Activities hampered by wet conditions**

Locksley Resources is pleased to provide an update on exploration activities at the Tottenham Project in central New South Wales. Between September and December, activities have been hampered by multiple rain events and flooding.

Results have been received for 71 rock chip samples collected from a variety of areas within the Tottenham project. Much of this work was done on foot when vehicle access was not possible. Anomalous to ore grade values were returned from several areas. Results are listed in the attached table.

Burdenda - Hunts Road

2 lag samples were collected close to the Burdenda Prospect with no anomalous results. Most of this area is under transported cover with historic hole TMAC003 returning 14m @ 0.3% Cu. (ASX MCR Quarterly Report 23/10/2012).

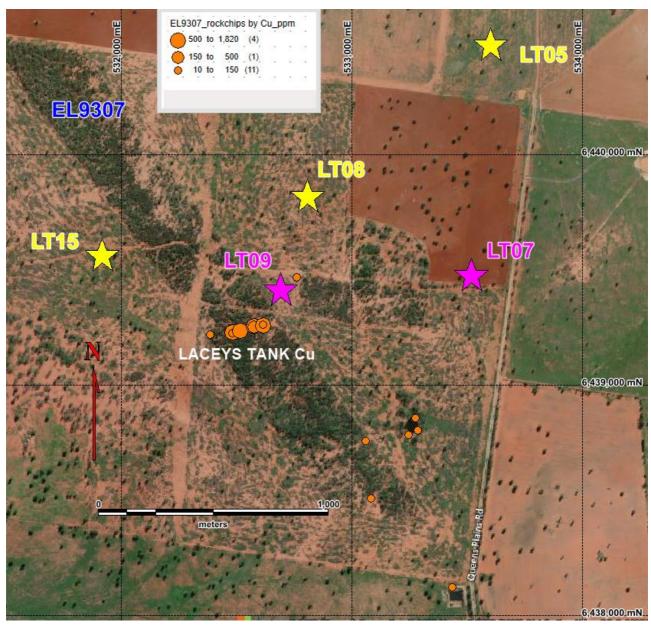
3 samples were collected along Hunts Road close to a historic anomalous sample. No anomalous values were returned.

Bogan River

2 samples of reverberatory furnace slag were sampled from the Bogan River Mine to quantify the material. These returned higher than expected values up to 0.7ppm Au, 8ppm Ag, 1.53% Cu, and 2% S.

Bogan Way

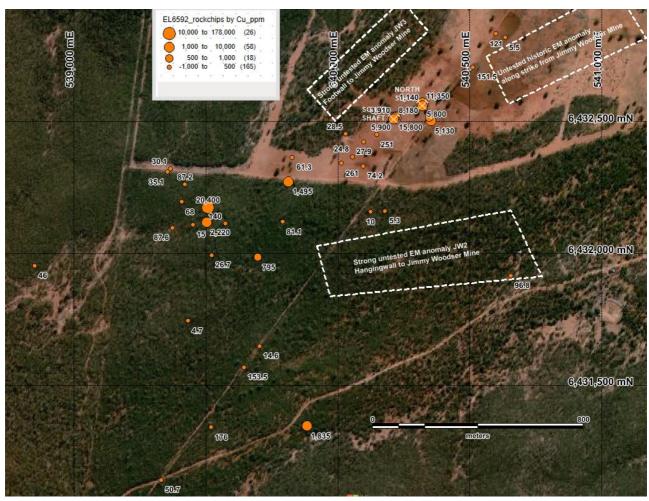
3 samples collected from road cuttings, along the Bogan Way, of intensely folded psammite with no anomalous results.


Laceys Tank

16 rock samples were collected about the Lacey's Tank Prospect in an area of sporadic and limited exposure. A series of prospecting pits were located that agree with historic descriptions. These are approximately 600m from the supposed location in government data sets and are close to anomalies identified in the recent helicopter borne electromagnetic (EM) survey. The samples show a WSW-ENE trending mineralised fault zone with quartz veining and gossan that is traceable for 200m at surface. The mineralisation post-dates regional deformation and metamorphism and is of a different style to the main Tottenham deposits. The setting and style are similar to the Iron Duke Deposit. Samples are anomalous in Au (to 0.38ppm), and Cu (to 0.18%). Elevated values are present for Ag, As, Bi, In, Mo, Sb, Sn, Zn.

The Laceys Tank area has had minimal historic exploration with no previous drilling.

