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Abstract

The neural basis of food sensory pleasure has become an increasingly studied topic in 

neuroscience and psychology. Progress has been aided by the discovery of localized brain 

subregions called hedonic hotspots in the early 2000’s, which are able to causally amplify positive 

affective reactions to palatable tastes (‘liking’) in response to particular neurochemical or 

neurobiological stimulations. Those hedonic mechanisms are at least partly distinct from larger 

mesocorticolimbic circuitry that generates the incentive motivation to eat (‘wanting’). In this 

review, we aim to describe findings on these brain hedonic hotspots, especially in the nucleus 

accumbens and ventral pallidum, and discuss their role in generating food pleasure and appetite.
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Introduction

Over the last 15 years, research has yielded several unexpected findings on how hedonic 

circuitry in the brain interacts with food to produce reward and appetite. Evidence now 

suggests that discrete, anatomically localized “hedonic hotspots” exist in limbic-related 

brain structures, able to magnify the hedonic impact of natural sensory rewards, such as 

sweet tastes. So far, these hotspots have been found in the forebrain nucleus accumbens 

(particularly in medial shell), ventral pallidum, and in the brainstem parabrachial nucleus. In 

this review, we will discuss where these hotspots were found, what neurochemical systems 

enhance hedonic impact in them, and how the hotspots may interact within hedonic circuitry 

and with a larger mesocorticolimbic circuitry that produces appetite or the motivation to eat.

1.1 Nucleus accumbens hotspot

1.1.1 The striatum—The nucleus accumbens (NAc), as well as the striatum as a whole, is 

well known to be involved in reward and motivation. However, it has also become 

increasingly clear that subregions within the nucleus accumbens and striatum can differently 

influence distinct aspects of behavior and motivation (Zhang and Kelley, 2000; Pecina and 

Berridge, 2005; Badrinarayan et al., 2012; Difeliceantonio et al., 2012). One potential 
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contributing factor may be related to the anatomical make up of different zones within the 

striatum. For example, though there are general striatal neurobiological features shared by 

NAc and neostriatum (D1/Dynorphin and D2/Enkephalin descending projections, inputs 

from prefrontal cortex, amygdala, and hippocampal nuclei, etc.), there are also clear 

anatomical differences between ventral and dorsal striatum, between core and shell 

components within nucleus accumbens, and even between different subregions within the 

medial shell of the nucleus accumbens (Groenewegen et al., 1999; Meredith et al., 2008; 

Humphries and Prescott, 2010; Thompson and Swanson, 2010; Zahm et al., 2012).

1.1.2 Affective taste reactivity as a tool to measure hedonic function—The taste 

reactivity test can be used as an objective measure of hedonic impact or ‘liking’ reactions to 

taste palatability, based on quantifying discrete orofacial affective reactions to different 

tastes (Steiner et al., 2001). Originally applied to rats in behavioral neuroscience studies by 

Grill and Norgren for use in decerebrate and thalamic rats (Grill and Norgren, 1978b, c), this 

affective reactivity test was even earlier pioneered in human infants (Steiner, 1973). 

Converging evidence from animal and human comparisons showed that the orofacial 

reactions elicited by rats and humans (as well as several species of apes, monkeys, horses 

and mice), in response to palatable or unpalatable tastes, are strikingly homologous, with 

positive hedonic ‘liking’ reactions including tongue protrusions, lateral tongue protrusions 

and paw licks, and negative ‘disgust’ reactions including gapes, head shakes, and chin rubs 

(Steiner et al., 2001; Jankunis and Whishaw, 2013). ‘Liking’ and ‘disgust’ are placed in 

quotation marks to acknowledge that these are objective positive or negative hedonic 

reactions that are not necessarily accompanied by subjective feelings of pleasure or disgust 

(even if they often are) (Robinson and Berridge, 1993; Winkielman et al., 2005), and to 

distinguish them from the everyday use of the English term, liking. Similarly, ‘wanting’ in 

quotes refers specifically to the motivation process of incentive salience, which also can 

occur in brain and behavioral responses either with or without accompanying subjective 

feelings of ordinary wanting (Robinson and Berridge, 1993; Winkielman et al., 2005).

While at first it seemed possible that these taste-elicited reactions were merely sensory-

specific reactions (e.g. sweet versus bitter), or merely brainstem reflexes rather than 

affective responses (taste reactions are emitted by decerebrates with only a brainstem to 

control behavior (Grill and Norgren, 1978a, c)), accumulating studies suggested that the 

orofacial reactions truly reflected hedonic impact for intact-brain individuals by the 1980s. 

For example, initially ‘liked’ tastes, such as sugars or saccharin, after being paired with 

injections of lithium chloride to produce a conditioned taste aversion (CTA), subsequently 

produced aversive gapes, which requires forebrain control (Grill and Norgren, 1978c; 

Berridge et al., 1981; Spector et al., 1992; Parker, 2003; Wilkins and Bernstein, 2006). 

