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People are capable of rapid improvements in performance when they are offered a reward. The neural mechanism
by which this performance enhancement occurs remains unclear. We investigated this phenomenon by offering
people monetary reward for successful performance in a sequence production task. We found that people per-
formed actions more quickly and accurately when they were offered large reward. Increasing reward magnitude
was associated with elevated activity throughout the brain prior to movement. Multivariate patterns of activity in

these reward-responsive regions encoded information about the upcoming action. Follow-up analyses provided
evidence that action decoding in pre-SMA and other motor planning areas was improved for large reward trials
and successful action decoding in SMA was associated with improved performance. These results suggest that
reward may enhance performance by enhancing neural representations of action used in motor planning.

1. Introduction

People perform better when they are highly motivated. In ex-
perimental settings, motivation has been shown to enhance motor
skills (Wachter et al. 2009; Mosberger et al. 2016), working mem-
ory (Krawczyk et al. 2007; Kennerley and Wallis 2009), attention
(Engelmann and Pessoa 2007), cognitive control (Etzel et al. 2016),
model-based decision-making (Patzelt et al. 2018), and perception
(Serences 2008). Motivation is often manipulated using prospective cues
that involve offers of future monetary gains or threats of future losses.
People are capable of rapid improvements in skill performance when
they are presented with large prospective incentive cues. This capacity
suggests that people update their expectations of future reward prospec-
tively, leading to more attention and effort being invested in the task,
and ultimately increasing the probability of success (Kool and Botvinick
2018).

Motor skill learning is sometimes studied in the context of mo-
tor sequencing tasks such as the serial reaction time task (SRTT) or
the Discrete Sequence Production (DSP) task (Hikosaka et al, 2002;
Diedrichsen and Kornyasheva, 2015; but see Krakauer et al. 2019 for
more on the role of sequence learning in skill learning). In these
tasks, participants train to quickly and accurately perform specific se-
quences of finger movements. Early on in skill learning, performance
is slow, effortful, and unstructured and appears to rely heavily on
cognitive processes such as attention and working memory that can
support intentional motor planning. This is evidenced by the suscep-
tibility of novice skills to distraction effects (Nissen and Bullemer
1987), the dependency of skill acquisition on working memory ca-
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pacity (Anguera et al. 2011; Seidler et al. 2012), and the increased
activity in brain regions important for cognitive control such as lat-
eral prefrontal cortex (LPFC) during the performance of novice skills
(Grafton et al. 1995; Willingham et al. 2002; Schendan et al. 2003). A re-
cent study using the DSP task showed that the performance of explicitly
trained (cued) sequences was enhanced more by reward than the perfor-
mance of implicitly trained (uncued) sequences (Anderson et al., 2020).
Since advanced planning was possible only for the cued sequences, this
result suggests that reward enhances performance through cognitive
control processes. In the present study, we examine the specific hypoth-
esis that reward enhances representations of action used in motor plan-
ning.

Several studies show that motor skills can be decoded from patterns
of brain activity using multivariate techniques such as pattern classifi-
cation and representational similarity analysis. For example, sequential
actions can be decoded from brain activity before and during movement
(Wiestler and Diedrichsen 2013; Nambu et al. 2015) and representa-
tional similarity analysis has recently been used to model the structure
of motor-skill representations in a motor planning hierarchy spanning
pre-supplementary motor area (pre-SMA) to primary motor cortex (M1)
(Yokoi and Diedrichsen 2019). In the context of a cognitive control task,
one recent study showed that motivation enhances temporary goal rep-
resentations in the prefrontal cortex and that this enhancement medi-
ated the effect of motivation on performance (Etzel et al. 2016). This
work suggests that increased motivation may enhance motor skill repre-
sentations, particularly if their successful performance depends on cog-
nitive control. We therefore expected that the motivated performance of
motor skills would be accompanied by improvements in the decodabil-
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ity of action information in the lateral prefrontal cortex and higher-level
motor planning areas. No study to date has examined this possibility.

We administered a discrete sequence production (DSP) task dur-
ing functional magnetic resonance imaging (fMRI) to 30 healthy hu-
man participants. Participants trained for 40 trials on one sequence and
200 trials on another and returned 48 hours later to perform these se-
quences for prospective rewards ($5, $10, or $30). We found that be-
havioral performance was enhanced for $30 trials compared to $5 trials.
Our data revealed a widespread network of brain areas whose activ-
ity scaled linearly with reward magnitude. From this reward-responsive
network, we decoded information about upcoming action and perfor-
mance from patterns of activity preceding movement. This distributed
representation included clusters in movement planning areas such as
LPFC, pre-supplementary motor area (pre-SMA) and supplementary mo-
tor area (SMA). We then examined whether action decoding in spe-
cific ROIs was influenced by reward magnitude. We focused on regions
that have been previously implicated in studies of skilled action, includ-
ing LPFC, pre-SMA, SMA, dorsal premotor cortex (PMd), M1, and SPL
(Grafton et al. 1995; Pochon et al. 2001; Cieslik et al. 2013; Wiestler
& Diedrichsen 2013). We found that action decoding in pre-SMA was
enhanced for trials with large reward cues. Furthermore, decoding in
SMA was associated with improvements in behavioral performance. Al-
though future work is needed to determine exactly what aspects of ac-
tion—e.g., sequence, vigor, skill level—are encoded in these brain areas,
our results suggest that reward may improve performance by enhancing
action coding prior to movement.