Sample IC220826-11; Iron oxide matrix fault breccia, Lacey's Tank Prospect (MGA 94 zone 55 532614mE 6439259mN), 0.38ppm Au, 0.18% Cu



Laceys Tank HeliTEM anomalies and rock chip samples. (Map Grid Australia zone 55)

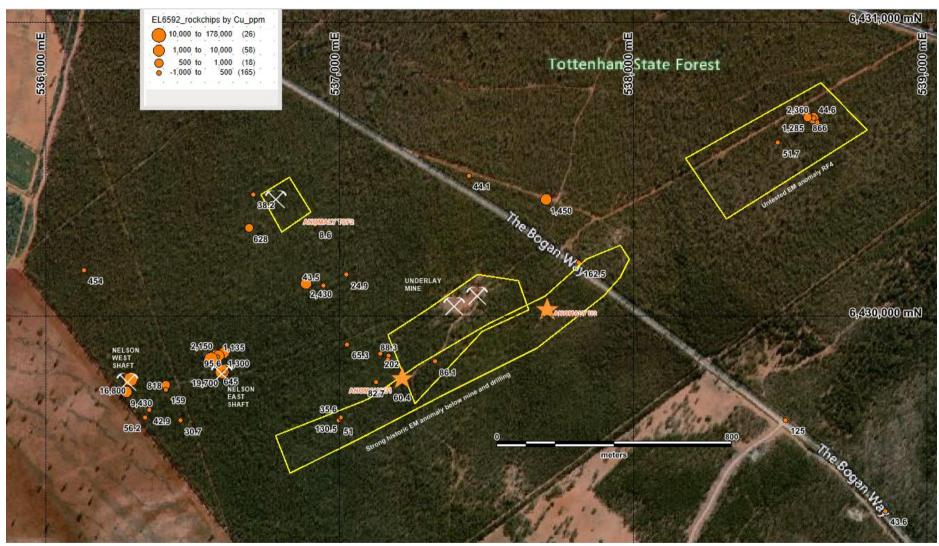
Magenta stars = priority 1 anomalies. Yellow stars = priority 2 anomalies

Jimmy Woodser

14 samples were collected to the south and west of the Jimmy Woodser Mine. These samples were collected as reconnaissance about a helicopter borne EM anomaly (see ASX LKY announcement 26/9/2022). Gossanous psammite from a prospecting pit returned elevated values of 0.14ppm Au, 0.08% Cu, 0.05% Zn. This work adds to previous Locksley sampling and historic sampling by Mincor Resources (see ASX LKY announcement 12/9/2022). Of particular interest are anomalous copper results along strike to the WSW of the Jimmy Woodser Mine.

Jimmy Woodser area, compiled historic rock chip Cu values in ppm and airborne EM anomalies. 10000ppm = 1% (Map Grid Australia zone 55)

Railway Forest


4 samples were collected between the Bogan Way and the Tottenham Branch Railway, over EM response RF4. Banded quartz-magnetite rocks present with values to 0.06%Cu, 0.06% Zn. Nearby historic Mincor Resources samples assay up to 0.24% Cu, 0.37ppm Au.

Underlay Mine - Nelson Mine

26 samples were collected in the general vicinity of the Underlay and Nelson Mine. Anomalous to ore grade results were reported in several places:

- Nelson Mine, west shaft. Up to 1.68% Cu, 0.38ppm Au, 0.12% Zn
- Nelson Mine, east shaft. Up to 1.97% Cu, 1.82ppm Au, 4ppm Ag, 0.12% Zn
- 400m WNW of the Underlay Mine, 0.24% Cu.

These results add to previous sampling conducted by Mincor Resources and complement the current focus on regional targets which are located within a short distance from the current Mineral Resource. Locksley have a strong suite of regional targets that are drill ready.

Nelson Mine, Underlay Mine, Railway Forest area, compiled rock chip Cu values in ppm and airborne EM anomalies. 10000ppm = 1% (Map Grid Australia zone 55)

NEXT STEPS

The current rock chip sampling program has extended and strengthened coverage within the mineralised system in the Tottenham area, particularly in the Ace Mine to Underlay Mine area. This sampling combined with modelling of EM anomalies and historic mines represent excellent drill targets.

The Board of Directors of Locksley Resources Limited authorised the release of this announcement.

Further information contact: Mr Stephen Woodham Managing Director T: +61 8 9481 0389

E: woodhams@locksleyresources.com.au

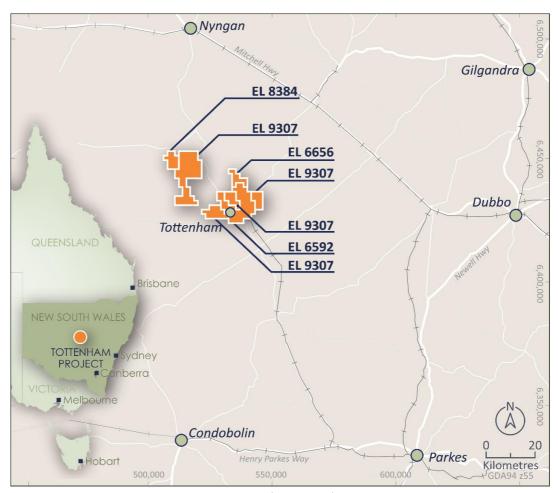
COMPLIANCE STATEMENTS

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning the Company's planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "expect," "intend," "may", "potential," "should,", "further" and similar expressions are forward-looking statements. Although the Company believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that further exploration will result in additional Mineral Resources

Competent Persons

Except where indicated, exploration and technical information above have been reviewed and compiled by Ian Cooper BSc (Hons), BE (Mining), MSc, a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy, (Member Number 106609) with over 35 years of experience in metallic minerals mining, exploration and development, and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Cooper is an employee and shareholder of Locksley Resources Limited and consents to the inclusion of this technical information in the format and context in which it appears.


