Power Supply Study 2022 Results Review #### Informational Update Doug White – Director, Power Production and Supply Gage Huston – General Manager February 28, 2023 #### 2 ruce rorecast Approach #### Leidos Energy and Environmental Analysis (EEA) Module Flowchart - Captures the relationship between emissions, power, gas, and other fuel demand and prices - Generates the cost of carbon required to economically control U.S. power generation emissions to meet global targets ### **Assumptions Outline** - MPW load forecast - Environmental compliance costs - Fuel and market price forecasts - Generation assets - Existing & new resource costs and performance - Steam Sales Contract # Significant Changes Since 2019 PSS Study | KEY AREA OF CHANGE | NOTES | |---|---| | Natural Gas Pricing | 2022 saw return of significant volatility, which we expect to continue at times | | Shifting Capacity Markets | MISO capacity prices spiked; much stronger concerns of shortages; significant changes to MISO capacity market | | Inflation | Rising costs impacted commodity pricing for all assets and increased financing costs | | MISO Interconnection Queue | Queue continues to grow; increasing complexity and cost to interconnect. The 2022 queue increased 127% from the previous year | | MPW's Local Dispatchable
Requirements | Latest T&D Reliability Study showed need for 87 MW; up from 32.5 MW in prior study | | Energy Market Price Forecast | Increasing renewable energy influence starting in 2033 results in a reduction of the forecasted energy component (only) of market prices in the last half of the study by 3.75% | | Combined Heat & Power Cost and Performance Inputs | Updated based on study completed with Stanley Consultants | | Refined Solar Pricing | Based on recent RFP and actual PPA pricing | ### MPW Projected Energy and Capacity Needs #### **Environmental Regulations** - Section 316(b) of the Clean Water Act (CWA) - Regulates cooling water intake - Inlet screen modifications are likely for Unit 9 and costs are included in every scenario - Effluent Limit Guidelines (ELG) investigation/modifications ongoing - Regulates power plant outfalls - Compliance strategy submitted to IDNR in October 2021 - Units 7 & 8 will cease coal combustion by December 31, 2028 - Unit 9 bottom ash compliance by use of the existing high recycle rate system - Unit 9 FGD system investigation will begin in 2Q 2023 for Voluntary Incentive Program (VIP) - VIP compliance - Carbon (CO₂) regulation/legislation no current regulations; uncertainty regarding future - Included as a sensitivity, but not included in Base Case #### Market Energy Price Forecast MISO West On Peak Power Price Forecast (\$/MWh) #### Short Term - Power prices are expected to temper with the price of natural gas - Long Term - Increasing renewable energy influence starting in 2033 results in a reduction of the forecasted energy component (only) of market prices in the last half of the study by 3.75% #### **Capacity Price Forecast** #### MISO West Capacity Forecast (\$/MW-Day) #### MISO Capacity - Generally, capacity pricing is high throughout the study period - Upcoming changes include - Seasonal Capacity Market (2023) - Proposed Capacity Sloped Demand Curve (2024) - Renewable Capacity Accreditation Reductions #### **Fuel Price Forecast** #### MISO West Delivered Fuel Prices (\$/MMBtu) #### Natural Gas After current natural gas spike, prices will temper and follow the 2019 forecast trend but slightly higher #### Coal Delivered coal prices remain lower