2. Materials and methods
2.1. Participants

30 undergraduate students from the University of Michigan partic-
ipated in this study. All participants gave written informed consent to
participate and were compensated at a rate of $15 per hour plus cash
bonuses for successful performance. All materials and methods were ap-
proved by the University of Michigan Institutional Review Board.

2.2. Behavioral task

Participants learned to perform two sequences of eight keypresses
(Fig. 1). Before each trial, participants were instructed by a color cue
(1.5 s) to perform one of the two sequences. After a brief delay (2-6 s),

NeuroImage 228 (2021) 117708

Fig. 1. Discrete sequence production task. To study
the effects of motivation on skilled action, participants
performed two 8-item motor sequences for monetary
incentives. The diagram above depicts an example trial
from the reward session (training was the same ex-
cept there were no incentives). Reward and sequence
(color) were cued at the start of each trial. Our fMRI
analyses focused on hemodynamic responses to this
cue. After a brief delay, the sequence was performed.
If it was completed under a specific time limit, the trial
was successful.

Variable ITI
2-6s

participants could perform the instructed sequence using the A-S-D-F
keys. During movement, an array of 4 grey rectangles (representing the
keys) ‘lit up’ in sequence to remind the participant of which key to press
next. If an incorrect key was pressed, the corresponding placeholder
box would turn red for one second and the trial was aborted. If the
participant did not successfully complete the entire eight-item sequence
under the timed deadline (see below), a message saying “Too Slow”
was displayed for one second and the trial was aborted. There was no
feedback following a successful trial. We expected that our participants
would rely less on these on-line visual cues, and more on advanced plan-
ning, as learning progressed. In the reward session, sequence cues were
presented concurrently with incentive. Stimulus orderings for sequence
identity and the duration of cue-to-execution intervals (2-6 s) and inter-
trial intervals (2-6 s) were optimized to estimate effects of interest using
AFNI’s make_random_timing tool by running 5000 iterations of differ-
ent random orderings/timings and selecting those explained the most
variance in simulated GLM analyses.

2.3. Experimental protocol

Participants performed the DSP task described above during fMRI
scanning in two separate sessions 48 h apart. In session one, participants
performed eight blocks of 35 trials each. During this training session,
participants performed 200 trials of one sequence (“trained”), 40 trials
of a second sequence (“novice”), and 40 trials of un-cued pseudoran-
dom sequences (“random”). The identity of each of the two sequences
was selected from a set of three different sequences for each participant

were chosen to be free of trills (e.g. 1-2-1) and repeats (e.g. 1-1). The se-
lection of these sequences was counterbalanced across participants such
that the trained sequence for one third of the subjects was the novice
sequence in another third of the subjects and omitted for the final third
of the subjects. This procedure ensured that our results would not be
driven by the idiosyncrasies of the specific sequences chosen. In session
two, participants performed 8 blocks of 30 trials, 120 trials for each se-
quence trained in session one. We imposed movement time limits on
performance during session two, defined as the 70t percentile of move-
ment times in a warm-up session (see Figure S4 for plots of time limits
for each subject and sequence during the test session). This warm-up
session consisted of 60 trials of the trained sequence and 30 trials of the
novice sequence performed in the scanner prior to the functional scans
with the order of presentation randomized. Separate time limits were
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assigned for each sequence and each participant with a maximum of
3 s, and the time limit was reset to be stricter each block if participants’
accuracy was above 70% on the previous block. Each trial was asso-
ciated with one of three incentive magnitudes: $5, $10, or $30. These
reward values were presented simultaneously with the sequence color
cues at the start of each trial. The order of reward values was set to be an
m-sequence to mitigate carryover effects (Buracas and Boynton 2002).
Participants were informed that a trial would be selected at random at
the end of the experiment, and that they would earn the associated re-
ward if they performed the target sequence without error under the time
limit. Our metric of successful task performance therefore incorporated
both speed and accuracy.

2.4. Incentive-behavior analysis

We estimated the effect of reward on behavioral performance us-
ing a Bayesian hierarchical logistic regression model. The dependent
variable was trial success. The model included fixed effects of $10-$5
and $30-$5 and allowed intercepts to vary by subject. We assigned
weakly-informative N(0,1) priors to all parameters after standardiz-
ing the inputs (Gelman et al. 2008). The model was implemented us-
ing the R package {brms} (Biirkner 2017), which translates R-style re-
gression formulae to code in the probabilistic programming language,
Stan (Carpenter et al. 2017). Posterior parameter estimates were ob-
tained using MCMC sampling (4 chains, 10000 iterations per chain, 50%
warmup).

All MCMC chains passed visual inspection, all R values were 1, and
all bulk and tail effective sample sizes (ESS) were large. After fitting the
models, we performed graphical posterior predictive checks using the R
packages {bayesplot} (Gabry et al. 2019) and {loo} (Vehtari et al. 2017).
To quantify uncertainty about the effects of interest, we computed 95%
highest density intervals (HDI) as well as probabilities of direction (pd).
The HDI is defined such that, e.g., 95% of the distribution lies within
the interval and every point inside the interval has higher credibility
than every point outside the interval (Kruschke 2011). The pd is defined
as the probability that an effect goes in the direction indicated by the
median estimate (Makowski et al. 2019).

