GEOCHEMICAL ASSESSMENT REPORT on the VICTOR LAKE RARE EARTH PROJECT REVELSTOKE MINING DIVISION MONASHEE COMPLEX TRANSCANADA HIGHWAY; REVELSTOKE AREA 50°58'06"N by 118°22'23"W UTM 5645177N BY 402752E NTS 82L/16W (82L.099) Event #5857075

For

Homegold Resources Ltd. Unit 5 – 2330 Tyner Street Port Coquitlam, BC V3C 2Z1

By

J. T Shearer, M.Sc., P.Geo. (BC & Ontario) FSEG Supervisor #835903 Claim Owner

December 20, 2021

Fieldwork completed between April 1, 2021 and December 20, 2021

TABLE OF CONTENTS

SUMMARY		iii
INTRODUCTION		1
LOCATION and ACCESS	j	3
PROPERTY		6
HISTORY		7
REGIONAL GEOLOGY		
PROPERTY GEOLOGY,	MINERALIZATION	
EXPLORATION 2021		
CONCLUSIONS and REG	COMMENDATIONS	
REFERENCES		
APPENDICES		
Appendix I	Statement of Qualifications	
Appendix II	Statement of Costs	
Appendix III	Sample Descriptions	
Appendix IV	Analytical Results	

FIGURES

<u>p</u>	age
FIGURE 1 Location Map	.2
FIGURE 2 Claim Map	.4
FIGURE 2a Claim Map Detail	.5
FIGURE 3 Sketch Map Sample Locations 2019	.8
FIGURE 4a Sample Locations and Assay Results 2019	.9
FIGURE 4b Sample Locations and Assay Results 2019	10
FIGURE 5 Regional Geology and General Location	14
FIGURE 6 Regional Geology	15
FIGURE 7 Google Map Overview of Waypoints/Sample Locations	16
FIGURE 8a Sample Locations and Results	18
FIGURE 8b Sample Locations and Results	19
FIGURE 8c Sample Locations and Results	20

TABLES

		page
TABLE I	List of Claims	5
TABLE II	Cost Estimate for Proposed Exploration	.21

PHOTOS

PHOTO 1	View of Highway at Victor Lake1

<u>page</u>

SUMMARY

The Victor Lake claims are situated approximately sixteen kilometers west-southwest of the City of Revelstoke in the Province of British Columbia. These claims are underlain by predominately gneissic rocks of the Shuswap Metamorphic Assemblage. Locally pegmatites, and occasional carbonatites intrude these high grade metamorphic rocks. Aside from some government work focused on the carbonatites, more recently Rare Earth Element exploration has been completed.

A short program of rock sampling was undertaken on the property in 2019 and 2021. This program was designed to verify anomalous silica and tantalum values obtained previously from a carbonatite by government geologists, and to determine if carbonatites here may have a soil or stream sediment geochemical signature that may be used locally to search for buried mineralized carbonatites.

At the Three G's Showing, X-ray diffraction studies identified graphite, quartz, pyrrhotite, pyrite, and annite and siderophyllite which are trioctahedral micas of ideal composition. Geochemical analysis also yielded 271,000 parts per million lanthanum, 272 parts per million praseodymium, 825 parts per million neodymium, 83 parts per million samarium, 40 parts per million gadolinium, 6 parts per million dysprosium and 596 parts per million thorium (Thomas, 1991).

Sample Victor Lake 2 is a coarse crystalline pegmatite with accessory brown garnet and calc-silicates which assayed 8.18% K. Similarly, sample 3VV20 assayed 10.9% K.

Most of the other samples collected were variable rusty biotite K-spar/silica gneiss.

Samples 3VV20 to 3VV38 are located in the southern part of the claim group. Silica is very high, up to 28.87 (sample 3VV37) but most of the southern samples are below 5%K.

Respectfully submitted

J. T. (Jo) Shearer, M.Sc., P.Geo. (BC & Ontario) FSEG Supervisor 835903

INTRODUCTION

The Victor Lake Property is located along the TransCanada Highway a short distance west of Revelstoke, BC.

The area is prospective for high-grade silica as well as Ta/Nb and REES.

The current work program focussed on the geochemistry of rock samples along the highway and south of the highway.

Photo 1 View of Highway at Victor Lake

LOCATION and ACCESS

The area of interest on the property is roughly centered at UTM coordinates 401967E 5642873N, or 50° 55' 45" North latitude, and 118° 23' 42" West longitude, and is approximately sixteen kilometers west-southwest of the city of Revelstoke B.C., in the Columbia - Shuswap district of British Columbia (Figure 1). The property is located in the Monashee Range of the Selkirk Mountains, and is displayed on NTS map 82L/16W, or Trim maps 082L098, and 082L099.

Access

Access to the property is excellent, along Trans Canada Hwy 1 to the west from Revelstoke, turning southward up the Victor Lake FSR, which intersects the highway approximately 1 km to the east of the 3 Valley Gap Resort. This well maintained forestry road runs through the property, with access to various points via the numerous side roads/skid trails in the area. The area of the main carbonatite showings under the powerline is approximately 8.4 road kms from the junction of highway 1.

Physiography

The property is located in steep mountainous country on a northerly spur of Mt English. The area of the work reported herein is best classified as montane forest, although the claim block does extend into sub-alpine to alpine terrain to the south. The highest elevation on the claims is in the order of 1670 m's A.S.L. in the southeast of the block, while the lowest point is in the Valley just above the Trans Canada Highway at approximately 730 m's A.S.L.

The forest cover in the claim area is predominantly coniferous with Cedar, Spruce, Hemlock, and Balsam being the most prevalent species. Alder and devils club can be quite thick locally especially in drainages.

The climate of the area is typified as being moderate with warm rainy summers and cool winters when a great deal of precipitation may occur in the form of snowfall. The property is within the Wet Interior bioclimatic zone, where winter typically extends from November into early April. The property has a predominately northerly aspect, and would typically be snow free from late May until mid October, although this may vary depending on yearly conditions.

Figure 2 Claim Map

5 Summary on the Victor Lake Property December 20, 2021

PROPERTY

As shown in Figure 2, the property consists of 5 claims, covering 1,587.9 hectares (3,923.79 acres). All of the claims are presently in good standing, and the pertinent data is provided in the Table below.

Name	Name Tenure # Ar		Issue Date	Current Expiry Date*	Registered Owner						
Victor Lake 1	1059526	183.23	March 23, 2018	September 23, 2023	J. T. Shearer						
Victor Lake 2	1059527	203.50	March 23, 2018	September 23, 2022	J. T. Shearer						
Victor Lake 3	1065323	305.34	December 27, 2018	December 27, 2022	J. T. Shearer						
Victor Lake 4	1081741	610.99	March 19, 2021	September 19, 2022	J. T. Shearer						
Victor Lake 5	1081750	285.07	March 20, 2021	September 20, 2022	J. T. Shearer						

TABLE I - MINERAL CLAIMS – Victor Lake PROPERTY

Total 1588.13ha

*by assessment work contained in this report

Cash may be paid in lieu if no work is performed. Following revisions to the Mineral Tenures Act on July 1, 2012, claims bear the burden of \$5 per hectare for the initial two years, \$10 per hectare for year three and four, \$15 per hectare for year five and six and \$20 per hectare each year thereafter.