and more stable than natural gas #### MISO West Renewable Forecast ### **Local Generation Assumptions** - Environmental regulations - All scenarios must comply with 316(b) regulations - Existing local units - Unit 7 and Unit 8 retire in all scenarios. - Unit shutdown costs of \$2.7M - Unit 9 remains online and operating on coal at least through 2027 - 316(b) compliance costs of \$6.2M for Unit 9; included in all scenarios - \$35M to convert Unit 9 to burn natural gas, including pipeline costs - ELG compliance costs of \$33.1M for Unit 9 - Demolition costs of \$25.9M for all Units - A minimum of 90 MW of local dispatchable generation was required in each scenario - Muscatine Solar 1 online Q4 2025; 30% capacity accreditation ### Today's Objectives - Review results of 2022 Power Supply Study - No decisions will be made today - Not advocating for any portfolio until all information is reviewed and key questions are answered - Our objective is to review key observations from the latest study and review the trade-offs across the portfolio alternatives - Customer forum will be held on March 6, 2023 to get additional input #### **Steam Sales Contract** - Steam Sales Contract to the adjacent industrial customer would begin in 2028 - Assumes MPW and steam customer can negotiate a contract - Included three CHP configurations - Subjected to all sensitivities and a loss of contract mid-term # 2022 Power Supply Scenarios - Analyzed 19 scenarios - Analyzed 100% renewables - Subjected to 4 sensitivities - High gas - Co₂ - CO₂ and high gas - Low-capacity pricing - Nearly 4,000 potential outcomes ### **Portfolio Strategies** **CHP** Strategy 1 60 MW CHP (20-Year Contract) 3 CHP Configs Various alternatives to fill out portfolio (9 scenarios) 60 MW CHP 10-Year Contract) 3 CHP Configs Fill out portfolio (3 scenarios) No CHP Strategy 3 (No Steam Contract) Various portfolio options (6 scenarios) #### **Generating Assets** - Existing generation - Combined Cycle Unit (hydrogen compatible) - Simple Cycle Combustion Turbine (hydrogen compatible) - Four Combined Heat and Power ("CHP") alternatives (hydrogen compatible) - Reciprocating Engines ("recip" or "RICE") - Wind - Solar #### **Modeling Outline** - Base Case results - 100% renewables (energy independence) - CO₂ Trends - Market sensitivity results - Scenario short list - Scenario review | | | F | AFFORDABILITY | | | | | FLEXIBILITY | | | SUSTAINABILITY | | | | |------|--|---|------------------------------|--|--|--------------------|--------------------------------------|---------------------------------------|-----------------------|-------------------|----------------------------------|----------------|---|---| | | | Local
Dispatchable
Capacity
(2030) | Fuel
Availability
Rank | Capacity
Market
Exposure
(MW) | Expected
2023-42
20-Year
(\$/MWh) | 2023-42
20-Year | 5%
2023-42
20-Year
(\$/MWh) | 95%
2023-42
20-Year
(\$/MWh) | Capital
Investment | Fuel
Diversity | Renewable
Fuel
Flexability | Steam
Sales | Carbon
Reduction
from 2005
by 2030 (%) | Renewable
Generation
% of load
