

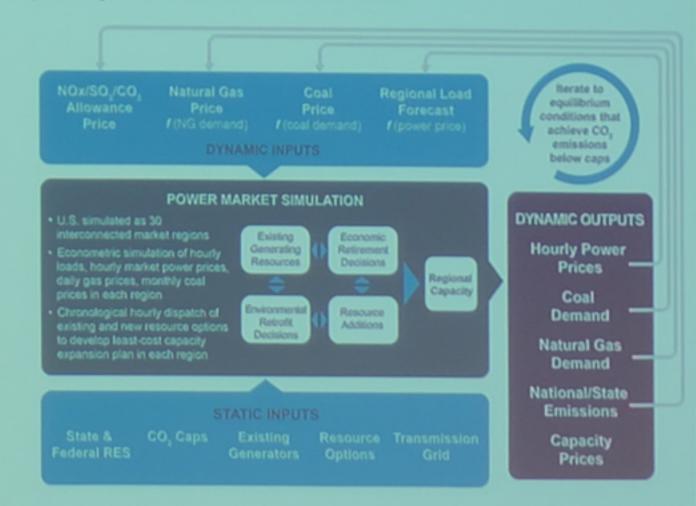
Power Supply Study 2022 Results Review

Informational Update

Doug White – Director, Power Production and Supply

Gage Huston – General Manager

February 28, 2023



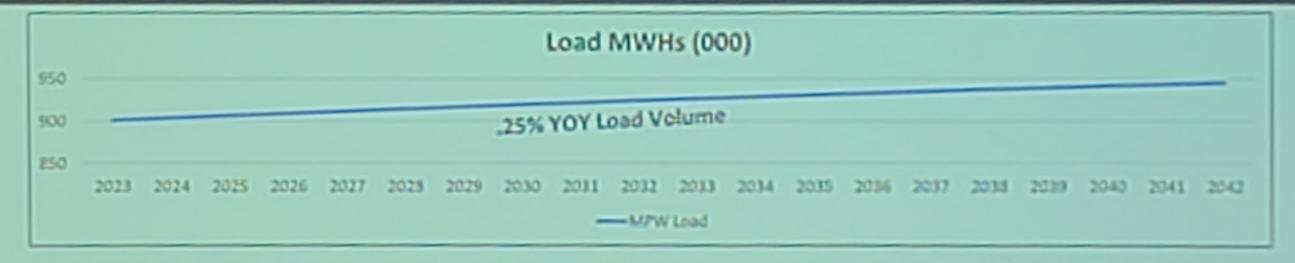
2 ruce rorecast Approach

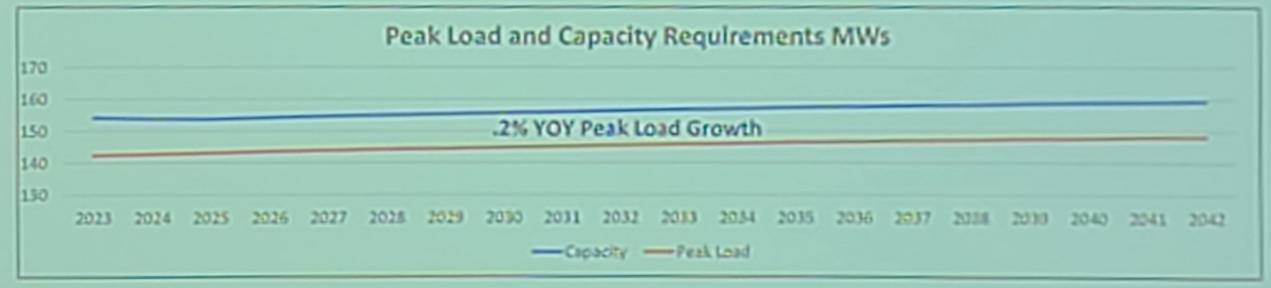
Leidos Energy and Environmental Analysis (EEA) Module Flowchart

- Captures the relationship between emissions, power, gas, and other fuel demand and prices
- Generates the cost of carbon required to economically control U.S. power generation emissions to meet global targets

Assumptions Outline

- MPW load forecast
- Environmental compliance costs
- Fuel and market price forecasts
- Generation assets
 - Existing & new resource costs and performance
- Steam Sales Contract

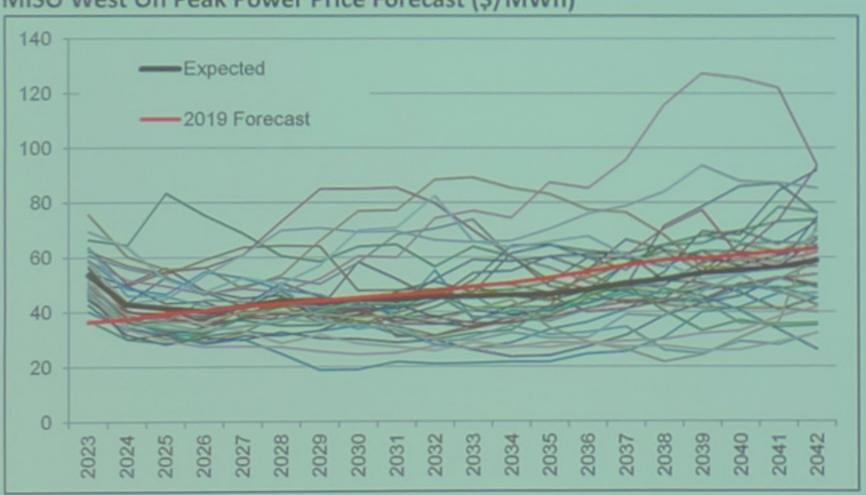

Significant Changes Since 2019 PSS Study



KEY AREA OF CHANGE	NOTES
Natural Gas Pricing	2022 saw return of significant volatility, which we expect to continue at times
Shifting Capacity Markets	MISO capacity prices spiked; much stronger concerns of shortages; significant changes to MISO capacity market
Inflation	Rising costs impacted commodity pricing for all assets and increased financing costs
MISO Interconnection Queue	Queue continues to grow; increasing complexity and cost to interconnect. The 2022 queue increased 127% from the previous year
MPW's Local Dispatchable Requirements	Latest T&D Reliability Study showed need for 87 MW; up from 32.5 MW in prior study
Energy Market Price Forecast	Increasing renewable energy influence starting in 2033 results in a reduction of the forecasted energy component (only) of market prices in the last half of the study by 3.75%
Combined Heat & Power Cost and Performance Inputs	Updated based on study completed with Stanley Consultants
Refined Solar Pricing	Based on recent RFP and actual PPA pricing

