
Rakesh Goel, Founder & CTO

ServiceNow
NOW Experience
Component
Development

1

Tutorial # 1
Setup Experience Component Development
Environment

ServiceNow Technology Tutorial Series by ServiceData

Learning reinforced through:
a. Power Point slides
b. Source code
c. Hands-on session
Slides & Code Download link at: www.servicedata.com/tutorials/

Tutorial 1: Setup Experience Component Dev Environment

2

We will install three pieces of software 1) node.js & npm 2) Microsoft IDE Visual Studio
Code 3) NOW Command level Interface now-cli

• Go to https://nodejs.org/en/download

• Download the software and install it

• Go to Command prompt and check for node.js

C:>node --version

• Go to Command prompt and check for Node Package Manager

C:>npm --version

Rakesh Goel, Founder & CTO, ServiceData

Step 1: Install Node.js & Node Package Manager in one shot

Tutorial 1: Setup Experience Component Dev Environment

3

• Go to https://code.visualstudio.com/docs/setup/windows

• Download the software and install it

• Invoke Visual Studio code from Windows menu

• Make the default Shell as bash

• Open Visual Studio Code

• Open the command palette using View -> Command Palette or use short cut Ctrl + Shift + P .

• Type Default Shell

• Select Command Terminal : Select Default Shell

• Select Git Bash from the options.

• Open Terminal within Visual Studio code using View -> Terminal

• The terminal window will show bash as the default shell.

Rakesh Goel, Founder & CTO, ServiceData

Step2 : Install Visual Studio Code (IDE)

Tutorial 1: Setup Experience Component Dev Environment

4

• now-cli is “ServiceNow Command Level Interface (CLI)”

• It is available for installation using node package manager (npm) which we have already installed

• Invoke Windows command level interface cmd

C:>npm install --global @servicenow/cli@paris

• Check that now-cli is installed properly

C:>now-cli --version

Rakesh Goel, Founder & CTO, ServiceData

Step 3: Install now-cli

Rakesh Goel, Founder & CTO

ServiceNow
NOW Experience
Component
Development Series

5

Tutorial # 2
Create your first “Hello World” component

ServiceNow Technology Tutorial Series by ServiceData

Learning reinforced through:
a. Power Point slides
b. Source code
c. Hands-on session
Slides & Code Download link at: www.servicedata.com/tutorials/

Tutorial 2: Create “Hello World” NOW Experience Component

• Create a new directory or folder under one of your directories. Let us say we create a new empty folder named helloworld in a

directory named g:\uex. So our folder is g:\uex\helloworld.

• Invoke Visual Studio code IDE and open the above created empty folder named helloworld within the IDE.

• View -> Terminal to open the Terminal window (this will have Bash Shell)

• g:\uex\helloworld will also be current directory of the Terminal window within the Visual Studio code.

Rakesh Goel, Founder & CTO, ServiceData

Step 1: Create an empty folder for your project and open the folder in Microsoft Visual Studio IDE

Step 2: Log into ServiceNow instance from within the Terminal window of Microsoft Visual Studio code

• In the terminal window use the following now-cli’s login command to log into your servicenow instance

g:\uex\helloworld>now-cli login --host https://ven03813.service-now.com --method basic --username admin --password Secret!

Create an empty folder for the project -> Use Visual Studio IDE and open the empty folder -> In Terminal window of
IDE Login to SN -> now-cli project -> npm install -> Add your code -> Save All -> npm install -> now-cli develop ->
now-cli deploy -> Open Agent Workspace definition -> Open UI Builder -> Add component to the landing page

7

g:\uex\helloworld>npm install

Rakesh Goel, Founder & CTO, ServiceData

Step 4: Install project dependencies – or node packages needed by our newly created project

• Node package manager (npm) will copy required packages (files) into the directory named g:\uex\helloworld\node_modules from

the internet. This will be based on whatever is specified using import directives in the .js files. In this case the previous step had

created some startup .js files for you.

Tutorial 2: Create “Hello World” NOW Experience Component

• Create a ServiceNow UEX project for our new component named rg1a-helloworld (all letters should be small case and

there should be at least one dash) using ServiceNow provided now-cli which we had installed in tutorial #1.

g:\uex\helloworld>now-cli project --name rg1a-helloworld --description ‘UEX rg1a-helloworld’

• This command will create the project named rg1-helloworld within our folder helloworld. You will see this as a set of directories

and files. This will serve as the Skeleton Code and we will build our code using this Skeleton.

