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The Source of the Fine Structure Constant 
 

Phineas Proffett (private researcher) 

 

The dimensionless fine structure constant (α=e2/4πɛ0ħc=0.0072973525643=1/137.035999177) first reared its head 
in 1916 at a time when the scientific community visualized electrons orbiting the nucleus according to Niels Bohr’s 
theory of hydrogen that he had proposed three years earlier. After physicists leapfrogged from orbital motion to 
probability density functions for electrons in 1926 with Erwin Schrödinger’s equation, the fine-structure constant 
found application in a wide range of quantum phenomena. In the intervening century, physicists have been both 
fascinated and somewhat spooked by the fine structure constant because it determines the values of the crucial 
constants of physics that have allowed life to emerge in our universe- thus suggesting that there was conscious intent 
which predates the Big Bang that was behind the fine-tuning of these constants. Physicists more readily recognize 
the inverse of the fine structure constant: 1/α= 137.035999177. They have wondered what the source of this 
dimensionless value is- where does the number 137.035999177 come from? This paper proffers a novel derivation 
of the fine structure constant that is presumed to be the true source. This derivation suggests that leapfrogging from 
two-dimensional orbits for the electron to three-dimensional probability density functions missed a step that has 
eluded the scientific community. The missing step entails magnetic dipole interactions between the electron and the 
nucleus that forces elliptical orbits into spherical orbits. And rather than random positions for electrons, their orbits 
may be highly synchronized such that an atom operates more like a fine Swiss watch- at least when the probability 
function is collapsed in the manner of any wavefunction. The proposed source of the fine structure constant is 

1/α=√fe/fL, where fe is the rotation rate of the electron in the first Bohr orbit, and fL is the Larmor precession rate 

of the electron in the first Bohr orbit. The g-factor of the electron must be set to 2, rather than the anomalous value 
of 2.00232, for this novel derivation to produce the precise value of 1/α. Thus, the orbital wavefunction and/or 
bound electron states may suppress the quantum effects that produce the anomalous value. The implication is that 
the fine structure constant is fine-tuned to allow electrons to achieve organized, repeatable orbitals so that 
predictable, determinate biomolecules may be constructed to permit life to emerge.  

 
 
The Novel Derivation of 1/α 

 
The derivation of the fine structure constant 

through this novel means will first be rendered, 
followed by a discussion of its import to the field of 
quantum physics. All the steps will be presented in 
minute detail with values inserted to ease the process 
of confirming the validity of this novel derivation. The 
values below will be used for the constants of physics. 
Note that ħ=h/2π without rounding to yield the 2022 
CODATA value of 137.035999177 directly by 
calculating 1/α = 4πɛ0ħc/e2. 

 

 
me = 9.1093837139 x 10-31 kg 
e = 1.602176634 x 10-19 C 
ɛ0 = 8.8541878188 x 10-12 F∙m-1 

μ0 = 1.25663706127 x 10-6 N∙A-2 

ħ =  1.05457181765 x 10-34 J ∙s  

c = 2.99792458 x 108 m∙s-1 

 

 
To calculate the fine structure constant from the 

novel formula: 
 

   1/α=√fe/fL,            (1) 

 
 
the first step is to determine fe- the rotation rate of 
the electron in the first Bohr orbit. This can be derived 
by dividing the velocity (Ve) of the electron in the first 
Bohr orbit by the circumference of this orbit (2πre). 
Niels Bohr derived the formulas for Ve and re that 
predate Schrödinger’s equation by thirteen years: 

 
 

     re = 
4πε0ħ

2

mee
2           (2) 
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= 
4π(8.8541878188 x 10−12)(1.05457181765 x 10−34)2

(9.1093837139 X 10−31)(1.602176634 x 10−19)2
 

 
re = 5.29177210548 x 10-11 m 

 
 

    Ve = 
1

4πε0

e2

ħ
            (3) 

 
 

= 
(1.602176634 x 10−19)2

4π(8.8541878188 x 10−12)(1.05457181765 x 10−34)
 

 
 

Ve= 2.18769126215 X 106 m/s 
 

 
 

 fe= Ve/(2π re)            (4) 
 
 

= 
2.18769126215 X 106

2π(5.29177210548 x 10−11)
 

 
 

fe= 6.57968392042 X 1015 

(revolutions per second) 

 

The next step is to derive the Larmor precession of 

the electron (fL) in the first Bohr orbit. From the 

perspective of the hydrogen atom, the electron is 

orbiting a single proton, which will immerse the 

proton in a magnetic field. However, from the 

perspective of the electron, the single proton of the 

hydrogen atom appears to be orbiting around it, 

which immerses the electron in its magnetic field. The 

seemingly orbiting proton constitutes a current loop 

with the electron in the center of the loop. The 

magnetic field (B) in which the electron is immersed 

can be calculated from the Biot and Savart Law:  

 

B=
μ0Ire

2

2(re2+Z2)3/2
. 

 

Z is the distance along an axis that is encircled by a 
current loop. Since the electron is at the center of the 

current loop, Z can be set to zero. This simplifies the 
equation to:  

 

        B=
μ0I

2re
         (5) 

 

Now the current I is due to the seemingly circulating 
proton charge (e=1eV=1.6 X 10-19 Coulombs), which 
amounts to the rate at which the charge is circulating 
in a loop. This current is: 

 
 

            I = efe = eVe/(2πre)           (6) 

 
 

Substituting equation (6) into (5) produces: 

 
 

     B = 
μ0eVe

4πre2
             (7) 

 
 

=
(1.25663706127 x 10−6)(1.602176634 x 10−19)(2.18769126215 X 106)

4π(5.29177210548  x 10−11)2
  

 
 
 

B = 12.5168244296 T 
 
 

The Larmor precession for an electron immersed in a 
magnetic field B is: 

 
 

ωL = γB 
 
 

where           γ = 
eg

2me
 . 

 
 
The constant ‘g’ is the gyromagnetic ratio between 
the electron’s magnetic moment and its angular 
momentum. Experiments have shown that it is 
slightly higher than 2- around 2.00232. The great 
achievement of quantum electrodynamics is to 
ascribe the propensity of the electron to not only 
exchange photons that would render g=2, but to also 
undergo other, less frequent processes to provide a 
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theoretical basis for an incrementally higher value. 
The dominant alternate process is for the electron to 
emit and absorb its own photon. Another, rarer 
process is for such a reabsorbed photon to briefly 
undergo pair production. Setting g=2 is what results in 
the precise value of the fine structure constant in this 
derivation. Therefore, perhaps these other alternate 
processes are suppressed either as a result of the 
activation of the orbital wavefunction, or because of 
the bound state of the electron. Experiments to 
detect the magnetic dipole moment of the electron in 
order to determine the gyromagnetic ratio rely on 
external magnetic fields or photons that would be 
presumed to disrupt the wavefunction of the orbital 
so that the alternate processes are no longer 
suppressed. A measurement is being taken, which 
generally collapses the wavefunction; and the 
electron assumes two different aspects on either side 
of the measurement before and after wavefunction 
collapse. At 6.58 x 1015 revolutions per second for the 
electron, which is presumed to be masked by the 
wavefunction of the orbital, there may not be enough 
time or spatial stability for the odd emission followed 
by absorption of the same photon, or for pair 
production as the electron rapidly alters its position 
around the nucleus while its angular momentum is 
constrained to integer values of ħ.  