Previously Reported information and other foot notes for reference

This report includes information that relates to announcements previously made to the ASX including exploration Results and Mineral Resources prepared and first disclosed under JORC Code 2012. The information was extracted from previous ASX announcements as follows:

- LKY ASX Announcement 26 September 2022 MULTIPLE ANOMALIES FROM HELICOPTER EM SURVEY AT TOTTENHAM
- LKY ASX Announcement 15 September 2022 COMPANY PRESENTATION
- LKY ASX Announcement 12 September 2022 EXPLORATION UPDATE
- C29 ASX Announcement 26 August 2022 NEW EXPLORATION TARGETS IDENTIFIED AT SAMPSON'S TANK PROJECT
- LKY ASX Announcement 30 June 2022 AIRBORNE EM SURVEY COMPLETE AND UPDATE
- LKY ASX Announcement 5 April 2022 EXPLORATION UPDATE
- LKY ASX Announcement 1 April 2022 9.8Mt RESOURCE AT TOTTENHAM

ABOUT THE TOTTENHAM PROJECT

The Tottenham Project is an advanced Cu-Au exploration project that consists of four Exploration Licences, (EL6592, EL6656, EL8384, EL9307), covering 470km², located in the Lachlan Fold Belt of central New South Wales.

Tottenham Project location

The Tottenham deposits are hosted within the Ordovician Girilambone Group that also host the Tritton and Girilambone Mines and Constellation Deposit, 110km to the north-northwest (Aeris Resources Ltd.), and is immediately along strike from the CZ Copper Deposit (Helix Resources Ltd). Resources have been defined at both the Mount Royal to Orange Plains and Carolina Deposits for a global inferred resource of:

9.86Mt @ 0.72% Cu, 0.22g/t Au, 2g/t Ag at a 0.3% Cu cut off.

The Competent Person for the 2022 Resource is Mr Jeremy Peters FAusIMM CP(Geo, Min), a Director of Burnt Shirt Pty Ltd. The Mineral Resource estimate is stated in accordance with the provisions of the JORC Code (2012). Mr Peters has more than five years' experience in the estimation and reporting of Mineral Resources for base metals mineralisation in Australia and overseas, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Peters consents to the inclusion in the presentation of the matters based on his information in the form and context in which it appears.