Reciprocally, intraoral infusions of a normally disgusting hypertonic NaCl solution (e.g., 1.5 

M) can produce hedonic reactions in a salt depleted state (Berridge et al., 1984; Clark and 

Bernstein, 2006; Tindell et al., 2009; Robinson and Berridge, 2013). Further, affective 

orofacial reaction patterns are not tied to particular sensory stimuli in any one-to-one fashion 

that would reflect sensory-specific coding; palatable sucrose, palatable NaCl at isotonic or 

hypotonic concentrations, and palatable fat emulsions can all evoke similar hedonic 

reactions (Smith and Berridge, 2005; Clark and Bernstein, 2006; Shin et al., 2011). Further, 
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the affective taste reactivity pattern elicited by a particular taste can be altered by factors that 

also alter human palatability ratings, ranging from relevant appetite/satiety physiological 

states, to pharmacological opioid, endocannabinoid, etc. brain states of particular 

neuroanatomical structures, and types of neurobiological lesions (Berridge, 1991; Cromwell 

and Berridge, 1993; Yeomans and Gray, 1997; Pecina and Berridge, 2005; Miller et al., 

2006; Mahler et al., 2007; Cameron et al., 2012). Finally, specific brain microinjections, 

lesions, or optogenetic stimulations in forebrain structures can profoundly control taste-

elicited ‘liking’ reactions as described below, which indicates a top-down or hierarchical 

control over brainstem circuitry that involves the entire brain. Altogether, these 

considerations indicate that the taste reactivity test reflects the affective (sensitive to 

homeostatic and learned cues), rather than merely a reflex or the sensory quality of a food 

reward.

1.1.3 The nucleus accumbens hedonic hotspot—In an effort to uncover the neural 

mechanisms of hedonic processing, taste reactivity has been used in conjunction with brain 

manipulations, such as pharmacological microinjections in particular structures. Using this 

coupled paradigm, Susana Peciña in the Berridge lab was able to demonstrate that a unique 

hedonic function was localized to a subregion of NAc medial shell; a 13mm “hedonic 

hotspot” in the rostrodorsal quadrant of NAc medial shell (Pecina and Berridge, 2005). 

Within the confines of the cubic-millimeter hotspot in shell, mu opioid receptor activation 

via microinjection of the mu agonist DAMGO (Mansour et al., 1986) enhanced hedonic 

‘liking’ reactions to a sweet sucrose solution, in addition to suppressing negative ‘disgust’ 

reactions to quinine (Pecina and Berridge, 2005; Smith et al., 2011). Within the NAc 

hotspot, mu opioid stimulation was found to double to triple the number of positive orofacial 

‘liking’ reactions elicited by sweetness, in addition to dramatically stimulating intake of 

palatable food.

Outside the hotspot, the same opioid stimulation completely failed to increase ‘liking’ 

reactions, even though it increased intake just as much. In fact, at posterior locations in 

medial shell, opioid stimulation tended to oppositely suppress ‘liking’ reactions in a hedonic 

coldspot. However, at all sites in accumbens core and shell, DAMGO microinjections are 

equally effective at stimulating increases in food intake and in ‘wanting’ to obtain food, 

despite not enhancing ‘liking’ at most of those sites (Bakshi and Kelley, 1993; Zhang and 

Kelley, 2000; Pecina and Berridge, 2005, 2013). Indeed, food intake can be stimulated at a 

number of related sites outside NAc, without enhancing ‘liking’ reactions, including the 

central nucleus of the amygdala (Gosnell, 1988; Mahler and Berridge, 2012) and even 

regions of the ventral and dorsal neostriatum (Zhang and Kelley, 2000; Difeliceantonio et 

al., 2012). Thus, opioid circuitry for ‘wanting’ to eat is more widely distributed throughout 

NAc and related structures than opioid circuitry for ‘liking’.

More recently, we have replicated the original mu opioid hotspot localization in the 

rostrodorsal quadrant of NAc shell for enhancements of sucrose ‘liking’ by DAMGO 

microinjections (Castro and Berridge, 2014) (Fig.1). Further, we have found evidence that 

the same anatomical site for the rostrodorsal mu hotspot can mediate opioid hedonic 

enhancements for delta stimulation (DPDPE) by three-fold and even kappa stimulation 

(U50488H) by two-fold, whereas no hedonic enhancements are produced at other locations 
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in medial shell of NAc by either mu, delta or kappa stimulations(Castro and Berridge, 2014) 

(Fig.1). Oppositely instead, in a hedonic coldspot in the posterior half of medial shell, all 

three forms of opioid stimulation suppress hedonic reactions to sucrose, apparently reducing 

‘liking’. However, each specific agonist had different anatomical patterns of effects on 

‘wanting’ to eat in the sense of changing food intake despite their similar (rostral) 

enhancement hotspot versus (caudal) suppressive coldspot pattern of ‘liking’ effects (Castro 

and Berridge, 2014) (Fig.1). Mu stimulation increased eating at all sites throughout medial 

shell, as previously reported, both in the caudal coldspot and the rostral hotspot. However, 

delta stimulation only increased eating in the rostral hotspot but not at other sites, and kappa 

stimulation never consistently increased food intake at any site in medial shell. These 

differences speak again to the fundamental differences in mechanisms mediating ‘liking’ 

versus ‘wanting’, even within opioid systems contained in the medial shell of NAc. Related 

evidence has demonstrated endocannabinoid stimulation in the NAc hotspot and even 

GABAergic hyperpolarizations in the same hotspot can also enhance ’liking’ reactions to 

sweet tastes (Reynolds and Berridge, 2002; Pecina and Berridge, 2005; Mahler et al., 2007; 

Faure et al., 2010; Richard et al., 2013).