HISTORY

The first recorded work in the general area was performed by Versatile Mining Services for W.J. Worrall in 1970 when they performed geochemical, geological and geophysical investigations on the NIN claims, in the search for Copper/Molybdenum/Zinc mineralization.

It is unknown when carbonatites were recognized in the area, but the first mention of work on this occurrence type on the property is in government literature in 1979. During the 80's & 90's Jennifer Pell visited the property. In 2011 Aspiration Mining Ltd. conducted a program of scintillometer prospecting, rock, and stream sediment sampling in the claim area, in the search for rare earth element mineralization. Sampling did encounter anomalous levels of REE's and the recommendation was made to return to the property to conduct further investigations.

In September 2015 preliminary examinations were conducted and access and other logistics were investigated. During the course of the program 11 "B" Horizon grid soil samples were taken in the area of the showings in the vicinity of the high tension power line. A further 3 orientation soils, and 11 till samples were taken with the claim block outside of the power line zone, and four stream sediment samples were taken during the course of the investigation. All samples were submitted to Bureau Veritas prep lab in Elko, Nevada and eventually analyzed in their facility in Vancouver.

Work Program 2019

A total of 20 rock specimens were collected by hammer and put in sample bags from outcrop on the property accessible from Highway #1 (see Figure 5, sample locations).

Assays were conducted by using an XRF Unit factory calibrated (Cert No. 0154-0557-1) on October 30, 2013, Instrument #540557 Type Olympus DPO-2000 Delta Premium. The instrument was calibrated using Alloy Certified reference materials by ARM1 and NIS5 standards. Only certified operators were employed and that were experienced in XRF assay procedures. Read times were 120 seconds or greater on selected samples from the specimens collected on the field.

Results are shown on Figure 6 and Appendix III. Assay results can be subdivided into very high silica (samples V-1, V-8, V-14, V-15, V-17, V-18 and V-20) which vary between 18.91 to 27.31% Si. Regional Mapping indicate Minfile #82LNE016:

"pure, coarsely crystalline quartzite is common among strata of the Precambrian-Paleozoic(?) Monashee Complex. These rocks are free from iron-bearing minerals, appear translucent white in hand specimen, and are so homogeneous as to be almost devoid of internal bedding or lamination. Such quartzite may be a potential source of silica for industrial uses where a high degree of purity is demanded. Near Clanwilliam Lake, relatively pure quartzites occur."

Another subset is mafic-rich gneissic rocks which are high in (Fe) iron (samples V-2 V-3, V-4, V-5, V-7 and V-10. Assays range from 7.14% Fe to 15% Fe.

The rest of the specimens are intermediate in Si and Fe and correspond to unaltered biotite gneiss and micaceous schist.

Interestingly, higher copper occurs in samples V-1, V-2,V-3, V-5, V-6, V-9, V-10 and V-11 and range between 55ppm and 384ppm which correlate with the mainly iron rich samples

In Pell's 1987 publication three samples were taken from carbonatites from this area. One of these samples came back strongly anomalous for Tantalum, returning 109 ppm Ta. Niobium was not analyzed. As this value is approaching those found in economically viable deposits it was determined that the area is a prime target for the search for economic Ta – Nb mineralization. Three samples of carbonatite, or carbonatite related mineralization

were taken in 1987, and the strongest response for Ta came from a Fenite – returning 25.8 ppm Ta, while the best response for Nb came from a carbonatite nearby – returning 237.8 ppm Nb. Previously a number of soils, or basal till samples were taken here at varying locations that were not particularly mineralized, however their density was so sparse, and little known about local geological conditions that not much can be said about them. This previous sample immediately above the carbonatite came back with a Ta value (55.6 ppm) more than double that seen in the rock samples.

Figure 3 Sketch Map Sample Locations 2019

Figure 4a Sample Locations and Assay Results East Side 2019

Figure 4b Sample Locations and Assay Results West Side 2019

REGIONAL GEOLOGY

The Victor Lake property is situated within the Omineca Crystalline Belt. This belt along with the Foreland Thrust Belt to the east, the Intermontane Belt immediately to the west, the Coast and Insular belts further outboard make up the five distinct morphogeolgical provinces which comprise the Canadian Cordillera. The Omineca Crystalline Belt is best typified as being an area of extensive tectonic uplift which is underlain by metamorphosed miogeoclinal rocks, with local rocks which were formed in island arc settings, and subsequently accreted to the margin of the ancestral North American Craton during the Jurassic era. The property is situated at the northern culmination of the Thor-Odin Gneiss dome of the Shuswap Metamorphic Complex.

PROPERTY GEOLOGY AND MINERALIZATION

The property has not been mapped in detail to date, however it appears that it is predominately underlain by higher grade metamorphic rocks of gneissic affinity – typically quartz/feldspar/biotite gneiss that occasionally include accessory minerals such as garnet, and graphite. These are occasionally cut by pegmatitic, and carbonatite dykes or lenses locally.

In her 1984 Report Pell wrote, "Carbonatites are found along the Victor Lake main logging road, 3 kilometres east of Three Valley Gap, between 900 and 1500 metres in elevation. Outcrop is limited to logging road cuts; therefore these carbonatites have not been mapped in detail. They occur as bedding parallel lenses in Hadrynian metasedimentary rocks. Both the carbonatites and host rocks have been metamorphosed to upper amphibolite grade (sillimanite zone) and the metasedimentary rocks have been extensively migmatized. The carbonatites are primarily composed of calcite, biotite, amphibole, and apatite. In places they contain feldspathic lenses similar to migmatitic leucosome. All display a well-defined biotite foliation. Amphibole-rich fenite, which locally contains zircons, separates the carbonatites from adjacent rocks. Coarse sphene crystals are developed in the pegmatites where they are adjacent to carbonatites."

Locally, carbonatites and syenites occur as thin, discontinuous, bedding-parallel lenses in pelitic metasedimentary rocks. Both the intrusions and the host rocks have been metamorphosed to upper amphibolite facies (sillimanite zone) and the pelites have been extensively migmatized. Carbonatite lenses are generally 20 to 60 centimetres in width and have 10 to 30- centimetre thick envelopes of mafic fenites developed between them and adjacent rocks. Everywhere observed, the fenites are in direct contact with, and gradational to, syenites. Commonly the carbonatite occurs as lenses within the fenite.

