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a b s t r a c t 

People are capable of rapid improvements in performance when they are offered a reward. The neural mechanism 

by which this performance enhancement occurs remains unclear. We investigated this phenomenon by offering 
people monetary reward for successful performance in a sequence production task. We found that people per- 
formed actions more quickly and accurately when they were offered large reward. Increasing reward magnitude 
was associated with elevated activity throughout the brain prior to movement. Multivariate patterns of activity in 
these reward-responsive regions encoded information about the upcoming action. Follow-up analyses provided 
evidence that action decoding in pre-SMA and other motor planning areas was improved for large reward trials 
and successful action decoding in SMA was associated with improved performance. These results suggest that 
reward may enhance performance by enhancing neural representations of action used in motor planning. 
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. Introduction 

People perform better when they are highly motivated. In ex-
erimental settings, motivation has been shown to enhance motor
kills ( Wächter et al. 2009 ; Mosberger et al. 2016 ), working mem-
ry ( Krawczyk et al. 2007 ; Kennerley and Wallis 2009 ), attention
 Engelmann and Pessoa 2007 ), cognitive control ( Etzel et al. 2016 ),
odel-based decision-making ( Patzelt et al. 2018 ), and perception

 Serences 2008 ). Motivation is often manipulated using prospective cues
hat involve offers of future monetary gains or threats of future losses.
eople are capable of rapid improvements in skill performance when
hey are presented with large prospective incentive cues. This capacity
uggests that people update their expectations of future reward prospec-
ively, leading to more attention and effort being invested in the task,
nd ultimately increasing the probability of success ( Kool and Botvinick
018 ). 

Motor skill learning is sometimes studied in the context of mo-
or sequencing tasks such as the serial reaction time task (SRTT) or
he Discrete Sequence Production (DSP) task ( Hikosaka et al, 2002 ;
iedrichsen and Kornyasheva, 2015 ; but see Krakauer et al. 2019 for
ore on the role of sequence learning in skill learning). In these

asks, participants train to quickly and accurately perform specific se-
uences of finger movements. Early on in skill learning, performance
s slow, effortful, and unstructured and appears to rely heavily on
ognitive processes such as attention and working memory that can
upport intentional motor planning. This is evidenced by the suscep-
ibility of novice skills to distraction effects ( Nissen and Bullemer
987 ), the dependency of skill acquisition on working memory ca-
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acity ( Anguera et al. 2011 ; Seidler et al. 2012 ), and the increased
ctivity in brain regions important for cognitive control such as lat-
ral prefrontal cortex (LPFC) during the performance of novice skills
 Grafton et al. 1995 ; Willingham et al. 2002 ; Schendan et al. 2003 ). A re-
ent study using the DSP task showed that the performance of explicitly
rained (cued) sequences was enhanced more by reward than the perfor-
ance of implicitly trained (uncued) sequences ( Anderson et al., 2020 ).

ince advanced planning was possible only for the cued sequences, this
esult suggests that reward enhances performance through cognitive
ontrol processes. In the present study, we examine the specific hypoth-
sis that reward enhances representations of action used in motor plan-
ing. 

Several studies show that motor skills can be decoded from patterns
f brain activity using multivariate techniques such as pattern classifi-
ation and representational similarity analysis. For example, sequential
ctions can be decoded from brain activity before and during movement
 Wiestler and Diedrichsen 2013 ; Nambu et al. 2015 ) and representa-
ional similarity analysis has recently been used to model the structure
f motor-skill representations in a motor planning hierarchy spanning
re-supplementary motor area (pre-SMA) to primary motor cortex (M1)
 Yokoi and Diedrichsen 2019 ). In the context of a cognitive control task,
ne recent study showed that motivation enhances temporary goal rep-
esentations in the prefrontal cortex and that this enhancement medi-
ted the effect of motivation on performance ( Etzel et al. 2016 ). This
ork suggests that increased motivation may enhance motor skill repre-

entations, particularly if their successful performance depends on cog-
itive control. We therefore expected that the motivated performance of
otor skills would be accompanied by improvements in the decodabil-
cember 2020 
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Fig. 1. Discrete sequence production task. To study 
the effects of motivation on skilled action, participants 
performed two 8-item motor sequences for monetary 
incentives. The diagram above depicts an example trial 
from the reward session (training was the same ex- 
cept there were no incentives). Reward and sequence 
(color) were cued at the start of each trial. Our fMRI 
analyses focused on hemodynamic responses to this 
cue. After a brief delay, the sequence was performed. 
If it was completed under a specific time limit, the trial 
was successful. 
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ty of action information in the lateral prefrontal cortex and higher-level
otor planning areas. No study to date has examined this possibility. 

We administered a discrete sequence production (DSP) task dur-
ng functional magnetic resonance imaging (fMRI) to 30 healthy hu-
an participants. Participants trained for 40 trials on one sequence and
00 trials on another and returned 48 hours later to perform these se-
uences for prospective rewards ($5, $10, or $30). We found that be-
avioral performance was enhanced for $30 trials compared to $5 trials.
ur data revealed a widespread network of brain areas whose activ-

ty scaled linearly with reward magnitude. From this reward-responsive
etwork, we decoded information about upcoming action and perfor-
ance from patterns of activity preceding movement. This distributed

epresentation included clusters in movement planning areas such as
PFC, pre-supplementary motor area (pre-SMA) and supplementary mo-
or area (SMA). We then examined whether action decoding in spe-
ific ROIs was influenced by reward magnitude. We focused on regions
hat have been previously implicated in studies of skilled action, includ-
ng LPFC, pre-SMA, SMA, dorsal premotor cortex (PMd), M1, and SPL
 Grafton et al. 1995 ; Pochon et al. 2001 ; Cieslik et al. 2013 ; Wiestler
 Diedrichsen 2013 ). We found that action decoding in pre-SMA was
nhanced for trials with large reward cues. Furthermore, decoding in
MA was associated with improvements in behavioral performance. Al-
hough future work is needed to determine exactly what aspects of ac-
ion —e.g., sequence, vigor, skill level —are encoded in these brain areas,
ur results suggest that reward may improve performance by enhancing
ction coding prior to movement. 