All three types of opioid receptors couple to Gi subunits, subsequently leading to ERK 

activation and typically decreasing neuronal activity, which conceivably could be related to 

shared enhancement effects in the rostral hedonic hotspot and shared hedonic suppression 

effects in the caudal coldspot. However, though mu, delta and kappa pathways converge to 

activate ERK, they do so via different intracellular channels, which might possibly be 

relevant to how the three receptors have such different effects on motivated ‘wanting’ to eat 

reflected in food intake. However, the precise relation between intra-cellular mechanisms 

and ‘liking’/’wanting’ effects still remains to be clarified.

1.1.4 Dopamine fails to alter taste reactions—By contrast to hedonic neurochemical 

manipulations, NAc dopamine stimulation by amphetamine microinjections within or 

outside the shell hotspot (Wyvell and Berridge, 2000; Smith et al., 2011), by genetic 

elevation of dopamine in the synapse (via knockdown of dopamine transporter in 

presynaptic dopamine neurons) (Pecina et al., 2003), or by systemic amphetamine 

administration (Treit and Berridge, 1990; Tindell et al., 2005), all consistently fail to 

enhance positive hedonic reactions to sweet tastes. Conversely, reduction of NAc dopamine 

by 6-OHDA lesions (Berridge et al., 1989; Berridge and Robinson, 1998), or by systemic 

dopamine blockade (Pecina et al., 1997) all fail to reduce positive hedonic reactions. 

However, those same dopamine manipulations do potently alter motivated ‘wanting’ for the 

food rewards. Thus, unlike opioid or endocannabinoid neurotransmitters, dopamine in NAc 

does not appear to be a mechanism for hedonic ‘liking’, but rather is restricted to motivation 

‘wanting’ roles regarding food rewards.

1.1.5 Anatomical basis for functional uniqueness of NAc hotspot—What 

anatomical basis might help explain the functional existence of an anatomically unique 

hotspot for opioid/endocannabinoid amplification of sensory pleasure, and why is it 

uniquely able to enhance hedonic impact to tastes, compared to other regions of NAc shell?

Castro and Berridge Page 4

Physiol Behav. Author manuscript; available in PMC 2014 December 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Recently, two independent groups of neuroanatomists have evaluated the anatomical 

connectivity patterns of the NAc rostrodorsal quadrant of medial shell, and found that this 

hotspot region differs from other subregions of medial shell (e.g., caudal shell). Thompson 

and Swanson (2010) revealed, using a double injection of anterograde and retrograde 

tracers, that the rostrodorsal quadrant appears to belong to a different striato-pallido-

hypothalamo-thalamo-cortical closed circuit loop from other subregions of medial shell. In 

other words, if one follows the projections from the rostrodorsal quadrant of medial shell 

along a point to point axis, one will end up back in the hotspot. This loop travels from the 

NAc hotspot to particular subregions of pallidum or hypothalamus, up to paraventricular 

nucleus of the thalamus, next passing through the infralimbic region of prefrontal cortex, 

and finally projecting back again to rostrodorsal medial shell. The subregions of each of 

these structures are distinct from the subregions visited by other parallel loops that pass 

through more posterior regions of medial shell. Exactly how many parallel loops pass 

through medial shell of NAc remains to be elucidated, but it seems clear now that there are 

at least two (visiting rostral vs caudal shell) and possibly additional loops that more finely 

dissect NAc shell into further subregions, each belonging to its own loop (Thompson & 

Swanson, 2010).

Similarly, Zahm and colleagues (2012) recently found a related pattern of distinct 

connectivity that distinguishes the rostral hotspot from more caudal subregions of NAc 

medial shell. Those authors suggest that the rostral hotspot projects to particular regions of 

lateral preoptic area and lateral hypothalamus, and receives inputs from infralimbic 

(analogous to Brodmann’s area 25) and other nearby regions of prefrontal cortex such as 

prelimbic and orbitofrontal cortex. They also suggest that the projection patterns of NAc 

rostral shell are similar to those of lateral septum, compared to the caudal shell, and that the 

rostral zone of medial shell is a unique transition region between NAc and lateral septum. In 

contrast, they suggest the caudal zone is a different transition region blending features of 

NAc and extended amygdala. While the Zahm et al. and the Thompson and Swanson studies 

differ on some points, the overall anatomical scheme presented by the two studies seems to 

agree that the circuitry belonging to the rostrodorsal hotspot quadrant of NAc medial shell is 

fundamentally different compared to the connectivity patterns of the rest of the medial shell, 

and these anatomical differences may in part contribute to the hotspot’s unique abilities to 

amplify hedonic impact of taste sensations.