The carbonatites are primarily composed of calcite, biotite, apatite, perthite, hornblende, augite and traces of sphene. Fenites generally contain abundant augite, hornblende, calcite, scapolite and plagioclase. The leucosyenites generally contain potassium feldspar, plagioclase, augite and sphene. The origin of the leucosyenites is unclear; unambiguous field relationships are not exposed. These syenites may actually be syenitic fenites, rather than intrusive phases.

In 2010, a rock sample (KP 03-08) of a quartz-feldspar-biotite pegmatite with in a biotite gneiss assayed 0.024 per cent lanthanum, 0.016 per cent neodymium and 0.044 per cent caesium (Assessment Report 32017). In 2015, rock sampling yielded up to 0.045 per cent caesium, 0.025 per cent lanthanum, 0.024 per cent niobium and 0.017 per cent rubidium (Assessment Report 35910).

During the period June 1, 2010 to October 25, 2010, an exploration program consisting of scintillometer prospecting and geochemical sampling was completed on the property.

In this period, a total of 16 silt samples and 21 rock samples were collected from the property. Samples were analyzed for the rare earths; namely Ce, Dy, Er, Gd, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Th, Tm, U, Y, Yb. Rock sampling was directed by areas of higher scintillometer readings within pegmatic and schistose rocks. Rock sampling indicated from 46.2 to >1000 ppm Ce, 2 to 10.8 ppm Dy, 0.5 to 5.4 ppm Er, 0.5 to 5.3 ppm Eu, 2.5 to 40.7 ppm Gd, 0.2 to 2.4 ppm Ho, 30.3 to 625.2 ppm La, 0.1 to 1.3 ppm Lu, 169 to 313.7 ppm Nd, 6.5 to 100.3 ppm Pr, 1.6 to 41.9 ppm Sc, 2.8 to 42.2 ppm Sm, 0.3 to 2.9 ppm Tb, 8.3 to 194.9 Th, <0.1 to 1.2 ppm Tm, 0.7 to 9.3 ppm U, 40.5 to 61.1 ppm Y and 0.2 to 8.2 ppm Yb. Silt sampling for the rare earths indicated from 17.9 to 987.1 ppm Ce, 4 to 25.2 ppm Lu, 34.4 to 374.1 ppm Nd, 9.4 to 111.9 ppm Pr, 7.0 to 30.8 ppm Sc, 6.2 to 63.8 ppm Sm, 0.8 to 6.2 ppm Tb, 12.3 to 148.7 Th, 0.3 to 1.3 ppm Tm, 2.6 to 13.2 ppm U, 19.6 to 92.2 ppm Y and 1.9 to 7.8 ppm Yb. Silt sampling indicates that there are sources of rare earths other than the outcrops sampled. Some of the silts have higher concentrations than the rocks and if dilution in stream beds is considered, high grade zones of the rare earth elements may be present.

At the Three G's Showing, X-ray diffraction studies identified graphite, quartz, pyrrhotite, pyrite, and annite and siderophyllite which are trioctahedral micas of ideal composition. Geochemical analysis also yielded 271,000 parts per million lanthanum, 272 parts per million praseodymium, 825 parts per million neodymium, 83 parts per million samarium, 40 parts per million gadolinium, 6 parts per million dysprosium and 596 parts per million thorium (Thomas, 1991).

Figure 5 Regional Geology and General Location

Figure 6 REGIONAL GEOLOGY

Paleozoic	PrPzMqz – Monashee Complex – quartzite, quartz arenite
	PrPzMpg – Monashee Complex - paragneiss
	PrPzShm - Shushwap Assemblage - undivided metamorphic
Proterozoic	EPrpg - undivided metamorphic

Figure 7 Google Map Overview of Waypoints/Sample Locations

16 Summary on the Victor Lake Property December 20, 2021

EXPLORATION 2021

Work in 2021 focussed on continued sampling to the south of the Trans Canada Highway. Rock samples 3VV1 to 3VV38 were collected and assayed as shown in Appendix III, descriptions and results in Appendix IV. Results are plotted on Figure 8a, 8b and 8c.

Assays were conducted by using an XRF Unit factory calibrated (Cert No. 0154-0557-1) on October 30, 2013, Instrument #540557 Type Olympus DPO-2000 Delta Premium. The instrument was calibrated using Alloy Certified reference materials by ARM1 and NIS5 standards. Only certified operators were employed and that were experienced in XRF assay procedures. Read times were 120 seconds or greater.

Sample Victor Lake 1 assayed 33ppm Th and 24ppm Y in a medium crystalline, highly siliceous, foliated carbonate rock.

Sample Victor Lake 2 is a coarse crystalline pegmatite with accessory brown garnet and calc-silicates which assayed 8.18% K. Similarly, sample 3VV20 assayed 10.9% K.

Most of the other samples collected were variable rusty biotite K-spar/silica gneiss.

Samples 3VV20 to 3VV38 are located in the southern part of the claim group. Silica is very high, up to 28.87 (sample 3VV37) but most of the southern samples are below 5%K.

Locally, carbonatites and syenites occur as thin, discontinuous, bedding-parallel lenses in pelitic metasedimentary rocks. Both the intrusions and the host rocks have been metamorphosed to upper amphibolite facies (sillimanite zone) and the pelites have been extensively migmatized. Carbonatite lenses are generally 20 to 60 centimetres in width and have 10 to 30- centimetre thick envelopes of mafic fenites developed between them and adjacent rocks. Everywhere observed, the fenites are in direct contact with, and gradational to, syenites. Commonly the carbonatite occurs as lenses within the fenite.

The carbonatites are primarily composed of calcite, biotite, apatite, perthite, hornblende, augite and traces of sphene. Fenites generally contain abundant augite, hornblende, calcite, scapolite and plagioclase. The leucosyenites generally contain potassium feldspar, plagioclase, augite and sphene. The origin of the leucosyenites is unclear; unambiguous field relationships are not exposed. These syenites may actually be syenitic fenites, rather than intrusive phases.

Figure8 a Sample Locations and Results

Figure 8b Sample Locations and Results

Figure 8c Sample Locations and Results

CONCLUSIONS and RECOMMENDATIONS

The program established that certain samples are very high in Silica. Currently a zone of very high silica has been identified in quartzite.

An expanded program of prospecting, soil sampling, and geological mapping should be undertaken on the property specifically in the vicinity of the Powerline zone to determine its prospectivity in regards to hosting economically significant high grade silica mineralization.

Sample Victor Lake 2 is a coarse crystalline pegmatite with accessory brown garnet and calc-silicates which assayed 8.18% K. Similarly, sample 3VV20 assayed 10.9% K.

Most of the other samples collected were variable rusty biotite K-spar/silica gneiss.