Step 3: Create a NOW Project using now-cli from Terminal window within the Visual Studio code

8

Rakesh Goel, Founder & CTO, ServiceData

g:\uex\helloworld >npm install

Step 6: Install project dependencies – or node packages needed by our newly created project

• In case you add some import directives within your .js files of the project, the Node package manager (npm) will copy those

additional packages into the folder named g:\uex\helloworld\node_modules from the internet. Though, we have not done it in our

rg1-helloworld component but as a matter of practice I use ‘npm install’ in this step just to be sure that I have all the required

packages

Tutorial 2: Create “Hello World” NOW Experience Component

• The primary source code file from where the component start is a javascript (.js) file named g:\uex\helloworld\src\xxx-rg1a-

helloworld\index.js

• Open this index.js file within the Visual source code. Whatever the function named view returns, that is what your component

returns as output. So make the view to return a string ‘Hello World! This is my first ServiceNow component’

• Note: Do a “Save All” as otherwise the >now-cli develop command will get stuck midway and not display the output

Step 5: Use this Skeleton code to make a UEX component that will say “Hello World!....”

const view = (state, {updateState}) => {
return (

<div>’Hello World! This is my first ServiceNow component’</div>
);

};

9

Rakesh Goel, Founder & CTO, ServiceData

• Make sure that you have done “Save All” on the project

• Now we are ready to compile all the project files into a NOW component and open the component within our default

browser using just one command as follows

Step 7: Invoke now-cli to develop the component based on our code and also open the component in
browser

g:\uex\helloworld >now-cli develop --open

• It will take a few minutes for now-cli to build the component – you will see that in the terminal window. And, finally

the default browser will open with a tab saying

‘Hello World! This is my first ServiceNow component’

You have your first bare bone Hello World component ready. Let us now take it into our ServiceNow Workspace

Tutorial 2: Create “Hello World” NOW Experience Component

10

Rakesh Goel, Founder & CTO, ServiceData

• We will make use of >now-cli command level interface with deploy command to achieve it

• In our project folder we have a file named now-ui.json which gives directives to deploy the component into ServiceNow

• It will have a directive with a component name. In our case it will be ‘xxx-rg1a-helloworld’

• There is another important file named now-cli.json that contains your SN instance details which are required only if you are not

logged in into the instance. We are logged in already in the session so we leave it as it is

• We will make use of >now-cli with deploy command to deploy component in our logged-in SN instance. We will use force

option so that it redeploys if it is already deployed

g:\uex\helloworld>now-cli deploy --force

Step 8: We will now DEPLOY the newly built component into our ServiceNow instance

Tutorial 2: Create “Hello World” NOW Experience Component

11

Rakesh Goel, Founder & CTO, ServiceData

Step 9: Use the deployed component on one of the pages of the workspace within ServiceNow

Tutorial 2: Create “Hello World” NOW Experience Component

• Navigator -> workspace -> Select All Workspaces under Administration -> Select Agent Workspace -> Open it in Edit mode by

clicking on the ‘click here’

This record is in the Agent Workspace application, but Global is the current application. To edit this record click here.

• Before invoking UI Builder, go to the Related Tab and look at Landing Pages Tab. Find which page has the lowest Order value

as that page displays on opening the Workspace. Therefore, we will place our new component on this page.

• Press “Open UI Builder” to go to the builder where you can drag and drop components

• Select the landing page. Otherwise, you can create a new landing page from here and set it’s Order field to be lowest so that it

is on top of all landing pages for this Agent Workspace.

• Go to a Tab named + Add Component Tab in UI Builder.

• You will see your component xxx-rg1a-helloworld. There is also a component named Container to contain other components

• First drag and drop from left pane to right, the container component. The container will drop properly only when you see a

Green vertical or horizontal line. If dropped at a wrong place, you can Trash the component and redrop.

12

Rakesh Goel, Founder & CTO, ServiceData

• Now select your Hello World Component and drag and drop it onto the Container that we had placed. In order to sit properly

in that container, while dropping the component, the container background should become Green.

• Once you are happy with your placement, do a Save on top right. Make sure that the page is Active.

