

VENTILADORES AXIAIS

Índice

1- Fundamentos	3
2- Nomenclatura	4
3- Características construtivas	4
4- Dimensões	5
5- Pesos dos ventiladores	6

1- Fundamentos

Um ventilador é uma máquina cuja função é garantir a movimentação de ar a uma determinada vazão e pressão.

Dividem-se em dois grupos principais: ventiladores axiais onde a corrente de ar se estabelece axialmente ao ventilador, onde se utiliza geralmente uma hélice e ventiladores centrífugos onde o fluxo de ar se estabelece radialmente através do ventilador e se utiliza geralmente um rotor. Estes por sua vez podem ser classificados de acordo com:

- O aumento de pressão que produzem;
- Forma das aletas do rotor;
- Disposição das aletas;
- Com suas diversas aplicações;

Os ventiladores descritos neste catálogo são do grupo dos ventiladores axiais.

Definições:

Vazão de ar: é o volume de ar movimentado por um ventilador em um tempo determinado, normalmente expresso em m3/h.

Pressão estática (P_{st}): é a pressão do meio ou recinto através do qual o ar se movimenta.

Pressão dinâmica (P_d): é a pressão resultante da transformação integral da energia cinética do ar em pressão.

A sua equação: $P_d = \chi v^2 / 2g$

Sendo:

Y = densidade do ar em Kg/m³

g = aceleração da gravidade (9.81 m/s²)

V= velocidade do ar em m/s

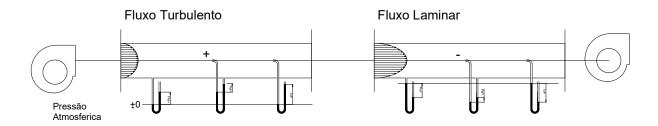
P_d= pressão dinâmica em Pa

Pressão total (Pt): É a soma da pressões estática e dinâmica.

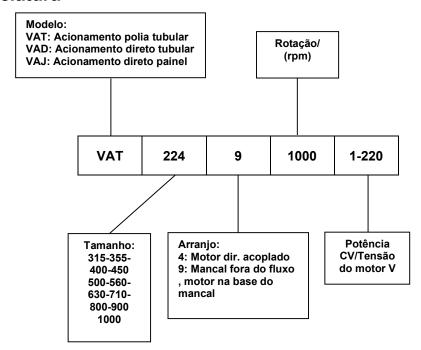
Medida de pressão:

A medida das pressões em um duto deve efetuar-se em um ramo de onde o regime de escoamento do ar é estável (longe de uma mudança de secção , curvas etc.).

A pressão dinâmica se mede com um tubo de Pitot ou um tubo de Prandl conectado a um manômetro diferencial. O tubo de Prandl é mais utilizado pois permite a medição da pressão estática e a dinâmica.


Devemos lembrar de diferenciar os dutos de insuflamento dos dutos de aspiração ou retorno, tendo em vista que em relação a pressão atmosférica a pressão estática será positiva no primeiro caso e negativa no segundo sendo que a pressão total será a soma algébrica do valor absoluto de ambas.

Devemos estar atentos ao fato que a pressão dinâmica do fluxo de ar é mais baixa perto das paredes do duto em relação ao centro. Este fato é mais pronunciado em regime de fluxo laminar do que em fluxo turbulento.


Na figura 1 estão representadas as curvas de distribuição de velocidades em ambos os regimes.

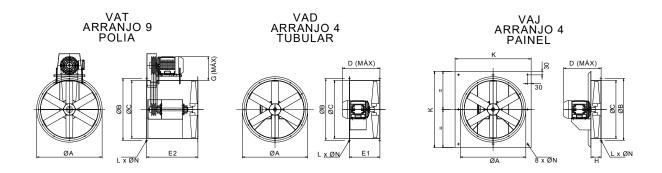
3

2- Nomenclatura

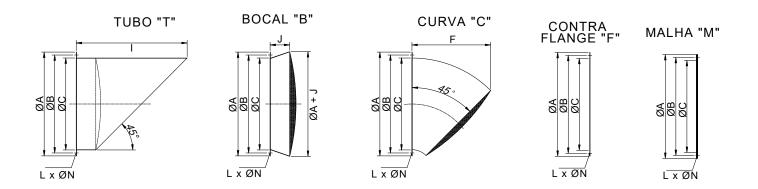
3- Características construtivas

Construídos em chapa de aço galvanizado, hélice com cubo de alumínio e pás de alumínio ou polimero, balanceado estática e dinamicamente no grau Q=6,3 (ISO 1940).

O eixo é projetado com alto fator de segurança, de aço de alto carbono e com chavetas nas extremidades.


Rolamentos de esferas de alta qualidade e selecionados para uma vida útil mínima de 20.000 horas.

Acessórios disponíveis: conexões flexíveis na descarga e sucção, bocal ou flange de aspiração ou descarga, amortecedores de vibração, porta de inspeção, pintura especial e dreno de esgotamento.


4

4- Dimensões

Dimensões Gerais													
MOD.	ØΑ	øВ	øС	D (MÁX)	E1	E2	F	G(MÁX)	Н	- 1	J	K	LxØN
315	369	344	315	285	265	445	328	205	90	405	95	560	8 X 8
355	409	390	355	285	265	445	372	205	90	445	105	560	12 X 8
400	468	436	400	285	265	445	424	235	90	505	105	560	12 X 8
450	518	486	450	330	265	445	477	235	90	555	105	660	12 X 8
500	568	536	500	330	265	445	530	235	90	605	105	660	12 X 8
560	628	596	560	445	350	445	590	235	105	670	125	760	16 X 8
630	700	668	630	445	380	530	678	300	124	750	125	760	16 X 8
710	780	748	710	460	380	530	742	300	124	825	125	910	16 X 8
800	882	844	800	555	490	740	843	300	124	920	160	1000	18 X 10
900	984	946	900	555	490	740	954	300	124	1050	160	1100	18 X 10
1000	1084	1044	1000	555	490	920	1085	350	145	1110	160	1250	18 X 10

5- Pesos dos ventiladores

Peso em kg										
MOD.	VAT	VAD	VAD				Contra	Malha M		
	Arr 9 Tubular	Arr 4 Tubular	Arr 4 Painel	Tubo T	Bocal B	Curva C	Flange F			
315	27	7,9	6,8	3,3	2,4	2,9	0,9	1,0		
355	31	9,5	7,9	3,9	2,7	3,7	1,2	1,3		
400	35	13,7	12,6	4,9	3,9	4,7	1,5	1,6		
450	38	20,0	13,7	5,9	4,6	5,7	1,7	1,8		
500	44	26,3	18,9	7,7	6,1	7,6	2,5	2,8		
560	55	22,1	24,2	9,1	7,0	9,1	2,8	3,1		
630	61	33,6	32,6	12,9	8,3	13,5	3,2	3,5		
710	111	48,3	54,6	17,3	12,9	18,1	4,7	5,2		
800	122	59,9	66,2	21,0	15,2	22,2	5,4	5,9		
900	161	69,3	88,2	25,5	18,0	27,3	6,0	6,6		
1000	193	99,8	99,8	30,3	20,8	33,0	6,6	7,3		

6

O ar que inspira valor

RUA RIO DE JANEIRO, 528 FAZENDINHA
SANTANA DE PARNAÍBA - SP

CEP 06530-020

(11) 4156-3051 / 3448 / 3745

VENDAS@TERMODIN.COM.BR