. Materials and methods 

.1. Participants 

30 undergraduate students from the University of Michigan partic-
pated in this study. All participants gave written informed consent to
articipate and were compensated at a rate of $15 per hour plus cash
onuses for successful performance. All materials and methods were ap-
roved by the University of Michigan Institutional Review Board. 

.2. Behavioral task 

Participants learned to perform two sequences of eight keypresses
 Fig. 1 ). Before each trial, participants were instructed by a color cue
1.5 s) to perform one of the two sequences. After a brief delay (2–6 s),
2 
articipants could perform the instructed sequence using the A-S-D-F
eys. During movement, an array of 4 grey rectangles (representing the
eys) ‘lit up’ in sequence to remind the participant of which key to press
ext. If an incorrect key was pressed, the corresponding placeholder
ox would turn red for one second and the trial was aborted. If the
articipant did not successfully complete the entire eight-item sequence
nder the timed deadline (see below), a message saying “Too Slow ”
as displayed for one second and the trial was aborted. There was no

eedback following a successful trial. We expected that our participants
ould rely less on these on-line visual cues, and more on advanced plan-
ing, as learning progressed. In the reward session, sequence cues were
resented concurrently with incentive. Stimulus orderings for sequence
dentity and the duration of cue-to-execution intervals (2–6 s) and inter-
rial intervals (2–6 s) were optimized to estimate effects of interest using
FNI’s make_random_timing tool by running 5000 iterations of differ-
nt random orderings/timings and selecting those explained the most
ariance in simulated GLM analyses. 

.3. Experimental protocol 

Participants performed the DSP task described above during fMRI
canning in two separate sessions 48 h apart. In session one, participants
erformed eight blocks of 35 trials each. During this training session,
articipants performed 200 trials of one sequence ( “trained ”), 40 trials
f a second sequence ( “novice ”), and 40 trials of un-cued pseudoran-
om sequences ( “random ”). The identity of each of the two sequences
as selected from a set of three different sequences for each participant

3-2-4-1-2-4-2-1, 2-1-4-2-3-4-1-3, and 4-3-1-4-2-3-1-2). These sequences
ere chosen to be free of trills (e.g. 1-2-1) and repeats (e.g. 1-1). The se-

ection of these sequences was counterbalanced across participants such
hat the trained sequence for one third of the subjects was the novice
equence in another third of the subjects and omitted for the final third
f the subjects. This procedure ensured that our results would not be
riven by the idiosyncrasies of the specific sequences chosen. In session
wo, participants performed 8 blocks of 30 trials, 120 trials for each se-
uence trained in session one. We imposed movement time limits on
erformance during session two, defined as the 70 th percentile of move-
ent times in a warm-up session (see Figure S4 for plots of time limits

or each subject and sequence during the test session). This warm-up
ession consisted of 60 trials of the trained sequence and 30 trials of the
ovice sequence performed in the scanner prior to the functional scans
ith the order of presentation randomized. Separate time limits were
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ssigned for each sequence and each participant with a maximum of
 s, and the time limit was reset to be stricter each block if participants’
ccuracy was above 70% on the previous block. Each trial was asso-
iated with one of three incentive magnitudes: $5, $10, or $30. These
eward values were presented simultaneously with the sequence color
ues at the start of each trial. The order of reward values was set to be an
-sequence to mitigate carryover effects ( Buracas and Boynton 2002 ).
articipants were informed that a trial would be selected at random at
he end of the experiment, and that they would earn the associated re-
ard if they performed the target sequence without error under the time

imit. Our metric of successful task performance therefore incorporated
oth speed and accuracy. 

.4. Incentive-behavior analysis 

We estimated the effect of reward on behavioral performance us-
ng a Bayesian hierarchical logistic regression model. The dependent
ariable was trial success. The model included fixed effects of $10-$5
nd $30-$5 and allowed intercepts to vary by subject. We assigned
eakly-informative N(0,1) priors to all parameters after standardiz-

ng the inputs ( Gelman et al. 2008 ). The model was implemented us-
ng the R package {brms} ( Bürkner 2017 ), which translates R-style re-
ression formulae to code in the probabilistic programming language,
tan ( Carpenter et al. 2017 ). Posterior parameter estimates were ob-
ained using MCMC sampling (4 chains, 10000 iterations per chain, 50%
armup). 

All MCMC chains passed visual inspection, all 𝑅̂ values were 1, and
ll bulk and tail effective sample sizes (ESS) were large. After fitting the
odels, we performed graphical posterior predictive checks using the R
ackages {bayesplot} ( Gabry et al. 2019 ) and {loo} ( Vehtari et al. 2017 ).
o quantify uncertainty about the effects of interest, we computed 95%
ighest density intervals (HDI) as well as probabilities of direction ( pd ).
he HDI is defined such that, e.g., 95% of the distribution lies within
he interval and every point inside the interval has higher credibility
han every point outside the interval ( Kruschke 2011 ). The pd is defined
s the probability that an effect goes in the direction indicated by the
edian estimate ( Makowski et al. 2019 ). 