2.5. fMRI acquisition and pre-processing

MR data were acquired with a 3T GE scanner (MR 750) with a
32-channel head coil. Functional data were obtained using a 1-shot
multi-band T2*-weighted echo-planar imaging (EPI) sequence sensitive
to blood oxygenation level-dependent (BOLD) contrast (TR = 1200 ms,
TE = 30 ms, flip angle = 70°, 21 cm field of view, in-plane resolu-
tion = 2.4 mm X 2.4 mm, MB acceleration = 3). Each functional volume
contained 51 contiguous 2.5 mm-thick axial slices separated by a 0 mm
inter-slice gap acquired in an interleaved manner. Whole-brain T1-
weighted scans were acquired for anatomical localization. Functional
data were realigned to the third volume acquired, slice-time corrected,
and registered to the MNI-152 template using a non-linear warp. Func-
tional data were smoothed with a 6 mm FWHM kernel for the whole-
brain univariate analysis but left unsmoothed for all multivariate analy-
ses (see below). Pre-processing was performed using AFNI (Cox,1996).

2.6. Whole-brain univariate analysis

We modeled BOLD responses to the preparatory cue using gener-
alized linear models (GLM) implemented in using AFNI. As shown in
Fig. 1, the preparatory cue conveyed information about the reward that
could be obtained (e.g., “$30”) and the sequence that should be per-
formed (e.g., a blue square for sequence A). One GLM was used to cap-
ture the spatially distributed patterns of brain responses to the cue on
each trial. This GLM modeled each trial’s response to the cue as a sepa-
rate regressor, enabling us to obtain separate coefficient maps for each
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trial. The resulting coefficient maps were used as samples in a multi-
variate decoding analysis. This GLM also contained motor execution re-
gressors for each sequence, which were created by convolving a gamma
function with a square wave starting at movement onset with duration
equal to the movement time. Another GLM was used to measure the ex-
tent to which BOLD responses were greater for larger monetary incen-
tives. This GLM used the same motor execution regressors but contained
2 separate regressors for each sequence for the cue period. One regres-
sor captured the mean response to the cue, while the other captured
parametric modulation due to reward magnitude. This latter regressor
was coded to predict linear changes in activity with reward magnitude
while accounting for the mean response to the cue (with reward levels
coded as 1, 2, 3). The resulting coefficient maps (one per participant)
were fed into a second-level group analysis using AFNI’s 3dttest++ com-
mand, which helped us identify the voxels whose activity reliably scaled
with reward magnitude across participants.

To examine whether our multivariate analyses (see below) could be
driven by mere univariate differences, we conducted additional second-
level control analyses that examined several contrasts: 1) mean response
of trained vs novice sequences, 2) linear effect of reward for trained vs
novice sequences, 3) mean difference between correct and incorrect tri-
als for trained vs novice sequences. For all second-level analyses, mul-
tiple comparisons corrections were performed via permutation testing
with AFNI’s equitable thresholding and clustering (ETAC) procedure.

2.7. Multivariate Analysis of reward-responsive regions

We used multivariate pattern analysis (MVPA) to localize the areas in
the brain that contained information about the identity of an upcoming
action and whether the action would be performed successfully (‘perfor-
mance decoding’). Multivariate techniques—such as machine learning
classifiers—are powerful tools for measuring information in the brain,
because they are capable of discovering complex, high-dimensional
mappings between spatially distributed patterns of brain activity and
stimuli (or behaviors, or many other things the brain might contain in-
formation about). We performed MVPA using SpaceNet classifiers from
the nilearn python package (Abraham et al., 2014), which use spatial
priors and regularization to construct sparse but structured coefficient
maps. When the classifier achieves high out-of-sample classification ac-
curacy, it’s coefficient maps can be interpreted as information maps
specifying voxels whose joint activity contains information about the
class (Baldassarre et al. 2012; Michel et al. 2012; Grosenick et al. 2013;
Dohmatob et al. 2014).

The classifiers were run separately on each subject and were given
the trial-wise cue-related activity beta maps as input. We performed ini-
tial feature selection by considering only those voxels whose activity
increased with reward magnitude at cue (group-level p < 0.001 uncor-
rected). We used a leave-one-participant-out approach to construct the
masks to ensure a participant’s mask was independent from their sam-
ples (Esterman et al., 2010, Lee & Grafton, 2015). This masking reduced
the dimensionality of the decoding problem and ensured that the de-
coders only used voxels that were modulated by reward. We ran one
set of SpaceNets to classify patterns according to the sequence that was
cued (‘action decoding’, Fig. 4) and another set of SpaceNet classifiers
which predicted whether the forthcoming trial would be performed suc-
cessfully (‘performance decoding’, Fig. 5). The SpaceNet classifiers were
fit using 5-fold cross-validation and validated using a left out test set
(20%). Stratification was used to keep that the ratio of class labels (e.g.,
50/50, 60/40) equivalent across all folds. We fed the fitted SpaceNet
maps into a second-level conjunction analysis to produce a mask of
voxels that were informative about both action and performance at the
group level (Fig. 6). Our inferences for the group-level maps assumed a
cluster-corrected alpha threshold of p < 0.05. A bootstrap analysis con-
firmed that group-level mean classification accuracy was above 0.6 for
action decoding and above 0.75 for performance decoding (Figure S5).
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Fig. 2. The effects of prospective reward size on sub-
sequent behavioral performance. A. Participants were
more likely to complete sequences under the pre-

scribed time limits with increasing reward size. B. Par-
0.50 4.3 ticipants pressed more keys per second with increasing
reward size. Points reflect condition means and error
bars reflect within-subject standard errors, calculated
) 4.2 1 using the method described in (Cousineau 2005).
T 0.45+ @
T 2
[7)]
» O 4.1
[0
8 2
S 0.40 1 UQ)-
@ 4.0
0.35 1 3.9 1
5 10 30 5 10 30
Reward ($) Reward ($)
Sequence Novice =@ Trained