MPW Projected Energy and Capacity Needs

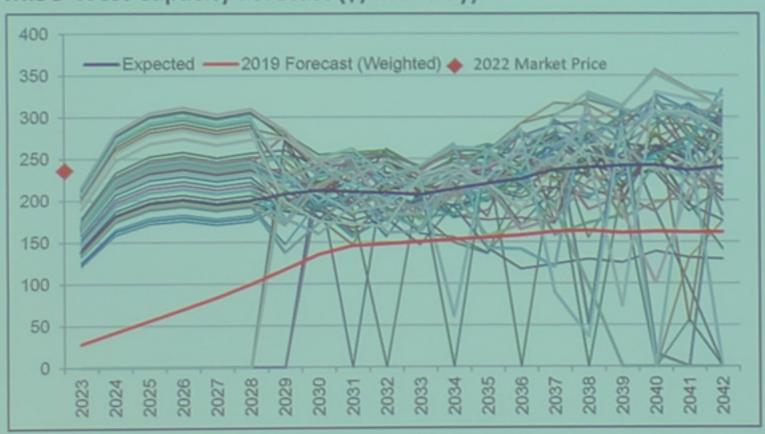
Environmental Regulations


- Section 316(b) of the Clean Water Act (CWA)
 - Regulates cooling water intake
 - Inlet screen modifications are likely for Unit 9 and costs are included in every scenario
- Effluent Limit Guidelines (ELG) investigation/modifications ongoing
 - Regulates power plant outfalls
 - Compliance strategy submitted to IDNR in October 2021
 - Units 7 & 8 will cease coal combustion by December 31, 2028
 - Unit 9 bottom ash compliance by use of the existing high recycle rate system
- Unit 9 FGD system investigation will begin in 2Q 2023 for Voluntary Incentive Program (VIP)
 - VIP compliance
- Carbon (CO₂) regulation/legislation no current regulations; uncertainty regarding future
 - Included as a sensitivity, but not included in Base Case

Market Energy Price Forecast

MISO West On Peak Power Price Forecast (\$/MWh)

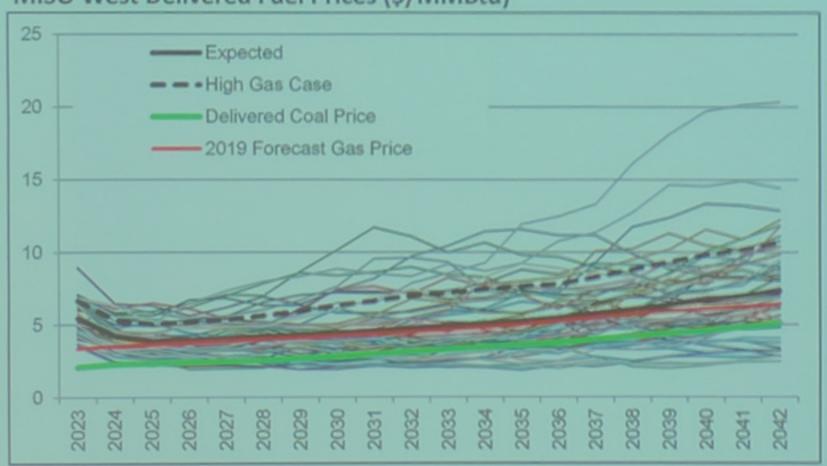
Short Term


- Power prices are expected to temper with the price of natural gas
- Long Term
 - Increasing renewable energy influence starting in 2033 results in a reduction of the forecasted energy component (only) of market prices in the last half of the study by 3.75%

Capacity Price Forecast

MISO West Capacity Forecast (\$/MW-Day)

MISO Capacity

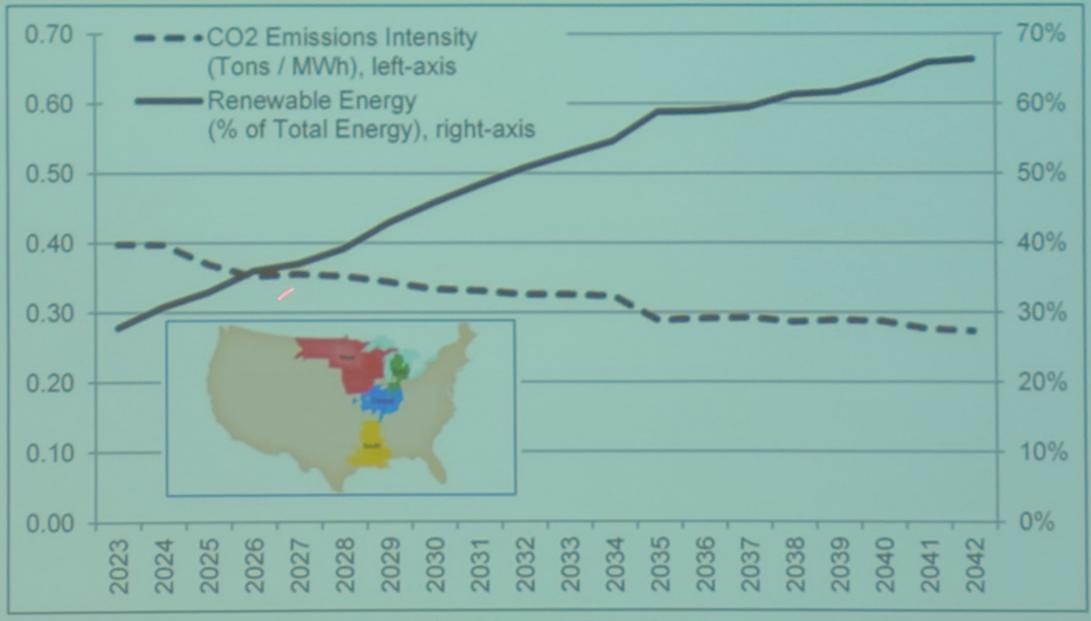

- Generally, capacity pricing is high throughout the study period
- Upcoming changes include
 - Seasonal Capacity Market (2023)
 - Proposed Capacity Sloped
 Demand Curve (2024)
 - Renewable Capacity
 Accreditation Reductions

Fuel Price Forecast

MISO West Delivered Fuel Prices (\$/MMBtu)

Natural Gas

 After current natural gas spike, prices will temper and follow the 2019 forecast trend but slightly higher


Coal

 Delivered coal prices remain lower and more stable than natural gas

MISO West Renewable Forecast

Local Generation Assumptions

- Environmental regulations
 - All scenarios must comply with 316(b) regulations
- Existing local units
 - Unit 7 and Unit 8 retire in all scenarios.
 - Unit shutdown costs of \$2.7M
 - Unit 9 remains online and operating on coal at least through 2027
 - 316(b) compliance costs of \$6.2M for Unit 9; included in all scenarios
 - \$35M to convert Unit 9 to burn natural gas, including pipeline costs
 - ELG compliance costs of \$33.1M for Unit 9
 - Demolition costs of \$25.9M for all Units
- A minimum of 90 MW of local dispatchable generation was required in each scenario
- Muscatine Solar 1 online Q4 2025; 30% capacity accreditation

Today's Objectives

- Review results of 2022 Power Supply Study
- No decisions will be made today
- Not advocating for any portfolio until all information is reviewed and key questions are answered
- Our objective is to review key observations from the latest study and review the trade-offs across the portfolio alternatives
- Customer forum will be held on March 6, 2023 to get additional input

Steam Sales Contract

- Steam Sales Contract to the adjacent industrial customer would begin in 2028
- Assumes MPW and steam customer can negotiate a contract
- Included three CHP configurations
- Subjected to all sensitivities and a loss of contract mid-term