Instead of radians per second (ωL) for the Larmor 
precession, precessions per second (fL) is the 
appropriate unit to correspond with the rotation rate 
per second of the electron in its orbit around the 
nucleus: 

 

        fL =
ωL

2π
=

γB

2π
=

egB

2me(2π)
            (8) 

 
 
 

=
(1.602176634 x 10−19)(2)(12.5168244296)

(2)(9.1093837139 X 10−31)(2π)
 

 
 
 

fL = 3.50377080602 x 1011 
 

 
Finally, taking the square root of the quotient of 
equation (4) over equation (8) produces the inverse 
fine structure constant: 

 

√
fe

fL
= √

6.57968392042 X 1015 

3.50377080602 x 1011
 = 137.035999177 

 
 
 
It is now obvious that the square root of the ratio 
between the Larmor precession rate of the electron 
and its rotation rate in the first Bohr orbit produces 
the value derived from the formula for the fine 
structure constant: 

 
 

 √fe

fL
 = 137.035999177 

   1/α = 4πɛ0ħc/e2 = 137.035999177 
 
  
It only remains to prove that this novel derivation of 
the fine structure constant is equivalent to its 
formula: 

 
 

      √
fe

fL
  = 4πɛ0ħc/e2 = 1/α         (9) 

 

 
This will now be done with the same level of minute 

detail as the preceding derivation. Starting with 

equations (4) and (8): 

 

fe= Ve/(2πre), 

 

fL = ωL/2π 

We have: 

 

  √
fe

fL
= √

Ve/(2π re)

ωL/(2π)
= √

Ve/ re

ωL
         (10) 

           

With ωL = γB =
egB

2me
 , for which g=2 we have: 
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ωL =
eB

me
 

 

From equation (7), B = 
μ0eVe

4πre2
 , so that 

 

           ωL =
e[
μ0eVe
4πre2

]

me
         (11) 

 

Substituting (11) into (10) produces: 

√
fe
fL
= √

Ve/(re)

ωL
=

√
  
  
  
  
  Ve/ re

[
e (
μ0eVe
4πre2

)

me
]

 

 

We can cancel Ve/re from the numerator and 

denominator: 

 

√

Ve/ re

[
e(
μ0eVe
4πre2

)

me
]

   = √
1

e

me
(
μ0e

4πre
)
   = √

me4πre

μ0e
2  

 

Using equation (2) for re, we have: 

 

√
me4π[re]

μ0e2
  =  

√
4πme [

4πε0ħ2

mee
2 ]

μ0e2
 

 

Cancelling me from the numerator and multiplying like 

terms gets us to: 

 

√
4πme[

4πε0ħ
2

mee2
]

μ0e2
 =√

16π2[
ε0ħ

2

e2
]

μ0e2
 = √

16π2ε0ħ2

μ0e4
  

 

Now the speed of light c=√
1

μ0ε0
 , so 

 

μ0 = 1/(ε0c
2) 

 

Substituting for μ0 in the previous equation produces: 

 

√
16π2ε0ħ2

(μ0)e4
= √

16π2ε0ħ2

(
1

ε0c2
) e4

 

 

= √
16π2ε02ħ2c2

e4
=
4πε0ħc

e2
=
1

α
 

 

Thus:     √
fe

fL
=  

4πε0ħc

e2
= 

1

α
 , 

 

where 1/α= 137.035999177- the inverse fine 
structure constant. 
 

 

Influence of Precession on 1s Orbitals 
 
 
Does this proposed source of the fine structure 
constant bring spin precession into play as an 
overlooked mechanism for determining atomic 
orbitals? Until 1926, when Erwin Schrödinger 
developed his famous wavefunction equation, 
electron orbits around the nuclei of atoms were 
visualized as being circular or elliptical- like planetary 
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orbits. This was a natural assumption arising from the 
fact that the electrostatic force matched the 
centripetal force of an orbiting electron, in analogy 
with the gravitational force matching the centripetal 
force of orbiting planets around the sun: 
 
 
 

F= 
1

4πɛo
 
q1q2

r2
 (Electrostatic force) 

 
 

= 
1

4π(8.8541878188  X 10−12)

(1.602176634 X 10−19)2

(5.29177210548  X 10−10)2
 

 
 

= 8.2387235037 x 10−8 N  

(Electrostatic attraction between an electron and 
proton in Hydrogen atom) 

 

F = ma = 
mv2

r
   (Centripetal Force) 

 

=  
(9.1093837139 X 10−31)(2.18769126215 X106)2

5.29177210548 X10−11
    

 

 = 8.2387235037 x 10−8 N 

(Centripetal force experienced by orbiting electron) 

 

 

Electrons (as well as other quantum particles) 

were also thought to have a wavelength as they 

travelled due to de Broglie’s equation that was 

promulgated in 1924. But shortly after Schrödinger 

published his famous equation two years later, the 

wavelength was interpreted as the probability 

amplitude of the electron. In 1913, Neils Bohr had 

explained why the electron does not spiral into the 

nucleus by confining the electron only to certain 

discrete energy levels through the energy equation he 

developed: 

 

      En = − [
me

2ħ2
(
e2

4πϵ0
)
2

]
1

n2
         (12) 

where (n)= 1,2, 3,…. 

Schrödinger’s equation also produces this 
formula, which nowadays is viewed as the correct 
path to deriving it, whereas Bohr’s derivation has 
been downgraded as having led to the correct 
solution more or less through dumb luck. For 
example, the third edition of Introduction to Quantum 
Mechanics, by David Griffiths, describes Bohr’s 
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derivation as a “serendipitous mixture of inapplicable 
classical physics and premature quantum theory.” The 
“inapplicable classical physics” refers mainly to Bohr’s 
heavy reliance on the equivalence between the 
electrostatic force and the centripetal force of an 
orbiting electron to generate his equation. But a 
century ago, Bohr’s equation that relied on the 
balance between these two forces was the gold 
standard that Schrödinger’s equation had to cough up 
as a bewildering array of arcane solutions to integrals, 
truncated power series, mathematical assumptions 
and substitutions were thrown at it.  

When the right combination reproduced  equation 
(12), a radial wave function first had to be kneaded 
into the form below that preceded the final result: 
 
 

       
d2u

dρ2
= [1 −

ρ0

ρ
+

ℓ(ℓ+1)

ρ2
] u.            (13) 

 
 

The only variables of interests in this discussion are ρ, 
which is a function of distance from the nucleus, and 
ℓ, which is the orbital angular momentum quantum 
number. The magnitude of the orbital angular 

momentum is L=√ℓ(ℓ + 1)ħ. ℓ also determines the 
shape of the orbital, which is spherical for ℓ=0 (the s 

shell), and has no angular momentum (√0(0 + 1)=0). 
ℓ=1 (the p shell) has two lobes, with an angular 

momentum of √1(1 + 1)ħ=√2ħ. ℓ=2 (the d shell) has 

an angular momentum of √2(2 + 1)ħ=√6ħ, and can 

have two or more lobes- the diagram on the bottom 
right in Fig. 1 is an example of the d shell. 

It is in trying to make headway from equation (13) 
by making clever substitutions and manipulating a 
power series that quantum mechanics leapfrogged 
from two-dimensional elliptical orbits for the electron 
to three-dimensional orbitals; and in the process, 
skipped over the step that the proposed source of the 
fine structure constant has brought to light that 
reveals the mechanism through which elliptical orbits 
become three-dimensional. The precise operation on 
the equation at which this step is skipped is when ρ is 
made to approach zero so that the first and middle 
terms in parenthesis can be eliminated. The third 
term then dominates, which, after a series of 
ingenious mathematical manipulations, allows 
solutions of equation (13) to be used to resolve terms 
that had been establishing to knead the form of that 
equation into shape, which then readily reproduced 
Bohr’s landmark equation (12). Since ρ is a function of 
distance from the nucleus, taking it to zero is 
presumed to be valid for the extremely small 
distances involved in atoms. But this is not valid for 
the s shell where ℓ=0 because the numerator of the 
third term ℓ(ℓ+1) is then zero, and the second term 
would dominate. So, the mechanism that transforms 
a circular orbit for the electron, which has orbital 
angular momentum, to the spherical s shell, which 
has no orbital angular momentum, is glossed over. 
Furthermore, this paper proposes that by glossing 
over this mechanism, all other orbitals generated by 
Schrödinger’s equation require modification. 
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The proposed source of the fine structure 
constant implies that electron precession is the 
mechanism that forces the electron into spherical 
orbits for the s shell. Fig. 2 freezes the dipole 
moments of the single proton of the hydrogen atom 
and the single orbiting electron for the s shell at two 
instants of time- one with the electron having 
completed a half orbit on the left, and the other with 
it completing its full orbit on the right. Since the 
dipole moments of the electron and the proton are 
both directed upwards, there will always be repulsion 
between them in this orbit, regardless of the 
orientation of their dipole axes while they are 
precessing. There will be a downward component of 
repulsion during the left half of the orbit, and an 
upward component during the right half of the orbit. 
This will exert a torque on the axis of the elliptical 
orbit of the electron that will shift it after many orbits, 
as shown in Fig. 3. During this time, the axis of the 
electron’s magnetic dipole moment has precessed 
though many complete rotations. The axis of the 
proton’s magnetic dipole moment has precessed far 
less by a factor of 658, owing to the proton’s greater 
mass and higher g-factor than the electron, according 
to Equation 8, or, equivalently, by the ratio between 
their dipole moments de and dp, that will be 
encountered shortly. If the dipole moment of the 
proton were reversed, there would still be torque on 
the electron orbit, only the downward and upward 
forces would then be attractive. 