In addition to differences in projection patterns, there may also be other local 

neurobiological features of neurons in NAc medial shell that are relevant to hedonic 

contributions compared to other NAc components such as core. Meredith et al. (2008) 

suggest that the local characteristics of neurons in NAc medial shell are different from other 

regions of NAc and striatum. For example, the projecting medium spiny neurons (MSNs) 

within medial shell are less spiny and smaller compared to NAc core or dorsal striatum. 

Furthermore, the distinction between different MSNs belonging to D1/dynorphin/direct 

pathway versus D2/enkephalin/indirect pathway, which is known from dorsal striatum, is 

somewhat diluted in NAc medial shell, where at least 17% of MSNs harbor both D1 and D2 

receptors (Bertran-Gonzalez et al., 2008; Humphries and Prescott, 2010). Intriguingly, 

volume ratios of patch/matrix compartments in dorsal striatum (as delineated by mu opioid 

or calbindin binding) may also be flipped, or at the very least are not as cleanly split in 
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nucleus accumbens (Jongen-Relo et al., 1993; Meredith et al., 1996). Although the roles of 

these neurobiological features is still unclear, some of these unique anatomical or cellular 

features of NAc medial shell might be relevant to its ability to generate hedonic functions 

that are fundamentally different from other regions of striatum.

2.1 Ventral pallidum hotspot

2.1.1 Evidence for a ventral pallidum hotspot

The ventral pallidum (VP) receives the densest projections from NAc, compared to other 

target structures (Nauta et al., 1978; Mogenson et al., 1983). Similar to NAc, VP also has 

been shown to be important for rewards (Cromwell and Berridge, 1993; Smith and Berridge, 

2005; Tang et al., 2005; Yamamoto, 2007; Mickiewicz et al., 2009; Taha et al., 2009; 

Stefanik et al., 2013; Mahler et al., 2014). Also similar to NAc, the VP has been shown to 

contain a hedonic hotspot of its own (Smith and Berridge, 2005).

In an initial microinjection mapping study of the VP hedonic hotspot, Smith and Berridge 

(2005) made microinjections of DAMGO throughout the ventral pallidum and measured 

taste reactivity responses to sucrose and quinine, as well as changes in food intake. Results 

showed that DAMGO microinjections in a roughly cubic-millimeter site of caudal VP 

enhanced hedonic reactions to sucrose, revealing a hedonic hotspot in the posterior half, as 

well as stimulating the motivation to eat more food. In behavioral and anatomical contrast to 

the posterior VP hotspot, microinjections into more rostral subregions of VP 

suppressed ’liking’ reactions to sucrose and reduced food intake, indicating a VP opioid 

coldspot (Smith and Berridge, 2005). The caudal VP zone which enhanced hedonic 

reactions was slightly smaller (~0.83mm) than the 13mm NAc hotspot, although it is 

proportionally similar to the NAc hotspot when the relative size of the structures are taken 

into account. Thus, like NAc, the VP also appears to house a hedonic hotspot (but positioned 

caudally in VP, rather than rostrally as in NAc).

2.1.2 An orexin hotspot in VP

In addition to opioid signals, orexin signals in the posterior VP also can enhance the hedonic 

impact of sucrose (Ho and Berridge, 2013). This was found by performing microinjections 

of orexin-A directly into the VP hotspot or into the surrounding regions of lateral 

hypothalamus (lateral preoptic area) or into the extended amygdala. Chao-Yi Ho in the 

Berridge lab found that orexin microinjections enhanced ‘liking’ reactions when infused into 

the VP hotspot, but did not do so when infused into rostral ventral pallidum or into nearby 

structures such as lateral hypothalamus or extended amygdala (Ho and Berridge, 2013). 

Whether or not orexin also acts in the NAc hotspot to enhance hedonic impact is still 

unknown, but preliminary observations in our lab suggest that orexin may also perform a 

similar role in this NAc region as well (Castro and Berridge, unpublished observations).

2.2.1 Necessity of the VP hotspot

During the 1960’s and 70’s, it was reported that lesions to LH would produce intense 

aphagia (Teitelbaum and Epstein, 1962; Boyle and Keesey, 1975; Oltmans and Harvey, 

1976; Schallert et al., 1977). In particular, Teitelbaum and Epstein (1962) reported that LH 
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lesions, in addition to disrupting eating and drinking behavior, also disrupted hedonic/

appetitive reactions to sweet solutions and replaced them with aversive or ‘disgust’ 

reactions, which suggests a role for LH in affective processing and behavior. However, with 

the benefit of hindsight, it can be noted that those hypothalamic lesions were very large by 

modern standards, and the damage actually extended well outside the lateral hypothalamus. 

Additional structures were damaged, ranging from caudal ventral pallidum in a direction 

anterior to LH, and as far back as premammillary nucleus in a caudal direction. 

Subsequently Schallert and Whishaw (1978) identified the anterior direction as most 

important, showing that electrolytic lesions only in anterior LH produced intense ‘disgust’ 

reactions to sucrose in addition to producing aphagia, whereas posterior LH lesions 

produced merely aphagia without any aversion. To more thoroughly localize the site of 

‘disgust’ release, Cromwell and Berridge (1993) made discrete excitotoxic lesions in VP 

(anterolateral to LH) or in nearby regions such as lateral hypothalamus and the preoptic area. 