2022 Power Supply Scenarios

- Analyzed 19 scenarios
- Analyzed 100% renewables
- Subjected to 4 sensitivities
 - High gas
 - Co₂
 - CO₂ and high gas
 - Low-capacity pricing
- Nearly 4,000 potential outcomes

Portfolio Strategies

CHP

Strategy 1 60 MW CHP (20-Year Contract) 3 CHP Configs
Various alternatives to
fill out portfolio
(9 scenarios)

60 MW CHP 10-Year Contract) 3 CHP Configs Fill out portfolio (3 scenarios)

No CHP

Strategy 3 (No Steam Contract) Various portfolio options (6 scenarios)

Generating Assets

- Existing generation
- Combined Cycle Unit (hydrogen compatible)
- Simple Cycle Combustion Turbine (hydrogen compatible)
- Four Combined Heat and Power ("CHP") alternatives (hydrogen compatible)
- Reciprocating Engines ("recip" or "RICE")
- Wind
- Solar

Modeling Outline

- Base Case results
- 100% renewables (energy independence)
- CO₂ Trends
- Market sensitivity results
- Scenario short list
- Scenario review

		F	AFFORDABILITY					FLEXIBILITY			SUSTAINABILITY			
		Local Dispatchable Capacity (2030)	Fuel Availability Rank	Capacity Market Exposure (MW)	Expected 2023-42 20-Year (\$/MWh)	2023-42 20-Year	5% 2023-42 20-Year (\$/MWh)	95% 2023-42 20-Year (\$/MWh)	Capital Investment	Fuel Diversity	Renewable Fuel Flexability	Steam Sales	Carbon Reduction from 2005 by 2030 (%)	Renewable Generation % of load by 2030
00	Unit 9 Business-As-Usual Case	100%	1	0.0	53.75	4.20	46.84	60.65	39.3	No	No	No	-61%	10%
1A	70 MW 1x1 CHP with Extraction ST + 48 MW CT	74%	2	31.5	59.51	8.44	45.63	73.39	214.9	Yes	Yes	Yes	-84%	10%
1B	58 MW 1x1 CHP with Backpressure ST + 48 MW CT	66%	2	42.9	58.76	8.37	45.00	72.53	200.9	Yes	Yes	Yes	-84%	10%
18.1	58 MW 1x1 CHP + Unit 9, 85 MW fuel conversion (Oil or Gas)	91%	2	4.8	63.44	8.73	49.07		158.5	Yes	Yes	Yes	-82%	10%
18.2	58 MW 1X1 CHP + 48 MW Simple Cycle CT	66%	2	42.9	58.76	8.37	45.00	72.53	200.9	Yes	Yes	Yes	-84%	10%
18.3	58 MW CHP + 2x31 MW CT's + 100 MW Solar	75%	2	6.1	59.14	6.95	47.70	70.57	217.9	Yes	Yes	Yes	-86%	28%
18.4	58 MW CHP + 1x31 MW CT + 200 MW Solar		2	6.5	58.73	5.22	50.14	67.31	170.8	Yes	Yes	Yes	-89%	51%
18.5	50 MW CHP + 155 MW U9 on Coal + 100 MW Solar	136%	1	0.0	57.57	4.15	50.74	64.39	156.9	Yes	Yes	Yes	-55%	28%
10	52 MW 1x0 CHP with Steam (no ST) + 48 MW CT	62%	2	49.0	59.50	8.72	45.15	73.84	192.9	Yes	Yes	Yes	-84%	10%
1D	90 MW 2x0 CHP with Steam (no ST) (2019 PSS Unit)		2		60.83	10.14	44.16	77.50	197.6	Yes	Yes	Yes	-83%	10%
2A	70 MW 1x1 CHP with Steam extraction ST) + 48 MW CT	74%	2	31.5	60.37	8.15	46.96	73.78	214.9	Yes	Yes	Yes	-84%	10%
28	58 MW 1x1 CHP with Steam Turbine	66%	2	42.9	59.35	8.12	46.00	72.70	200.9	Yes	Yes	Yes	-84%	10%
2C	52 MW 1x0 CHP Operating as Peaking Unit + 48 MW CT	62%	2	49.0	60.67	8.47	46.74	74.59	192.9	Yes	Yes	Yes	-84%	10%
3A	126 MW Local Combined Cycle	79%	3	23.3	60.36	6.94	48.94	71.77	222.7	Yes	Yes	No	-85%	10%
38	180 MW Local Combined Cycle	112%	3	0.0	54.86	6.57	44.05	65.67		Yes	Yes	No	-81%	10%
3C	97 MW Local Combustion Turbines	60%		52.2	57.31	7.60	44.82	69.81	144.2	Yes	Yes	No	-85%	10%
3D	143 MW U9 Converted to Oil/ Gas for Local Reliability	90%		6.1	55.95	8.15	42.54	69.37	46.8	No	No	No	-82%	10%
3E	155 MW U9 (BAU) + 200 MW Solar	100%	1	0.0	54.20	4.75	46.38	62.01	39.3	No	No	No	-64%	51%
3F	143 MW U9 on Gas + 400 MW Solar	90%		0.0	57.58	3.51		63.35	46.8	No	No	No	-90%	99%

Base Case Results – Key Observations

- Scenario 00 (BAU) and Scenario 3E (BAU + Solar) had the lowest combination of 20-year NPVs and risk profiles
- The best performing CHP Scenario is 1B.5, which includes a 1x1 CHP Unit with a Back Pressure ST, Unit 9 operating on coal and 100 MW of Solar PV
- The best performing natural gas-fired alternative is Scenario 3B (larger local CC) due to the lower capital cost assumption/MW and better heat rate
- The higher levels of fixed price solar PPAs in these scenarios result in a small increase in the 20-year NPV costs but result in less variability in power supply costs and lower net CO₂ emissions

100% Renewable (Energy Independence)

Summary Results for 100% Renewable Strategies

	Battery Strategy	Clean CT Strategy
Installed Capacity (MW)		
Solar	480	130
Wind	200	140
Battery (12-Hour Duration)	340	-
Clean CT	-	125
Total	1,020	395 ←
Power Supply Costs (\$ per MWh)	\$253	\$142
Select Operational Results		
Peak Demand – MW (2010-2022 Average)	139	139
Clean CT Capacity Factor	-	24%
Surplus Energy (GWh)	784	135
Surplus Energy % of Total Renewable Energy	47%	18%

ACL	di 4 day Low Willa dila ivii ve loda
	Solar based on typical weather year i Muscatine County

Actual 4-day Low wind and MPW load

- \$887 Million in Battery capital costs
 - \$97 million in annual costs for debt service and Fixed O&M for just the battery system!
 - 12-Hour battery not commercially available
- Installed Capacity of 3 to 7 times MPW's Peak demand
- Clean CT Scenario assumes a reliable supply of green hydrogen available when needed
- Costs for both are significantly higher than BAU
- Assumes excess energy could be delivered and sold to market
 - Could require significant transmission improvement costs