.5. fMRI acquisition and pre-processing 

MR data were acquired with a 3T GE scanner (MR 750) with a
2-channel head coil. Functional data were obtained using a 1-shot
ulti-band T2 ∗ -weighted echo-planar imaging (EPI) sequence sensitive

o blood oxygenation level-dependent (BOLD) contrast (TR = 1200 ms,
E = 30 ms, flip angle = 70 0 , 21 cm field of view, in-plane resolu-
ion = 2.4 mm × 2.4 mm, MB acceleration = 3). Each functional volume
ontained 51 contiguous 2.5 mm-thick axial slices separated by a 0 mm
nter-slice gap acquired in an interleaved manner. Whole-brain T1-
eighted scans were acquired for anatomical localization. Functional
ata were realigned to the third volume acquired, slice-time corrected,
nd registered to the MNI-152 template using a non-linear warp. Func-
ional data were smoothed with a 6 mm FWHM kernel for the whole-
rain univariate analysis but left unsmoothed for all multivariate analy-
es (see below). Pre-processing was performed using AFNI ( Cox,1996 ). 

.6. Whole-brain univariate analysis 

We modeled BOLD responses to the preparatory cue using gener-
lized linear models (GLM) implemented in using AFNI. As shown in
ig. 1 , the preparatory cue conveyed information about the reward that
ould be obtained (e.g., “$30 ”) and the sequence that should be per-
ormed (e.g., a blue square for sequence A). One GLM was used to cap-
ure the spatially distributed patterns of brain responses to the cue on
ach trial. This GLM modeled each trial’s response to the cue as a sepa-
ate regressor, enabling us to obtain separate coefficient maps for each
3 
rial. The resulting coefficient maps were used as samples in a multi-
ariate decoding analysis. This GLM also contained motor execution re-
ressors for each sequence, which were created by convolving a gamma
unction with a square wave starting at movement onset with duration
qual to the movement time. Another GLM was used to measure the ex-
ent to which BOLD responses were greater for larger monetary incen-
ives. This GLM used the same motor execution regressors but contained
 separate regressors for each sequence for the cue period. One regres-
or captured the mean response to the cue, while the other captured
arametric modulation due to reward magnitude. This latter regressor
as coded to predict linear changes in activity with reward magnitude
hile accounting for the mean response to the cue (with reward levels

oded as 1, 2, 3). The resulting coefficient maps (one per participant)
ere fed into a second-level group analysis using AFNI’s 3dttest ++ com-
and, which helped us identify the voxels whose activity reliably scaled
ith reward magnitude across participants. 

To examine whether our multivariate analyses (see below) could be
riven by mere univariate differences, we conducted additional second-
evel control analyses that examined several contrasts: 1) mean response
f trained vs novice sequences, 2) linear effect of reward for trained vs
ovice sequences, 3) mean difference between correct and incorrect tri-
ls for trained vs novice sequences. For all second-level analyses, mul-
iple comparisons corrections were performed via permutation testing
ith AFNI’s equitable thresholding and clustering (ETAC) procedure. 

.7. Multivariate Analysis of reward-responsive regions 

We used multivariate pattern analysis (MVPA) to localize the areas in
he brain that contained information about the identity of an upcoming
ction and whether the action would be performed successfully (‘perfor-
ance decoding’). Multivariate techniques —such as machine learning

lassifiers —are powerful tools for measuring information in the brain,
ecause they are capable of discovering complex, high-dimensional
appings between spatially distributed patterns of brain activity and

timuli (or behaviors, or many other things the brain might contain in-
ormation about). We performed MVPA using SpaceNet classifiers from
he nilearn python package ( Abraham et al., 2014 ), which use spatial
riors and regularization to construct sparse but structured coefficient
aps. When the classifier achieves high out-of-sample classification ac-

uracy, it’s coefficient maps can be interpreted as information maps
pecifying voxels whose joint activity contains information about the
lass ( Baldassarre et al. 2012 ; Michel et al. 2012 ; Grosenick et al. 2013 ;
ohmatob et al. 2014 ). 

The classifiers were run separately on each subject and were given
he trial-wise cue-related activity beta maps as input. We performed ini-
ial feature selection by considering only those voxels whose activity
ncreased with reward magnitude at cue (group-level p < 0.001 uncor-
ected). We used a leave-one-participant-out approach to construct the
asks to ensure a participant’s mask was independent from their sam-
les ( Esterman et al., 2010 , Lee & Grafton, 2015 ). This masking reduced
he dimensionality of the decoding problem and ensured that the de-
oders only used voxels that were modulated by reward. We ran one
et of SpaceNets to classify patterns according to the sequence that was
ued (‘action decoding’, Fig. 4 ) and another set of SpaceNet classifiers
hich predicted whether the forthcoming trial would be performed suc-

essfully (‘performance decoding’, Fig. 5 ). The SpaceNet classifiers were
t using 5-fold cross-validation and validated using a left out test set
20%). Stratification was used to keep that the ratio of class labels (e.g.,
0/50, 60/40) equivalent across all folds. We fed the fitted SpaceNet
aps into a second-level conjunction analysis to produce a mask of

oxels that were informative about both action and performance at the
roup level ( Fig. 6 ). Our inferences for the group-level maps assumed a
luster-corrected alpha threshold of p < 0.05. A bootstrap analysis con-
rmed that group-level mean classification accuracy was above 0.6 for
ction decoding and above 0.75 for performance decoding (Figure S5). 
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Fig. 2. The effects of prospective reward size on sub- 
sequent behavioral performance. A. Participants were 
more likely to complete sequences under the pre- 
scribed time limits with increasing reward size. B. Par- 
ticipants pressed more keys per second with increasing 
reward size. Points reflect condition means and error 
bars reflect within-subject standard errors, calculated 
using the method described in ( Cousineau 2005 ). 
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.8. Follow-up ROI Analysis 