2.8. Follow-up ROI Analysis

Next, we took a closer look at several anatomical sub-components
of the action and performance information maps. After conjoining the
action and performance information maps, we intersected the conjunc-
tion map with specific anatomical regions of interest, defined using the
multi-modal Glasser atlas (Glasser et al. 2016). We focused here on the
superior parietal lobule (parcel indices: 29, 45, 46, 47, 48, 49, 50), lat-
eral prefrontal cortex (parcel indices: 67, 70, 71, 73, 79, 80, 81, 83,
84, 86), supplementary motor area (43, 44), pre-supplementary motor
area (parcel index: 63), dorsal premotor cortex (parcel indices: 54, 55,
96, 97, 98), and primary motor cortex (parcel index: 8). For each of
these ROIs, we considered only the right hemisphere, contralateral to
the effector. For each subject, we performed 1001 permutations of a
leave-one-trial-out cross-validated MVPA using a linear support vector
classifier with default parameters in Scikit-learn (Pedregosa et al. 2012).
In the first permutation, the classifiers were trained on data with true
labels, but for the 1000 other permutations the labels for the training
data were randomly shuffled. The classification target for the classifiers
was action identity and the analysis yielded binary accuracy scores for
each trial, representing whether the action cued on a trial was success-
fully decoded. With trial-wise decoding accuracies, we were able to test
whether action decoding was enhanced for trials with larger incentives
($30) compared to trials with smaller incentives ($5, $10). We use per-
mutation testing to assess whether decoding accuracy at each reward
level was above chance and whether the differences in decoding accu-
racy between reward levels were greater than would be expected by
chance. We compute p-values for these means using the formula (C + 1)
/ (N + 1) where N is the total number of permutations (1000) and C is
the number of permutations whose means were greater than or equal
to the ‘true’ mean. To address issues of multiple comparisons, we use
1000 bootstrap samples from the null distributions to determine the
probability of obtaining statistically significant effects in zero, one, two,
three, etc. ROIs under the null. This analysis showed that it was unlikely
(p < .05) under the null to observe significant effects in multiple ROIs
(Fig. S6).

2.9. Brain-behavior Analysis

Lastly, we examined the link between action decoding and behavior.
We used a hierarchical logistic regression model with Bayesian param-
eter estimation to model our trial success. This model was designed to

test whether higher decoding accuracy in our ROIs was associated with
higher behavioral accuracy. The dependent variable was behavioral per-
formance (success or failure). The models included fixed effects of de-
coding accuracy (correct or incorrect) and sequence identity (A or B)
and allowed intercepts to vary by subject. The sequence identity pre-
dictor was included to control for the effect of sequence and thereby
separate this effect from the effect of decoding accuracy.

2.10. Data-availability

Data and code used in this project are available at https://github.
com/adkinsty/dsp_scanner.

3. Results
3.1. Prospective reward improves motor sequence performance

Our participants were more likely to successfully com-
plete sequences on $30 trials compared to both $10 trials
(Bro_10 = 0.14, Clgsy, = [—0.04,0.29], pd = 94.5%) (Fig. 2A) and
$5 trials (B3p_s = 0.26, Clysq, = [0.09,0 .42], pd = 99.9%). We imposed
time limits on performance to match success rate across the two
sequences (see Methods). However, we found evidence that accuracy
was lower for the trained sequence compared to the novice sequence
(Pr_n = —0.34, CI =[-0.44, —0.24], pd = 100%), suggesting that the
time limits for the well-trained sequences were too strict. However,
movement speed was greater for the trained than the novice sequence
(Br_n = 0.05, CI = [0.02, 0.09], pd = 100%) and greater for $30 com-
pared to $10 trials (B35_;9 =0.04, CI = [0.01, 0.08], pd = 100%).
We found little evidence of an interaction between re-
ward size and sequence suggesting that performance on
both sequences was similarly improved for larger re-
wards (Bro_10x Ty = 0.12, CI = [=0.12,0.35], pd = 84.7%;
Bro—s x T-Nn = 0.04, CI = [-0.18,0.29], pd =64.1%). In sum, our
participants performed motor sequences more quickly and accurately
when they were offered performance-contingent prospective reward
of increasing size. In what follows, explore the hypothesis that this
motivational enhancement of behavioral performance is related to
motivational enhancements of the neural representations of action in
the frontal cortex.
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Fig. 3. Reward-responsive brain areas. We used GLMs to test for effects of re-
ward on hemodynamic responses to the pre-movement cue. The images above
show the results of a group-level analysis of subject-level coefficient maps. For
this visualization, we used threshold-free cluster correction and projected the
results to surface space.

3.2. Prospective reward increases preparatory activity in brain areas
involved in motor planning

We first asked which regions of the brain were linearly responsive to
motivation (i.e., prospective reward value) just prior to movement. This
analysis revealed reward-related activity in most of the brain regions
that we expected to be engaged during the preparation in the DSP task,
including LPFC (x = 38,y = 4, z = 45), SMA (x = 8,y = 18, z = 61),
and M1 (x = 4, y = -28, z = 76) (Fig. 3, Table S1). Unsurprisingly, we
also observed clusters of reward-related activity in reward regions such
as the striatum and the pallidum. This analysis provided a reliable map
of the brain regions whose activity was modulated by prospective re-
wards. We did not find any regions in which the extent of this reward
modulation significantly differed between the sequences (whole-brain
paired t-test, all p > 0.05, corrected). Of particular interest to this study
is the finding that many regions involved in motor-skill performance
were responsive to reward, including the primary motor cortex, premo-
tor cortex and prefrontal cortex.