The spin axes of the electron and proton in Fig. 2 
are tilted at 55o while they are precessing in the 
presence of their mutually induced magnetic fields. 
This tilt θ can be determined from the magnitude of 

their spin angular momentum √𝑠(𝑠 + 1)ħ, and the 
magnitude sħ that is projected along the direction of 
an external magnetic field, as measured in our three-
dimensional universe, where s= ½. Thus:  

 
 

θ = arcos
1
2⁄ ħ

√3
2
⁄ ħ

= arcos 1
√3
⁄ = 54.7356o  

 

 
It requires complex modelling to show how 

spherical shells are being traced out by the axis of 
elliptical orbits constantly being shifted while the 
electron and proton are precessing. A very rough 
analysis based on the orientations shown in Fig. 3 will 
be undertaken here that should suffice to show that 
this mechanism of inducing spherical shells is viable. 

The analysis simply calculates the force between two 
magnetic dipoles placed end to end, and reduces it by 
a factor of ten- that will then be taken to be the 
average downward (or upward) force exerted on the 
electron orbit in Fig. 3. The formula below for point 
dipoles placed end to end may be used to calculate 
this force: 

 
 

F =  
3μ0dedp

2πr4
, 

 
where: 
μ0 = 1.257 x 10-6 N∙A-2 

de = 9.285 x 10-24 J∙T  (electron dipole moment) 
dp = 1.411 x 10-26 J∙T  (proton dipole moment) 
r    = 5.292 x 10-11 m  (radius of hydrogen atom) 
 
 

F = 
3(1.257 x 10−6)(9.285 x 10−24)(1.411 x 10−26)

2𝜋(5.292 x 10−11)4
 = 1 x 10-14 N. 

 
Since this is the force exerted by two point magnetic 
dipoles that are oriented end to end, and whose 
separation is the radius of the hydrogen atom, this 
force will be reduced by a factor of ten to give a rough 
approximation of the downward (or upward) force on 
the electron shown in Fig. 2 for all dipole orientations 
encountered during a single orbit: 
 
 

             Fd = F/10 = 1 x 10-15
 N         (14) 

 
 
This will produce a torque on the orbiting electron: 
 

τ  = Fdr = (1 x 10-15)(5.292 x 10-11) = 5.292 x 10-26. 

 

The angular momentum of the electron Le is: 

Le = remeVe = (5.292 x 10-11)(9.109 x 10-31)( 2.188 X 106) 

Le = 1.055 x 10-34. 

Note that Le = ħ, which cleaves to the rule that orbital 
angular momentum is confined to integer multiples of 
ħ, but it is smeared out to zero in the s shell due to 
induced magnetic dipole forces on the circular orbit 
that transforms it into a spherical orbit. Thus, orbital 
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angular momentum is never truly zero- it just gets 
smeared out to zero as the electron completes 
spherical orbits, or if it assumes a 90o angle with 
respect to an external magnetic field. The average 
rate of change Ω induced on the angle φ of the axis of 
the orbital angular momentum Le of the orbiting 
electron can now be roughly estimated: 

 

Ω = dφ/dt = τ/Le = (5.292 x 10-26) / (1.055 x 10-34) 

Ω = 5.02 x 108 radians/second. 

The time t it takes for this axis to shift by 2π 
radians to trace out a spherical shell that will smear 
the orbital angular momentum out to zero is then: 

t = 2π/Ω ≈ 1.25 x 10-8 seconds 

 
With the electron completing 6.58 x 1015 orbits 

every second according to Equation (4), roughly 82 
million orbits comprise each spherical shell, such that 
around 80 million spherical shells are being traced out 
every second, which smears the orbital angular 
momentum out to zero for the s shell. With the 
electron precessing 3.5 x 1011 complete rotations 
every second according to Equation (8), there are 
around 4,400 precession rotations for every spherical 
shell that is traced out. During that time, the proton 
has precessed around 6.6 complete rotations. In Fig. 
3, the electron orbit has shifted by around ten degrees 
to produce a partial spherical shell. This works out to 
around 2 million electron orbits in 0.35 ns, during 
which time the electron has precessed around 120 
complete rotations, while the proton has precessed 
only around 66 degrees.  

No matter how many electron orbits it takes for 
them to be torqued into partial or complete spherical 
shells, taking the square root of the ratio between the 
number of orbits and the number of times the 
electron has precessed during that time will always 
result in the inverse fine structure constant 1/α. 
Perhaps the fine structure constant is calibrated to 
produce a predictable, recurring pattern of dipole 
interactions between the electron and the nucleus 
that results in the organized, repeatable generation 
of partial or complete spherical shells. Otherwise, 
electrons might orbit as disordered, nonuniform 
swarms from one atom to the next- even if the 
number of electrons were the same- that would not 
build up organized matter, and thus would make the 
emergence of life impossible. 

This rough analysis confirms that electron 
precession could account for spherical electron orbits 
for the 1s orbital. Even if the magnetic force 
contributing to torque on elliptical orbits were weaker 
by yet another factor of ten (100 times weaker than 
point dipoles placed end to end), the electron would 
still trace out a spherical shell in 125 ns, and 8 million 
spherical shells would be traced out every second to 
smear the angular momentum out to zero. The values 
for higher order s orbitals can be similarly calculated, 
which will produce much lower rates of tracing out 
spherical shells. But, ultimately, more complex 
modeling is required that considers all the different 
electron orbits to establish whether the proposed 
source of the fine structure constant does indeed 
relate to the way two-dimensional elliptical orbits are 
transformed into three-dimensional spherical orbits. 
Now, if there are two or more electrons in a given 
orbital, the repulsion of their interacting electric fields 
would suffice to explain their elliptical orbits being 
jogged into three-dimensional orbits. 

FIG. 4. Oscillating elliptical orbits in the 1s orbital can explain distribution functions. X-axes in Bohr radii. 
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Elliptical Orbits and the 1s Orbital 
 
 

The probability distribution functions derived 
from Schrödinger’s equation distort the most likely 
orbits for the electron. For example, the probability 
distribution for the electron in the 1s orbital labelled 
Graph 1 in Fig. 4 suggests that the electron spends the 
vast bulk of its time inside of one Bohr radius- the 
actual radius of the hydrogen atom owing to its 
orbiting electron. In fact, the electron would appear 
to have the highest probability of being within the  
nucleus! The dependency of the wavefunction on the 
orbital motion of the electron can be restored by 
considering concentric shells surrounding the nucleus 
such that the probability of finding the electron in 
different shells is what is plotted. This can be done by 
multiplying the wavefunction by the surface area of 
any given shell- 4πr2, which produces Graph 2. This is 
a radial distribution graph. The shaded regions 
represent 90% of the area under the curve where the 
probabilities are the highest. This corresponds to the 
electron being in the range of .25 to 2.75 Bohr radii of 
the proton, as seen by the projection of the red 
vertical dashed lines on the x-axis. The green dashed 
line shows that the maximum probability of finding 
the electron is now at the Bohr radius. 