Samples 3VV20 to 3VV38 are located in the southern part of the claim group. Silica is very high, up to 28.87 (sample 3VV37) but most of the southern samples are below 5%K.

TABLE II - COST ESTIMATE OF EXPLORATION										
Prospector	\$6,000									
Geologist (Including Mobilization)	\$8,000									
200 Soil Samples @ \$25/sample	\$5,000									
100 Rock Samples @ \$35/sample	\$3,500									
Accommodation & Food	\$3,000									
Chainsaw Rental	\$100									
Transport	\$3,000									
Shipping	\$300									
Report Preparation & Drafting	\$1,500									
Field Supplies	\$600									
Contingency 10%	\$2,530									
TOTAL COSTS	\$27,000									

Respectfully submitted J. T. (Jo) Shearer, M.Sc., P.Geo. (BC & Ontario) FSEG

Supervisor 835903

REFERENCES

British Columbia Regional Geochemical Survey, 82L – Revelstoke. BC RGS OF 2357

Dawson, J.M. (1970) Geological, Geochemical and Geophysical Report on the NIN Claims (ARIS Assessment Report 02153).

Jones, A.G. (1959) Vernon Map Area, British Columbia; G.S.C. Memoir 296.

Kruchkowski, E. (2011) Assessment Report On Exploration Report On: 3VREE 2 etc., (ARIS Assessment Report 32017).

Kruse, S., McNeill, P., & Williams, P.F. (2004) A Geological Map of the Thor-Odin Culmination, Monashee Mountains, BC.

Pell, J. (1984) Carbonatites and Related Rocks in British Columbia, in British Columbia Geological Survey, Geological Fieldwork 1984, pp 85 - 94.

Pell, J. (1997) Alkaline Ultrabasic Rocks in British Columbia, Carbonatites, Nepheline Syenites, Kimberlites, Ultramafic Lamprophyres and Related Rocks. Ministry of Energy, Mines and Petroleum Resources, OF 87-17.

Pell, J. (1994) Carbonatites, Nepheline Syenites, Kimberlites and Related Rocks in British Columbia. Ministry of Energy, Mines and Petroleum Resources, Bulletin 88.

Shearer, J. T. (2019) Geochemical Assessment Report on the Victor Lake Property, Monashee Complex, Revelstoke Area, BC, March 16, 2019.

White, G.P.E. (1979) Carbonatite Potential Localities, in British Columbia Geological Survey, Geological Fieldwork 1980, pp 118 - 119.

White, G.P.E. (1980) Further Carbonatite Potential Localities, in British Columbia Geological Survey, Geological Fieldwork 1980, pp 111 - 112.

Appendix I

Statement of Qualifications

December 20, 2021

STATEMENT of QUALIFICATIONS

J. T. Shearer, M.Sc., P.Geo. (BC & Ontario) FSEG

I, JOHAN T. SHEARER, of 3572 Hamilton Street, in the City of Port Coquitlam, in the Province of British Columbia, do hereby certify:

- 1. I am a graduate of the University of British Columbia (B.Sc., 1973) in Honours Geology, and the University of London, Imperial College (M.Sc., 1977).
- 2. I have over 45 years' experience in exploration for base and precious metals and industrial mineral commodities in the Cordillera of Western North America and southeast USA with such companies as McIntyre Mines Ltd., J.C. Stephen Explorations Ltd., Carolin Mines Ltd. and TRM Engineering Ltd.
- 3. I am a fellow in good standing of the Geological Association of Canada (Fellow No. F439) and I am a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia (Member No. 19,279). I am a fellow of the Society of Economic Geologists.
- 4. I am an independent consulting geologist employed since December 1986 by Homegold Resources Ltd. at #5-2330 Tyner St., Port Coquitlam, B.C.
- 5. I am the author of an assessment report entitled "Geochemical Assessment Report on the Victor Lake Property" dated December 20, 2021.
- 6. I have visited the property on August 21 and September 4+5, 2021 and February 20, 2019 and March 12+13, 2019. I have carried out mapping and sample collection and am familiar with the regional geology and geology of nearby properties. I have become familiar with the previous work conducted on the Victor Lake claims by examining in detail the available reports and maps and have discussed previous work with persons knowledgeable of the area.
- 7. I have a Mine Supervisor Ticket (#835903) for daily supervision duties.

Dated at Port Coquitlam, British Columbia, this 20th day of December, 2021.

J.T. Shearer M.Sc., F.G.A.C., P.Geo.

Appendix II

Statement of Costs

December 20, 2021

STATEMENT of COSTS VICTOR LAKE PROJECT

Wages & Benefits	Without GST
J. T. Shearer, M.Sc., P.Geo; Senior Geologist 4 days @ \$800/day, Aug. 21+22, Sept. 4+5, 2021	\$ 3,200.00
D. Delisle, Experienced Prospector, 4 days @ \$400/day, Aug. 21+22, Sept. 4+5, 2021	1,600.00
Subtotal	\$ 4,800.00
Transportation	
Truck 1, fully equipped 4x4, 3 days @ \$125/day	375.00
Truck 2, fully equipped 4x4, 3 days @ \$125/day	375.00
Fuel	350.00
Hotel, 2 nights	240.00
Meals & Food	215.00
Field equipment, Radios, Sat Phone, GPS	150.00
XRF Assays	350.00
Data Compilation and Mapping	400.00
Report Preparation	1,600.00
Word Processing and Reproduction	500.00
Subtotal	\$ 4,555.00
Grand total	\$ 9,355.00