3.3. Reward-modulated brain areas encode motor skill information

We performed MVPA using SpaceNet classifiers to identify the sub-
set of regions from the reward map (Fig. 3) whose patterns of activity
also contained information about the upcoming action. Our first set of
SpaceNet classifiers were trained to predict the identity of intended ac-
tions from patterns of brain activity preceding movement. At the group
level, these classifiers predicted the intended action (for a held-out 20%
of trials) with a mean accuracy of 0.61 and a standard deviation of 0.12
across subjects (p < .01; Fig. 4A, Figure S5). The information maps were
distributed across areas of cortex involved in movement preparation in-
cluding LPFC (x = 43,y = 6, z = 41), SMA (x = 9, y = 15, z = 55),
and M1 (x = 17, y = -28, z = 61) (Fig. 4B, Table S2). Importantly, this
analysis considered only voxels that were responsive to reward magni-
tude (Fig. 3). The regions in Fig. 4B therefore simultaneously respond to
changes in motivation and contain information about the action being
prepared (Fig. S7). These findings are consistent with prior work show-
ing converging reward and action signals in prefrontal areas and motor
areas (McNamee et al., 2015).
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3.4. Reward-modulated brain areas encode information about future
performance

While information about reward and action appear to converge in a
wide range of areas including LPFC, SMA, and M1, it remains a possibil-
ity that these areas have no practical relevance to future behavior. To
test this, we ran a second set of classifiers that used patterns of activity
prior to movement to predict whether a participant would be success-
ful in the forthcoming DSP trial. At the group level, the classifiers pre-
dicted future behavioral performance (on a held-out 20% of data) with
a mean accuracy of 0.79 and standard deviation of 0.09 across subjects
(p < .001, Fig. 5A, Figure S5). This decoding analysis revealed a more
restricted information map than the analysis of action decoding, but the
map still included clusters in LPFC (x =42,y =7, z = 36), SMA (x = 7,
y =10,z =41), and M1 (x = 1, y = -20, z = 55) (Fig. 5B, Table S3).

We performed several control analyses to ensure our classifiers were
not merely detecting univariate differences between our conditions of
interest (See Methods for a list of contrasts). These analyses did not
reveal any significant clusters of activity when directly contrasting the
mean univariate response between two sequences that survived multiple
comparisons correction (no significant clusters of activity at p < 0.05).
This suggests that our multivariate analyses were more sensitive in dis-
tinguishing between the two actions. Additionally, the linear effect of
reward did not differ between the two sequences (no significant clus-
ters of activity at p < 0.05). In another univariate control analysis, we
tested whether the mean difference in cue-related activity for subse-
quently correct vs incorrect trials differed between the two sequences.
We again found no significant clusters of activity in this analysis sug-
gesting that the univariate response on both correct and incorrect trials
was similar across the two sequences. Thus, although behavioral perfor-
mance differs slightly between the sequences and at the different levels
of reward, it is unlikely that our decoding results are driven by mere
univariate differences.

Our fMRI results suggest that the reward-related regions identified
previously are not only responsive to changes in motivation, but also
relevant to future behavior. Furthermore, the information maps from
our two MVPAs (Figs. 4 and 5) were found to overlap in key regions
of interest such as LPFC, SMA, and M1 (Table S4). This conjunction
map, shown in Fig. 6, delineates voxels that (1) respond to changes in
motivation, (2) carry information about which action is being prepared,
and (2) carry information about whether performance will be successful.
We used this conjunctive information map as a mask for our subsequent
ROI analyses.

3.5. Increased reward coincides with improved action decoding in
movement preparation areas

We hypothesized that motivation preferentially enhances cortical
representations of skilled actions. While our multivariate analysis above
revealed a distributed map of regions that jointly carried information
about skilled action, we were also interested whether skill represen-
tations can be identified in separate regions of interest previously im-
plicated in studies of skilled action (Ballard et al. 2011; Wiestler and
Diedrichsen 2013; Ramakrishnan et al. 2017; Yokoi et al. 2018;
Yokoi and Diedrichsen 2019). To this end, we used linear support vector
machines (SVM) to decode action identity from patterns of cue-related
activity from LPFC, SMA, pre-SMA, PMd, M1, and SPL. The purpose of
this ROI analysis was to determine whether action information could be
decoded locally in these ROIs and whether reward influenced this de-
coding. We use permutations to estimate the empirical null distributions
for the decoders, which we then use to assess the statistical significance
of the results (these null distributions are shown in Supplemental Fig-
ures S2A-E).