The novel derivation of the fine structure constant 
suggests that the electron is oscillating among 
different types of elliptical orbits due to magnetic 
dipole interactions with the proton. These are 
designated by the dark green ellipses labelled 1, 2 and 
3 in the Graph 3 of Fig. 4. The most likely orbit is the 
light green circle that corresponds to one Bohr radius. 
In correlation with Graph 2, as areas within the red-
shaded regions in the third graph get farther away 
from the green circle, there is a decreasing probability 
for the electron to be found in those areas. This simply 
means that there is a lower probability for the 
electron to assume more and more elongated 
elliptical orbits. Note that in Graph 2, the darker 
shaded portion (electron is more than 1 Bohr radius 
away from the proton) encompasses about twice as 
much area as the lighter shaded region (electron is 
closer than 1 Bohr radius), which indicates that there 
is around twice the probability of finding the electron 
outside of 1 Bohr orbit. This is entirely consistent with 
elliptical orbits in which the nucleus sits at one of the 
loci. Most of the elliptical orbit is outside of 1 Bohr 

orbit, so the electron spends more time there, and 
thus it has a higher probability of being found there.  

All of the elliptical orbits to which the electron 
may oscillate are simulated by Graph 4 in Fig 4. Graph 
4 selects 8 different elliptical shapes from a 
representative distribution based on the radial 
distribution function in Graph 2, where they are 
indicated by horizontal lines, along with the number 
of each elliptical shape selected.  The point on the 
elliptical path where the electron is farthest from the 
proton corresponds to the right half of the radial 
distribution curve, and the point where the electron 
is closest to the proton for that elliptical shape 
corresponds to the left half of the curve. The ellipses 
in Graphs 3 and 4 have all been drawn fairly accurately 
with the nucleus placed at one of the loci.  

A ring can be discerned in Graph 4 that is centered 
on 1 Bohr radius- precisely where the radial 
distribution curve gives the maximum probability for 
the electron’s location. Thus, the novel derivation of 
the fine structure constant suggests that elliptical 
orbits cannot be peremptorily dismissed by saying 
that the electron exists in a superposition of states 
within an orbital that entirely ignores how the 
electron is moving; rather, the electron is moving in 
elliptical orbits, and the probabilities of finding it 
relate to capturing the orbit that it is in.  

Fig. 5 shows the mechanism that may determine 
the eccentricity of the elliptical shapes for the 
electron orbits. Here, the electron is orbiting the 
proton in a horizontal elliptical path in one of the 
innumerable orientations the two particles can 
achieve through the interaction of their magnetic  
dipole moments while they are precessing. The 55-
degree spin angles for the electron and proton may be  

FIG 5. Magnetic Dipole effects on elliptical orbits. The 
eccentricity of the electron’s elliptical orbit (red) in this 
orientation is being stretched into and out of the page due 
to forces imposed by the interacting magnetic dipole 
moments of the electron and proton 
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presumed to be into or out of the page for simplicity 
so that their dipole moments appear horizontal.  

There will be a strong attraction between the 
magnetic dipole moments of the electron and proton 
near the left and right portions of the electron’s path 
because the north pole of the proton (blue arrow) is 
end to end with the south pole of the electron, and 
vice versa. Midway between these areas, the 
magnetic field lines retain their orientations, and 
there will be a repulsion because the north pole of the 
electron (red arrow) is parallel and adjacent to the 
north pole of the proton. The black arrows indicate 
the forces that will increase the eccentricity of the 
elliptical path. All manner of eccentricities will result 
as the orientation of the electron’s orbit constantly 
changes, and as the electron and proton precess on 
their spin axis. 

 
 

Elliptical Orbits and Higher Energy Orbitals 
 
 

 
FIG. 6. Radial distribution curves for the 2s, 2p, and 3p 
orbitals. X-axis units are in Bohr radii. The 2p curve has a 
peak at the expected radius for an electron orbit, but no 
elliptical orbit can be visualized for p orbitals, which partially 
explains why electron orbits have been abandoned in favor 
of superposition- the electron’s path has become irrelevant. 

 
 

Fig. 6 shows radial distribution curves for higher 
energy orbitals for hydrogen. The first number in 
parenthesis in the upper row of orbital images 
denotes the shell (n), where the energy of a single 
electron is the same for all orbitals of that shell. The 
second number denotes the orbital angular 
momentum quantum number (ℓ), which historically 
proceeds according to increasing angular momentum 
in the sequence s, p, d, f, g, h, etc. The third number, 
the magnetic quantum number (mℓ), denotes the 

projection of the orbital angular momentum along a 
dimension of space in the presence of an external 
magnetic field. There are three possible 
configurations for any p orbital- the ones given in Fig. 
6 are the 2px and 3px orbitals. According to Bohr 
theory, the expected radius rn for a given shell n is 
determined from the formula rn = n2r0 , where r0 is the 
first Bohr orbit of the 1s orbital. Schrödinger’s 
equation also produces this expected radius in terms 
of the highest probability for finding the electron 
there. The 2s and the 3p orbitals have two peaks on 
their radial distribution curves, which runs afoul of 
Bohr’s theory. The single peak on the 2p curve at 4 
Bohr radii conforms to Bohr theory (22r0=4r0). This is 
where the centripetal force of the orbiting electron 
again matches the electrostatic force between the 
electron and proton, as it did with the 1s orbital. In 
fact, this will always be the case for the highest 
possible ‘ℓ’ value for a given shell. Thus, the 1s, 2p, 
3d, 4f, 5g and 6h orbitals all have a peak in the radial 
distribution curve that matches Bohr’s theory.  

What might be causing two or more peaks in the 
2s, 3p and other orbitals that do not match Bohr 
theory? These orbitals are farther away from the 
proton than at 1s, and thus, magnetic dipole 
interactions are weaker. The novel derivation of the 
fine structure constant may indicate that the electron 
is flipping between two or more orbits at different 
radii for orbitals that do not have the highest ‘ℓ’ value 
for a given shell that is farther out from the nucleus 
than the 1s shell. Here, torque on an elliptical orbit 
works towards completing a spherical orbit, but the 
orientation of the electron’s spin axis with respect to 
that of the proton reaches a configuration that makes 
the orbit unstable due to weaker dipole interactions 
for the more distant orbital, which jolts the electron 
to an elliptical orbit in the inner radius. After working 
to complete a spherical orbit in the inner radius, a 
close pass with the proton would bring the 
electrostatic force into play for jolting the accelerated 
electron back into the outer orbit.  

For example, the radial distribution curve for the 
2p orbital in Fig. 6 has a single peak for the elliptical 
orbits. But the radial distribution curve for the more 
distant 3p orbital shows peaks for both an inner and 
outer orbit for the electron. Likewise, the radial 
distribution curve for the 2s orbital also shows peaks 
for an inner and outer orbit. The discussion from the 
previous section explains the rest of the area under  
the curve, as well as the volume of the orbitals, as the 
wandering of different orientations and eccentricities 
of elliptical orbits into which magnetic dipole 
interactions force the electron.  
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FIG. 7. The novel derivation of the fine structure constant applied to p orbitals. ① The Px orbital according to quantum mechanics; 
② Its contour plot; ③ Its matching radial distribution function; ④ Representation of the Px, Py orbitals- the four lobes correspond 
to the suggested modification below it to which the arrow points. ⑤ The Px, Py,, Pz orbitals- the six lobes correspond to the 
suggested modification below it. ⑥ The Px orbital according to quantum mechanics; ⑦ Proposed correction; ⑧ Refined 
correction that considers precession of the orbiting electron to produce two lobes connected by flattened sections; ⑨ Proposed 
configuration for the modified Px, Py orbitals fit together.  The flattened section of one orbital intrudes orthogonally into the wide 
section of the other orbital. ⑩ Proposed configuration for the modified Px, Py, Pz orbitals. The flattened sections of all orbitals 
intrude orthogonally into the wide sections of another orbital. Electron paths (blue arrows) might be highly synchronized- the 
atom might operate like a fine Swiss watch as partial or total spherical shells are being traced out in different orbitals. 
 