by 2030 | | 00 | Unit 9 Business-As-Usual Case | 100% | 1 | 0.0 | 53.75 | 4.20 | 46.84 | 60.65 | 39.3 | No | No | No | -61% | 10% | | 1A | 70 MW 1x1 CHP with Extraction ST + 48 MW CT | 74% | 2 | 31.5 | 59.51 | 8.44 | 45.63 | 73.39 | 214.9 | Yes | Yes | Yes | -84% | 10% | | 1B | 58 MW 1x1 CHP with Backpressure ST + 48 MW CT | 66% | 2 | 42.9 | 58.76 | 8.37 | 45.00 | 72.53 | 200.9 | Yes | Yes | Yes | -84% | 10% | | 18.1 | 58 MW 1x1 CHP + Unit 9, 85 MW fuel conversion (Oil or Gas) | 91% | 2 | 4.8 | 63.44 | 8.73 | 49.07 | | 158.5 | Yes | Yes | Yes | -82% | 10% | | 18.2 | 58 MW 1X1 CHP + 48 MW Simple Cycle CT | 66% | 2 | 42.9 | 58.76 | 8.37 | 45.00 | 72.53 | 200.9 | Yes | Yes | Yes | -84% | 10% | | 18.3 | 58 MW CHP + 2x31 MW CT's + 100 MW Solar | 75% | 2 | 6.1 | 59.14 | 6.95 | 47.70 | 70.57 | 217.9 | Yes | Yes | Yes | -86% | 28% | | 18.4 | 58 MW CHP + 1x31 MW CT + 200 MW Solar | | 2 | 6.5 | 58.73 | 5.22 | 50.14 | 67.31 | 170.8 | Yes | Yes | Yes | -89% | 51% | | 18.5 | 50 MW CHP + 155 MW U9 on Coal + 100 MW Solar | 136% | 1 | 0.0 | 57.57 | 4.15 | 50.74 | 64.39 | 156.9 | Yes | Yes | Yes | -55% | 28% | | 10 | 52 MW 1x0 CHP with Steam (no ST) + 48 MW CT | 62% | 2 | 49.0 | 59.50 | 8.72 | 45.15 | 73.84 | 192.9 | Yes | Yes | Yes | -84% | 10% | | 1D | 90 MW 2x0 CHP with Steam (no ST) (2019 PSS Unit) | | 2 | | 60.83 | 10.14 | 44.16 | 77.50 | 197.6 | Yes | Yes | Yes | -83% | 10% | | 2A | 70 MW 1x1 CHP with Steam extraction ST) + 48 MW CT | 74% | 2 | 31.5 | 60.37 | 8.15 | 46.96 | 73.78 | 214.9 | Yes | Yes | Yes | -84% | 10% | | 28 | 58 MW 1x1 CHP with Steam Turbine | 66% | 2 | 42.9 | 59.35 | 8.12 | 46.00 | 72.70 | 200.9 | Yes | Yes | Yes | -84% | 10% | | 2C | 52 MW 1x0 CHP Operating as Peaking Unit + 48 MW CT | 62% | 2 | 49.0 | 60.67 | 8.47 | 46.74 | 74.59 | 192.9 | Yes | Yes | Yes | -84% | 10% | | 3A | 126 MW Local Combined Cycle | 79% | 3 | 23.3 | 60.36 | 6.94 | 48.94 | 71.77 | 222.7 | Yes | Yes | No | -85% | 10% | | 38 | 180 MW Local Combined Cycle | 112% | 3 | 0.0 | 54.86 | 6.57 | 44.05 | 65.67 | | Yes | Yes | No | -81% | 10% | | 3C | 97 MW Local Combustion Turbines | 60% | | 52.2 | 57.31 | 7.60 | 44.82 | 69.81 | 144.2 | Yes | Yes | No | -85% | 10% | | 3D | 143 MW U9 Converted to Oil/ Gas for Local Reliability | 90% | | 6.1 | 55.95 | 8.15 | 42.54 | 69.37 | 46.8 | No | No | No | -82% | 10% | | 3E | 155 MW U9 (BAU) + 200 MW Solar | 100% | 1 | 0.0 | 54.20 | 4.75 | 46.38 | 62.01 | 39.3 | No | No | No | -64% | 51% | | 3F | 143 MW U9 on Gas + 400 MW Solar | 90% | | 0.0 | 57.58 | 3.51 | | 63.35 | 46.8 | No | No | No | -90% | 99% | #### Base Case Results – Key Observations - Scenario 00 (BAU) and Scenario 3E (BAU + Solar) had the lowest combination of 20-year NPVs and risk profiles - The best performing CHP Scenario is 1B.5, which includes a 1x1 CHP Unit with a Back Pressure ST, Unit 9 operating on coal and 100 MW of Solar PV - The best performing natural gas-fired alternative is Scenario 3B (larger local CC) due to the lower capital cost assumption/MW and better heat rate - The higher levels of fixed price solar PPAs in these scenarios result in a small increase in the 20-year NPV costs but result in less variability in power supply costs and lower net CO₂ emissions ### 100% Renewable (Energy Independence) #### Summary Results for 100% Renewable Strategies | | Battery
Strategy | Clean CT
Strategy | |---|---------------------|----------------------| | Installed Capacity (MW) | | | | Solar | 480 | 130 | | Wind | 200 | 140 | | Battery (12-Hour Duration) | 340 | - | | Clean CT | - | 125 | | Total | 1,020 | 395 ← | | | | | | Power Supply Costs (\$ per MWh) | \$253 | \$142 | | Select Operational Results | | | | Peak Demand – MW
(2010-2022 Average) | 139 | 139 | | Clean CT Capacity Factor | - | 24% | | Surplus Energy (GWh) | 784 | 135 | | Surplus Energy % of Total
Renewable Energy | 47% | 18% | | ACL | di 4 day Low Willa dila ivii ve loda | |-----|---| | | Solar based on typical weather year i