Sample ID	MGA94z55E	MGA94z55N	AHD	Prospect	Sample Type	Lithology	Comments	Au (ppm)	Ag (ppm)	As (ppm)	Co (ppm)	Cu (ppm)	Fe (%)	Mo (ppm)	Pb (ppm)	S (%)	Zn (ppm)
IC220818-01	536912	6447211	202	Burdenda	lag	ferruginous vein quartz + minor ironstone	angular blocks to 7cm	-0.005	0.01	1.7	1.1	5	2.79	1.23	3.8	-0.01	16
IC220818-02	537014	6447199	202	Burdenda	lag	ferruginous vein quartz + minor ironstone	angular blocks to 7cm	-0.005	0.01	2.0	1.6	5	2.13	1.33	4.0	-0.01	19
IC220818-03	537828	6444627	207	Burdenda	lag	ferruginous quartz	angular blocks to 12cm	-0.005	0.02	1.4	0.8	4	1.15	0.59	2.7	-0.01	6
IC220818-04	537864	6439864	222	Hunts Road	subcrop	psammite + vein quartz		-0.005	0.02	3.6	3.9	65	3.79	3.67	11.6	0.01	43
IC220818-05	537763	6439570	226	Hunts Road	subcrop	chlorite-epidote mafic schist + Feox		-0.005	-0.01	1.1	44.7	59	6.49	0.20	1.7	-0.01	34
IC220819-01	539431	6431744	259	Jimmy Woodser	float	vein quartz + psammite + Feox		-0.005	-0.01	0.5	1.4	5	1.00	0.47	0.6	-0.01	8
IC220819-02	539644	6431568	264	Jimmy Woodser	outcrop	epidote + chlorite mafic schist + vein quartz + Feox	railway cutting (150m long)	-0.005	0.01	5.8	49.0	154	8.00	0.18	1.1	-0.01	73
IC220819-03	539703	6431649	263	Jimmy Woodser	outcrop	psammite	railway cutting	-0.005	0.01	4.3	6.5	15	1.88	0.36	19.3	-0.01	34
IC220819-04	540654	6431915	250	Jimmy Woodser	float	manganiferous vein quartz + chloritic psammite + Feox veins	east end of JW2 EM anomaly	-0.005	0.01	6.9	10.5	97	3.29	13.20	13.2	0.01	21
IC220819-05	540179	6432161	253	Jimmy Woodser	float	vein quartz + psammite	updip of JW2 EM anomaly	-0.005	-0.01	1.5	2.3	5	1.45	0.62	7.7	-0.01	16
IC220819-06	540124	6432157	255	Jimmy Woodser	outcrop	psammite + feox + vein quatz	updip of JW2 EM anomaly	-0.005	0.01	2.0	6.8	10	1.86	0.27	10.9	-0.01	33
IC220819-07	539791	6432119	267	Jimmy Woodser	subcrop	gossanous epidote-chlorite mafic schist		-0.005	0.02	7.2	61.4	81	7.63	0.37	11.1	-0.01	38
IC220819-08	539697	6431985	262	Jimmy Woodser	dump	manganiferous gossanous psammite	6m x 3m x 1m deep prospecting pit, trend 120 mag	0.140	0.42	20.4	12.4	795	12.10	7.39	46.7	0.03	506
IC220819-09	532856	6433825	244	Bogan River	dump	slag with copper + fire bricks	revertabory furnace slag dump under power line	0.700	8.25	27.9	435	15350	20.00	63.50	84.1	1.98	368
IC220819-10	532829	6433842	244	Bogan River	dump	slag with copper + fire bricks	north end of smelter slag dump as in previous sample	0.210	2.65	31.1	494	11000	20.60	79.40	65.4	1.48	435
IC220819-11	537168	6429760	264	Underlay	subcrop	slightly gossanous chlorite- epidote-quartz-Feox mafic schist + vein quartz	possible small prospecting pit	0.007	0.01	4.8	41.6	60	7.51	0.30	2.9	-0.01	57
IC220819-12	537125	6429775	264	Underlay	float	epidote-chlorite-Feox mafic schist	angular blocks to 25cm	0.005	0.04	5.5	39.9	83	8.23	0.19	14.7	-0.01	51
IC220819-13	537138	6429873	261	Underlay	dump	vein quartz + Feox + psammite	north end of costean	0.012	0.14	0.8	5.6	202	1.84	1.50	0.9	0.03	26
IC220819-14	537167	6429865	261	Underlay	dump	slightly gossanous chlorite + epidote + Feox mafic schist	bend in costean	-0.005	0.01	5.8	31.2	88	8.39	0.46	5.7	-0.01	154
IC220819-15	537164	6429852	262	Underlay	dump	chlorite schist (psammite) + Feox	voids after pyrite	-0.005	0.03	1.3	41.3	124	8.28	0.25	5.1	-0.01	241
IC220819-16	537168	6429839	260	Underlay	dump	muscovite psammopelite +/- chlorite + Feox + vein quartz	south end of costean	-0.005	0.03	9.3	11.5	89	5.35	0.56	10.7	-0.01	83
IC220819-17	537325	6429846	264	Underlay	outcrop	chlorite-epidote-quartz-Feox mafic schist	centre of 20m long bulldozer costean, limonised pyrite cubes to 6mm	-0.005	0.01	3.3	39.7	86	8.26	0.29	10.6	-0.01	99