The novel derivation of the fine structure constant 
suggests that a refinement might be needed with the 
way Schrödinger’s equation is being manipulated to 
produce orbitals. The 2p orbital is the simplest 
starting point to show what this refinement might 
produce. Frame 1 in Fig. 7 shows the two lobes of the 
2px orbital. No elliptical orbit can possibly be 
visualized with these two disconnected lobes. It 
becomes quite whimsical attempting to explain how 
an electron can get from one lobe to another when 
there is zero probability for the electron to be in the 
space between the two lobes. Since such an exercise 
conjures up similarities with attempting to explain 
how a single electron can go through two slits 
simultaneously in the two-slit experiment, elliptical  
orbits were readily dismissed in favor of 
superposition, in which the electron’s path became 
irrelevant- as with the two-slit experiment, the path 
of the electron was swallowed up by its wavefunction. 
But to reiterate, this paper proposes that collapsing 
the wavefunction to reveal the electron’s location 
amounts to capturing it in a particular orbit. As such, 
there cannot be a gap between the lobes of an orbital 
where the probability of finding an electron is zero. It 
only remains to propose a correction to the orbitals 
produced by Schrödinger’s equation where, at 

present, no elliptical path can be visualized due to 
gaps between lobes. 

The fact that the contour plot and the radial 
distribution curve for any 2p orbital (Fig. 7 Frames 2, 
3) still reproduce the most likely orbit of 4 Bohr radii 
for the electron should have been a hint that elliptical 
orbits may have been dismissed a little too hastily. The 
contour plot of Fig. 7 Frame 2 is a more detailed 
version of the orbital shown in Frame 1. The contour 
plot shows a sequence of concentric outlines, in 
which each outline, or contour, represents the same 
probability of finding the electron. The highest 
probability of finding the electron near the center of 
both lobes corresponds to the radius of an orbit in 
which the centripetal force again is equal to the 
electrostatic attraction. Since the inability for an 
electron to traverse the gap between the lobes 
presents an insurmountable obstacle to such an orbit, 
it may be worthwhile to entertain the notion that the 
two lobes might be inappropriately carved-out 
volumes of a torus in which elliptical orbits are 
possible, as shown by the progression from Frame 6 
to Frame 7 in Fig. 7.  

But the two lobes derived by throwing all manner 
of substitutions and arcane mathematical tricks at 
Schrödinger’s equation have proven amenable for 
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explaining many chemical reactions. With the novel 
derivation of the fine structure constant suggesting 
that elliptical orbits are being torqued into spherical 
orbits through dipole interactions, the progression 
from Frame 7 to Frame 8 of Fig. 7 can be conjectured 
for the Px orbital, which will retain much of the profile 
of two distinct lobes. In Frame 8, the torus has been 
flattened in two areas that are 180o apart. Fig. 8 
depicts an enlarged view of the Px orbital, with a head-
on view of the flattened section shown below it, 
which is identical to the Px orbital produced by 
Schrödinger’s equation (Fig. 7 Frame 1), except for the 
thin connection between the two lobes that is 
conspicuous in the top image of Fig. 8.  An electron 
can now freely travel between the two lobes to 
complete elliptical orbits. 

The image of the dual-lobed torus has been 
generated by Gnuplot. The code to produce the image 
may be a guide to how Schrödinger’s equation should 
be manipulated to accommodate torqued electron 
orbits that are suggested by the novel derivation of 
the fine structure constant. The crucial lines of code 
are:  

 
set parametric 
set urange[-pi:pi] 
set vrange[-pi:pi] 

     ⁞ 
set xrange [-2:2] 
set yrange [-2:2] 
set zrange [-18:18] 
splot cos(u)+1.0*cos(u)*cos(v)\ 
, sin(u)+ 1.0*sin(u)*cos(v)\ 
, abs(u)*abs(u+pi)*abs(u-pi)*sin(v). 

 
To generate the torus in Frame 7 of Fig. 7, the final 

line of the code, which controls the z-axis, only 
requires the single term ‘sin(v)’. When this term is 
multiplied by the three absolute value terms 
‘abs(u)*abs(u+pi)*abs(u-pi)’, the dual-lobed torus 
with flattened sections 180o apart is generated. The 
absolute value terms establish a line of zero-crossings 
of the XY plane that bisect the torus vertically as 
gnuplot is processing the values in ’urange’ and 
‘vrange’ from lines 2 and 3 of the code above. These 
zero crossings do not indicate zero probability for the 
electron’s location in these points. These are valid 
points defined by the zero-crossing line at which an 
electron can cross from one lobe to another. As will be 
shown, the zero-crossing line acts as a pivot around 
which different elliptical orbits may tilt to trace out a 
partial spherical shell. 

Frame 4 of Fig. 7 shows the Px and Py orbitals as 
derived by Schrödinger’s equation. Frame 9 below it 

proposes a modification to the way they fit together. 
The aspect of two lobes is retained in both the Px and 
Py orbitals by having the flat sections of one torus 
intrude into the thick portions of the other torus. 
Frame 10 shows how all three p orbitals would fit 
together in this scheme. Rather than random 
positions for the electrons, the atom may function like 
a highly synchronized Swiss watch. For example, in 
completely filled Px, Py, Pz orbitals, the total angular 
momentum is zero. The opposite spins of paired 
electrons in each dual-lobed torus cancel, and they 
orbit in opposite directions in each dual-lobed torus 
so that the angular momentum is cancelled. The 
electrons in any given orbital would cross one another 
in the wide sections of the toruses, with all electrons 

 

 
FIG. 8 Top: The novel derivation of the fine structure 
constant applied to p orbitals. Bottom: A view directly at the 
flattened section of the torus is identical to the p orbitals 
produced by Schrödinger’s equation, with the exception of 
a bridge of nonzero thickness between them. The 
incomplete spherical shell traced out by electron orbits 
being torqued to ± 61o smears their angular momentum of 
2ħ to √2ħ.  
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present in the wide sections of their respective orbital 
at that time, as shown in frame 10. All the electrons 
would then proceed in their orbit so that they would 
all arrive in the thin sections, but now any two 
electrons in a given orbital would be 180o apart.  

As mentioned, the flat sections serve as a pivot 
line for elliptical orbits being torqued into spherical 
orbits. This is illustrated in Fig. 8. According to Bohr 
theory, the orbital angular momentum of an orbiting  
electron is L=nħ. For the 2p orbital, where n=2 and 
ℓ=1, Bohr theory predicts L=2ħ for an electron 
orbiting at 4 Bohr radii, whereas Schrödinger’s 

equation predicts L=√ℓ(ℓ + 1)ħ=√2ħ for the orbital. 
Meanwhile, the 2s orbital, with ℓ=0, again winds up 
with L=0ħ according to manipulations on 
Schrödinger’s equation, whereas the novel derivation 
of the fine structure constant suggests that s orbitals 
are being smeared to zero angular momentum by 
elliptical orbits being torqued into spherical ones.  