They confirmed that lesions to all LH and VP sites produced aphagia, but found that only 

lesions that damaged VP produced the flip in affective responses to sucrose from ‘liking’ to 

‘disgust’. Even anterior LH lesions did not release ‘disgust’ if VP was spared. Temporary 

inhibitions by muscimol microinjections into VP also have been reported to increase 

aversive reactions to sucrose (Shimura et al., 2006). More recently, a PhD dissertation study 

by Chao-Yi Ho, which mapped the increase of aversive reactions to sucrose, demonstrated 

that it was the VP hotspot in caudal VP that appears responsible for both lesion-induced 

‘disgust’ and muscimol-induced ‘disgust’: sites for either in the posterior VP hotspot 

produced intense ‘disgust’ reactions to sucrose, whereas other sites in anterior VP as well as 

in anterior LH did not (as long as the posterior VP hotspot remained untouched) (Ho, 2010). 

Such findings suggest that the VP hotspot in particular is especially important for generating 

normal hedonic impact, as well as for amplifying intense hedonic impact, since it is the only 

region in the brain known so far in which lesions not only suppress hedonic reactions, but 

replace them with aversive reactions to sweetness.

2.2.2 Anatomical basis for the VP hotspot

The larger anatomical zone in which VP is located was traditionally called the substantia 

innominata (SI), or unnamed substance. This was due to its lack of distinguishing features 

(as far as was then known), and the confusing nature of what constituted its borders, 

however the term substantia innominata was later criticized as too vague (Heimer et al., 

1997). The VP boundaries reveal themselves when tissue is stained for enkephalin or 

substance P; VP produces more enkephalin and substance P than other nearby SI regions, 

and has distinct afferent and efferent patterns from that of the dorsally positioned globus 

pallidus (Haber and Nauta, 1983; Groenewegen and Russchen, 1984), marking it as a 

relatively distinct structure within SI.

Like the NAc hotspot, the VP hotspot in its posterior region has several unique 

characteristics that differ from other VP subregions that may contribute to its hedonic 

function. For example, Kupchik and Kalivas (2012) showed that the electrophysiological 

signature of the neurons in VP change, depending on where they recorded along a 

rostrocaudal axis. Neurons in anterior VP included a mix of “Type I” and “Type II” neurons, 

whereas posterior VP was characterized solely by Type I neurons. Type I neurons are 
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tonically active and easily excited, while Type II neurons have low basal firing rates, and 

require more stimulation to elicit an action potential. In addition to this, Type II neurons 

morphologically resemble the accumbens medium spiny neurons, whereas Type I neurons 

that predominate in posterior VP are relatively aspiny and are somewhat larger than Type II. 

Although it is still unclear how Type I and II neurons differ functionally, it is interesting to 

note that the change in neuron type follows the rostrocaudal functional difference between 

caudal VP hotspot and rostral VP coldspot sites.

3.1 Parabrachial nucleus hotspot

3.1.1 Brainstem mechanisms of reward

In addition to the two forebrain hotspots of NAc and VP, there is also some evidence for a 

brainstem hedonic hotspot within the parabrachial nucleus (PBN) of the pons (Soderpalm 

and Berridge, 2000a). Although best known as a visceral/taste sensory relay (Norgren and 

Leonard, 1971; Di Lorenzo and Monroe, 1997), the PBN has additional functions, including 

food intake (Wilson et al., 2003; DiPatrizio and Simansky, 2008; Wu et al., 2009; Carter et 

al., 2013b), establishing a conditioned taste aversion (Yamamoto, 2007; Carter et al., 2013b; 

Dayawansa et al., 2013), and REM sleep (Quattrochi et al., 1998; Torterolo et al., 2011).

As noted above, Grill and Norgren (1978a, c) pioneered the taste reactivity paradigm in 

order to compare normal and decerebrate (and thalamic or detelencephalic) rats. 

Mesencephalic decerebrate rats receive transections above the superior colliculus at the level 

of the midbrain, removing inputs from hypothalamus, thalamus and all telencephalic 

forebrain structures, and display no voluntary eating. However, despite the complete lack of 

spontaneous eating behavior, decerebrates show normal taste reactivity patterns to palatable 

sucrose or aversive quinine (Grill and Norgren, 1978a, c). Although decerebrate taste 

reactions are reflexive in nature, another potential implication of that finding is that even at 

the level of the brainstem, the beginnings of some elementary hedonic processing may be 

occurring (Berridge, 2009).

To more directly assess brainstem hedonic function, Berridge (1988) made systemic 

injections of chlordiazepoxide, a benzodiazepine drug that enhances hedonic reactions in 

normal rats as well as enhancing food intake (Cooper, 1980; Treit and Berridge, 1990), into 

decerebrate rats and found that this benzodiazepine stimulation of the functional midbrain 

and hindbrain was still sufficient to enhance sucrose ‘liking’ reactions. Peciña and Berridge 

(1996) then went on to show that fourth ventricular microinjections of diazepam into the 

brainstem fourth ventricle of intact rats also enhanced hedonic ‘liking’ reactions even at low 

doses that were ineffective in the forebrain lateral ventricles, again indicating that indeed 

there was a brainstem site capable of amplifying hedonic impact for normal animals.