Sample ID	MGA94z55E	MGA94z55N	AHD	Prospect	Sample Type	Lithology	Comments	Au (ppm)	Ag (ppm)	As (ppm)	Co (ppm)	Cu (ppm)	Fe (%)	Mo (ppm)	Pb (ppm)	S (%)	Zn (ppm)
IC220826-01	533275	6438855	221	Laceys Tank	dump	quartz psammite + vein quartz + Feox	north side of 40m x 40m farm dam	-0.005	0.02	34.3	10.0	139	2.97	1.20	8	0.01	31
IC220826-02	533286	6438802	220	Laceys Tank	dump	psammite and quartz lag	east side of 40m x 40m farm dam	-0.005	0.01	28.1	9.7	23	3.75	0.45	17	0.01	50
IC220826-03	533245	6438782	219	Laceys Tank	dump	psammopelite + vein quartz + Feox + Mnox	south side of 40m x 40m farm dam	-0.005	0.01	71.9	24.7	35	5.18	0.19	28	0.01	62
IC220826-04	532761	6439466	229	Laceys Tank	float	laminated and weakly gossanous vein quartz	shallow scrape to build loading ramp; near EM anomaly; angular blocks to 10cm	-0.005	0.03	1.7	1.4	12	2.38	1.56	3	-0.01	14
IC220826-05	532386	6439218	229	Laceys Tank	float	vein quartz + Feox	angular blocks to 10cm	0.020	0.10	6.3	1.5	146	1.74	0.60	1	-0.01	9
IC220826-06	532482	6439227	229	Laceys Tank	dump	vein quartz + Feox + malachite + pyrite + chalcopyrite	7m x 3m x 1m deep prospecting pit	0.045	0.26	41.1	5.7	1480	2.88	0.40	4	0.03	19
IC220826-07	532482	6439225	229	Laceys Tank	dump	chlorite + actinolite + quartz +/- epidote metagabbro schist	7m x 3m x 1m deep prospecting pit; host rock to lode	-0.005	0.01	11.4	28.1	65	6.22	0.10	4	-0.01	59
IC220826-08	532515	6439235	230	Laceys Tank	dump	weakly gossanous vein quartz + jarosite + malachite	5m x 3m x 0.5m deep prospecting pit	0.065	0.22	63.0	7.2	815	4.59	1.01	2	0.01	21
IC220826-09	532576	6439254	232	Laceys Tank	dump	vughy vein quartz + Feox + Mnox	5m x 1m x 1m deep costean	0.018	0.43	80.8	8.6	580	10.80	1.16	7	0.01	27
IC220826-10	532576	6439252	232	Laceys Tank	dump	chlorite schist	5m x 1m x 1m deep costean; host rock to lode	-0.005	0.10	99.3	14.0	499	7.22	0.47	27	-0.01	100
IC220826-11	532614	6439259	234	Laceys Tank	dump	cockscomb vein quartz + Feox + jarosite	small backfilled shaft	0.376	0.61	93.1	8.9	1820	16.00	0.92	9	0.01	100
IC220826-12	532615	6439260	234	Laceys Tank	dump	chlorite schist	small backfilled shaft; host rock to vein	0.006	0.04	6.4	6.1	77	2.09	0.45	8	-0.01	41
IC220826-13	533435	6438121	217	Laceys Tank	dump	quartz +muscovite + chlorite psammite + vein quartz	north side of 50m x 40m farm dam	-0.005	0.01	3.8	20.2	49	4.96	0.26	71	-0.01	112
IC220826-14	533082	6438508	226	Laceys Tank	subcrop	chloritic psammopelite + ferruginous vein quartz		-0.005	0.01	7.2	4.3	15	5.41	0.48	5	-0.01	21
IC220826-15	533061	6438757	219	Laceys Tank	subcrop	ferruginous vein quartz	vein 0.5m wide	-0.005	0.01	148	1.3	15	1.54	0.40	3	-0.01	5
IC220826-16	533652	6436901	226		subcrop	quartz veined pelite	beside Queens plains Road; highly weathered	-0.005	0.01	2.6	5.9	24	2.88	0.73	10	-0.01	26
IC220826-17	533821	6435070	228		float	ferricrete	beside Queens Plains Road; 1mm grainsize	-0.005	0.01	9.3	60.9	53	42.50	0.70	11.5	0.04	72
IC220827-01	538599	6430685	258	Railway Forest	float	quartz + magnetite rock	1mm grainsize	-0.005	0.02	0.7	2.1	9	9.06	0.26	1.4	-0.01	14
IC220827-02	538588	6430687	258	Railway Forest	float	gossan + quartz + magnetite rock	boxworks after sulphide	0.051	0.70	11.1	12.8	681	21.80	10.50	29.0	0.04	641
IC220827-03	538594	6430675	258	Railway Forest	dump	gossan + quartz + magnetite rock	2m x 2m 1m deep prospecting pit	0.010	0.31	7.8	8.8	666	16.05	3.08	23.4	0.02	401
AF220830- 01	538492	6430590	247	Railway Forest	float	psammite + quartz + Feox		-0.005	0.03	29.0	5.1	52	6.59	0.56	12.2	0.01	57