The novel derivation of the fine structure constant 
can also be brought to bear on p orbitals to reconcile 
Bohr theory with Schrödinger’s equation. Fig. 8 shows 
an electron orbiting at 4 Bohr radii within the p 
orbital, with an angular momentum of 2ħ. The arc 
labelled ‘1’ represents magnetic dipole interactions 
between the electron and proton producing torque to 
trace out a spherical shell. But because the electron is 
farther away from the proton in the 2p orbital, the 
electron arrives at an orientation and precession 
angle with the proton where magnetic dipole 
interactions weaken. At a tilt angle of +61o, the torque 
reverses to trace out the arc labelled ‘2’.  As the tilt 
angle approaches -61o, the torque again weakens, and 
then reverses to repeat the process. Only a partial 
spherical shell is traced out, which smears the angular 
momentum of 2ħ for a single electron orbit to √2ħ, 
according to Schrödinger’s equation. But only integral 
multiples of 1ħ for angular momentum can be 
detected in our three-dimensional universe. In the 
presence of an external magnetic field, the partial 
spherical shell assumes an angle that will force 1ħ to 
become manifest as a component of √2ħ along the 
direction of the magnetic field. Where the electron 
assumed a spin angle of 55o in the presence of a 
magnetic field, the p orbital assumes an angle of 
either 45o or 90o to produce 1ħ or 0ħ, respectively, so 
that the magnetic quantum number (mℓ) is 1 or 0. 

In effect, the formula derived from Schrödinger’s 

equation, L=√ℓ(ℓ+ 1)ħ, is essentially a smearing 
factor that reduces the angular momentum nħ of a 
single electron orbit as it is being torqued into a 
spherical shell by magnetic dipole interactions 

between the electron and the proton, as suggested by 
the novel derivation of the fine structure constant. 
For the s shell, the smearing factor reduces the 
angular momentum to zero as a complete 360o shell 
is traced out. For the p shell, only a 122o shell is traced 
out- the angular momentum is not smeared out to 
zero. For the d, f and higher order shells, the electron 
is farther and farther away from the proton, and 
dipole interactions become weaker and weaker- the 
torque peters out earlier to produce smaller and 
smaller partial shells. The smearing factor 

L=√ℓ(ℓ + 1)ħ approaches L=nħ for the largest ℓ value 
in a higher order shell- the angular momentum of a 
single electron orbit. For lower ℓ values in higher 
order shells, the electron is toggling between two or 
more orbits. As with the s orbital, the expanse of the 
p orbital simply defines the extent of eccentricity of 
elliptical orbits. If an electron is located near the outer 
perimeter of one lobe, its orbit has an extreme 
eccentricity that will carry it near the inner perimeter 
of the other lobe close to where the two lobes are 
bridged. 

The ±61o angle through which electron orbits are 
torqued into partial spherical shells for 2p orbitals has 
been derived by setting the average value for the 
angular momentum vector in Fig. 8 equal to √2ħ, 
given that the angular momentum for an orbiting 
electron at 4 Bohr Radii is 2ħ. The equation for finding 
the average value of a function is: 

 
 

1

b−a
 ∫ f(x)dx
b

a
,  

 
 
where the integration of f(x)=2ħcos(x) will give the 
average magnitude of the component of the orbiting 
electron’s angular momentum in the direction of the 
angular momentum vector in Fig 8.   

By symmetry, the value of the orbital angular 
momentum vector in Fig. 8 in that orientation will be 
the same whether electron orbits are torqued from 
+61o to -61o, or from the horizontal position at the 
starting position of 0o for arc 1 to the terminal 
position at +61o. So, a=0 and b=61o will be used in the 
equation above. Since the torque wanes as ±61o is 
approached, the electron spends more time orbiting 
near those orientation angles, and moves through the 
horizontal position more rapidly. This must be 
considered in finding the average value; otherwise it 
will be overstated. Thus, simple harmonic motion 
(SHM) will be applied to the shifting of the electron 
orbits to produce a partial spherical shell. The range 
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of the SHM will be taken from a=0o to b=+61o, where 
‘b’ will now be the unknown variable (in radians) 
whose value is to be determined. The SHM function is 
then: 

 
 

cos [
π

2b
] θ. 

 
The function will be at a maximum at θ=0, and a 
minimum at θ=b. The magnitude of the velocity of the 
SHM function is: 
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This function will be at a maximum at θ=b, and a 

minimum at θ=0, which will emphasize the angles 
near ‘b’ where the electron orbits within the p orbital 
linger longer, and deemphasize the angles near the 
horizontal position where the orbits shift more 
rapidly. This SHM velocity function will modulate the 
f(x)=2ħcos(x) function for the angular momentum by 
multiplying it. The angle derived for ‘b’ can only be 
considered an estimate because the SHM velocity 
function may not be the most refined way to deal with 
the way electron orbits are being shifted at varying 
rates- much more complex modeling with precessing 
magnetic dipoles is required. So, this derivation is an 
initial, tentative attempt to determine the extent of 
the partial spherical shell traced out by orbiting 
electrons in the p orbital to within a few degrees. The 
average value function is then: 

 
  

1

b − a
 ∫ f(x)dx

b

a

=
1

b
∫ [

π

2b
sin (

π

2b
) θ] 2ħcosθ dθ = √2ħ

b

0

  

 
The coefficient ‘2ħ’ in front of the cosine function 

represents the angular momentum of an electron 
orbiting at 4 Bohr Radii for the p orbital. The average 
value of the angular momentum as the orbit traces 
out a partial spherical shell has been set to √2ħ, as 

predicted by L=√ℓ(ℓ+ 1)ħ = √1(1 + 1)ħ = √2ħ. The 
equation will be solved for ‘b’- the maximum angle of 
the tilted electron orbits as a partial spherical shell is 
traced out. 

The first step is use half-angle formulas to simplify 
the integration, with ‘ħ’ cancelling from both sides: 
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b=1.065 radians = 61o is the graphical solution. 
 

So, the magnitude of the orbital angular 
momentum vector shown in Fig . 8 will be √2ħ=1.414ħ 
when electron orbits with a magnitude of 2ħ are 
swept through an angle of ±61o to trace out a partial 
spherical shell for the p orbital. Without considering 
SHM, the magnitude would be 1.64ħ for a sweep 
angle of ±61o, which overstates 1.414ħ by 16%. And if 
the sweep angle were derived without considering 
SHM, it would be ±79.7o. So, a sweep angle of ±61o is 
an entirely reasonable estimate in considering the 
waning, and then reversing torque on electron orbits 
as the terminal angle is approached. Moreover, a 
sweep angle of ±61o conforms nicely to the maximum 
extent of the contours of the dual-lobed torus 
presented in Fig. 8 that can be taken to represent the 
volume within which there is a 99% probability of 
finding the electron. 

Thus far, the novel derivation of the fine structure 
constant has been applied to a single electron 
occupying a p orbital, in which the orbital angular 
momentum is 1ħ- the average angular momentum 
vector of the partial spherical shell (√2ħ) assumes an 
angle of 45o in the presence of an external magnetic 
field, which entails the p orbital orienting itself at 45o. 
The spin angular momentum of the electron (1/2ħ) is 
opposite to its orbital angular momentum, which 
results in a total angular momentum of 1/2ħ. As 
mentioned, when the Px, Py, Pz orbitals are filled with 
six electrons, the total angular momentum is zero, 
owing to the opposite spins of paired electrons in 
each orbital cancelling, and the opposite orbits in 
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each orbital cancelling. The novel derivation of the 
fine structure constant must account for the total 
angular momentum of any number of electrons in the 
p orbitals. The spins, orbital angular momenta and 
total angular momenta of atoms is designated by 
2S+1LJ, where ‘S’ is the total spin, ‘L’ is the total orbital 
angular momentum given in the s, p, d convention,  
and ‘j’ is the total angular momentum consisting of 
both spin and orbital motion. The angular momenta 
of the p orbitals are designated as follows: 
        
      
        P1 = 2P1/2         P3 = 4S3/2       P5 = 2P3/2 

        P2 = 3P0         P4 = 3P2          P6 = 1S0 

 
 

These angular momenta values are identical 
regardless of the shell- 2p, 3p, 4p, etc. Thus, the total 
spins and total angular momenta of the carbon atom 
(2p)2 are identical to those of silicon (3p)2 and 
germanium (4p)2. The p1 (one electron present in the 
p orbitals) and p6 (p orbitals fully filled with six 
electrons) configurations have already been 

characterized. For p5, the unpaired electron has a spin 
of ½ħ- thus 2S+1=2 for the superscript.  Four of the 
electrons fill two p orbitals, and each pair of electrons 
in the filled orbitals are orbiting in opposite directions. 
This leaves the unpaired electron in the third orbital 
with an orbital angular momentum of 1ħ, which is 
designated by the ‘P’. The total angular momentum 
of 3/2 (spin and orbital motion) in the subscript 
indicates that the unpaired electron is spinning in the 
same direction in which it is orbiting. This is in 
contrast with the p1 orbital, where the lone electron 
is spinning in an opposite direction from its orbit. 
These orientations have been characterized by 
Hund’s rules. 