Next, we took a closer look at several anatomical sub-components
f the action and performance information maps. After conjoining the
ction and performance information maps, we intersected the conjunc-
ion map with specific anatomical regions of interest, defined using the
ulti-modal Glasser atlas ( Glasser et al. 2016 ). We focused here on the

uperior parietal lobule (parcel indices: 29, 45, 46, 47, 48, 49, 50), lat-
ral prefrontal cortex (parcel indices: 67, 70, 71, 73, 79, 80, 81, 83,
4, 86), supplementary motor area (43, 44), pre-supplementary motor
rea (parcel index: 63), dorsal premotor cortex (parcel indices: 54, 55,
6, 97, 98), and primary motor cortex (parcel index: 8). For each of
hese ROIs, we considered only the right hemisphere, contralateral to
he effector. For each subject, we performed 1001 permutations of a
eave-one-trial-out cross-validated MVPA using a linear support vector
lassifier with default parameters in Scikit-learn ( Pedregosa et al. 2012 ).
n the first permutation, the classifiers were trained on data with true
abels, but for the 1000 other permutations the labels for the training
ata were randomly shuffled. The classification target for the classifiers
as action identity and the analysis yielded binary accuracy scores for

ach trial, representing whether the action cued on a trial was success-
ully decoded. With trial-wise decoding accuracies, we were able to test
hether action decoding was enhanced for trials with larger incentives

$30) compared to trials with smaller incentives ($5, $10). We use per-
utation testing to assess whether decoding accuracy at each reward

evel was above chance and whether the differences in decoding accu-
acy between reward levels were greater than would be expected by
hance. We compute p-values for these means using the formula (C + 1)
 (N + 1) where N is the total number of permutations (1000) and C is
he number of permutations whose means were greater than or equal
o the ‘true’ mean. To address issues of multiple comparisons, we use
000 bootstrap samples from the null distributions to determine the
robability of obtaining statistically significant effects in zero, one, two,
hree, etc. ROIs under the null. This analysis showed that it was unlikely
 p < .05) under the null to observe significant effects in multiple ROIs
Fig. S6). 

.9. Brain-behavior Analysis 

Lastly, we examined the link between action decoding and behavior.
e used a hierarchical logistic regression model with Bayesian param-

ter estimation to model our trial success. This model was designed to
4 
est whether higher decoding accuracy in our ROIs was associated with
igher behavioral accuracy. The dependent variable was behavioral per-
ormance (success or failure). The models included fixed effects of de-
oding accuracy (correct or incorrect) and sequence identity (A or B)
nd allowed intercepts to vary by subject. The sequence identity pre-
ictor was included to control for the effect of sequence and thereby
eparate this effect from the effect of decoding accuracy. 

.10. Data-availability 

Data and code used in this project are available at https://github.
om/adkinsty/dsp _ scanner . 

. Results 

.1. Prospective reward improves motor sequence performance 

Our participants were more likely to successfully com-
lete sequences on $30 trials compared to both $10 trials
 𝛽30−10 = 0 . 14 , CI 95% = [−0 . 04 , 0 . 29] , pd = 94 . 5%) ( Fig. 2 A) and
5 trials ( β30−5 = 0 . 26 , C I 95% = [ 0 . 09 , 0 . 42 ] , pd = 99 . 9% ) . We imposed
ime limits on performance to match success rate across the two
equences (see Methods). However, we found evidence that accuracy
as lower for the trained sequence compared to the novice sequence

 βT−N = −0 . 34 , CI = [ −0 . 44 , − 0 . 24 ] , pd = 100% ) , suggesting that the
ime limits for the well-trained sequences were too strict. However,
ovement speed was greater for the trained than the novice sequence

 βT−N = 0 . 05 , CI = [ 0 . 02 , 0 . 09 ] , pd = 100% ) and greater for $30 com-
ared to $10 trials ( β30−10 = 0 . 04 , CI = [ 0 . 01 , 0 . 08 ] , pd = 100% ) .
e found little evidence of an interaction between re-
ard size and sequence suggesting that performance on
oth sequences was similarly improved for larger re-
ards ( 𝛽30−10 × T−N = 0 . 12 , CI = [−0 . 12 , 0 . 35] , pd = 84 . 7%;
30−5 × T−N = 0 . 04 , CI = [−0 . 18 , 0 . 29] , pd = 64 . 1%) . In sum, our
articipants performed motor sequences more quickly and accurately
hen they were offered performance-contingent prospective reward
f increasing size. In what follows, explore the hypothesis that this
otivational enhancement of behavioral performance is related to
otivational enhancements of the neural representations of action in

he frontal cortex. 

https://github.com/adkinsty/dsp_scanner
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Fig. 3. Reward-responsive brain areas. We used GLMs to test for effects of re- 
ward on hemodynamic responses to the pre-movement cue. The images above 
show the results of a group-level analysis of subject-level coefficient maps. For 
this visualization, we used threshold-free cluster correction and projected the 
results to surface space. 
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.2. Prospective reward increases preparatory activity in brain areas 

nvolved in motor planning 

We first asked which regions of the brain were linearly responsive to
otivation (i.e., prospective reward value) just prior to movement. This

nalysis revealed reward-related activity in most of the brain regions
hat we expected to be engaged during the preparation in the DSP task,
ncluding LPFC (x = 38, y = 4, z = 45), SMA (x = 8, y = 18, z = 61),
nd M1 (x = 4, y = -28, z = 76) ( Fig. 3 , Table S1). Unsurprisingly, we
lso observed clusters of reward-related activity in reward regions such
s the striatum and the pallidum. This analysis provided a reliable map
f the brain regions whose activity was modulated by prospective re-
ards. We did not find any regions in which the extent of this reward
odulation significantly differed between the sequences (whole-brain
aired t-test, all p > 0.05, corrected). Of particular interest to this study
s the finding that many regions involved in motor-skill performance
ere responsive to reward, including the primary motor cortex, premo-

or cortex and prefrontal cortex. 