Sample ID	MGA94z55E	MGA94z55N	AHD	Prospect	Sample Type	Lithology	Comments	Au (ppm)	Ag (ppm)	As (ppm)	Co (ppm)	Cu (ppm)	Fe (%)	Mo (ppm)	Pb (ppm)	S (%)	Zn (ppm)
AF220830- 02	539355	6432308	268	Jimmy Woodser	outcrop	psammite + quartz + Feox + Mnox	next to boundary fence; dipping east	-0.005	0.01	14.5	10.3	35	4.55	0.75	41.7	0.01	91
AF220830- 03	539420	6432261	258	Jimmy Woodser	subcrop	psammite + quartz + Feox		0.005	0.03	18.5	14.3	87	5.37	1.16	35.3	0.01	210
AF220830- 04	539373	6432097	257	Jimmy Woodser	float	psammite + quartz + Feox		0.136	0.07	1.1	2.1	88	3.63	0.55	8.3	0.02	11
AF220830- 05	539521	6431993	261	Jimmy Woodser	float	psammite + quartz + Feox		-0.005	0.01	1.6	9.1	27	3.49	0.50	14.0	-0.01	66
AF220830- 06	539574	6432112	268	Jimmy Woodser	subcrop	psammite + quartz + Mnox		-0.005	0.01	12.6	27.1	140	4.88	0.59	10.6	-0.01	57
AF220830- 07	539280	6451929	256	Jimmy Woodser	lag	psammite + quartz + Feox	voids after pyrite	-0.005	0.01	7.0	7.0	30	2.50	0.40	10.5	-0.01	48
AF220831- 01	537026	6429904	265	Underlay	dump	psammite + Feox + pyrite + Mnox	5m x 2m x 1m deep bulldozer costean	-0.005	0.02	7.2	33.4	65	8.08	0.34	7.6	-0.01	180
AF220831- 02	536886	6430112	257	Underlay	subcrop	mafic schist + quartz + malachite + Feox + chlorite + epidote		0.014	0.08	3.8	37.8	2430	7.95	0.27	1.4	-0.01	47
AF220831- 03	536916	6430313	249	Underlay	float	quartz + Feox + Magnetite		-0.005	-0.01	0.8	7.5	9	6.46	0.28	0.8	-0.01	7
AF220831- 04	537024	6430141	259	Underlay	float	mafic schist + Feox + vein quartz		-0.005	0.01	2.5	38.5	25	7.96	0.18	1.1	-0.01	55
AF220831- 05	536945	6430104	260	Underlay	dump	psammite + mafic schist + quartz + magnetite	2m x 2m x 1m deep prospecting pit	-0.005	-0.01	7.5	27.9	44	8.43	0.25	0.9	-0.01	32
AF220831- 06	536693	6430299	259	Underlay	outcrop	quartz + mafic schist + Feox + epidote		-0.005	0.03	7.1	18.5	628	7.84	0.26	1.4	-0.01	33
AF220901- 01	536610	6429810	260	Nelsons	float	hematite + Feox + vein quartz	15m East of fenced off backfilled shaft	0.125	0.08	84.3	6.5	96	19.60	12.15	133.0	0.03	279
AF220901- 02	536630	6429829	259	Nelsons	subcrop	mafic schist + vein quartz + Feox		-0.005	0.02	0.7	40.3	107	7.55	0.09	3.4	-0.01	85
AF220901- 03	536605	6429875	259	Nelsons	dump	gossanous mafic schist + quartz + Feox + pyrite	likely old prospecting pit	1.815	2.31	39.2	13.6	1300	36.50	60.40	174.0	0.11	162
AF220901- 04	536582	6429869	262	Nelsons	dump	gossanous mafic schist + epidote + quartz + Feox + magnetite	north end of costean	0.559	3.30	33.4	30.3	2150	37.90	54.60	157.5	0.12	168
AF220901- 05	536589	6429865	260	Nelsons	dump	gossanous psammopelite + hematite + Feox	south end of costean	1.345	3.85	24.1	3.0	1135	26.50	48.50	305	0.11	178
AF220901- 06	536584	6429861	257	Nelsons	dump	mafic schist + Feox + biotite	2m x 3m x 1m deep prospecting pit	-0.005	0.12	1.5	45.5	267	7.41	0.11	3.7	-0.01	312
AF220901- 07	536562	6429854	267	Nelsons	dump	gossanous mafic schist + malachite + Feox	fenced off backfilled shaft	0.082	0.26	12.7	357.0	12100	9.90	11.55	46.0	0.02	1175
AF220901- 08	536130	6430156	257	Nelsons	float	psammite + quartz		0.013	0.09	6.2	7.9	454	3.96	1.69	7.0	0.01	118
AF220901- 09	536410	6429767	258	Nelsons	dump	psammopelite + Feox + hematite + biotite	2m x 2m x 1m deep prospecting pit	0.013	0.15	48.3	15.1	818	5.23	6.82	13.6	0.01	166
AF220901- 10	536275	6429742	250	Nelsons	dump	gossanous psammite + mafic schist + hematite + magnetitie + Feox + Pyrite	fenced off backfilled shaft	0.075	0.42	8.1	112.5	9430	26.00	22.00	72.5	0.05	1220

Sample ID	MGA94z55E	MGA94z55N	AHD	Prospect	Sample Type	Lithology	Comments	Au (ppm)	Ag (ppm)	As (ppm)	Co (ppm)	Cu (ppm)	Fe (%)	Mo (ppm)	Pb (ppm)	S (%)	Zn (ppm)
AF220901- 11	536288	6429785	250	Nelsons	dump	gossanous mafic schist + malachite + Feox + quartz + calcrete	fenced off backfilled shaft	0.059	0.48	20.7	142.0	16800	20.70	18.20	10.8	0.03	335
AF220901- 12	536410	6429751	257	Nelsons	float	gossanous psammite + quartz + hematite + magnetite		0.382	0.04	6.5	16.3	159	6.89	0.59	3.2	0.01	35
AF220901- 13	536459	6429645	252	Nelsons	dump	quartz magnetite + Feox	10m x 3m x 1m bulldozer costean	0.014	0.01	1.5	2.3	31	7.03	1.41	2.0	0.01	7
AF220901- 14	537815	6430181	259	Bogan Way	outcrop	psammite + quartz + Feox + hematite + Mnox	Road cutting on Bogan Way	-0.005	0.03	17.0	20.1	163	5.28	0.83	24.7	-0.01	119
AF220901- 15	538518	6429647	274	Bogan Way	outcrop	psammite + quartz + psammopelite + Feox	Road cutting on Bogan Way	-0.005	0.02	3.6	13.3	125	2.80	0.48	15.8	0.01	56
AF220901- 16	538858	6429337	262	Bogan Way	outcrop	psammite + Feox + pelite + quartz	Road cutting on Bogan Way	-0.005	0.03	11.2	23.9	44	4.34	0.54	23.8	-0.01	108