The orbital angular momenta of the P2, P3 and P4 
orbitals clearly suggest electron orbits that are tilted 
with respect to one another. Otherwise, how can the 
two electrons of the P2 configuration produce an 
angular momentum of 1ħ, or the three electrons of   
the P3 configuration produce 0ħ? The novel derivation 
of the fine structure constant guides the way to a 
resolution. The middle diagram of Fig. 9 reproduces 
the dual-lobed toruses of the three p orbitals fit

 FIG. 9. Explaining the angular momenta of p orbitals in terms of the novel derivation of the fine structure constant. Center image: 
the three dual-lobed toruses of the Px, Py,, Pz orbitals. Right image: the colored arcs represent the oscillating, 122o paths of the 
angular momentum vectors traced out by each p orbital of matching color, with the midpoints of the arcs corresponding with the 
middle electron orbit depicted in Fig. 8 that starts arc 1. For nitrogen, the three electrons are locked into distinct elliptical orbits 
whose angular momentum vectors are offset 45o from the center position of the arcs they otherwise would trace out. This 
establishes 120o between the vectors to cancel the orbital angular momentum to zero. Left image: the elliptical orbits of the two 
outer electrons of carbon in two different p orbitals are locked into the range of oscillation indicated to maintain an angle of 138o 

between their angular momentum vectors. With each elliptical orbit producing an angular momentum of 2ħ, the 138o angle 

between the two vectors results in an average orbital angular momentum of √2ħ, whose vector assumes an angle of 45o in the 
presence of an external magnetic field to produce 1ħ, which rotates the two p orbitals accordingly. For oxygen, there is a filled p 
orbital whose two electrons orbit in opposite directions so that their angular momenta cancel. The orbital angular momentum 
vectors of the remaining two electrons in two different p orbitals assume the range of oscillation shown that is identical to carbon. 



16 
 

together. This will assist with visualizing the angular 
momentum vectors that are traced out due to 
interacting dipole moments between the electrons 
and the nucleus that torque elliptical orbits into 
partial spherical shells according to Fig. 8. 

The right image of Fig. 9 shows the paths of all 
three angular momentum vectors as 122o arcs (±61o 
sweep angles), whose colors matches the colors of 
the dual-lobed toruses in the middle diagram that 
generate them. Dashed lines indicate the midpoints 
of the 122o arcs, which represent the middle orbit 
that starts arc 1 in Fig. 8. The right image of Fig. 9 
proposes a resolution to the 4S3/2 state of the p3 
configuration, in which the ‘S’ designates zero total 
orbital angular momentum. The only way to get three 
equal vectors to cancel is if they are oriented at 120o 
from one another in the same plane. This orientation 
will be achieved if the orbital angular momentum 
vectors generated by each of the three orbiting 
electrons is offset 45o from the midpoint of each arc, 
as shown.  

For the p3 configuration, there is a lone electron in 
each Px, Py and Pz orbital whose angular momentum 
vectors are ordinarily capable of tracing out a 122o arc 
as their elliptical orbits are torqued into partial 
spherical shells. But in the p3 configuration, each 
elliptical orbit is fixed in a plane whose orbital angular 
momentum vector forms an angle of 120o with the 
vectors of the other two orbiting electrons. The 
constraint of limiting the orbital angular momentum 
that is manifest in our three-dimensional universe to 
integral multiple of ħ overwhelms the torquing force 
that transforms elliptical orbits into spherical orbits. 
But the eccentricities of the elliptical orbits can all 
change simultaneously, as long as the total orbital 
angular momentum cancels out to zero. With the 
orbital angular momentum being zero (S), the spins of 
the three electrons are all parallel to produce a total 
spin of 3/2 in the subscript, and 2(3/2)+1=4 for the 
superscript. 

It only remains to invoke the novel derivation of 
the fine structure constant to resolve the p2 and p4 

configurations. The p2 configuration has two electrons 
in two different p orbitals, given as Px and Py in the left 
image of Fig. 9. The p4 configuration has one p orbital 
filled with two electrons, whose opposite orbits and 
spins cancel their total angular momentum to zero. 
The remaining two electrons are in two different 
orbitals, which results in the same situation as the p2 
configuration. If the orbital angular momentum 
vectors of the two unpaired electrons in the p2 and p4 

configuration are 138.6o apart, their magnitudes of 2ħ 
will combine to produce √2ħ, whose vector will again 

assume an angle of 45o in the presence of an external 
magnetic field to manifest as 1ħ in our three-
dimensional universe- the p orbitals will wind up 
orienting themselves at a 45o angle as they take the 
vector with them.  

The 138.6o angle is readily derived by applying the 
law of cosines to a triangle with two legs of length 2ħ, 
and the third leg of length √2ħ. The orbital angular 
momentum vectors for the two electrons are 138.6o 
apart if the one for the Py electron points at the 
midpoint of its arc, and the one for the Px electron is 
offset -48.6o from its midpoint. Spherical coordinates 
will show that Px can then stray to its limit of -61o, 
while Py can stray to either +31o or -31o in a nonlinear 
fashion to maintain 138.6o between the two vectors. 
With the total orbital angular momentum assuming 
1ħ (P) along one dimension of space, the two 
unpaired electrons in two different p orbitals have 
parallel spins to produce 2(1)+1=3 in the superscript. 
For p2, the spins are opposite to the orbital angular 
momentum to yield 0 for the subscript; while the 
spins and orbital angular momentum are in the same 
direction for p4 to yield 2 in the subscript. 

 
 

Conclusion 
 
 

Schrödinger’s equation yielded a number of 
important, seminal insights into the behavior of the 
quantum world, and it corrects several false results of 
Bohr theory. But the novel derivation of the fine 
structure constant suggests that spin precession is a 
mechanism that has been leapfrogged in 
manipulating Schrödinger’s equation to produce 
electron orbitals. This paper has proposed that the 
integration of this mechanism entails preserving 
elliptical orbits for the electron in deriving the shapes 
of orbitals. The 1s orbital can be explained by 
imposing its radial distribution curve on various 
eccentricities of elliptical orbits. Higher energy s 
orbitals, as well as orbitals with more than one peak 
in their radial distribution curve, may involve the 
elliptical path of the electron being jolted into 
different radial orbits. Because s orbitals trace out 
complete shells, their orbital angular momentum is 
smeared out to zero. P orbitals, with angular 
momentum L=√2ħ, as well as orbitals with greater 
angular momentum, may require an adjustment to 
their shapes. This paper has proposed that their 
cross-sections may actually be those of dual-lobed 
toruses. The spin and orbital angular momenta of all 
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the p configurations have been explained in terms of 
the novel derivation of the fine structure constant 
that implies that elliptical orbits are being torqued 
into partial spherical orbits through dipole 
interactions between electrons and the nucleus. The 
d, f and higher order orbitals should likewise be 
amenable to being explained by bringing the novel 
derivation of the fine structure constant into play. 

This derivation has been referred to as “novel” in 
this paper simply because it is unique and new, but it 
may be the true source of the fine structure constant: 

1/α=√fe/fL=137. The ratio between fe (the rotation 

rate of the electron in the first Bohr orbit) and fL (the 
Larmor precession rate of the electron in the first 
Bohr orbit) is the relationship that permits electrons 
to orbit nuclei in repeatable, organized patterns. The 
inverse of this ratio (α) is found in a variety of 
equations that describe the quantum world, as is the 
square root of this ratio as well as other powers of α. 