.3. Reward-modulated brain areas encode motor skill information 

We performed MVPA using SpaceNet classifiers to identify the sub-
et of regions from the reward map ( Fig. 3 ) whose patterns of activity
lso contained information about the upcoming action. Our first set of
paceNet classifiers were trained to predict the identity of intended ac-
ions from patterns of brain activity preceding movement. At the group
evel, these classifiers predicted the intended action (for a held-out 20%
f trials) with a mean accuracy of 0.61 and a standard deviation of 0.12
cross subjects ( p < .01; Fig. 4 A, Figure S5). The information maps were
istributed across areas of cortex involved in movement preparation in-
luding LPFC (x = 43, y = 6, z = 41), SMA (x = 9, y = 15, z = 55),
nd M1 (x = 17, y = -28, z = 61) ( Fig. 4 B, Table S2). Importantly, this
nalysis considered only voxels that were responsive to reward magni-
ude ( Fig. 3 ). The regions in Fig. 4 B therefore simultaneously respond to
hanges in motivation and contain information about the action being
repared (Fig. S7). These findings are consistent with prior work show-
ng converging reward and action signals in prefrontal areas and motor
reas ( McNamee et al., 2015 ). 
5 
.4. Reward-modulated brain areas encode information about future 

erformance 

While information about reward and action appear to converge in a
ide range of areas including LPFC, SMA, and M1, it remains a possibil-

ty that these areas have no practical relevance to future behavior. To
est this, we ran a second set of classifiers that used patterns of activity
rior to movement to predict whether a participant would be success-
ul in the forthcoming DSP trial. At the group level, the classifiers pre-
icted future behavioral performance (on a held-out 20% of data) with
 mean accuracy of 0.79 and standard deviation of 0.09 across subjects
 p < .001, Fig. 5 A, Figure S5). This decoding analysis revealed a more
estricted information map than the analysis of action decoding, but the
ap still included clusters in LPFC (x = 42, y = 7, z = 36), SMA (x = 7,
 = 10, z = 41), and M1 (x = 1, y = -20, z = 55) ( Fig. 5 B, Table S3). 

We performed several control analyses to ensure our classifiers were
ot merely detecting univariate differences between our conditions of
nterest (See Methods for a list of contrasts). These analyses did not
eveal any significant clusters of activity when directly contrasting the
ean univariate response between two sequences that survived multiple

omparisons correction (no significant clusters of activity at p < 0.05).
his suggests that our multivariate analyses were more sensitive in dis-
inguishing between the two actions. Additionally, the linear effect of
eward did not differ between the two sequences (no significant clus-
ers of activity at p < 0.05). In another univariate control analysis, we
ested whether the mean difference in cue-related activity for subse-
uently correct vs incorrect trials differed between the two sequences.
e again found no significant clusters of activity in this analysis sug-

esting that the univariate response on both correct and incorrect trials
as similar across the two sequences. Thus, although behavioral perfor-
ance differs slightly between the sequences and at the different levels

f reward, it is unlikely that our decoding results are driven by mere
nivariate differences. 

Our fMRI results suggest that the reward-related regions identified
reviously are not only responsive to changes in motivation, but also
elevant to future behavior. Furthermore, the information maps from
ur two MVPAs ( Figs. 4 and 5 ) were found to overlap in key regions
f interest such as LPFC, SMA, and M1 (Table S4). This conjunction
ap, shown in Fig. 6 , delineates voxels that (1) respond to changes in
otivation, (2) carry information about which action is being prepared,

nd (2) carry information about whether performance will be successful.
e used this conjunctive information map as a mask for our subsequent
OI analyses. 

.5. Increased reward coincides with improved action decoding in 

ovement preparation areas 

We hypothesized that motivation preferentially enhances cortical
epresentations of skilled actions. While our multivariate analysis above
evealed a distributed map of regions that jointly carried information
bout skilled action, we were also interested whether skill represen-
ations can be identified in separate regions of interest previously im-
licated in studies of skilled action ( Ballard et al. 2011 ; Wiestler and
iedrichsen 2013 ; Ramakrishnan et al. 2017 ; Yokoi et al. 2018 ;
okoi and Diedrichsen 2019 ). To this end, we used linear support vector
achines (SVM) to decode action identity from patterns of cue-related

ctivity from LPFC, SMA, pre-SMA, PMd, M1, and SPL. The purpose of
his ROI analysis was to determine whether action information could be
ecoded locally in these ROIs and whether reward influenced this de-
oding. We use permutations to estimate the empirical null distributions
or the decoders, which we then use to assess the statistical significance
f the results (these null distributions are shown in Supplemental Fig-
res S2A-E). 

Action decoding in right pre-SMA was above chance for all re-
ard levels ($5 ∶ 𝑀 = . 52 , 𝑃 = . 03; $10 ∶ 𝑀 = . 52 , 𝑃 = . 04; $30 ∶ 𝑀 =

 54 , 𝑃 < . 001) For right SMA, we found strong evidence that decoding



T.J. Adkins and T.G. Lee NeuroImage 228 (2021) 117708 

Fig. 4. Action coding in reward-responsive brain areas. We trained multivariate classifiers to decode future action from patterns of hemodynamic responses to 
the pre-movement cue. This analysis only considered voxels that were responsive to reward (see Fig. 3 ). (a) Violin plot of mean SpaceNet decoding accuracies for 
each subject. (b) Results of a group-level analysis of subject-level SpaceNet coefficient maps. For this visualization, we used threshold-free cluster correction, spatial 
smoothing with a 2 mm kernel, and projected the results to surface space. 