Tottenham area rock chip results (10000ppm = 1%), December 2022

JORC CODE 2012 TABLE 1

Section 1: Sampling Techniques and Data – Tottenham Project, Rock Sampling

(Criteria in this section apply to all succeeding sections)

Criteria	Explanation	Commentary
	Nature and quality of sampling (e.g., cut channels, random chips, are specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Grab rock samples from float, outcrop or dump material All samples submitted to ALS Orange for preparation and assay.
Sampling Techniques	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Scout sampling only. 1kg to 3kg sample size.
Jamping recumques	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	Each sample was dried, crushed and pulverised as per standard industry practice. Samples dried, crushed and pulverised to 85% passing 75 microns. Gold (Au) was determined by 30g fire assay (method Au-AA23) with a detection limit 0.005ppm. Multielement assaying was completed for 48 elements by 0.25g four-acid digest with ICPMS determination (method ME-ICP61).
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face - sampling bit or other type, whether core is oriented and if so, by what method, etc)	Not drilling. Not Applicable for rock chip sampling
	Method of recording and assessing core and chip sample recoveries and results assessed.	Not drilling. Not Applicable for rock chip sampling
	Measures taken to maximise sample recovery and ensure representative nature of the samples	Not drilling. Not Applicable for rock chip sampling
Drill Sample Recovery	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Not Applicable Scout sampling only
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies	Samples have lithology, magnetic susceptibility and any surface structural data recorded. Nature of occurrence and details of the sample site recorded.
Logging	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography	Both qualitative and quantitative data is collected. Samples photographed at time of collection.
	The total length and percentage of the relevant intersections logged	Not drilling. Not Applicable for rock chip sampling
	If core, whether cut or sawn and whether quarter, half or all core taken	Not drilling. Not Applicable for rock chip sampling
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Not drilling. Not Applicable for rock chip sampling
Sub-sampling	For all sample types, the nature, quality and appropriateness of the sample preparation technique	Samples were dried crushed and pulverised to 85% passing 75 microns. This is considered to appropriately homogenise the sample to allow subsampling for the various assay techniques.
techniques and sample preparation	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples	Not Applicable, scout sampling only. ALS conducted internal check samples every 20 samples for Au and every 20 samples for multielement assay.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Not Applicable, scout sampling only. The sample was crushed and pulverised to 85% passing 75 microns. This was considered to appropriately homogenise the sample.
	Whether sample sizes are appropriate to the grain size of the material being sampled	Sample sizes are industry standard and considered appropriate for the grainsize present.

Criteria	Explanation	Commentary							
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total	Standard assay procedures performed by a reputable assay lab, (ALS Group), were undertaken. Gold (Au) was determined by 30g fire assay (method Au-AA23) with a detection limit 0.005ppm. Multielement assaying was completed for 48 elements by 0.25g four-acid digest with ICPMS determination (method ME-ICP61). Techniques are considered total.							
Quality of assay data and laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc	No geophysical tools were used in the determination of assay results. Magnetic susceptibility recorded using an Exploranum KT-9 kappameter.							
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Scout sampling only. No standards or duplicates.							
	The verification of significant intersections by either independent or alternative company personnel.	Not drilling. Not Applicable for rock chip sampling							
	The use of twinned holes.	Not drilling. Not Applicable for rock chip sampling							
Verification of sampling and assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Data store in Microsoft Excel files. Photographs electronically stored.							
	Discuss any adjustment to assay data	Assay data is not adjusted.							
	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Samples located hand held GPS.							
Location of data points	Specification of the grid system used	All coordinates are based on Map Grid Australia Zone 55, Geodetic Datum of Australia 1994							
	Quality and adequacy of topographic control	Samples located hand held GPS.							
	Data spacing for reporting of Exploration Results	Data spacing is variable. Scout sampling only based on distribution of exposure and samples of economic interest.							
Data spacing and distribution	Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not Applicable							
	Whether sample compositing has been applied	Sample compositing is not applied.							
Orientation of data in	Whether the orientation of sampling achieves unbiased sampling of possible structures and extent to which this is known, considering the deposit type	Scout sampling only based on distribution of exposure and samples of economic interest.							
relation to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced sampling bias, this should be assessed and reported if material	Not drilling. Not Applicable for rock chip sampling							
Sample security	The measures taken to ensure sample security	Sample chain of custody has been managed by the employees of Locksley Resources, who undertook the sampling, from the drill rig to assay laboratory. All samples are bagged in tied numbered calico bags, grouped into larger tied polyweave bags, or placed in a stillage box and transported to ALS in Orange by Locksley personnel. All sample submissions are documented via ALS tracking system and all assays are reported via email. Sample pulps are returned to site and stored for an appropriate length of time (minimum 3 years). The Company has in place protocols to ensure data security.							