Action decoding in right pre-SMA was above chance for all re-
ward levels ($5: M =.52, P=.03;$10 : M =.52, P=.04;$30 : M =
.54, P <.001) For right SMA, we found strong evidence that decoding
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Fig. 4. Action coding in reward-responsive brain areas. We trained multivariate classifiers to decode future action from patterns of hemodynamic responses to
the pre-movement cue. This analysis only considered voxels that were responsive to reward (see Fig. 3). (a) Violin plot of mean SpaceNet decoding accuracies for
each subject. (b) Results of a group-level analysis of subject-level SpaceNet coefficient maps. For this visualization, we used threshold-free cluster correction, spatial

smoothing with a 2 mm kernel, and projected the results to surface space.
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was above chance for $30 trials (M = .52, P = .01) but not for $5 trials
(M = .51, P=.09) or $10 trials (M = .51, P =.15). Curiously, decod-
ing in SPL was above chance on $5 trials (P < 0.05; Figure S2A) and
$30 trials (P < 0.05; Figure S2C), but not $10 trials (P > 0.05; Figure
S2B). Decoding in right LPFC and PMd were not statistically significant
(all p > .05; Figure S2A-C). So, while PMd and LPFC may contribute to
a multi-region decoding of action, they do not appear to carry sufficient
information about action to support accurate decoding in isolation. We
found that decoding from pre-SMA was higher on $30 trials compared
to $5 trials (M = .02, P =.04) and higher on $30 trials compared to
$10 trials (p < .05). However, we found no statistically significant dif-
ferences in decoding accuracy between reward conditions for the other
ROIs (all p > .05, Figure S2D-S2E). These results suggest reward may
sharpen representations of action in right pre-SMA. To address concerns
about multiple comparisons, we conducted a control analysis using the

1.01
LPFC
i ; g :; Right

Fig. 5. Performance-prediction in reward-
responsive brain areas. We trained multivari-
ate classifiers to predict future behavioral per-
formance from patterns of hemodynamic re-
sponses to the pre-movement cue. This analysis
only considered voxels that were responsive to
reward (see Figure 3). (a) Violin plot of mean
decoding accuracies for each subject. (b) Re-
sults of a group-level analysis of subject-level
SpaceNet coefficient maps. For this visualiza-
tion, we used threshold-free cluster correction,
spatial smoothing with a 2 mm kernel, and pro-
jected the results to surface space.

empirical null decoding distributions which showed that the probability
under the null of obtaining consistent above chance classification on $30
trials across two or more regions (as we report above) was low (p < .05,
Fig. S6). In sum, these results suggest that SMA and pre-SMA locally en-
code information about upcoming action during movement preparation
and that reward may sharpen these representations of action.

For completeness, we also examined decoding in these same regions
in the left hemisphere (ipsilateral to the effector). Decoding from these
ROIs on $5 trials was not significantly above chance (all p > .05, Figure
S2A). On $10 trials, decoding from left SMA and left M1 were above
chance (p < .05, Figure S2B), but the other ROIs were not significant.
On $30 trials, decoding from left SMA, left M1, and left pre-SMA were
above chance (p < .05, Figure S2C), but the other ROIs were not sig-
nificant. We also found evidence that decoding accuracy was higher on
$30 compared to $5 trials in left M1 (p < .05, Figure S2D), and the other
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Left Right

Fig. 6. Overlap of action and performance information maps. The above mask
includes voxels that were significant at p < 0.05 cluster-corrected in a group-
level level conjunction analysis of the action and performance SpaceNet coeffi-
cient maps.

ROIs were not significant. The difference of decoding between $30 and
$10 trials was not significant for any of the ROIs in the left hemisphere
(all p > .05, Figure S2E). The pattern of results in the left hemisphere
is similar to the results from the right hemisphere in that decoding was
above chance in movement preparation areas for $30 trials but not $5
trials.

3.6. Successful action decoding from SMA coincides with improved
behavioral performance

Our results above suggest that motivation by prospective reward en-
hances action as well as neural representations of those actions in the
brain. While these motivational effects may be coincidental, we con-
sidered the possibility that the enhanced action coding may be a neu-
ral mechanism by which subsequent behavior is enhanced. It follows
from this hypothesis that behavioral performance should be better on
trials in which action codes had high fidelity (i.e., when action identity
was correctly decoded from preparatory brain activity). We found evi-
dence that participants were more likely to succeed when action could
be decoded from right SMA prior to movement (Bg.oqe = 0.09, Clgsy, =
[-0.01,0.19], pd = 96.3%; Fig. 7B), however this effect was not signifi-
cant for the other ROIs after controlling for the effect of sequence iden-
tity (pd < 90%). Although we expected to see a link between decoding
and behavior in pre-SMA in addition to SMA, it seems plausible that the
motivational enhancement of action codes in motor planning areas may
be a neuronal mechanism underlying the motivational enhancement of
skilled performance.

4. Discussion

In this study, we sought to examine the neural mechanisms that con-
tribute to the motivational enhancement of action. We found that per-
formance in a motor sequencing task improved as the size of prospective
performance-contingent reward increased. When examining cue-related
activity just before movement onset, we uncovered distributed patterns
of activity across a large network of regions important for motor plan-
ning that simultaneously coded for reward value, action, and future be-
havioral success. We then interrogated a subset of these regions to ex-
amine how action coding was impacted by increasing reward values.
We found that our ability to decode upcoming actions from pre-SMA
improved as reward values increased. A follow-up analysis showed that
people were more likely to succeed on trials in which we could cor-
rectly decode the upcoming action from preparatory activity in SMA.
Our results suggest that incentive-motivated performance may depend
on enhanced representations of action used in movement planning.