Fig. 5. Performance-prediction in reward- 
responsive brain areas. We trained multivari- 
ate classifiers to predict future behavioral per- 
formance from patterns of hemodynamic re- 
sponses to the pre-movement cue. This analysis 
only considered voxels that were responsive to 
reward (see Figure 3 ). (a) Violin plot of mean 
decoding accuracies for each subject. (b) Re- 
sults of a group-level analysis of subject-level 
SpaceNet coefficient maps. For this visualiza- 
tion, we used threshold-free cluster correction, 
spatial smoothing with a 2 mm kernel, and pro- 
jected the results to surface space. 
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as above chance for $30 trials ( 𝑀 = . 52 , 𝑃 = . 01 ) but not for $5 trials
 𝑀 = . 51 , 𝑃 = . 09 ) or $10 trials ( 𝑀 = . 51 , 𝑃 = . 15 ). Curiously, decod-
ng in SPL was above chance on $5 trials ( 𝑃 < 0 . 05 ; Figure S2A) and
30 trials ( 𝑃 < 0 . 05 ; Figure S2C), but not $10 trials ( 𝑃 > 0 . 05 ; Figure
2B). Decoding in right LPFC and PMd were not statistically significant
all p > .05; Figure S2A-C). So, while PMd and LPFC may contribute to
 multi-region decoding of action, they do not appear to carry sufficient
nformation about action to support accurate decoding in isolation. We
ound that decoding from pre-SMA was higher on $30 trials compared
o $5 trials ( 𝑀 dif f = . 02 , 𝑃 = . 04 ) and higher on $30 trials compared to
10 trials ( p < .05). However, we found no statistically significant dif-
erences in decoding accuracy between reward conditions for the other
OIs (all p > .05, Figure S2D-S2E). These results suggest reward may
harpen representations of action in right pre-SMA. To address concerns
bout multiple comparisons, we conducted a control analysis using the
6 
mpirical null decoding distributions which showed that the probability
nder the null of obtaining consistent above chance classification on $30
rials across two or more regions (as we report above) was low ( p < .05,
ig. S6). In sum, these results suggest that SMA and pre-SMA locally en-
ode information about upcoming action during movement preparation
nd that reward may sharpen these representations of action. 

For completeness, we also examined decoding in these same regions
n the left hemisphere (ipsilateral to the effector). Decoding from these
OIs on $5 trials was not significantly above chance (all p > .05, Figure
2A). On $10 trials, decoding from left SMA and left M1 were above
hance ( p < .05, Figure S2B), but the other ROIs were not significant.
n $30 trials, decoding from left SMA, left M1, and left pre-SMA were
bove chance ( p < .05, Figure S2C), but the other ROIs were not sig-
ificant. We also found evidence that decoding accuracy was higher on
30 compared to $5 trials in left M1 ( p < .05, Figure S2D), and the other
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Fig. 6. Overlap of action and performance information maps. The above mask 
includes voxels that were significant at p < 0.05 cluster-corrected in a group- 
level level conjunction analysis of the action and performance SpaceNet coeffi- 
cient maps. 
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Fig. 7. Effects of reward on action decoding and action decoding on performance. 

(A) We found evidence that action decoding from LPFC, pre-SMA, SMA was en- 
hanced by the prospect of a $30 reward. Here we show group-mean decoding 
accuracies. The asterisks denote that decoding for $30 trials was significant at 
p < 0.05 and the tilde denotes that decoding was nearly significant at p = 0.06. 
Significance tests were performed at the group-level using 1000 random permu- 
tations of the classification procedure (i.e., by training on shuffled data). (B) We 
found evidence that action decoding in SMA was associated with better future 
behavioral performance, after controlling for action identity (i.e., sequence). 
The asterisk denotes pd > 95%. See Supplementary figures S3A and S3B for 
subject-level data. 
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OIs were not significant. The difference of decoding between $30 and
10 trials was not significant for any of the ROIs in the left hemisphere
all p > .05, Figure S2E). The pattern of results in the left hemisphere
s similar to the results from the right hemisphere in that decoding was
bove chance in movement preparation areas for $30 trials but not $5
rials. 

.6. Successful action decoding from SMA coincides with improved 

ehavioral performance 

Our results above suggest that motivation by prospective reward en-
ances action as well as neural representations of those actions in the
rain. While these motivational effects may be coincidental, we con-
idered the possibility that the enhanced action coding may be a neu-
al mechanism by which subsequent behavior is enhanced. It follows
rom this hypothesis that behavioral performance should be better on
rials in which action codes had high fidelity (i.e., when action identity
as correctly decoded from preparatory brain activity). We found evi-
ence that participants were more likely to succeed when action could
e decoded from right SMA prior to movement ( βdecode = 0 . 09 , C I 95% =
 −0 . 01 , 0 . 19 ] , pd = 96 . 3%; Fig. 7 B), however this effect was not signifi-
ant for the other ROIs after controlling for the effect of sequence iden-
ity (pd < 90%). Although we expected to see a link between decoding
nd behavior in pre-SMA in addition to SMA, it seems plausible that the
otivational enhancement of action codes in motor planning areas may

e a neuronal mechanism underlying the motivational enhancement of
killed performance. 