 Event #
 5857075

 Filed
 December 20, 2021

 Amount Filed
 \$ 8,500.00

 PAC
 \$ 2,969.58

 Total Filed
 \$ 11.469.58

Appendix III

Sample Descriptions

December 20, 2021

Three valley Gap Victor Lake FSR REEs

	Description	GPS	Elev.
3VV5	newly blasted road bed, coarse marble, with slightly rusty stained sections	11 U 403388 5644807	1289m
3VV6	directly over 3VV- this section 5 cm wide with a series of	11 U 403388 5644807	1289m
	calcareous 1-2m fine vertical veins, 30/ 85SW. A similar system is		
	10 cm to the north which is 2m wide		
3VV7	Calcareous pegmatite vein, biotite crystal layering, the vein splits	11 U 403381 5644804	1261m
	into 2 veins biotite clasts, cuts a bedded biotite marble gneiss.		
3VV9	marble grey to light green interbedded with biotite laminations 42/5 degrees	11 U 403375 5644822	1259m
3VV10	gneissic marble, rusty white calcareous inter-bedded between a	11 U 403368 5644840	1256m
	biotite/quartz, calcareous bedding.		
3VV11	feldspar concordant inter- bedded in a salt and pepper biotite gneiss	11 U 403335 5644877	1290m
3VV12	feldspar bed inter- bedded in a salt and pepper biotite gneiss. 1.5 m thick	11 U 403289 5644869	1288m
3VV13	dirty white to rusty -feldspar in contact with gneissic biotite. Weakly consolidated 90/ 60 NW	11 U 403403 5644771	1303m
3VV14	biotite 1 meter wide, with small specks of feldspar.	11 U 403403 5644771	1303m
3VV15	foot wall of (3VV14), with feldspar quartz 1mm flecks in the mass.	11 U 403403 5644771	1303m
3VV16	rusty calcareous vein system, 20 cm wide, 4-5 veins, separating	11 U 403557 5644528	1289m
	and rejoining. one vein strikes differently crossing a wavey foliated		
	biotite/calc/ feldspar gneiss 10/85 SE. Other veins are found within		
	this 2 m (fault?) system. Run at 28/22NW		
3VV17	rusty gneiss float feldspar/biotite. On new logging road cut.	11 U 401922 5642716	1280M
3VV18	feldspar/ quartz bedded in between a gneissic biotite 15 cm wide. New road cut.	11 U 401795 5642735	1404m
3VV19	rusty feldspar/biotite, biotite crysts float 0.35 meter pieces in hydro line ditch. sample site of (REE #?)	11 U 401760 5642689	1265m
3VV20	rusty bedded biotite gneiss with feldspar/quartz interbedded	11 U 399652 5643819	584m
	throughout sample. silvery malleable flecks peppered through		
	sample (hardness of 5).non-magnetic		
3VV21	biotite gneiss, interbedded with feldspar/quartz some rust staining	11 U 401437 5644402	829m
3VV22	biotite/feldspar/quartz alternating bedding. 44degrees/dip 11 degrees NW bedding has some rusty stain	11 U 401428 5644395	830m
3VV23	Feldspar/quartz interbedded in a biotite gneiss. 40°/18°NW	11 U 401415 5644388	831m
3VV24	feldspar/quartz/biotite bedding 10 cm wide with 1-2 cm wide	11 U 401411 5644383	828m
	cross cutting feldspar veins 20°/11°NW veins run generally at 175°/13°NW		
3VV25	feldspar/quartz/biotite bedding gneiss, contacts an intruding 2 m wide basalt dyke cross cutting at 40°. Dipping 13° NW	11 U 401402 5644370	827m
3VV26	feldspar/quartz(tremolite) ground mass green weather surface	11 U 401375 5644339	826m
	sample dark black green. Some reaction to acid very fine fizz in rock		
	fracture.		
3VV27	green epidote, folded into bedded biotite gneiss.	11 U 401371 5644335	825m
3VV29	light green weathering surfaced with 1cm orthoclastic crystals,	11 U 401963 5645092	837m
	some plagioclase in a quartz porphyry.		

3VV30	feldspar/quartz-eyes in a biotite gneiss	11 U 401964 5645089	837m
3VV31	feldspar in a fine grain biotite gneiss	11 U 401974 5645099	831m
3VV32	feldspar augens about 8cm wide in a fine grain feldspar-biotite gneiss. feldspar in bedding some rust staining, 1 small kyanite crystal (less than 1 mm) light blue	11 U 401993 5645106	829m
3VV33	rusty weather fine grain biotite gneiss & orthoclastic crystals.	11 U 401999 5645105	826m
3VV34	feldspar quartz biotite, gneiss	11 U 402170 5644998	312m
3VV35	feldspar quartz biotite, gneiss	11 U 402102 5645047	315m
3VV36	bedded feldspar quartz biotite gneiss lost notes	11 U 401977 5644482	984m
3VV37	feldspar quartz pegmatite vein cross cutting a feldspar quartz biotite gneiss boulder	11 U 402171 5644341	1111m
3VV38	Rusty biotite gneiss	11 U 402004 5644228	1080m
Victor	Feldspar quartz biotite gneiss	11 U 402216 5644092	1200m
Lake 1			
Victor Lake 2	Feldspar quartz biotite gneiss	11 U 402146 5643986	1200m

Appendix IV

Analytical Results

December 20, 2021

Sample #	AI		P ₂ O	; S	i	0	Ca	Fe	К		Remarks			
Victor Lake	1 4.6	54	2.90	1	9.98	3 1	.2.80				Light grey, medium crystalline, foliated carbonat			
											Th-33, Y-24			
Victor Lake	2 4.9	91	4.82	1	8.95	; 2	2.75		8.1	.8	Crystalline tourmaline, white, pegmatite, coarse			
											crystalline brown garnet and calc-silicate			
3VV5	2.8	39	2.14	8	.48	2	2.56	6.00	2.3	8	F	Rusty, fi	ne grained gneiss	
3VV6	5.2	23	3.00	1	1.26	5 8	3.20	4.28			F	Punky h	ighly sheared gneiss	
3VV7	3.7	73	3.32	2	0.15	5 2	2.56	0.3656	4.2	7	C	Crystalli	ne k-spar and crystalline gneiss, biotite	
											ŀ	enses		
3VV9	5.1	L7	3.45	1	5.72	2 3	3.22	3.50	_		Ν	Auscov	ite schist/gneiss	
3VV10	2.8	37	2.87	1	3.35	; 2	21.18	2.94	_		S	Sugary,	medium crystalline	
3VV11	3.8	37	3.42	2	3.99) 3	3.23		1.4	2	0	Cis, sug	ary gneiss, black ???	
									- · · ·	_	k	(-1.42		
3VV12	6.4	18	3.44	1	8.64	. 6	5.04		1.1	.8	E	Biotite I	n pegmatic ??? carb	
30013	4.5	54	3.09	1	0.67	2	.95		2.6	5	ŀ	unky, r	usty biotite	
2)///1/4			2.40	1	1 10		0					/52.3	ing grained lamprophysic	
30014	5.5	02 02	3.40	1	4.15		2.22		1 [6		basait, i		
21/1/16	5.4	22	2.57	1	2.23	1	00		1.5	0	F	Puliky D		
3///17	2.	<u>חר</u>	2.07	2	2.01 2.25	· 1	00					The second	vith black biotite lavers	
3\/\/18	2.0	70	3.23	2	6.9	; 7	16		_			Tis whit	e gneiss nhgoite	
aborted	2.2	_ /	5.22	1	0.50	, <u> </u>							e grieiss, prigotte	
3//19	6 (19	3 52	1	8 04		59				F	Brown g	arnetiferous carbonate, white	
Sample #	AI		Si	Pb	K		γ	Са	Th	Ni	-	Fe	Remarks	
3VV20	7.14	1	24.18	344	1	0.85							Siliceous, micaceous gneiss, large K-spar	
													porphyroblasts of feldspar	
3VV21	8.42	2	24.11										Biotite gneiss, white and black layers	
3VV22	3.47	1	24.24		4	.16							Quartzo-feldspathic gneiss, minor	
													biotite	
3VV23	1.58	1	23.89				7						Phyllite-gneissic quartz-feldspar layers	
													dominate	
3VV24	7.00	1	28.04		7	.43	_						White layer K-spar + quartz gneiss	
3VV25	4.00	-	23.92		3	.38							Quartz-feldspar gneiss	
3VV26	1.46	1	11.82				28	13.34					Medium green hornblende-tourmaline,	
2)//27	2.00	-	12.07					10.00		100	1		gneissic	
30027	5.80		13.07		7	20		10.92	22	100	1	-	Chiorite-garnet skarn	
21//20	2 0.11		10.15		/	.59		1.90	22			1	White K spar layer, miner histite	
31/30	6 1/	-	25.40		1	.09 09		2.01					White layers with highlight layers	
31/1/32	3 7/	-	20.10		3	.09		1.64					Sugary white some K-spar lesser	
50052	5.74	1	24.34		5	./4		1.04					biotite	
3VV33	4.15	1	21.44					2.95					Thinly layered biotite-guartz-Fp	
3VV34	4.97	1	16.47		3	.28	11	1.04					Very rusty, biotite layers, guartz-Fp	
Aborted											layers			
3VV35	5.59	1	24.50					3.11					Porphyroblastic white (K-spar)	
3VV36	4.87		22.91		3	.08						7.67	White porphyroblasts in biotite matrix,	
													biotite	
3VV37	4.87	1	28.87		5	.33	16						Mainly K-spar + quartz, minor biotite	
3VV38	8.78		13.41		1	.60	30						Very rusty sericite schist	