Muscatine County | Actual 4-day Low wind and MPW load - \$887 Million in Battery capital costs - \$97 million in annual costs for debt service and Fixed O&M for just the battery system! - 12-Hour battery not commercially available - Installed Capacity of 3 to 7 times MPW's Peak demand - Clean CT Scenario assumes a reliable supply of green hydrogen available when needed - Costs for both are significantly higher than BAU - Assumes excess energy could be delivered and sold to market - Could require significant transmission improvement costs Expected 2023-42 20-Year (\$/MWh) 53.75 59.14 57.57 54.86 57.31 54.20 57.58 ### **Market Sensitivity Cases** #### Sensitivity Result Observations - Diverse portfolios hold up better across all scenarios - The Unit 9 on Coal Scenarios performed well across all sensitivities, even the CO₂ Sensitivities - The relative lower performance of the CHP Scenarios are a change from the 2019 PSS - Higher CHP Costs and Changes to the Market Resulted in Lower Energy Prices that Negatively Affect the Margins of Must-run Units like CHPs - Scenarios that include CHP have multiple local units to dispatch providing some resiliency to the local system in the event of an unplanned outage on one unit - The Inflation Reduction Act ("IRA") includes incentives for CHP units below 50 MW of capacity, which could lower the capital costs if a unit of that type is pursued at this time - Scenario with high levels of solar capacity additions (1B.5, 3E and 3F) generally perform well in terms of both cost and CO₂ emissions and are notably better in High Gas and CO₂ Sensitivities #### **Current Position** - Continued operation of Unit 9 - Meets MPW's capacity requirements - Hedge on energy market pricing - Units 7 & 8 operating as peaking units - Unit 8A Steam Sales Contract complete and decommissioning has begun - South Fork Wind in-service; PPA ends in 2036 - Muscatine Solar 1 PPA is signed; projected online Q4 2025 #### **Low-Capacity Price Impacts** - Key Observations - When load and capacity are closely balanced, market capacity price has minimal impact - Scenarios that are long on capacity are much more sensitive to market capacity revenues - For example, 3F (with 400 MW of Solar) performs significantly worse when capacity prices are low ### "Short List" of Scenarios | | | F | RELIABILITY | | AFFORDABILITY | | | | | | FLEXIBILITY | SUSTAINABILITY | | | |----|--|---|------------------------------|--|--|---|--------------------------------------|---------------------------------------|-----------------------|-------------------|----------------------------------|----------------|---|---| | | | Local
Dispatchable
Capacity
(2030) | Fuel
Availability
Rank | Capacity
Market
Exposure
(MW) | Expected
2023-42
20-Year
(\$/MWh) | Standard
Deviation
2023-42
20-Year
(\$/MWh) | 5%
2023-42
20-Year
(\$/MWh) | 95%
2023-42
20-Year
(\$/MWh) | Capital
Investment | Fuel
Diversity | Renewable
Fuel
Flexability | Steam
Sales | Carbon
Reduction
from 2005
by 2030 (%) | Renewable
Generation
% of load
by 2030 | | 00 | Unit 9 Business-As-Usual Case | 100% | 1 | 0.0 | 53.75 | 4.20 | 46.84 | 60,65 | 39.3 | No | No | No | -61% | 10% | | | 58 MW CHP + 2x31 MW CT's + 100 MW Solar | 75% | 2 | 6.1 | 59.14 | 6.95 | 47.70 | 70.57 | 217.9 | Yes | Yes | Yes | -86% | 28% | | | 58 MW CHP + 1x31 MW CT + 200 MW Solar | | 2 | 6,5 | 58.73 | 5.22 | 50.14 | 67.31 | 170.8 | Yes | Yes | Yes | -89% | 51% | | | 50 MW CHP + 155 MW U9 on Coal + 100 MW Solar | 136% | 1 | 0.0 | 57.57 | 4.15 | 50.74 | 64.39 | 156.9 | Yes | Yes | Yes | -55% | 28% | | 3B | 180 MW Local