Providing further localization of brainstem benzodiazepine mechanisms of food motivation, 

Higgs and Cooper (1996) demonstrated that microinjections of a related benzodiazepine, 

midazolam, into the pontine parabrachial nucleus (PBN), but not nearby regions of 

brainstem, could significantly enhance food intake in non-deprived rats. Building on these 

findings, Soderpalm and Berridge (2000b) found that similar microinjections of midazolam 

into the lateral parabrachial nucleus of normal rats enhanced positive ‘liking’ taste reactivity 
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patterns to sucrose taste, in addition to its hyperphagic effects, whereas microinjections into 

the hindbrain nucleus of the solitary tract or into midbrain ventral tegmental area did not.

Taken together, these studies implicate PBN benzodiazepine mechanisms in hedonic 

processing, extending the hedonic hotspot circuit to include brainstem, as well as forebrain, 

sites of action.

Recent work on the parabrachial nucleus has supported its role in food intake. For example, 

work by Simansky and colleagues showed that opioid and endocannabinoid stimulation 

within parabrachial nucleus also robustly increases consumption of palatable food (Wilson 

et al., 2003; DiPatrizio and Simansky, 2008). Further, endogenous opioid function within 

PBN appears to be required for food motivation, as infusions of naloxonazine completely 

prevented DAMGO induced hyperphagia (Chaijale et al., 2008).

More recently, Palmiter and colleagues have shown that the PBN interacts with 

hypothalamic mechanisms to control appetite (Wu et al., 2009; Wu and Palmiter, 2011; Wu 

et al., 2012; Carter et al., 2013b). Wu et al. (2009) showed that PBN neurons are normally 

inhibited by GABAergic projections from agouti-related protein (AgRP) neurons in the 

hypothalamic arcuate nucleus, and that destruction of AGRP neurons abolished eating. They 

then went on to show that the starvation effects they observed through AgRP neuron 

ablation were not due to increased melanocortin signaling (Wu and Palmiter, 2011), but 

rather to over-excitation of PBN from glutamate projections originating in the hindbrain 

nucleus of the solitary tract or serotonin neurons (Wu et al., 2012). Similarly, Carter et al 

(2013b) showed that optogenetic stimulation of lateral PBN neurons that express calcitonin 

gene-related peptide also decreased food intake.

4.1 A functional circuit for hedonic processing

The existence of multiple hedonic hotspots allows for the possibility that the hotspots 

interact and work together within a coordinated hedonic circuit. A functional circuit would 

not necessarily imply that the hotspots are all directly connected anatomically, since 

intermediary stops could be equally effective in creating a functional circuit. To determine 

whether at least a functional interaction existed, Smith and Berridge unbalanced the circuit 

by infusing DAMGO into one hotspot (e.g. NAc), while simultaneously infusing naloxone, 

an opioid antagonist, into another hotspot (e.g. VP) (Smith and Berridge, 2007). The guiding 

hypothesis was that if the simultaneous opioid neurotransmission is required in both 

hotspots, essentially creating unanimous opioid votes for enhancement in both sites, to 

increase ‘liking’ reactions to a palatable sweet solution, then blocking endogenous opioid 

signals in one hotspot should prevent exogenous opioid stimulation by DAMGO 

microinjection in the other from causing any hedonic enhancement. The results supported 

this hypothesis: opioid blockade in either the VP or NAc hotspot prevented DAMGO 

enhancement of positive ‘liking’ reactions in the other hotspot. Further supporting the 

functional relationship between the NAc and VP hotspots, it was also found that DAMGO 

activation in one hotspot enhanced Fos activity both locally and in the other hotspot, and in 

both directions, demonstrating their functional interactions could be detected via neural 

markers of genomic transcription. It should be noted that although naloxone in VP prevented 
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DAMGO-enhanced ‘liking’ in the NAc hotspot, enhancements of eating by NAc DAMGO 

were still robustly generated, suggesting again independent controls for hedonic ‘liking’ 

versus motivated ‘wanting’ of the same food reward.

In a further electrophysiological demonstration of NAc-VP hotspot interactions, Smith et al. 

(2011) recorded taste reactivity responses and extracellular neuronal firing patterns in the 

VP hotspot during an intraoral infusion of sucrose. They found that neurons in the VP 

hotspot appeared to encode impact of sucrose in neuronal firing, correlating with behavioral 

‘liking’ reactions. This hedonic pattern manifested itself by steadily increasing the neural 

firing rate in a slow-onset but sustained burst of action potentials, becoming evident during 

the first 1.5s after the sweet taste was introduced, and sustaining this elevation in firing for 

the duration of the 10-sec sucrose infusion. DAMGO microinjection into the NAc hotspot 

enhanced both behavioral hedonic taste reactivity to sucrose and the hedonic pattern of 

neural firing in VP elicited by the sweet taste. In behavioral contrast, amphetamine 

microinjections that potentiated dopamine transmission in the NAc hotspot only increased 

food intake and a more transient VP neural signal burst that encoded cue-triggered 

‘wanting’, and correlated with amount of food eaten, but had no effect on behavioral taste 

reactivity ‘liking’ patterns or on the hedonic-encoding VP neural response to sucrose. 