. Discussion 

In this study, we sought to examine the neural mechanisms that con-
ribute to the motivational enhancement of action. We found that per-
ormance in a motor sequencing task improved as the size of prospective
erformance-contingent reward increased. When examining cue-related
ctivity just before movement onset, we uncovered distributed patterns
f activity across a large network of regions important for motor plan-
ing that simultaneously coded for reward value, action, and future be-
avioral success. We then interrogated a subset of these regions to ex-
mine how action coding was impacted by increasing reward values.
e found that our ability to decode upcoming actions from pre-SMA

mproved as reward values increased. A follow-up analysis showed that
eople were more likely to succeed on trials in which we could cor-
ectly decode the upcoming action from preparatory activity in SMA.
ur results suggest that incentive-motivated performance may depend
n enhanced representations of action used in movement planning. 

.1. Reward modulates a widespread task-relevant network 

Our results show that motivation (i.e, prospective reward value)
odulated a widespread task network prior to movement ( Fig. 3 ).

n these regions, the amplitude of the hemodynamic response to the
7 
ue was larger for high-value trials compared to low-value trials.
his motivation-modulated network included canonical reward regions
uch as the striatum ( Apicella et al. 1991 ; Samejima et al. 2005 ;
alleine et al. 2007 ; Delgado 2007 ) and ventromedial frontal cortex.
owever, we also found that prospective reward magnitude parametri-
ally increased activity in many regions thought to be involved in mo-
or planning including lateral frontal cortex and supplementary motor
reas. This finding is consistent with prior work showing anticipatory
eward modulation in task-relevant brain areas in cognitive and mo-
or tasks ( Leon and Shadlen 1999 ; Knutson et al. 2003 ; Roesch and Ol-
on 2003 , 2004 ; Wallis and Miller 2003 ; Kennerley and Wallis 2009 ;
allis and Kennerley 2010 ; Peterson and Seger 2013 ; Marsh et al. 2015 ;
amkumar et al. 2016 ; Ramakrishnan et al. 2017 ; Galaro et al. 2018 ). 

.2. Multiplexed code for reward, action, and performance 

To investigate how prospective reward relates to the neural coding
f action, we sought to determine which of these reward-responsive
reas specifically carried information about both the identity and
he quality of the upcoming action. Using multivariate decoding, we
ound that distributed patterns of activity across the cortex simul-
aneously carried information about prospective reward value, ac-
ion and performance. Previous studies have shown that reward sig-
als and action signals converge in several areas including the pre-
rontal cortex ( Kargo et al. 2007 ; FitzGerald et al. 2012 ; Cai and
adoa-Schioppa 2014 ; Hunt et al. 2015 ; McNamee et al. 2015 ), the
triatum ( Kargo et al. 2007 ; FitzGerald et al. 2012 ; Cai and Padoa-
chioppa 2014 ; Hunt et al. 2015 ; McNamee et al. 2015 ), anterior
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ingulate cortex ( Hayden and Platt 2010 ), and primary motor cortex
 Ramakrishnan et al. 2017 ; Galaro et al. 2018 ). We similarly find that
nformation about reward, action and future performance converge in
ateral prefrontal cortex, posterior parietal cortex, and more dorsal re-
ions of medial frontal cortex (pre-SMA and SMA). 

Explicit cueing of a sequential action as employed in this study en-
bles advanced motor planning ( Diedrichsen and Kornysheva 2015 ).
specially early on in training, cognitive control processes have
een shown to aid in the performance of motor sequencing skills.
or example, working memory capacity relates to the rate of skill
earning ( Anguera et al. 2011 ) and novice motor sequence perfor-
ance coincides with increased activity in LPFC ( Grafton et al. 1995 ;
illingham et al. 2002 ; Schendan et al. 2003 ). It is thought that in-

ormation about prospective rewards is introduced to goal-directed ac-
ion networks through LPFC ( Ballard et al. 2011 ). It has been demon-
trated that performance-contingent rewards can enhance cognitive con-
rol. Rewards have been associated with improvements in the advanced
aintenance of goal information ( Jimura et al. 2010 ; Botvinick and
raver 2014 ; Etzel et al. 2016 ) and research has demonstrated moti-
ational enhancements of representations in PFC ( Leon and Shadlen
999 ; Kobayashi et al. 2002 ; Watanabe et al. 2002 ; Kargo et al. 2007 ;
tzel et al. 2016 ; Parro et al. 2018 ). We therefore reason that prospec-
ive rewards may induce a preferential enhancement of task-relevant
epresentations —that is, representations used in the planning of future
erformance ( Botvinick and Braver 2014 ; Westbrook and Braver 2015 ;
ee and Braver 2018 ). 

.3. Enhanced action representations as a mechanism for enhanced 

erformance 

Our multivariate analyses showed that motivational signals and
reparatory action representations converge in several brain areas.
hile such convergence is likely necessary for motivation to enhance be-

avior, it is unclear exactly what happens when these signals converge.
ne possibility is that motivation enhances cortical representations of
pcoming actions. We addressed this possibility in follow-up ROI analy-
es and found evidence for such enhancement in pre-SMA ( Fig. 7 A). We
lso found that behavioral performance was better on trials in which
ctions could be decoded from SMA prior to movement ( Fig. 7 B). To-
ether, these results are at least consistent with the hypothesis that the
rospect of reward enhanced performance by enhancing representations
f action used in planning. 

Although we had strong a priori focus was on LPFC as a key area
nvolved in the enhancement of action by reward, our results predomi-
antly implicate SMA and pre-SMA. It is known that cells in the supple-
entary motor area encode information about the sequential order of

uture movements ( Tanji & Shima, 1994 ), while cells in pre-SMA are re-
ponsible for updating such sequential movement plans ( Shima et al.,
996 ). This was corroborated by more recent work demonstrating a
eficit in the inhibition of planned movements following lesion to the
ight pre-SMA ( Nachev et al., 2007 ). These findings suggest that the SMA
nd pre-SMA play critical roles in the planning of sequential actions.
hile it has been shown that the supplementary motor area encodes

nformation about expected reward ( Campos et al., 2005 ), we provide
vidence that prospective reward enhances action coding in this area. 