Combined Cycle | 112% | 3 | 0.0 | 54.86 | 6.57 | 44.05 | 65.67 | | Yes | Yes | No | -81% | 10% | | 3C | 97 MW Local Combustion Turbines | | 4 | 52.2 | 57.31 | 7.60 | 44.82 | 69.81 | 144.2 | Yes | Yes | No | -85% | 10% | | 3E | 155 MW U9 (BAU) + 200 MW Solar | 100% | 1 | 0.0 | 54.20 | 4.75 | 46.38 | 62.01 | 39.3 | No | No | No | -64% | 51% | | 3F | 143 MW U9 on Gas + 400 MW Solar | 90% | | 0.0 | 57.58 | 3.51 | | 63.35 | 46.8 | No | No | No | -90% | 99% | Projected Carbon Dioxide Emission Reductions ¹ Global emissions data sourced from Climate Action Tracker: Global emissions time series, published 11/6/21. Values represent percent reduction from calendar year 2005 baseline emissions. ² Values represent reduction in global emissions consistent with the Paris Agreement's goal to hold the increase in global average temperature to below 2.0°C above pre-industrial levels and pursuing efforts to limit temperature increase to 1.5°C. Data sourced from Climate Action Tracker, Climate Analytics and New Climate Institute. # Scenario 00 Unit 9 (Business As Usual) Page 39 Modeling Results # Scenario 3E Unit 9 (BAU) + 200 MW Solar Total Generation 1128.1 GWh Native Load 919.4 GWh Page 40 Modeling Results # Scenario 3B Local Combined Cycle — 180 MW Total Generation 1076.7 GWh Native Load 919.4 GWh > Page 41 Modeling Results # Scenario 3B Local Combined Cycle – 180 MW Total Generation 1076.7 GWh Native Load 919.4 GWh > Page 41 Modeling Results #### Scenario 3C Local Combustion Turbines — 97 MW Total Generation 344.5 GWh Native Load 919.4 GWh Confidential, Attorney Client Privilege ### **CHP Assumption Changes** - 2019 CHP performance and steam production were based on planning level estimates - CHP investigation with Stanley (+/-30%) - Smaller units - Long-Term Service Agreement (LTSA) costs - Insurance - Increased heat rate - Higher capital costs - Reduction of forecasted energy prices # Scenario 1B.4 58 MW CHP + 1x31 MW CT + 200 MW Solar #### 2019 PPS Recommendations - Explore the addition of local solar PV - ✓ Evaluate the economics of a new CHP resource and steam sale extension - ✓ Manage market risk - ✓ Investigate regional combined cycle pricing - ✓ Tentatively plan for Unit 9 retirement by 2028 - ✓ Units 7, 8 & 8A retirement planning for 2023 #### Scenario 3F Unit 9 on Gas + 400 MW Solar Total Generation 1226.5 GWh Native Load 919.4 GWh # Scenario 1B.5 (Under investigation) Unit 9 (BAU) + 50 MW CHP + 100 MW Solar Total 234.7 MW Required 155.6 MW Total Generation 1293.8 GWh Native Load 919.4 GWh Page 47 Modeling Results # 100% Renewable w/ Battery (Energy Independence) Total 1020 MW Required 155.6 MW Total Generation 1668.3 GWh Native Load 884.3 GWh (Based on Historical Data) Page 48 Modeling Results # 100% Renewable w/ Clean CT (Energy Independence) Total 395 MW Required 155.6 MW Total 182.6 MW Required 155.6 MW Total Generation 1001 GWh Native Load 919.4 GWh Page 49 Modeling Results # **Balanced Scorecard Analysis** | | | RELIA | BILITY | | AFFORD | ABILITY | | | FLEXI | | | SUSTAIN | NABILITY | |----------|--|-----------------------|----------------------|-----------------|--------|---------|----------------------------------|-------------------------------------|---------------------------|-----------------------------|-------|------------------------------|---------------------------| | Descript | tion | Local
Dispatchable | Fuel
Availability | Cost per
KWh | Rate | Capital | Capex per
Unit of
Capacity | Future
Transition
Flexibility | Diversity of
Resources | Hydrogen Fuel