• Go back to the Agent Workspace definition page

• Use Related Links section to Open the Agent Workspace

• You will see your component with all Excellence on the Agent Workspace landing page

Step 9 Continued: Use the deployed component on one of the pages of the workspace

Tutorial 2: Create “Hello World” NOW Experience Component

• In a couple of cases, I noted that now-cli develop --open when given in Visual Studio IDE terminal session gives some

unknown Error. I corrected this by creating a new directory and repeating the Steps 2 to Step 7 using Windows DOS prompt

window opened by cmd. It seems that error might be because some process holds up some file. This happened only a couple

of times and I wanted to make sure that you have this information.

Important Note regarding Step 7, now-cli develop --open

Rakesh Goel, Founder & CTO

ServiceNow
NOW Experience
Component
Development Series

13

Tutorial # 3
ES6 features of JavaScript useful in NOW Component
development

ServiceNow Technology Tutorial Series by ServiceData

Learning reinforced through:
a. Power Point slides
b. Source code
c. Hands-on session
Slides & Code Download link at: www.servicedata.com/tutorials/

Tutorial 3: ES6 features of JavaScript useful in Component development

14

• Arrow functions allow us to write shorter function syntax:

• ()=> instead of function()

console.log('Section 1: Arrow Function');

hello1a = function () {
return "hello World 1a";

}
hello1b = () => {

return "hello World 1b";
}
console.log(hello1a(), hello1b());
// hello World 1a hello World 1b

Rakesh Goel, Founder & CTO, ServiceData

1. Arrow Function:

Tutorial 3: ES6 features of JavaScript useful in Component development

15

• Const is a block scoped declaration that creates constants. Its value is set at the time of declaration. After the initial value is

set, it cannot be changed.

console.log('Section 2: const');
{
const a2=2;
console.log(a2); //2
a2 = 3; //type error

}

Rakesh Goel, Founder & CTO, ServiceData

2. Const

Tutorial 3: ES6 features of JavaScript useful in Component development

16

• Spreads values from an array into individual values

console.log('Section 3: ... in front of an array - Spread Operator');
var a3 = [2,3,4];
var b3 = [1,...a3,5];
console.log(b3); // [1, 2, 3, 4, 5]
function foo3(x,y,z){

console.log(x,y,z);
}
foo3(...[1,2,3]); //1 2 3

Rakesh Goel, Founder & CTO, ServiceData

3. Spread Operator … in front of an array

Tutorial 3: ES6 features of JavaScript useful in Component development

17

• The same operator … in front of an array can gather values

console.log('Section 4: ... in front of an array - Gather Operator');
function foo4(...args) {
// console.log(args);
return args;

}
console.log(foo4(1,2,3,4,5)); // [1, 2, 3, 4, 5]
//

Rakesh Goel, Founder & CTO, ServiceData

4. Gather Operator … in front of an array

Tutorial 3: ES6 features of JavaScript useful in Component development

18

• Function parameters can now have default values. The default values can be simple values, any valid expression or even a

function call. If these are expressions, these are lazily evaluated – that means they are evaluated only when needed.

console.log('Section 5: Default Parameter value');
function foo5(x=11, y=31) {

return x+y;
}
console.log(foo5()); //42
console.log(foo5(5,6)); //11
console.log(foo5(5)); //36
console.log(foo5(5,undefined)); //36 as undefined means y=default 31 is used
console.log(foo5(5,null)); //5 as null coerced to 0

Rakesh Goel, Founder & CTO, ServiceData

5. Default parameter values

Tutorial 3: ES6 features of JavaScript useful in Component development

19

• As mentioned earlier the default values can also be any valid expression or even a function call. If these are expressions,

these are lazily evaluated – that means they are evaluated only when needed.

console.log('Section 6: Default Parameter value as expression');
function bar6(val6){

console.log('bar6 called');
return y6 + val6;

}
function foo6 (x6 = y6+3, z6 = bar6(x6)){

console.log(x6, z6);
}
var y6 = 5;
foo6(); // bar6 called

// 8, 13 as 5 is added by foo6 and bar6
foo6(10); // bar6 called

// 10, 15 as x6 is 10 and therefore z6 to foo is 10+5
foo6(undefined,10); // 8, 10 as x6 default is y6+3 = 8 and z6 default value is 10
//

Rakesh Goel, Founder & CTO, ServiceData

6. Default parameter values as expressions

Tutorial 3: ES6 features of JavaScript useful in Component development

20

• The individual elements of array are destructured directly into individual variables

function foo7() {
return [1,2,3];