Victor Lake XRF

	All Results in %																
Sample #	Mg	Mg +/-	Al	Al +/-	Si	Si +/-	Р	P +/-	S	S +/-	Cl	Cl +/-	К	K +/-	Са	Ca +/-	Ti
Victor Lake 1	ND		4.64	0.06	19.98	0.12	2.9025	0.037	0.1285	0.0033	ND		2.92	0.019	12.8	0.08	0.2389
Victor Lake 2	ND		4.91	0.09	18.95	0.15	4.82	0.06	0.2655	0.0056	ND		8.18	0.06	2.7542	0.0251	0.147
3VV5	0.53	0.17	2.89	0.049	8.48	0.07	2.1359	0.027	0.6323	0.0058	ND		2.38	0.018	2.5584	0.0193	0.0449
3VV6	ND		5.23	0.07	11.26	0.09	2.9975	0.038	0.1499	0.0033	ND		0.41	0.005	8.2	0.06	0.1951
3VV7	ND		3.73	0.06	20.15	0.13	3.3239	0.04	0.3744	0.0049	1.18	0.06	4.27	0.028	2.5555	0.0189	0.1032
3VV9	ND		5.17	0.07	15.72	0.12	3.4476	0.043	0.6368	0.0068	ND		6.09	0.045	6.2185	0.0465	1.0121
3VV10	ND		4.79	0.06	13.35	0.1	2.8697	0.039	0.1491	0.0034	ND		0.55	0.006	21.18	0.15	0.2305
3VV11	ND		3.87	0.05	23.99	0.14	3.4248	0.04	0.1637	0.0035	ND		1.42	0.01	3.2305	0.0202	0.0707
3VV12	ND		6.48	0.07	18.64	0.12	3.4397	0.043	0.1686	0.0039	ND		1.18	0.009	6.0362	0.0394	0.0568
3VV13	ND		4.54	0.07	10.67	0.09	3.0939	0.038	0.1812	0.0034	ND		2.65	0.021	2.9518	0.0241	0.4855
3VV14	ND		5.52	0.07	14.19	0.1	3.4013	0.039	0.1623	0.0032	ND		0.89	0.007	8.6	0.06	1.024
3VV15	1.88	0.21	3.22	0.05	12.25	0.09	2.5745	0.035	0.1204	0.0029	ND		1.56	0.012	13.22	0.09	0.2904
3VV16	ND		5.51	0.08	13.01	0.12	3.87	0.05	0.1912	0.0042	ND		1.07	0.011	1.8752	0.0175	0.8864
3VV17	ND		2	0.0424	28.35	0.16	3.2259	0.038	0.1939	0.0037	ND		0.14	0.004	1.1579	0.0088	0.0555
3VV18	ND		2.27	0.0441	26.96	0.15	3.2155	0.038	0.1756	0.0036	ND		0.23	0.004	2.163	0.0139	0.0657
3VV19	ND		6.09	0.07	18.04	0.12	3.5181	0.043	0.15	0.0038	ND		1.88	0.014	5.5877	0.0381	0.0519
3VV20	ND		7.14	0.09	24.18	0.13	0.1497	0.019	0.0772	0.0034	ND		10.9	0.06	ND		0.2478
3VV21	ND		8.42	0.09	24.11	0.15	0.6958	0.026	ND		ND		3.57	0.023	0.4865	0.0077	0.2013
3VV22	ND		3.47	0.06	24.24	0.14	0.169	0.018	0.4041	0.0047	ND		4.16	0.025	0.1122	0.0055	0.2589
3VV23	ND		1.58	0.06	23.89	0.17	0.279	0.027	0.1168	0.0047	ND		0.17	0.005	0.9559	0.0092	0.1003
3VV24	ND		7	0.08	28.04	0.14	0.291	0.02	ND		ND		7.43	0.038	ND		0.2269
3VV25	ND		4	0.08	23.92	0.16	0.1846	0.023	ND		ND		3.38	0.023	0.304	0.0068	0.0727
3VV26	2.31	0.49	1.46	0.07	11.82	0.12	0.3047	0.03	ND		ND		0.8	0.009	13.34	0.13	0.4822
3VV27	ND		3.86	0.09	13.67	0.12	2.5519	0.049	ND		ND		0.95	0.01	16.92	0.14	2.56
3VV29	ND		6.11	0.09	18.13	0.12	0.9876	0.028	ND		ND		7.39	0.048	1.9554	0.0158	0.9235
3VV30	ND		2.84	0.07	25.46	0.17	0.2227	0.025	ND		ND		1.09	0.009	1.5772	0.0125	0.1691
3VV31	ND		6.14	0.08	26.18	0.15	0.1815	0.023	ND		ND		1.09	0.008	2.9094	0.0186	0.1908
3VV32	ND		3.74	0.08	24.54	0.17	0.2631	0.027	ND		ND		3.74	0.027	1.3182	0.0123	0.152
3VV33	ND		4.15	0.07	21.44	0.15	0.2832	0.023	ND		ND		1.33	0.01	2.9547	0.0212	0.4103
3VV34	ND		4.97	0.09	16.47	0.13	0.5047	0.023	0.6111	0.0068	ND		3.28	0.025	1.0362	0.01	1.2215
3VV35	ND		5.59	0.07	24.5	0.14	0.3594	0.022	ND		ND		0.72	0.006	3.1118	0.0185	0.1432
3VV36	1.01	0.31	4.87	0.08	22.91	0.17	0.6724	0.024	ND		ND		3.08	0.023	1.479	0.0126	0.6368
3VV37	ND		4.87	0.08	28.87	0.16	0.1967	0.023	ND		ND		5.33	0.031	0.8942	0.0096	0.0826
3VV38	ND		8.78	0.11	13.43	0.11	0.6143	0.024	0.3434	0.0053	ND		1.6	0.013	ND		0.5634