Altogether, these results show that the VP and NAc hotspots interact to form a larger 

functional circuit that mediates the hedonic reaction to a palatable taste.

4.1.2 Anatomically unconnected hotspots?

Although the evidence presented so far clearly indicates a functional relationship between 

the hotspots, it may be surprising to note that the NAc, VP and PBN hotspots do not have 

any known direct reciprocal anatomical connections between them. For example, although 

the NAc hotspot sends robust projections to the ventral pallidum, they are primarily directed 

toward rostromedial VP, and not to the posterior hotspot (Groenewegen and Russchen, 

1984; Usuda et al., 1998; Thompson and Swanson, 2010; Zahm et al., 2012). Instead, the 

caudolateral core sends projections to the caudolateral VP region that contains the hotspot 

(Groenewegen and Russchen, 1984). Beyond the NAc-VP projection, a NAc-PBN 

projection also exists. However, these NAc projections originate from the ventral half of 

medial shell, and not the dorsal half that primarily houses the rostral hotspot, leaving it 

unclear if NAc hotspot and PBN hotspot are directly connected (Usuda et al., 1998).

An analysis of VP connections shows that it sends topographic efferents to NAc, so that 

anterior NAc connects with anterior VP, whereas posterior NAc connects with posterior 

VP(Groenewegen et al., 1993). This suggests that these two hotspots do not anatomically 

connect directly to each other (despite their clear functional relationship). Unlike NAc, VP 

does not project to PBN at all, although VP does reach other brainstem areas such as locus 

coeruleus and the raphe nuclei (Groenewegen et al., 1993). Similarly, PBN efferents do not 

appear to innervate NAc as far as is known (Alden et al., 1994), though they still might 

possibly interact, such as via lateral PBN efferents to the VP hotspot (Saper and Loewy, 

1980). However, no study to our knowledge has systematically mapped PBN projections to 

caudal VP, leaving this connection somewhat unresolved (Grove, 1988; Moga et al., 1990).
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Altogether, an anatomical analysis of what is known of the current hotspot boundaries 

suggests that although the hotspots must work together, it cannot be via direct connections. 

If this is true, then hotspot activity is likely monitored and mediated by an as yet 

unidentified brain region that shares reciprocal connections with the hotspots.

4.2.1 A role for orexin in hedonic processing

Hunger modulates the hedonic impact of food through the phenomenon known as 

alliesthesia (Cabanac, 1971, 1979). One candidate mechanism to help mediate interactions 

between regulatory-hedonic circuitry is the hypothalamic orexin/hypocretin neurons, which 

both project to and receive direct inputs from all of the hotspots (Groenewegen and 

Russchen, 1984; Groenewegen et al., 1993; Peyron et al., 1998; Baldo et al., 2003; Harris et 

al., 2005; Yoshida et al., 2006; Aston-Jones et al., 2010).

Orexin neurons relevant to reward are appear localized within a small portion of perifornical 

and lateral hypothalamus (Baldo et al., 2004; Harris et al., 2005; Harris and Aston-Jones, 

2006; Aston-Jones et al., 2010; Cason et al., 2010; Petrovich et al., 2012). In other 

hypothalamic regions, such as in dorsomedial hypothalamus orexin/hypocretin neurons are 

mostly implicated in attention, arousal and sleep/wake cycles (Espana et al., 2001; 

Adamantidis et al., 2007; Gompf and Aston-Jones, 2008; Berridge et al., 2010; Carter et al., 

2013a).

Reward-related orexin neurons in lateral hypothalamus are located just medial to the internal 

capsule and lateral to the perifornical area, heavily concentrated in the dorsal and 

magnocellular portions of LH. While a few orexin neurons can be found as far dorsal as 

zona incerta, most are located more ventrally (although many MCH-containing neurons are 

located in zona incerta), though still more dorsal than medial tuberal nucleus. The anterior-

posterior extent of orexin neurons more or less coincides with the medial tuberal nucleus, 

which appears just after and ends just before the orexin field boundaries (Baldo et al., 2003; 

Swanson et al., 2005).

Orexin is implicated in hunger alliesthesia (Elias et al., 1998; Funahashi et al., 2003; 

Berthoud, 2004; Park et al., 2004; Li and van den Pol, 2006; Berthoud and Munzberg, 2011; 

Atasoy et al., 2012; Schaeffer et al., 2013). As mentioned above, recent work by Chao-Yi 

Ho in our lab found that direct orexin microinjections into the VP hotspot can selectively 

enhance sucrose ‘liking’ reactions (Ho and Berridge, 2013), supporting the idea that 

activation of hypothalamic orexin projections to VP might enhance the hedonic impact of 

food.