}
var [a,b,c] = foo7();
console.log(a,b,c); // 1 2 3 simple variables
//

Rakesh Goel, Founder & CTO, ServiceData

7. Destructuring from an array into simple variables – when you see [] on the left and array on the right

Tutorial 3: ES6 features of JavaScript useful in Component development

21

• The individual elements of the object are destructured directly into individual variables. The variable name should match the

property name

console.log('Section 8: { } on left of assignment, Destructuring from object into variables');
//
const d8 = {

a8: 9,
b8: 12

};
const {a8, b8} = d8; // Destructing from object to variables
console.log (a8, b8); // 9 12
//

Rakesh Goel, Founder & CTO, ServiceData

8. Destructuring from an object into simple variables – when you see { } on the left and object on the
right

Tutorial 3: ES6 features of JavaScript useful in Component development

22

• Using [] around an expression that returns a string you can compute property names

console.log('Section 9: [] around an expression, Property name can be computed');
//
var a9 = 'x1name';
var b9 = 'x2name';
cobj9 = { [a9]: 15, [b9]: 16};
console.log (cobj9); // { x1name: 15, x2name: 16 }
//

Rakesh Goel, Founder & CTO, ServiceData

9. Property names can be computed using []

Tutorial 3: ES6 features of JavaScript useful in Component development

23

• Map function is used extensively in component development. It map array elements values calling a mapping function for each

element

console.log('Section 10: map function for an array - Not specific to ES6');
//
const array1 = [1,4,9,16];
// Pass a function to map
const mappedArray1 = array1.map(x=>x*2);
console.log(mappedArray1); // [2,8,18,32]

Rakesh Goel, Founder & CTO, ServiceData

10. Map function for Array and Objects – was available before ES6

Rakesh Goel, Founder & CTO

ServiceNow
NOW Experience
Component
Development Series

24

Tutorial # 4
JSX used in NOW Component Development

ServiceNow Technology Learning Series by ServiceData

Learning reinforced through:
a. Power Point slides
b. Source code
c. Hands-on session
Slides & Code Download link at: www.servicedata.com/tutorials/

Tutorial 4: JSX used in NOW Component Development

25

• JSX stands for JavaScript XML

• JSX is an XML/HTML like syntax that extends ECMAScript so that XML/HTML like text can co-exist with JavaScript/React

code.

• The syntax is intended to be used by preprocessors (i.e. transpilers like Babel) to transform HTML like text found in JavaScript

files into standard JavaScript objects that JavaScript engine will parse in such a way that subsequently they will be passed

onto be a part of the DOM

• Using JSX you will write HTML in JavaScript and within this HTML you can embed JavaScript

• Similar to Servlets where we could write HTML inside Java and we had JSP where we could write Java inside HTML

Rakesh Goel, Founder & CTO, ServiceData

1. What is JSX

Tutorial 4: JSX used in NOW Component Development

26

• The HTML element can directly be written in JavaScript

const view = (state, {updateState}) => {
return (

<div>Hello World! This is my first component</div>
);

};
• The Babel transpiler will know by angular bracket <> that this is XML and how to treat it

Rakesh Goel, Founder & CTO, ServiceData

2. Single line HTML Element inside JavaScript

Tutorial 4: JSX used in NOW Component Development

27
Rakesh Goel, Founder & CTO, ServiceData

• If you need to embed multi-line HTML inside JavaScript, the HTML should be wrapped in a top level element like or

<div></div>

• And, we will need to wrap that into a set of parenthese

const view = (state, {updateState}) => {
return (

Apples
Banana
Cherries

);

};

3. Multi-line HTML inside JavaScript

Tutorial 4: JSX used in NOW Component Development

28
Rakesh Goel, Founder & CTO, ServiceData

4. Conditional rendering using if or inline ternary operator

const view = (state, {updateState}) => {
if (state.firstName) {

return <h1>Hello we have the first name</h1>;
}
else {
return <h1>Hello Guest</h1>;

}
};

Tutorial 4: JSX used in NOW Component Development

29
Rakesh Goel, Founder & CTO, ServiceData

5. JavaScript inside HTML

• You can write JavaScript Expressions (variables, or property, or any other valid JS expression) within JSX using { }