Ti +/-	V	V +/-	Cr	Cr +/-	Mn	Mn +/-	Fe	Fe +/-	Со	Co +/-	Ni	Ni +/-	Cu	Cu +/-	Zn	Zn +/-	As
0.0208	0.0661	0.0102	ND		0.0423	0.0042	2.085	0.023	ND		ND		0.004	0.0008	0.0045	0.0006	ND
0.0245	0.0601	0.013	ND		ND		0.1746	0.0077	ND		ND		0.0068	0.0011	0.003	0.0006	ND
0.0113	0.0319	0.0057	ND		0.0078	0.0024	6.91	0.06	ND		0	9E-04	0.0225	0.0012	0.0018	0.0005	ND
0.0179	0.032	0.008	ND		0.1433	0.0061	4.2871	0.0403	ND		0	0.001	0.0117	0.0011	0.0099	0.0008	ND
0.0177	0.0325	0.0091	ND		0.0123	0.0031	0.3656	0.0088	ND		ND		0.0025	0.0007	0.0013	0.0004	ND
0.0361	0.374	0.0184	ND		0.0937	0.0062	3.5738	0.0373	ND		ND		0.0085	0.0011	0.006	0.0007	ND
0.0221	ND		ND		0.0501	0.0048	2.9373	0.0316	ND		0	0.001	0.0052	0.001	0.0063	0.0007	ND
0.0156	ND		ND		0.0106	0.0028	0.2345	0.0065	ND		ND		ND		ND		ND
0.0165	ND		ND		ND		0.1612	0.0059	ND		ND		0.0034	0.0007	ND		ND
0.0214	0.0523	0.0082	0.0113	0.0036	0.2275	0.0072	7.91	0.07	ND		0	0.001	0.0124	0.0012	0.0083	0.0008	0.0014
0.029	0.0505	0.0096	0.0188	0.0041	0.1088	0.0054	8.7	0.07	ND		0	0.001	0.0059	0.001	0.0077	0.0007	ND
0.0206	0.0332	0.0087	ND		0.0842	0.0051	3.7246	0.0356	ND		ND		0.0046	0.0009	0.0074	0.0007	ND
0.0297	0.0377	0.0097	ND		0.0726	0.0051	7.92	0.08	ND		0	0.001	0.005	0.0011	0.0104	0.0009	0.0011
0.0147	ND		ND		ND		0.2769	0.0067	ND		ND		0.0032	0.0006	ND		ND
0.0149	ND		ND		ND		0.3734	0.0079	ND		ND		0.0034	0.0007	ND		ND
0.0161	0.0273	0.0087	ND		0.0323	0.0038	1.2556	0.0171	ND		ND		0.0033	0.0008	0.0028	0.0005	ND
0.0208	0.1686	0.0124	ND		0.0104	0.003	0.2347	0.0067	ND		ND		ND		ND		ND
0.0191	0.0545	0.0092	ND		0.045	0.004	2.0694	0.0218	ND		0	9E-04	0.0026	0.0007	0.0026	0.0005	ND
0.0183	0.0444	0.0081	ND		0.0113	0.0027	1.9269	0.0192	ND		ND		ND		ND		ND
0.0182	ND		ND		0.0118	0.0032	0.9167	0.0146	ND		ND		ND		ND		ND
0.0191	0.0627	0.0092	ND		0.0112	0.0028	0.5108	0.0093	ND		ND		0.002	0.0006	0.0011	0.0004	ND
0.0173	0.0404	0.0094	ND		0.0115	0.0031	0.218	0.0067	ND		ND		ND		ND		ND
0.029	ND		ND		0.1549	0.0078	4.49	0.05	ND		0	0.001	ND		0.0229	0.0013	ND
0.06	0.0768	0.0172	0.0605	0.0077	0.176	0.0093	9.92	0.1	ND		0.1	0.004	0.0635	0.0031	0.0134	0.0013	ND
0.0329	0.0729	0.0119	ND		0.0266	0.0038	1.3267	0.0177	ND		ND		0.004	0.0008	0.0015	0.0005	ND
0.0193	0.037	0.0092	ND		0.0124	0.0031	1.0205	0.0149	ND		ND		ND		ND		ND
0.0187	0.0377	0.0087	ND		0.0109	0.0029	1.2378	0.0155	ND		ND		ND		ND		ND
0.0211	0.0728	0.0115	ND		ND		0.1107	0.0054	ND		ND		ND		ND		ND
0.0228	0.0332	0.0089	ND		0.0261	0.0035	2.7684	0.0275	ND		ND		0.0024	0.0007	0.0048	0.0006	ND
0.033	0.0499	0.0103	ND		0.0215	0.0035	5.84	0.05	ND		0	0.001	0.0058	0.001	0.0109	0.0008	ND
0.0162	0.0228	0.0076	ND		ND		0.7462	0.0108	ND		ND		ND		ND		ND
0.0244	0.0478	0.0088	ND		0.1231	0.0056	7.67	0.06	ND		0	0.001	ND		0.0089	0.0007	ND
0.0172	0.038	0.0091	ND		0.0116	0.003	0.4093	0.0089	ND		ND		ND		ND		ND
0.0236	ND		ND		0.0263	0.0035	5.219	0.0468	ND		ND		0.0052	0.0009	0.0079	0.0007	ND