We have recently conducted pilot studies of the role of LH-to-VP projections using 

optogenetic techniques to activate neurons (Castro and Berridge, 2013). Optogenetics has 

the special advantage of allowing stimulation of specific point-to-point projections 

(Bernstein and Boyden, 2011; Ahmari et al., 2013). This potentially includes LH to VP 

projections (by putting virus in one location such as LH to infect neuron cell bodies but 

putting the stimulating optic fiber in a different location such as VP that receives axon 

terminals).
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We recently infused an excitatory channelrhodopsin-2 virus into the reward-related orexin 

field of lateral hypothalamus, and implanted an optic fiber in the VP hotspot, which contains 

orexin/glutamate terminals from that field. We found that VP illumination of the orexin 

terminals from LH enhanced the hedonic ‘liking’ reactions to sucrose and also enhanced the 

motivation to consume food (measured by intake of palatable M&M candies) (Castro and 

Berridge, 2013). In contrast, direct illumination of LH neurons, by placing both optic fiber 

and virus in LH, increased only food intake, but did not increase sucrose ‘liking’, consistent 

with similar effects previously found from electrical stimulation of the LH (Berridge and 

Valenstein, 1991; Cromwell and Berridge, 1993). Finally, direct stimulation of VP neurons, 

by placing both illuminating optic fiber and virus microinjection in posterior VP, 

specifically enhanced hedonic reactions to sucrose, without increasing food intake, 

supporting VP hotspot involvement in amplifying hedonic impact (Smith and Berridge, 

2005; Ho and Berridge, 2013). Taken together, these results indicate that neurons in the VP 

hotspot, and LH projections to the VP hotspot, are capable of amplifying sweetness hedonic 

impact.

5.1 Conclusion

Since the identification of localized hedonic hotspots in NAc, VP and brainstem, it has 

become increasingly clear that these hotspots are specialized generators of hedonic impact in 

food reward, and that they work together to form a larger functional hedonic circuit. Future 

work will extend this understanding, as well as the search for additional hotspots in the 

brain. Some potential targets for future searches include regions of the limbic prefrontal 

cortex, such as the orbitofrontal cortex and insula, which are known to encode food hedonic 

impact in human neuroimaging studies (de Araujo et al., 2003; Kringelbach et al., 2003; 

Rolls et al., 2003; Kringelbach and Rolls, 2004; Sescousse et al., 2010; Small, 2010).

In conclusion, exciting advances have been made since the initial discovery of the hotspots, 

and future studies can be expected to further elucidate how the brain takes a simple sensory 

stimulus, such as the taste of sweet food, and applies a hedonic gloss to make that sensation 

become positively ‘liked’.
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Figure 1. Mu, delta or kappa opioid hotspots for ‘liking’ enhancements in the nucleus 
accumbens
Top row: ‘Liking’ reactions to sweetness. All three types of opioid signaling mechanisms 

share essentially the same hedonic hotspot in NAc medial shell. Activation of any of the 

three types of receptor (mu, delta or kappa) enhances hedonic ‘liking’ reactions to sucrose 

taste within the same rostral cubic millimeter hotspot. Conversely, all three opioid 

stimulations suppress hedonic reactions in a caudal coldspot in medial shell. Each circle 

represents a single microinjection site. Yellow to red colors indicate increases in positive 

‘liking’ reactions caused by opioid stimulation, and gray to blue indicates suppression 
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‘liking’ to below normal control levels in the same individual rat. Middle row: Different 

effects on ‘wanting’ to eat food. Stimulation of the three receptor subtypes have very 

different effects on food intake, highlighting that there are differences in the opioid neural 

mechanisms mediating ‘liking’ and ‘wanting’. Gray to green symbols indicate increases in 

food intake, and gray to blue indicates a suppression of food intake. Mu stimulation 

enhanced food intake at all sites throughout the entire NAc. Delta stimulation enhanced 

eating only within the hotspot (similarly to ‘liking’ enhancement). Kappa stimulation never 

consistently enhanced eating at any anatomical site. Bottom row: Confirmation of hotspot 

identity via place preference conditioning. Conditioned place preferences are an independent 

way of measuring reward, which turns out to confirm that the rostrodorsal quadrant of 

medial shell is unique for opioid reward effects. Stimulation of either mu or kappa receptors 

within the hotspot also generated a conditioned place preference (and delta showed a similar 

trend), whereas no preference was induced at other sites in medial shell. Yellow to red 

symbols indicate a positive place preferences, and gray to blue symbols indicate induction of 

negative place avoidances. Modified by permission from (Castro and Berridge, 2014).
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Figure 2. Anatomical connections of the hotspots
Horizontal and sagittal maps show anatomical connections of nucleus accumbens and 

ventral pallidum (purple), and locations of hotspots within each (red/yellow), and 

interactions with brainstem parabrachial nucleus (light green) and lateral hypothalamus 

(dark green).As indicated, the three hotspots do not share any known reciprocal connections. 

Potentially relevant to the homeostatic regulation of the hedonic circuit, lateral hypothalamic 
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orexin/glutamate neurons (shown in blue/green) have reciprocal connections with all the 

hotspots. Based on anatomical studies cited in text.
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