Capability | Steam | CO ₂
Reduction | Renewable
Energy Share | | 00 | Unit 9 Business-As-Usual Case | | | | | | | | | | | | | | 18.3 | 58 MW CHP + 2x31 MW CT's + 100 MW Solar | | | | | | | | | | | | | | 18.4 | 58 MW CHP + 1x31 MW CT + 200 MW Solar | | | | | | | | | | | | | | 18.5 | 50 MW CHP + 155 MW U9 on Coal + 100 MW Solar | | | | | | | | | | | | | | 38 | 180 MW Local Combined Cycle | | | | | | | | | | | | | | 3C | 97 MW Local Combustion Turbines | | | | | | | | | | | | | | 3E | 155 MW U9 (BAU) + 200 MW Solar | | | | | | | | | | | | | | 3F | 143 MW U9 on Gas + 400 MW Solar | | | | | | | | | | | | | # A Few Key Observations | KEY OBSERVATION | NOTES | |---|--| | 100% Renewable remains Infeasible at this time | Cost of both options are still out of range. Many other feasibility questions still remain | | Installed Capacity Remains Valuable | 2022 was a stark reminder of the volatility of the market and risk of reliance on external factors | | Keeping Unit 9 in Service is the Lowest
Cost Capacity Option | Either ELG compliance or gas conversion provide capacity at much lower cost per kW than new options | | Unit 9 on Coal Performs Well | Stable fuel costs and ability to keep inventory onsite provides many benefits | | Gas Availability is Significant Concern | Gas supply gets very tight during major winter events, which could limit or sideline gas units when needed most; especially peaking units | | Unit 9 on Coal Could Save Larger
Investment in Gas Assets | Keeping Unit 9 on coal for now provides an opportunity to skip/limit gas as a bridge fuel; although for skipping gas is still unlikely in the next 10 years | | CHP Unit Provides Operational
Benefits | Having an additional local unit provides redundancy Stable operation allows for hedging gas supply | | IRA Provides Opportunities | CHP – Specific incentives included in IRA, but timeline is short Solar, Wind – Incentives will hopefully bring prices back down, but not as dramatically as some | # A Lew Ney KISK Considerations | KEY RISK | NOTES | |--------------------------------------|--| | Fuel Availability | Access to natural gas during winter storms is becoming a major concern | | Fuel and Market Pricing | Volatility will largely follow natural gas price volatility | | Capacity Pricing | MISO auction results have been extremely volatile, which can swing financial results depending on net capacity position. Sloped demand curve will help | | Environmental Regulation Uncertainty | Uncertainty will continue, which makes large investments inherently riskier | | Renewable Growth | Will lower marginal energy costs in market due to offer structure, but increase reliability risk | | Steam Sales Contract Risk | Long-term contract carries financial risk, depending on how terms are structured | | Electrification Load Growth | Aggressive electrification trends could increase capacity needs significantly – both total capacity and local dispatchable req's | | Regional Price Separation | If our assets are not local, price separation increases financial risk | # Recommendations From the Study | RECOMMENDATION | DETAILS | | | | |---|--|--|--|--| | Confirm Steam Customer's Interest in New Contract | Discuss mutual interest and seek agreement to continue CHP investigation | | | | | If CHP Pursued, Prioritize Certain Considerations | Seek to optimize IRA tax incentives Investigate flex fuel options (natural gas, fuel oil, hydrogen) Size natural gas interconnection to provide flexibility for the future Make efforts to reuse