4.1. Reward modulates a widespread task-relevant network
Our results show that motivation (i.e, prospective reward value)

modulated a widespread task network prior to movement (Fig. 3).
In these regions, the amplitude of the hemodynamic response to the
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Fig. 7. Effects of reward on action decoding and action decoding on performance.
(A) We found evidence that action decoding from LPFC, pre-SMA, SMA was en-
hanced by the prospect of a $30 reward. Here we show group-mean decoding
accuracies. The asterisks denote that decoding for $30 trials was significant at
p < 0.05 and the tilde denotes that decoding was nearly significant at p = 0.06.
Significance tests were performed at the group-level using 1000 random permu-
tations of the classification procedure (i.e., by training on shuffled data). (B) We
found evidence that action decoding in SMA was associated with better future
behavioral performance, after controlling for action identity (i.e., sequence).
The asterisk denotes pd > 95%. See Supplementary figures S3A and S3B for
subject-level data.

cue was larger for high-value trials compared to low-value trials.
This motivation-modulated network included canonical reward regions
such as the striatum (Apicella et al. 1991; Samejima et al. 2005;
Balleine et al. 2007; Delgado 2007) and ventromedial frontal cortex.
However, we also found that prospective reward magnitude parametri-
cally increased activity in many regions thought to be involved in mo-
tor planning including lateral frontal cortex and supplementary motor
areas. This finding is consistent with prior work showing anticipatory
reward modulation in task-relevant brain areas in cognitive and mo-
tor tasks (Leon and Shadlen 1999; Knutson et al. 2003; Roesch and Ol-
son 2003, 2004; Wallis and Miller 2003; Kennerley and Wallis 2009;
Wallis and Kennerley 2010; Peterson and Seger 2013; Marsh et al. 2015;
Ramkumar et al. 2016; Ramakrishnan et al. 2017; Galaro et al. 2018).

4.2. Multiplexed code for reward, action, and performance

To investigate how prospective reward relates to the neural coding
of action, we sought to determine which of these reward-responsive
areas specifically carried information about both the identity and
the quality of the upcoming action. Using multivariate decoding, we
found that distributed patterns of activity across the cortex simul-
taneously carried information about prospective reward value, ac-
tion and performance. Previous studies have shown that reward sig-
nals and action signals converge in several areas including the pre-
frontal cortex (Kargo et al. 2007; FitzGerald et al. 2012; Cai and
Padoa-Schioppa 2014; Hunt et al. 2015; McNamee et al. 2015), the
striatum (Kargo et al. 2007; FitzGerald et al. 2012; Cai and Padoa-
Schioppa 2014; Hunt et al. 2015; McNamee et al. 2015), anterior
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cingulate cortex (Hayden and Platt 2010), and primary motor cortex
(Ramakrishnan et al. 2017; Galaro et al. 2018). We similarly find that
information about reward, action and future performance converge in
lateral prefrontal cortex, posterior parietal cortex, and more dorsal re-
gions of medial frontal cortex (pre-SMA and SMA).

Explicit cueing of a sequential action as employed in this study en-
ables advanced motor planning (Diedrichsen and Kornysheva 2015).
Especially early on in training, cognitive control processes have
been shown to aid in the performance of motor sequencing skills.
For example, working memory capacity relates to the rate of skill
learning (Anguera et al. 2011) and novice motor sequence perfor-
mance coincides with increased activity in LPFC (Grafton et al. 1995;
Willingham et al. 2002; Schendan et al. 2003). It is thought that in-
formation about prospective rewards is introduced to goal-directed ac-
tion networks through LPFC (Ballard et al. 2011). It has been demon-
strated that performance-contingent rewards can enhance cognitive con-
trol. Rewards have been associated with improvements in the advanced
maintenance of goal information (Jimura et al. 2010; Botvinick and
Braver 2014; Etzel et al. 2016) and research has demonstrated moti-
vational enhancements of representations in PFC (Leon and Shadlen
1999; Kobayashi et al. 2002; Watanabe et al. 2002; Kargo et al. 2007;
Etzel et al. 2016; Parro et al. 2018). We therefore reason that prospec-
tive rewards may induce a preferential enhancement of task-relevant
representations—that is, representations used in the planning of future
performance (Botvinick and Braver 2014; Westbrook and Braver 2015;
Yee and Braver 2018).

4.3. Enhanced action representations as a mechanism for enhanced
performance

Our multivariate analyses showed that motivational signals and
preparatory action representations converge in several brain areas.
While such convergence is likely necessary for motivation to enhance be-
havior, it is unclear exactly what happens when these signals converge.
One possibility is that motivation enhances cortical representations of
upcoming actions. We addressed this possibility in follow-up ROI analy-
ses and found evidence for such enhancement in pre-SMA (Fig. 7A). We
also found that behavioral performance was better on trials in which
actions could be decoded from SMA prior to movement (Fig. 7B). To-
gether, these results are at least consistent with the hypothesis that the
prospect of reward enhanced performance by enhancing representations
of action used in planning.

Although we had strong a priori focus was on LPFC as a key area
involved in the enhancement of action by reward, our results predomi-
nantly implicate SMA and pre-SMA. It is known that cells in the supple-
mentary motor area encode information about the sequential order of
future movements (Tanji & Shima, 1994), while cells in pre-SMA are re-
sponsible for updating such sequential movement plans (Shima et al.,
1996). This was corroborated by more recent work demonstrating a
deficit in the inhibition of planned movements following lesion to the
right pre-SMA (Nachev et al., 2007). These findings suggest that the SMA
and pre-SMA play critical roles in the planning of sequential actions.
While it has been shown that the supplementary motor area encodes
information about expected reward (Campos et al., 2005), we provide
evidence that prospective reward enhances action coding in this area.