As +/-	Se	Se +/-	Rb	Rb +/-	Sr	Sr +/-	Y	Y +/-	Zr	Zr +/-	Мо	Mo +/-	Ag	Ag +/-	Cd	Cd +/-	Sn	Sn +/-
	ND		0	3E-04	0.0268	0.0004	0.0024	0.0002	0.0293	0.0005	ND		ND		ND		ND	
	ND		0	6E-04	0.0572	0.0008	ND		0.0012	0.0003	0.0015	0.0002	ND		ND		ND	
	ND		0	4E-04	0.039	0.0005	ND		ND		0.0007	0.0002	ND		ND		ND	
	ND		0	2E-04	0.0057	0.0002	0.0032	0.0002	0.0178	0.0004	0.0007	0.0002	ND		ND		ND	
	ND		0	4E-04	0.0142	0.0003	ND		0.001	0.0002	0.0009	0.0002	ND		ND		ND	
	ND		0	5E-04	0.0186	0.0004	0.0024	0.0003	0.0249	0.0005	0.0013	0.0002	ND		ND		ND	
	ND		0	2E-04	0.0369	0.0006	0.002	0.0002	0.0081	0.0003	0.001	0.0002	ND		ND		ND	
	ND		0	1E-04	0.0141	0.0003	ND		ND		ND		ND		ND		ND	
	ND		0	2E-04	0.0623	0.0007	ND		ND		ND		ND		ND		ND	
0.0004	ND		0	4E-04	0.0475	0.0007	0.0029	0.0003	0.0082	0.0004	0.0012	0.0002	ND		ND		ND	
	ND		0	2E-04	0.1006	0.0011	0.0028	0.0002	0.0114	0.0004	0.0009	0.0002	ND		ND		ND	
	ND		0	3E-04	0.0136	0.0003	0.0027	0.0002	0.0181	0.0004	ND		ND		ND		ND	
0.0004	ND		0	3E-04	0.0074	0.0003	0.0011	0.0002	0.0356	0.0006	0.0016	0.0003	ND		ND		ND	
	ND		ND		0.0008	0.0001	ND		ND		ND		ND		ND		ND	
	ND		ND		0.0056	0.0002	ND		ND		ND		ND		ND		ND	
	ND		0	2E-04	0.1007	0.001	ND		ND		0.0006	0.0002	ND		ND		ND	
	0.0005	0.0001	0	5E-04	0.0661	0.0007	ND		ND		ND		ND		ND		ND	
	ND		0	3E-04	0.0581	0.0007	0.0029	0.0002	0.0068	0.0003	0.0011	0.0002	ND		ND		ND	
	ND		0	3E-04	0.0348	0.0004	ND		ND		ND		ND		ND		ND	
	ND		0	1E-04	0.0104	0.0003	0.0007	0.0002	0.0112	0.0003	0.0009	0.0002	ND		ND		ND	
	ND		0	4E-04	0.0365	0.0004	ND		ND		ND		ND		ND		ND	
	ND		0	2E-04	0.051	0.0006	ND		0.001	0.0003	0.0008	0.0002	ND		ND		ND	
	0.0006	0.0002	0	2E-04	0.0118	0.0004	0.0028	0.0003	0.0134	0.0004	ND		ND		ND		ND	
	ND		0	3E-04	0.0458	0.0009	0.0048	0.0004	0.0313	0.0007	0.002	0.0003	ND		ND		ND	
	ND		0	5E-04	0.0312	0.0005	ND		ND		0.0007	0.0002	ND		ND		ND	
	ND		0	2E-04	0.0254	0.0004	ND		0.005	0.0003	0.001	0.0002	ND		ND		ND	
	ND		0	2E-04	0.0674	0.0007	ND		ND		ND		ND		ND		ND	
	ND		0	3E-04	0.0526	0.0007	ND		0.0015	0.0003	0.0009	0.0002	ND		ND		ND	
	ND		0	2E-04	0.0545	0.0007	ND		0.0467	0.0006	0.0009	0.0002	ND		ND		ND	
	ND		0	4E-04	0.0171	0.0004	0.0011	0.0002	0.0331	0.0005	0.0007	0.0002	ND		ND		ND	
	ND		0	1E-04	0.1104	0.0009	ND		ND		ND		ND		ND		ND	
	ND		0	4E-04	0.0151	0.0004	0.0022	0.0002	0.0255	0.0005	ND		ND		ND		ND	
	ND		0	3E-04	0.0261	0.0004	0.0016	0.0002	0.0015	0.0002	ND		ND		ND		ND	
	ND		0	3E-04	0.0019	0.0002	0.003	0.0002	0.0183	0.0004	ND		ND		ND		ND	

Sb	Sb +/-	W	W +/-	Hg	Hg +/-	Pb	Pb +/-	Bi	Bi +/-	Th	Th +/-	U	U +/-	LE	LE +/-
ND		ND		ND		0	5E-04	ND		0	7E-04	ND		54.11	0.24
ND		ND		ND		0	7E-04	ND		ND		ND		59.63	0.29
ND		ND		ND		0	5E-04	ND		0	6E-04	ND		73.3	0.22
ND		ND		ND		0	5E-04	ND		0	7E-04	ND		67.03	0.22
ND		ND		ND		0	5E-04	ND		ND		ND		63.85	0.22
ND		ND		ND		0	5E-04	ND		0	8E-04	ND		57.58	0.28
ND		ND		ND		0	4E-04	ND		ND		ND		53.82	0.27
ND		ND		ND		0	3E-04	ND		ND		ND		63.56	0.19
ND		ND		ND		0	4E-04	ND		0	7E-04	ND		63.76	0.21
ND		ND		ND		0	5E-04	ND		0	8E-04	ND		67.11	0.24
ND		ND		ND		0	4E-04	ND		0	9E-04	ND		57.19	0.26
ND		ND		ND		0	4E-04	ND		ND		ND		60.99	0.27
ND		ND		ND		0	5E-04	ND		0	9E-04	ND		65.48	0.27
ND		ND		ND		0	2E-04	ND		ND		ND		64.6	0.18
ND		ND		ND		0	3E-04	ND		ND		ND		64.53	0.19
ND		ND		ND		0	4E-04	ND		ND		ND		63.26	0.22
ND		ND		ND		0	9E-04	ND		ND		ND		56.8	0.23
ND		ND		ND		0	4E-04	ND		ND		ND		60.25	0.23
ND		ND		ND		0	4E-04	ND		ND		ND		65.16	0.2
ND		ND		ND		ND		ND		ND		ND		71.96	0.2
ND		ND		ND		0	5E-04	ND		ND		ND		56.36	0.22
ND		ND		ND		0	3E-04	ND		ND		ND		67.81	0.21
ND		ND		ND		ND		ND		ND		ND		64.78	0.44
ND		ND		ND		0	6E-04	ND		0	0.001	ND		48.97	0.38
ND		ND		ND		0	5E-04	ND		0	7E-04	ND		63	0.24
ND		ND		ND		0	3E-04	ND		ND		ND		67.54	0.21
ND		ND		ND		0	4E-04	ND		ND		ND		61.95	0.22
ND		ND		ND		0	4E-04	ND		0	7E-04	ND		66	0.23
ND		ND		ND		0	4E-04	ND		ND		ND		66.5	0.22
ND		ND		ND		0	4E-04	ND		0	8E-04	ND		65.89	0.25
ND		ND		ND		0	3E-04	ND		ND		ND		64.69	0.19
ND		ND		ND		ND		ND		0	7E-04	ND		57.42	0.32
ND		ND		ND		0	5E-04	ND		ND		ND		59.24	0.23
ND		ND		ND		ND		ND		0	7E-04	ND		69.37	0.24