Expected

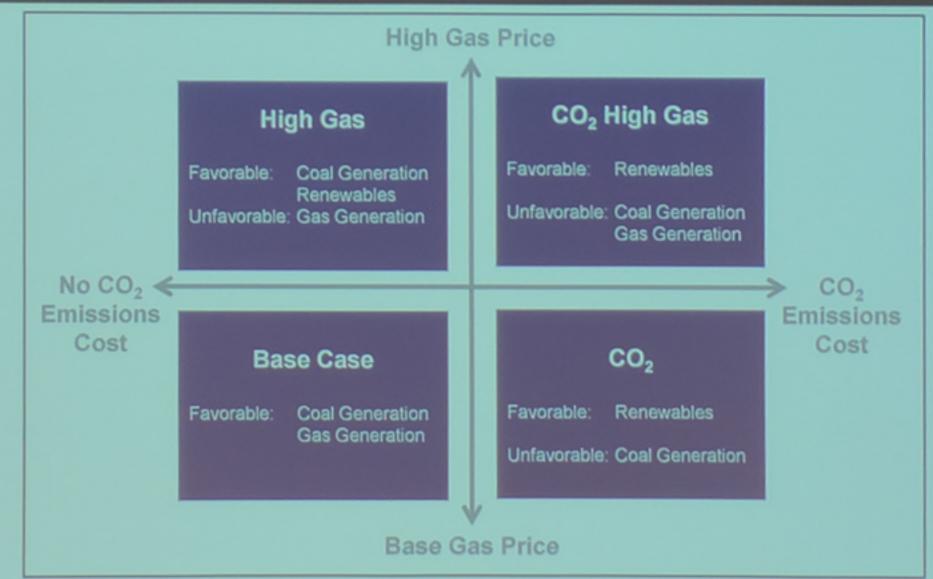
2023-42 20-Year

(\$/MWh)

53.75

59.14

57.57


54.86 57.31

54.20

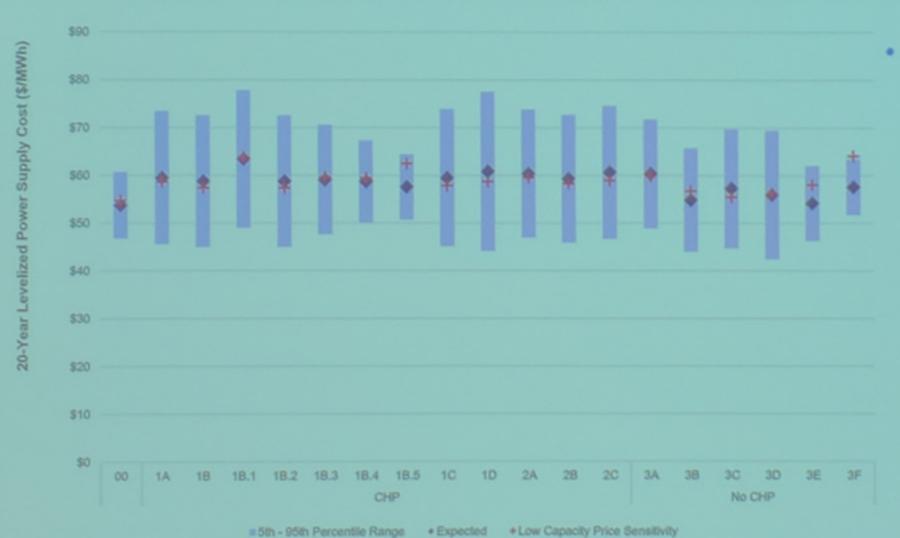
57.58

Market Sensitivity Cases

Sensitivity Result Observations

- Diverse portfolios hold up better across all scenarios
- The Unit 9 on Coal Scenarios performed well across all sensitivities, even the CO₂ Sensitivities
- The relative lower performance of the CHP Scenarios are a change from the 2019 PSS
 - Higher CHP Costs and Changes to the Market Resulted in Lower Energy Prices that Negatively Affect the Margins of Must-run Units like CHPs
 - Scenarios that include CHP have multiple local units to dispatch providing some resiliency to the local system in the event of an unplanned outage on one unit
 - The Inflation Reduction Act ("IRA") includes incentives for CHP units below 50 MW of capacity,
 which could lower the capital costs if a unit of that type is pursued at this time
- Scenario with high levels of solar capacity additions (1B.5, 3E and 3F) generally perform well in terms of both cost and CO₂ emissions and are notably better in High Gas and CO₂ Sensitivities

Current Position

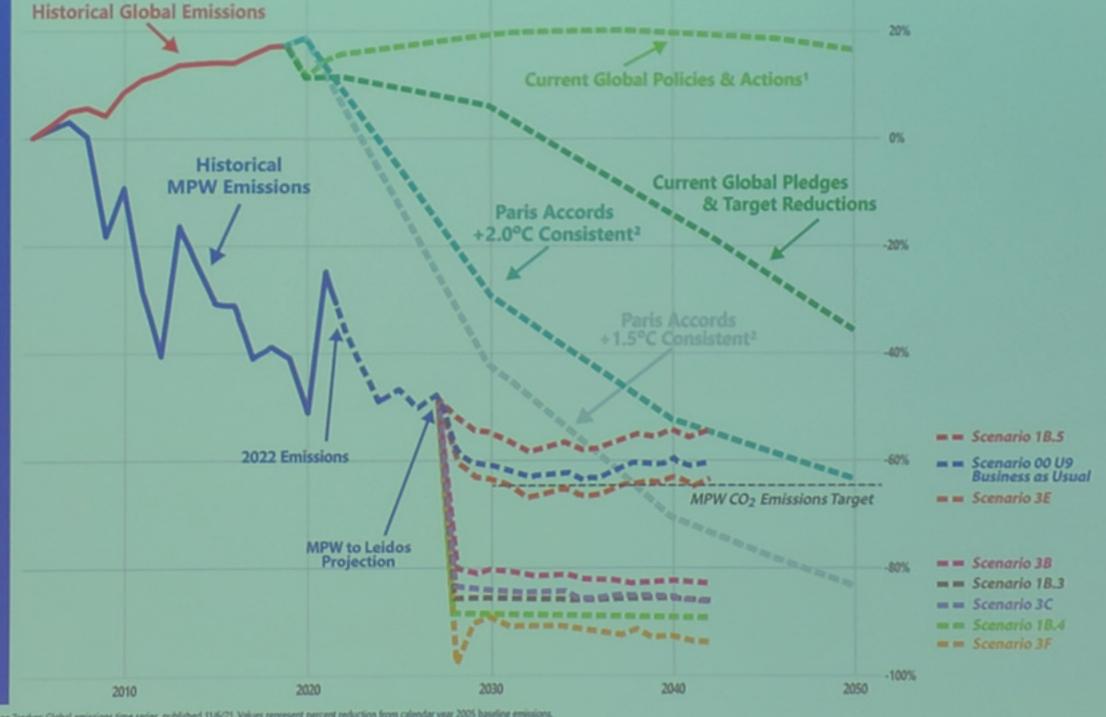


- Continued operation of Unit 9
 - Meets MPW's capacity requirements
 - Hedge on energy market pricing
- Units 7 & 8 operating as peaking units
 - Unit 8A Steam Sales Contract complete and decommissioning has begun
- South Fork Wind in-service; PPA ends in 2036
- Muscatine Solar 1 PPA is signed; projected online Q4 2025