Section 2: Reporting of Exploration Results – Tottenham Project

(Criteria listed in the previous section also apply to this section)

Criteria	Explanation	Commentary
Mineral Tenure and Land Tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings	All sampling on EL6592 which is 100% owned by Locksley Resources Ltd. EL6592, EL6656, EL8384 and EL9307 form the Tottenham Project. The majority of these licences are covered by freehold farm land. Parts of EL6592 are covered by the Tottenham and Carolina State Forests, administered by Forestry Corporation NSW.
zana remare status	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area	All exploration licences are in good standing. EL6592 expires 29/6/2026. EL6656 expires 27/10/2026. EL8384 expires 28/7/2026. EL9307 expires 16/10/2027
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties	The Tottenham field had mining present from 1872 to 1977. Major mines were present at Mount Royal, Orange Plains, Bogan River, Ace, and Carolina. The most active period of production was between 1905 and 1917. Little or no production was recorded between 1921 and 1925, owing to a combination of low copper prices and drought. There was no production in 1928 and between 1931 and 1942. In 1943 minor tonnages were won from the Mt. Royal, and Bogan River mines. There was minor production each year from 1946 to 1977 which came from operations at the Mt. Royal, Bogan River, Underlay and Carolina Mines and from leaching at the Mt. Royal, Carolina and Underlay Mines. Significant exploration drilling has occurred at the Bogan River to Effies Ace group of mines and about the Carolina Mine. Main recent explorers are Arimco Mining – Straits Resources (1996-2001) with 93 RC holes and Mincor Resources – Bacchus Resources (2006 -2020) with 83 aircore holes, 104 RC holes and 48 diamond holes. All of this drilling appears to have been undertaken using standard industry practice. 19 historic holes are also present at the NSW government core archive.
Geology	Deposit type, geological setting and style of mineralisation	The Tottenham deposits are hosted within the Ordovician Girilambone Group. The project area lies within the Girilambone Anticlinorium Zone of the Lachlan Fold Belt. Rock types are dominantly sequences of turbidites comprising sandstone and siltstone as well as minor chert, and conglomerate. Interbedded mafic volcanic, volcaniclastic and intrusive mafic units show a spatial association with copper mineralisation. The Girilambone Group is characterised by north-south trending thrust-bounded packages that separate Early Ordovician (Narrama Formation) and Middle Ordovician (Ballast and Lang Formations) units. The Early Ordovician (Narrama Formation) and Middle Ordovician (Ballast and Lang Formations) units. The Early Ordovician (Narrama Formation) hosts the bulk of the mafic igneous units, coarser-clastics, quartz-magnetite units and mineralisation. The majority of the mafic units are interpreted to be sills that have intruded into unconsolidated turbiditic sediments. Younger sediments cover much of the belt resulting in limited outcrop of less than 10%. The Girilambone Group is regionally metamorphosed to greenschist facies with a complex deformation history and is strongly folded with noticeably more metamorphism and deformation in the Tottenham area. Tight isoclinal folds are observed at the sub-metre scale, although large open folds are common such as the Orange Plains anticline. Metamorphism and deformation are mostly related to the Early Silurian Benamberan Orogeny, (~435 Ma). Metamorphism in the Tottenham area has led to the rocks being described as metasedimentary and mafic schists. The deposits are considered to be Besshi - Type sulphide copper-gold deposits that have been modified by deformation. Besshi - Type deposits are named after deposits on the southern Japanese island of Shikoku. The mineralisation in these systems is typically copper-rich with lesser zinc, silver, gold and minor cobalt within well-developed iron-sulphide (pyrite / pyrrhotite) bodies. The host rocks are commonly sedimentary rocks,

Criteria	Explanation	Commentary
Drill hole Information	A summary of all information material ta the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level-elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length If the exclusion of this information is justified on the basis that the information is not Material and this	See body of announcement. Not applicable as information is included
	exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Not opposed as an ornation is included
	In reporting Exploration Results, weighting, averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Scout sampling only. All results reported.
Data aggregation methods	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Not drilling. Not Applicable for rock chip sampling
	The assumptions used for any reporting of metal equivalent values should be clearly stated	No metal equivalences quoted.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Scout sampling only.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See body of announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	See body of announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples-size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	See body of announcement.
	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling).	See body of announcement.
Further work	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	See body of announcement.