The fine structure constant has fascinated 
physicists because it implies the existence of 
consciousness that predates the Big Bang, in which 
the most crucial constants of physics appear to have 
been fine-tuned to permit life to emerge. The novel 
derivation of the fine structure constant suggests that 
establishing a precise ratio between the precession 
rate of electrons and their rotation rate around the 
nucleus to torque elliptical orbits into spherical ones 
through dipole interactions is a key consideration for 
allowing atoms to assume organized, repeatable 
patterns of electrons to enable chemical reactions to 
proceed in a consistent manner that would lead to 
the construction of biomolecules. Otherwise, there 
might be disorganized swarms of electrons in which 
atoms with the same number of electrons undergo 
dissimilar, random chemical reactions to build up 
matter in a haphazard fashion that would make the 
emergence of life impossible. 

Once the value of the fine structure constant is set 
to enable electrons to assume organized, repeatable 
patterns of spherical orbits around nuclei, atoms may 
operate like fine Swiss watches. Partial or complete 
spherical shells may be traced out in all the orbitals in 
a highly synchronized manner, with electrons passing 
one another in a precisely timed scheme. Quantum 
mechanics may be retracing the deliberations and 
steps of pre-Big Bang consciousness in dealing with 
the intricacies and complications of opening up three-
dimensions of space into which life can be made to 
emerge, where before there may only have been one 
or more dimensions of time. But, as the novel 

derivation of the fine structure constant suggests, 
quantum mechanics has missed a few steps.  

While the proposed source of the fine structure 
constant can fully explain orbitals, why are they also 
manifest as wavefunctions? Having tweaked the 
crucial constants of physics that determine the value 
of the fine structure constant so that repeatable 
organized atoms will permit life to emerge, the atoms 
can be left to run on their own- their wavefunctions 
take over. The two electrons of any one of the three 
p orbitals are proposed in this paper to cross one 
another in the wide portions of the dual-lobed torus 
in operating like the components of a fine Swiss 
watch, whereas only a single electron is ever present 
in one of the thin portions. Thus, there is twice the 
probability of finding an electron somewhere in one 
of the wide portions while electrons are crossing 
there. Furthermore, the electron can only cross the 
lobes along a line of near-zero thickness. This may 
have the effect of the wavefunction deemphasizing 
the thin portions to the extent that two separate 
lobes result in the way that p orbitals are derived from 
Schrödinger’s equation.  

The novel derivation of the fine structure constant 
may then only apply to orbitals once their 
wavefunction has collapsed, which reveals electrons 
operating like the components of a fine, highly 
synchronized Swiss watch. A variety of ideas about 
how the wavefunction and its collapse relate to 
reality have been proposed, such as the Copenhagen 
interpretation and the many-worlds interpretation. 
The basic premise of the Copenhagen interpretation 
is that all reality is essentially in an undefined state- a 
wavefunction- until it is observed. The moon, for 
example, does not exist until you look at it, which 
collapses its wavefunction. The many-worlds 
interpretations holds that there are a near-infinite 
number of universes in coexistence that diverge with 
each wavefunction collapse. The role of 
consciousness is paramount in the Copenhagen 
interpretation, and rendered insignificant in the 
many-worlds interpretation.  

Since the novel derivation of the fine structure 
constant strongly implies that it was fine-tuned by 
pre-Big Bang consciousness before any universe came 
into existence, the many-worlds interpretation- which 
would have to include universes where the fine 
structure constant had many different values- is ruled 
out. Indeed, it would be quite dejecting for pre-Big 
Bang consciousness to have managed to devise a 
three-dimensional universe that permitted life to 
emerge after an undoubtedly gargantuan and 
unimaginably complex effort, when a lab assistant can 
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cause a new universe to become manifest simply by 
flipping a switch on a tabletop lab experiment that 
permits detecting which of two slits an electron went 
through. 

The novel derivation of the fine structure constant 
leads to yet another proposal for reconciling 
wavefunctions with reality. Once life emerges, only 
those aspects of our three-dimensional universe that 
are directly perceptible to life need to have their 
wavefunctions collapsed. There are inadequate 
conscious resources available to pre-Big Bang 
consciousness for collapsing the wavefunctions of all 
the quantum particles in our universe. The vast bulk 
of them will never be detected by the consciousness 
that is projected to life anyway, so they can remain as 
wavefunctions. These intact wavefunctions can then 
be likened to subconscious processes- they only 
intrude into consciousness when absolutely 
necessary, otherwise, consciousness becomes 
overloaded and disordered. 

As an everyday example of a subconscious process 
intruding into consciousness, one might feel an 
unusual sense of something special associated with a 
store sign that was passed while driving a car through 
town. After a few seconds of struggling to discern the 
significance, a memory is sparked of having 
researched the internet a few weeks before for a 
product that was needed- it was only available at that 
store. The Copenhagen interpretation would allow 
for two outcomes. The driver decides to execute one 
them by making a U-turn and parking in the store’s 
parking lot to purchase the product. A new universe 
would not have become manifest if the driver had 
failed to recall the memory of researching the 
internet and had executed the other outcome of 
continuing to drive through town. Subconscious 
processes determined the greater part of that 
outcome, not conscious ones. Whether conscious 
processes and/or unconscious processes in living 
creatures are somehow linked with pre-Big Bang 
consciousness to cause wavefunction collapse is an 
intractable question far beyond what can be tested, 
since not the slightest progress has been made in 
characterizing the origin of consciousness itself. 

All that can be done is to grope for phenomena 
that characterize the origin of tangible things and 
apply them to consciousness. Since a successful 
theory often explains and connects various, 
seemingly unrelated mysteries, a theory of the origin 
of consciousness might show promise if it exhibits this 
trait. In our universe, tangible things originate as 
opposite pairs. A positron will always accompany an 
electron when it emerges from a high energy photon; 

an antiproton will always accompany a proton; and an 
antineutron will always accompany a neutron. Does 
consciousness originate as an opposite pair? Such a 
premise would connect a variety of seemingly 
unrelated mysteries. It would explain the coexistence 
of the opposite forces of love and evil that humans 
have always been deeply familiar with, but that have 
been mischaracterized as good and evil- “good” is too 
general a term to apply to the modulation of 
consciousness that “evil” or “love” refer to directly in 
their polar opposite effects. The emergence of 
consciousness as an opposite pair would also explain 
the coexistence of two brain hemispheres in all 
evolved living creatures that operate as separate 
systems- the elucidation of which has otherwise thus 
far been entirely inadequate. Since consciousness 
cannot be found in the brain, each of the two brains 
must function as a sort of transceiver between life 
and consciousness.  

It seems that once life has been made to emerge 
by forcing electrons to assume repeatable, organized 
patterns around nuclei through the precise 
calibration of the fine structure constant, the 
opposite twins that become manifest as a condition 
of the origin of consciousness must both be 
separately accommodated when they are projected 
to brains to experience an equal share in the new 
mode of existence. Thus is explained the duality of 
man- equally capable of acts of love and acts of evil. 
And thus is resolved the philosophical and religious 
conundrum of why an omnipotent “god” of love 
permits evil on our planet.  

Love and evil are the equal, countervailing forces 
that constitute the emergence of consciousness as an 
opposite pair- a theory that shows promise by 
fulfilling the condition of resolving a variety of other 
mysteries. This theory might represent the first, real 
progress in explaining consciousness, as well as the 
motivation behind the construction of our three-
dimensional universe as an escape from the 
undoubtedly sensory-deprived regime where 
consciousness emerged as an opposite pair under 
constant threat of mutually annihilation- like particle-
antiparticle pairs. The novel derivation of the fine 
structure constant that fine-tuned the properties of 
the most crucial constants of physics to permit 
electrons to orbit in organized, repeatable patterns in 
order for life to emerge would then have been the key 
to engineering the escape. 
 