Low-Capacity Price Impacts

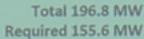
- Key Observations
 - When load and capacity are closely balanced, market capacity price has minimal impact
 - Scenarios that are long on capacity are much more sensitive to market capacity revenues
 - For example, 3F (with 400 MW of Solar) performs significantly worse when capacity prices are low

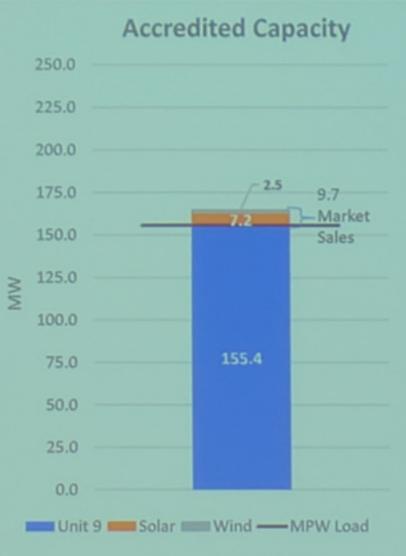
"Short List" of Scenarios



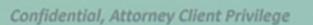
		F	RELIABILITY		AFFORDABILITY						FLEXIBILITY	SUSTAINABILITY		
		Local Dispatchable Capacity (2030)	Fuel Availability Rank	Capacity Market Exposure (MW)	Expected 2023-42 20-Year (\$/MWh)	Standard Deviation 2023-42 20-Year (\$/MWh)	5% 2023-42 20-Year (\$/MWh)	95% 2023-42 20-Year (\$/MWh)	Capital Investment	Fuel Diversity	Renewable Fuel Flexability	Steam Sales	Carbon Reduction from 2005 by 2030 (%)	Renewable Generation % of load by 2030
00	Unit 9 Business-As-Usual Case	100%	1	0.0	53.75	4.20	46.84	60,65	39.3	No	No	No	-61%	10%
	58 MW CHP + 2x31 MW CT's + 100 MW Solar	75%	2	6.1	59.14	6.95	47.70	70.57	217.9	Yes	Yes	Yes	-86%	28%
	58 MW CHP + 1x31 MW CT + 200 MW Solar		2	6,5	58.73	5.22	50.14	67.31	170.8	Yes	Yes	Yes	-89%	51%
	50 MW CHP + 155 MW U9 on Coal + 100 MW Solar	136%	1	0.0	57.57	4.15	50.74	64.39	156.9	Yes	Yes	Yes	-55%	28%
3B	180 MW Local Combined Cycle	112%	3	0.0	54.86	6.57	44.05	65.67		Yes	Yes	No	-81%	10%
3C	97 MW Local Combustion Turbines		4	52.2	57.31	7.60	44.82	69.81	144.2	Yes	Yes	No	-85%	10%
3E	155 MW U9 (BAU) + 200 MW Solar	100%	1	0.0	54.20	4.75	46.38	62.01	39.3	No	No	No	-64%	51%
3F	143 MW U9 on Gas + 400 MW Solar	90%		0.0	57.58	3.51		63.35	46.8	No	No	No	-90%	99%

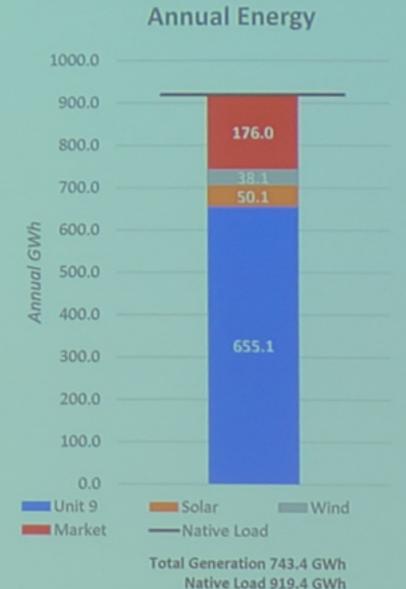
Projected
Carbon
Dioxide
Emission
Reductions

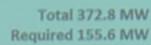

¹ Global emissions data sourced from Climate Action Tracker: Global emissions time series, published 11/6/21. Values represent percent reduction from calendar year 2005 baseline emissions.


² Values represent reduction in global emissions consistent with the Paris Agreement's goal to hold the increase in global average temperature to below 2.0°C above pre-industrial levels and pursuing efforts to limit temperature increase to 1.5°C. Data sourced from Climate Action Tracker, Climate Analytics and New Climate Institute.

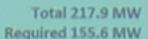
Scenario 00 Unit 9 (Business As Usual)