.4. Limitations 

It is possible that reward also enhanced processing during the ex-
cution period itself. However, we chose to focus on brain activity at
ue (motor preparation) rather than at movement (motor execution)
ecause it was less influenced by confounds. First, in the present exper-
ment, the duration of the movement period varied considerably across
ime, action, and participant. Second, error processing during execu-
ion could contribute to the decoding of successful performance. Third,
elatively strict time limits were used to prevent the strategic slowing
8 
f execution speed on high reward trials. This design choice led to a
elatively high number of errors during execution, limiting the num-
er of successfully completed trials that could be used for analysis of
he movement period itself. On error trials, the performed sequence of
utton presses was quite different within a sequence (i.e., fewer move-
ents and erroneous movements) and added greatly to the variability

n the patterns of BOLD activity during this period. Nonetheless, it is
mportant for future work to consider the effects of motivation on brain
ctivity during execution, especially because this may be the locus of en-
ancement for performance that depends less on anticipatory cognitive
rocessing (e.g., the performance of expert motor skills). 

We think it is plausible that the action decoding we observed was
riven by action identity (e.g., sequence order) and that these repre-
entations became more distinct with increased motivation. However,
e cannot rule out the possibility that our decoding analyses distin-
uished neuronal patterns based on skill-level rather than sequence per
e. On this view, there may be functional neural correlates of novice and
rained skills that do not depend much on the identity of the action, such
s the motor sequence order. There is evidence that novice and expert
kills depend on distinct neuronal mechanisms ( Dayan and Cohen 2011 ;
okoi and Diedrichsen 2019 ), and such differences could conceivably be
etected by MVPA decoding techniques. However, none of the skills in
ur task were expert, having been trained for only a few hundred trials
t most. If decoding were driven by skill-level, it would be curious why
uch brain differences in skill level would be enhanced by reward. One
ossibility is that novice and trained skills differentially engage higher
ognitive processes ( Poldrack et al. 2005 ). If reward modulates these
rocesses, it may result in increased differentiation between patterns of
ctivity associated with novice and trained skills. Regardless, it could be
hat preparatory activity differs between the two sequences, that moti-
ation enhances the distinctiveness of this preparatory activity, and that
his increased distinctiveness coincides to better task performance. 

Our analyses also focused heavily on decoding action informa-
ion from patterns of cortical activity. We focused on this aspect of
ur dataset because prior work validated the approach of measur-
ng cortical representations using MVPA ( Wiestler and Diedrichsen
013 ; Nambu et al. 2015 ; Yokoi et al. 2018 ; Yokoi and Diedrich-
en 2019 ) and because recent work has shown that multivariate de-
oding from cortex can be affected by motivation ( Etzel et al. 2016 ;
arro et al. 2018 ). However, motivated action depends on cortico-
triatal loops ( Doyon et al. 2003 ; Turner and Desmurget 2010 ;
ayan and Cohen 2011 ; Frank 2011 ; Dudman and Krakauer 2016 ;
ikosaka et al. 2018 ) and reward increases activity in the basal ganglia
uring motor learning ( Wachter et al., 2009 ). A recent study showed
hat showed that training with reward in an SRT task was associated
ith increased functional connectivity between premotor cortex and the

erebellum as well as the premotor cortex and the striatum ( Steel et al.,
019 ). Very few studies have used neuroimaging to address reward-
otor interactions and we must note that those by W ӓchter, et al. and

teel, et al. both examined the impact of reward during the acquisition
f motor sequencing skill rather than in motivating the execution of a
reviously learned skill as we do here. Nevertheless, future work should
xamine whether cortico-striatal or cortico-cerebellar loops are related
o the motivational enhancements of performance and neural decoding
eported in the present work. 

Lastly, there are some limitations to our statistical methods that are
orth noting. First, our whole-brain SpaceNet MVPA analysis used a

ingle train-test split to fit and validate the model rather than cross-
alidation with permutation testing. Unfortunately, computational costs
ere far too high to perform permutation testing with this technique as

t would require about 1000 h of computation time per subject. So, al-
hough the SpaceNet returns interpretable maps, it is difficult to assess
ts null distribution. While the permutation tests for the ROI analyses us-
ng subsets of the SpaceNet maps suggest that the decoding accuracy we
ee in our whole-brain analysis likely exceeds chance performance, we
annot directly confirm this. Additionally, a limitation of our ROI MVPA
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nalysis is that, although here we used cross-validation and permutation
esting, the cross-validation scheme was leave-one-trial-out , meaning that
he classifiers were trained on data from all conditions. In practice, the
imited number of trials at each reward value made it difficult to train
table classifiers on each reward level separately. While prior research
sing motor sequencing tasks has shown that reduced BOLD activity can
e associated with improved sequence discriminability (e.g. Wiestler &
iedrichsen 2013 ; Berlot et al. 2020 ), it remains a possibility that the
reater activation seen on high reward trials ( Fig. 3 ) could contribute to
mproved action decoding. Future work should ensure that a sufficient
umber of trials are collected for each reward level to enable separate
raining and testing at each level of reward. 

.5. Closing remarks 

In sum, we provide evidence that behavioral performance is
nhanced by motivation and that a widespread network of motor plan-
ing regions jointly contains information about reward, action, and per-
ormance. Additionally, our ability to decode skilled actions from pat-
erns of BOLD activity from some of these regions was enhanced by the
rospect of large reward. This is consistent with the idea that motivation
ncreases attention to action representations used in planning, thereby
ncreasing their signal to noise ratio and improving subsequent behav-
oral performance. 
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