MISO interconnection rights from Units 7 & 8 | | | | | Pursue Additional Renewable Resources | Monitor market to determine optimal time to issue renewable RFP Investigate combination of both solar and wind alternatives Target annual output equivalent to 25% of native system energy If CHP not pursued, consider target of 50% renewables Preference for local projects, but entertain projects in MISO Zone 3 Monitor storage technology development Optimize IRA tax incentives | | | | ### **Timeline Considerations** | YEAR | ITEM | TIMING | DETAIL | |------|------|----------------|--| | 2023 | CHP | Q2 | CHP must start design, permitting, and contracting activities to achieve IRA deadlines | | | ELG | Mid-Year | Start expending some compliance dollars; ramping up over time | | 2024 | СНР | End of
Year | CHP must start physical work to receive IRA incentives (still a lot of unknowns) | | 2025 | ELG | End of
Year | Last chance to change compliance strategy for Unit 9 | | | | | | | 2028 | ELG | End of
Year | Unit 9 must be in full compliance | | | СНР | End of
Year | CHP must be in service to receive IRA incentives | # Capacity vs Energy Capacity – Need enough total parking spaces to cover busiest day, plus some extra Energy – The number of cars actually using the parking lot over the course of an hour ## Capacity and Energy - Nameplate and capacity accreditation vary by resource - Nameplate and actual energy output also vary by resource - Intermittent resources require more reliance on the market, additional resources or storage # MPW Generation Resource Planning Approach #### Identify Planning Objectives Planning objectives center around Reliability, Affordability, Sustainability and Flexibility #### Develop Sensitivities/ Scenarios Identify key sensitivities and apply to each portfolio #### Develop Resource Portfolios Develop portfolios that represent available generating assets and levels of sustainability #### Portfolio Modeling & Analysis Leidos Engineering evaluated performance of each resource portfolio against four market sensitivities #### Study Results Review February 2023 Review and discuss 2022 Power Supply Study (PSS) results Board of Trustees #### Review Staff Recommendations March 2023 Board of Directors approval to move forward with selected PSS recommendations # 2022 Study Overview - Engaged consultant (Leidos) with broad expertise in comprehensive generation resource planning - Leidos utilized their proprietary stochastic-econometric regional forecast (SERF) model to analyze financial performance of the scenarios - Leidos and MPW jointly developed and reviewed scenarios and strategies to quantify the projected impacts to MPW's future, including re-analysis of 2019 scenarios ## **Power Supply Study Process** - Leidos SERF methodology - Market - Regional transmission system changes, renewable mandates, planned and economic generation additions/retirements - 50 draws of stochastic price forecasts (system load, fuel, market) - 20-year planning study period (2023-2042) - Results provide stochastic projections of fuel prices, utility and regional loads, emissions and hourly power prices #### Assets - The resulting cost projections were used to compare and contrast potential financial implications of various power supply decisions - 19 discrete power supply scenarios; 4 market cases - 15 generating asset - Nearly 4,000 potential combinations #### Results - The model shows financial performance only - The CO₂ Case is a separate fundamental forecast from the Base Case