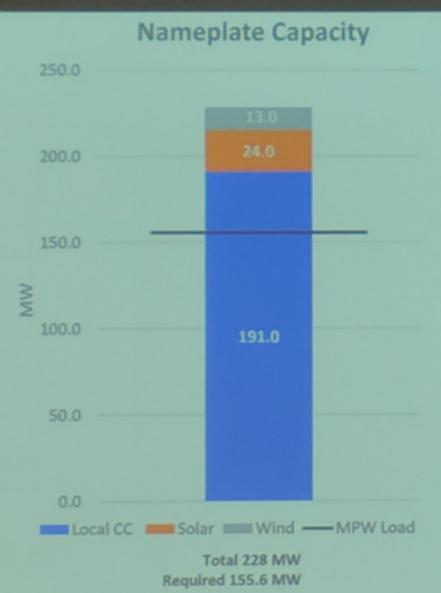




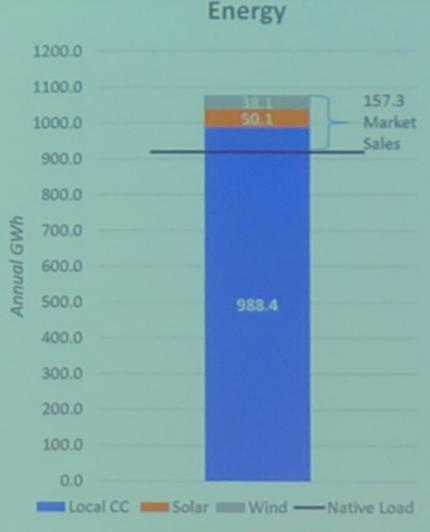


Page 39 Modeling Results

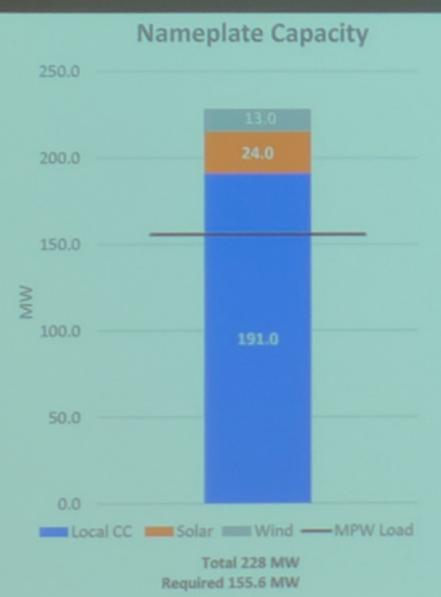

Scenario 3E Unit 9 (BAU) + 200 MW Solar

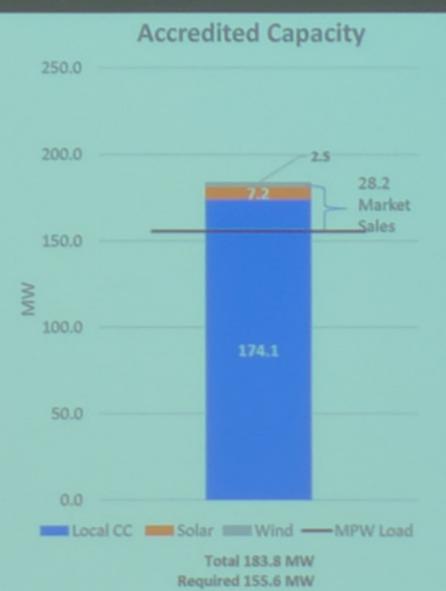



Total Generation 1128.1 GWh Native Load 919.4 GWh


Page 40 Modeling Results

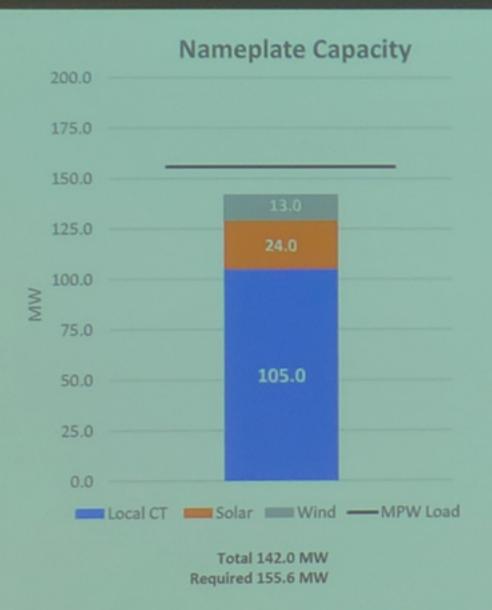
Scenario 3B Local Combined Cycle — 180 MW

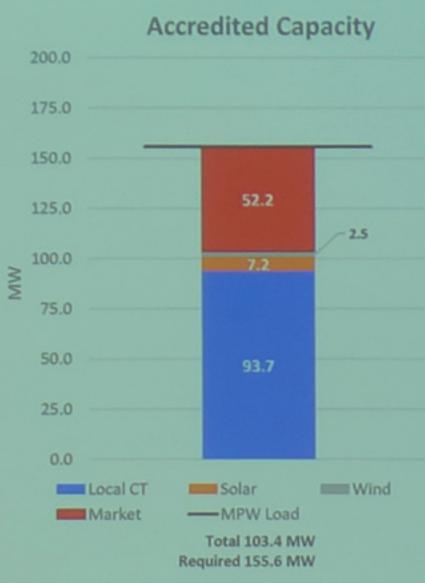


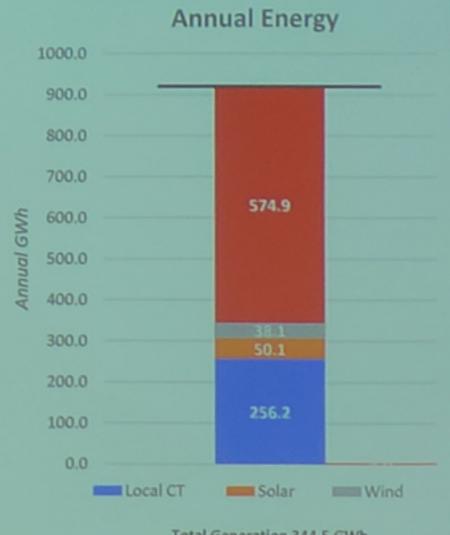

Total Generation 1076.7 GWh Native Load 919.4 GWh

> Page 41 Modeling Results

Scenario 3B Local Combined Cycle – 180 MW




Total Generation 1076.7 GWh Native Load 919.4 GWh


> Page 41 Modeling Results

Scenario 3C Local Combustion Turbines — 97 MW

Total Generation 344.5 GWh Native Load 919.4 GWh

Confidential, Attorney Client Privilege

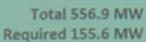
CHP Assumption Changes

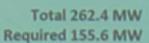
- 2019 CHP performance and steam production were based on planning level estimates
 - CHP investigation with Stanley (+/-30%)
 - Smaller units
 - Long-Term Service Agreement (LTSA) costs
 - Insurance
 - Increased heat rate
 - Higher capital costs
 - Reduction of forecasted energy prices

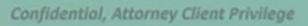
Scenario 1B.4 58 MW CHP + 1x31 MW CT + 200 MW Solar

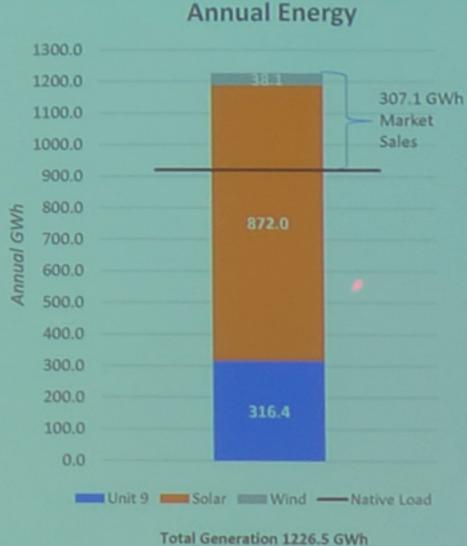
2019 PPS Recommendations

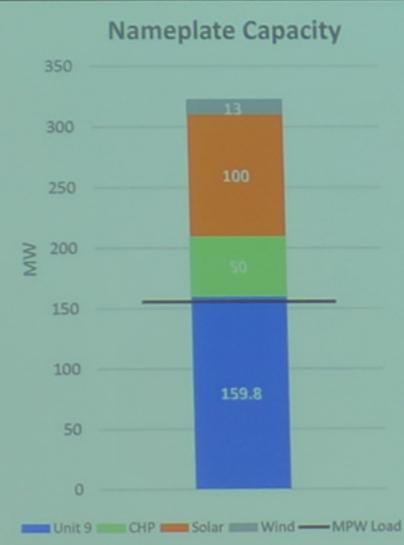


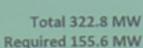

- Explore the addition of local solar PV
- ✓ Evaluate the economics of a new CHP resource and steam sale extension
- ✓ Manage market risk
- ✓ Investigate regional combined cycle pricing
- ✓ Tentatively plan for Unit 9 retirement by 2028
- ✓ Units 7, 8 & 8A retirement planning for 2023