4.4. Limitations

It is possible that reward also enhanced processing during the ex-
ecution period itself. However, we chose to focus on brain activity at
cue (motor preparation) rather than at movement (motor execution)
because it was less influenced by confounds. First, in the present exper-
iment, the duration of the movement period varied considerably across
time, action, and participant. Second, error processing during execu-
tion could contribute to the decoding of successful performance. Third,
relatively strict time limits were used to prevent the strategic slowing
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of execution speed on high reward trials. This design choice led to a
relatively high number of errors during execution, limiting the num-
ber of successfully completed trials that could be used for analysis of
the movement period itself. On error trials, the performed sequence of
button presses was quite different within a sequence (i.e., fewer move-
ments and erroneous movements) and added greatly to the variability
in the patterns of BOLD activity during this period. Nonetheless, it is
important for future work to consider the effects of motivation on brain
activity during execution, especially because this may be the locus of en-
hancement for performance that depends less on anticipatory cognitive
processing (e.g., the performance of expert motor skills).

We think it is plausible that the action decoding we observed was
driven by action identity (e.g., sequence order) and that these repre-
sentations became more distinct with increased motivation. However,
we cannot rule out the possibility that our decoding analyses distin-
guished neuronal patterns based on skill-level rather than sequence per
se. On this view, there may be functional neural correlates of novice and
trained skills that do not depend much on the identity of the action, such
as the motor sequence order. There is evidence that novice and expert
skills depend on distinct neuronal mechanisms (Dayan and Cohen 2011;
Yokoi and Diedrichsen 2019), and such differences could conceivably be
detected by MVPA decoding techniques. However, none of the skills in
our task were expert, having been trained for only a few hundred trials
at most. If decoding were driven by skill-level, it would be curious why
such brain differences in skill level would be enhanced by reward. One
possibility is that novice and trained skills differentially engage higher
cognitive processes (Poldrack et al. 2005). If reward modulates these
processes, it may result in increased differentiation between patterns of
activity associated with novice and trained skills. Regardless, it could be
that preparatory activity differs between the two sequences, that moti-
vation enhances the distinctiveness of this preparatory activity, and that
this increased distinctiveness coincides to better task performance.

Our analyses also focused heavily on decoding action informa-
tion from patterns of cortical activity. We focused on this aspect of
our dataset because prior work validated the approach of measur-
ing cortical representations using MVPA (Wiestler and Diedrichsen
2013; Nambu et al. 2015; Yokoi et al. 2018; Yokoi and Diedrich-
sen 2019) and because recent work has shown that multivariate de-
coding from cortex can be affected by motivation (Etzel et al. 2016;
Parro et al. 2018). However, motivated action depends on cortico-
striatal loops (Doyon et al. 2003; Turner and Desmurget 2010;
Dayan and Cohen 2011; Frank 2011; Dudman and Krakauer 2016;
Hikosaka et al. 2018) and reward increases activity in the basal ganglia
during motor learning (Wachter et al., 2009). A recent study showed
that showed that training with reward in an SRT task was associated
with increased functional connectivity between premotor cortex and the
cerebellum as well as the premotor cortex and the striatum (Steel et al.,
2019). Very few studies have used neuroimaging to address reward-
motor interactions and we must note that those by Wachter, et al. and
Steel, et al. both examined the impact of reward during the acquisition
of motor sequencing skill rather than in motivating the execution of a
previously learned skill as we do here. Nevertheless, future work should
examine whether cortico-striatal or cortico-cerebellar loops are related
to the motivational enhancements of performance and neural decoding
reported in the present work.

Lastly, there are some limitations to our statistical methods that are
worth noting. First, our whole-brain SpaceNet MVPA analysis used a
single train-test split to fit and validate the model rather than cross-
validation with permutation testing. Unfortunately, computational costs
were far too high to perform permutation testing with this technique as
it would require about 1000 h of computation time per subject. So, al-
though the SpaceNet returns interpretable maps, it is difficult to assess
its null distribution. While the permutation tests for the ROI analyses us-
ing subsets of the SpaceNet maps suggest that the decoding accuracy we
see in our whole-brain analysis likely exceeds chance performance, we
cannot directly confirm this. Additionally, a limitation of our ROI MVPA
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analysis is that, although here we used cross-validation and permutation
testing, the cross-validation scheme was leave-one-trial-out, meaning that
the classifiers were trained on data from all conditions. In practice, the
limited number of trials at each reward value made it difficult to train
stable classifiers on each reward level separately. While prior research
using motor sequencing tasks has shown that reduced BOLD activity can
be associated with improved sequence discriminability (e.g. Wiestler &
Diedrichsen 2013; Berlot et al. 2020), it remains a possibility that the
greater activation seen on high reward trials (Fig. 3) could contribute to
improved action decoding. Future work should ensure that a sufficient
number of trials are collected for each reward level to enable separate
training and testing at each level of reward.

4.5. Closing remarks

In sum, we provide evidence that behavioral performance is
enhanced by motivation and that a widespread network of motor plan-
ning regions jointly contains information about reward, action, and per-
formance. Additionally, our ability to decode skilled actions from pat-
terns of BOLD activity from some of these regions was enhanced by the
prospect of large reward. This is consistent with the idea that motivation
increases attention to action representations used in planning, thereby
increasing their signal to noise ratio and improving subsequent behav-
ioral performance.
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