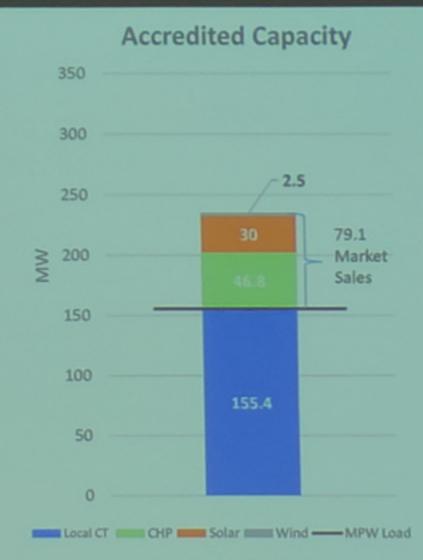

Scenario 3F Unit 9 on Gas + 400 MW Solar



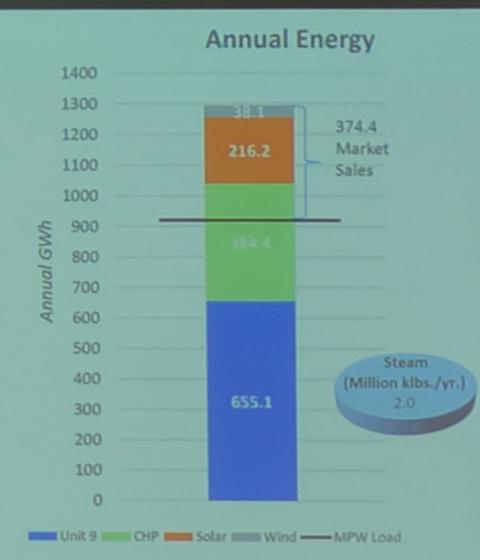






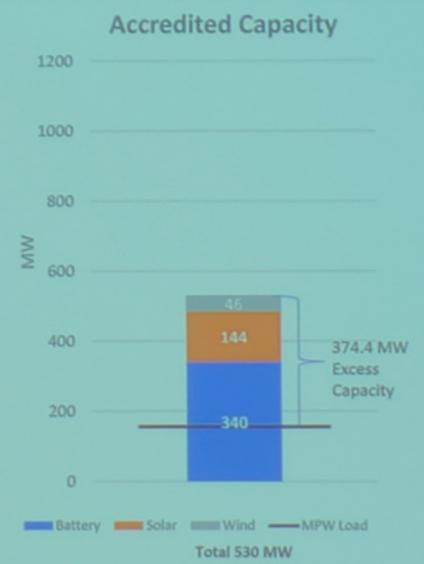

Total Generation 1226.5 GWh Native Load 919.4 GWh

Scenario 1B.5 (Under investigation) Unit 9 (BAU) + 50 MW CHP + 100 MW Solar



Total 234.7 MW Required 155.6 MW

Total Generation 1293.8 GWh Native Load 919.4 GWh


Page 47
Modeling Results

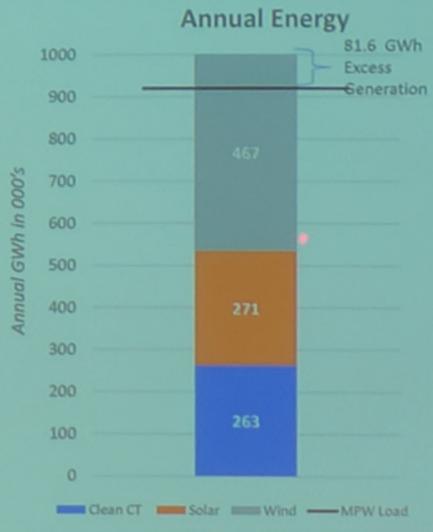
100% Renewable w/ Battery (Energy Independence)

Total 1020 MW Required 155.6 MW

Total Generation 1668.3 GWh Native Load 884.3 GWh (Based on Historical Data)

Page 48 Modeling Results

100% Renewable w/ Clean CT (Energy Independence)



Total 395 MW Required 155.6 MW

Total 182.6 MW Required 155.6 MW

Total Generation 1001 GWh Native Load 919.4 GWh

Page 49 Modeling Results

Balanced Scorecard Analysis

		RELIA	BILITY		AFFORD	ABILITY			FLEXI			SUSTAIN	NABILITY
Descript	tion	Local Dispatchable	Fuel Availability	Cost per KWh	Rate	Capital	Capex per Unit of Capacity	Future Transition Flexibility	Diversity of Resources	Hydrogen Fuel Capability	Steam	CO ₂ Reduction	Renewable Energy Share
00	Unit 9 Business-As-Usual Case												
18.3	58 MW CHP + 2x31 MW CT's + 100 MW Solar												
18.4	58 MW CHP + 1x31 MW CT + 200 MW Solar												
18.5	50 MW CHP + 155 MW U9 on Coal + 100 MW Solar												
38	180 MW Local Combined Cycle												
3C	97 MW Local Combustion Turbines												
3E	155 MW U9 (BAU) + 200 MW Solar												
3F	143 MW U9 on Gas + 400 MW Solar												

A Few Key Observations

KEY OBSERVATION	NOTES
100% Renewable remains Infeasible at this time	Cost of both options are still out of range. Many other feasibility questions still remain
Installed Capacity Remains Valuable	2022 was a stark reminder of the volatility of the market and risk of reliance on external factors
Keeping Unit 9 in Service is the Lowest Cost Capacity Option	Either ELG compliance or gas conversion provide capacity at much lower cost per kW than new options
Unit 9 on Coal Performs Well	Stable fuel costs and ability to keep inventory onsite provides many benefits
Gas Availability is Significant Concern	Gas supply gets very tight during major winter events, which could limit or sideline gas units when needed most; especially peaking units
Unit 9 on Coal Could Save Larger Investment in Gas Assets	Keeping Unit 9 on coal for now provides an opportunity to skip/limit gas as a bridge fuel; although for skipping gas is still unlikely in the next 10 years
CHP Unit Provides Operational Benefits	Having an additional local unit provides redundancy Stable operation allows for hedging gas supply
IRA Provides Opportunities	CHP – Specific incentives included in IRA, but timeline is short Solar, Wind – Incentives will hopefully bring prices back down, but not as dramatically as some

A Lew Ney KISK Considerations

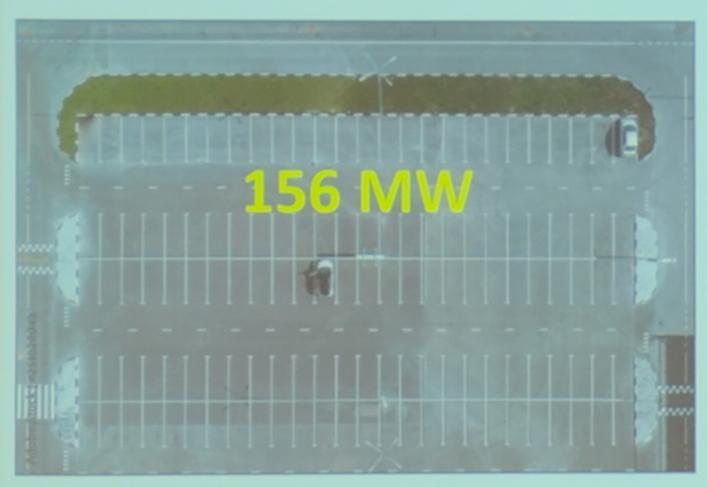
KEY RISK	NOTES
Fuel Availability	Access to natural gas during winter storms is becoming a major concern
Fuel and Market Pricing	Volatility will largely follow natural gas price volatility
Capacity Pricing	MISO auction results have been extremely volatile, which can swing financial results depending on net capacity position. Sloped demand curve will help
Environmental Regulation Uncertainty	Uncertainty will continue, which makes large investments inherently riskier
Renewable Growth	Will lower marginal energy costs in market due to offer structure, but increase reliability risk
Steam Sales Contract Risk	Long-term contract carries financial risk, depending on how terms are structured
Electrification Load Growth	Aggressive electrification trends could increase capacity needs significantly – both total capacity and local dispatchable req's
Regional Price Separation	If our assets are not local, price separation increases financial risk

Recommendations From the Study

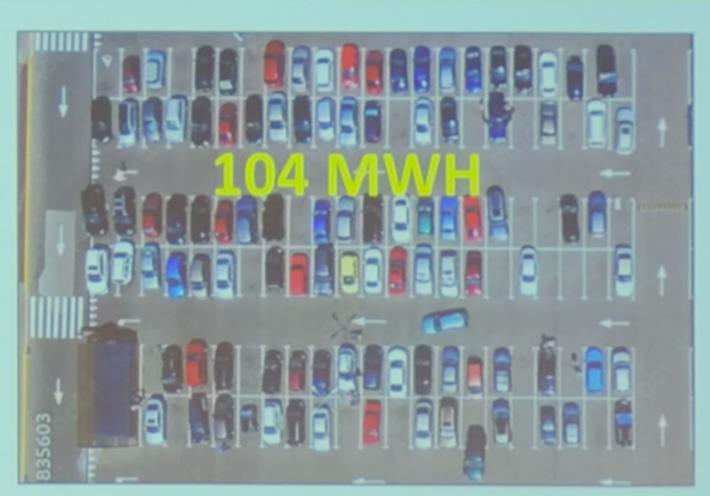


RECOMMENDATION	DETAILS			
Confirm Steam Customer's Interest in New Contract	Discuss mutual interest and seek agreement to continue CHP investigation			
If CHP Pursued, Prioritize Certain Considerations	 Seek to optimize IRA tax incentives Investigate flex fuel options (natural gas, fuel oil, hydrogen) Size natural gas interconnection to provide flexibility for the future Make efforts to reuse MISO interconnection rights from Units 7 & 8 			
Pursue Additional Renewable Resources	 Monitor market to determine optimal time to issue renewable RFP Investigate combination of both solar and wind alternatives Target annual output equivalent to 25% of native system energy If CHP not pursued, consider target of 50% renewables Preference for local projects, but entertain projects in MISO Zone 3 Monitor storage technology development Optimize IRA tax incentives 			

Timeline Considerations

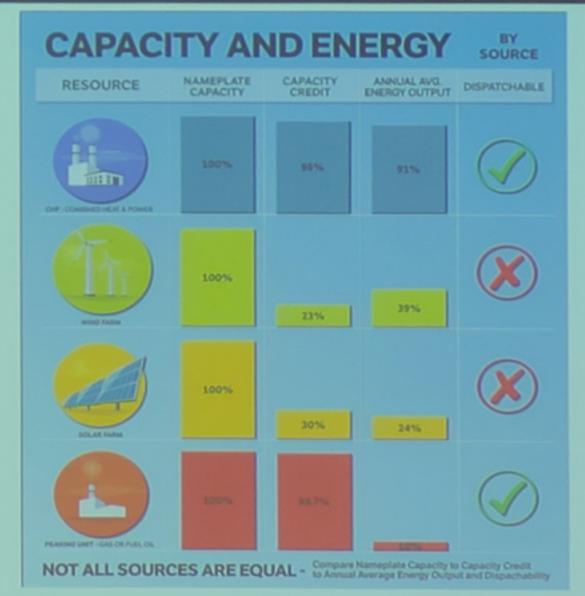


YEAR	ITEM	TIMING	DETAIL
2023	CHP	Q2	CHP must start design, permitting, and contracting activities to achieve IRA deadlines
	ELG	Mid-Year	Start expending some compliance dollars; ramping up over time
2024	СНР	End of Year	CHP must start physical work to receive IRA incentives (still a lot of unknowns)
2025	ELG	End of Year	Last chance to change compliance strategy for Unit 9
2028	ELG	End of Year	Unit 9 must be in full compliance
	СНР	End of Year	CHP must be in service to receive IRA incentives



Capacity vs Energy

Capacity – Need enough total parking spaces to cover busiest day, plus some extra



Energy – The number of cars actually using the parking lot over the course of an hour

Capacity and Energy

- Nameplate and capacity accreditation vary by resource
- Nameplate and actual energy output also vary by resource
- Intermittent resources require more reliance on the market, additional resources or storage

MPW Generation Resource Planning Approach

Identify Planning Objectives

Planning objectives
center around
Reliability,
Affordability,
Sustainability and
Flexibility

Develop Sensitivities/ Scenarios

Identify key sensitivities and apply to each portfolio

Develop Resource Portfolios

Develop portfolios that represent available generating assets and levels of sustainability

Portfolio Modeling & Analysis

Leidos Engineering
evaluated
performance of each
resource portfolio
against four market
sensitivities

Study Results Review

February 2023
Review and discuss
2022 Power Supply
Study (PSS) results
Board of Trustees

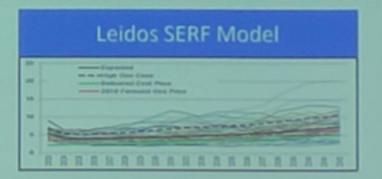
Review Staff Recommendations

March 2023
Board of Directors
approval to move
forward with
selected PSS
recommendations

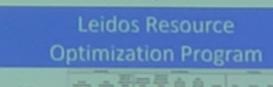
2022 Study Overview

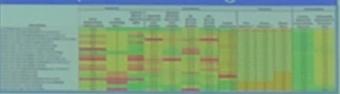
- Engaged consultant (Leidos) with broad expertise in comprehensive generation resource planning
- Leidos utilized their proprietary stochastic-econometric regional forecast (SERF) model to analyze financial performance of the scenarios
- Leidos and MPW jointly developed and reviewed scenarios and strategies to quantify the projected impacts to MPW's future, including re-analysis of 2019 scenarios

Power Supply Study Process


- Leidos SERF methodology
- Market
 - Regional transmission system changes, renewable mandates, planned and economic generation additions/retirements
 - 50 draws of stochastic price forecasts (system load, fuel, market)
 - 20-year planning study period (2023-2042)
 - Results provide stochastic projections of fuel prices, utility and regional loads, emissions and hourly power prices

Assets


- The resulting cost projections were used to compare and contrast potential financial implications of various power supply decisions
- 19 discrete power supply scenarios; 4 market cases
- 15 generating asset
- Nearly 4,000 potential combinations


Results

- The model shows financial performance only
- The CO₂ Case is a separate fundamental forecast from the Base Case