• Example 1

const view = (state, {updateState}) => {
return <div>React is { 5 + 10 } times better with JSX</div>;

};

Tutorial 4: JSX used in NOW Component Development

30
Rakesh Goel, Founder & CTO, ServiceData

5. JavaScript inside HTML

• Example 2

const view = (state, {updateState}) => {
return (

<div>
<h2>Click Counter</h2>

<button type="button"
on-click={

() => updateState({tally: (state.tally + 1)})
}>Increment

</button>

<div>Value: {state.tally}</div>

</div>)
};

Rakesh Goel, Founder & CTO

ServiceNow
NOW Experience
Component
Development Series

31

Tutorial # 5
ServiceNow Component Source Code Directory structure

ServiceNow Technology Tutorial Series by ServiceData

Learning reinforced through:
a. Power Point slides
b. Source code
c. Hands-on session
Slides & Code Download link at: www.servicedata.com/tutorials/

Tutorial 5: ServiceNow Component Source Code Directory structure

32
Rakesh Goel, Founder & CTO, ServiceData

1. Directory structure if there is only one component (no inner) like in Hello World example

element.js – the
starting file. Here, we
have createElement and
import statement

index.js – the
file where the
component is
defined

Tutorial 5: ServiceNow Component Source Code Directory structure

33
Rakesh Goel, Founder & CTO, ServiceData

1. Directory structure if there is only one component (no inner) like in Hello World example

package.json file
Manually add names of all
@import packages into
dependencies as
‘npm install’ looks at this file
to place packages in
node_module

css file

Tutorial 5: ServiceNow Component Source Code Directory structure

34
Rakesh Goel, Founder & CTO, ServiceData

1. Directory structure if there is only one component (no inner) like in Hello World example

now-ui.json
Used by now-cli deploy
command – component
name, label, description,
scope name

now-cli.json
To specify proxy for the
ServiceNow instance if you
are not using now-cli login
command

Tutorial 5: ServiceNow Component Source Code Directory structure

35
Rakesh Goel, Founder & CTO, ServiceData

Index.js for the
main component
There is an inner
component whose
code is in a separate
directory tree – we
have import
statement here for
that.

Element.js for the
main component
createElement
needed only for the
main or outer
component

2. Directory structure if there is an main and a secondary component – Knowledge Example

Tutorial 5: ServiceNow Component Source Code Directory structure

36
Rakesh Goel, Founder & CTO, ServiceData

Index.js of the secondary
component (continued)
createCustomeElement
statement for the
secondary component:
sed-rakesh-1gknowledge-
results

Index.js of secondary
component
These are inner components.
All these packages need to go
into package.json file as
shown on next slide. This is
used by npm install to put
packages in node_module
directory

2. Directory structure if there is an main and a secondary component – Knowledge Example

Tutorial 5: ServiceNow Component Source Code Directory structure

37
Rakesh Goel, Founder & CTO, ServiceData

2. Directory structure if there is an main and a secondary component – Knowledge Example

now-ui Will have all the
inner components that
we are using in our two
components (these are
ootb from ServiceNow)

package.json
All @import packages (main
component and secondary
component) need to go into
package.json file we
discussed earlier. This is used
by npm install to put
packages in node_module
directory

Rakesh Goel, Founder & CTO

ServiceNow
NOW Experience
Component
Development Series

38

Tutorial # 6
Develop a Master Detail Component – Search Knowledgebase

ServiceNow Technology Tutorial Series by ServiceData

Learning reinforced through:
a. Power Point slides
b. Source code
c. Hands-on session
Slides & Code Download link at: www.servicedata.com/tutorials/

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

• Create a new directory or folder under one of your directories. Let us say we create a new empty folder named knowledge in a

directory named g:\uex. So our folder is g:\uex\knowledge.

Rakesh Goel, Founder & CTO, ServiceData

Step 1: Create an empty folder for your project and open the folder in Microsoft Visual Studio IDE

Step 2: Log into ServiceNow instance from within the Terminal window of Microsoft Visual Studio code

• In the terminal window use the following now-cli’s login command to log into your servicenow instance

g:\uex\knowledge>now-cli login --host https://ven03813.service-now.com --method basic --username admin --password Secret!

Create an empty folder for the project -> Use Visual Studio IDE and open the empty folder -> In Terminal window of
IDE Login to SN -> now-cli project -> npm install -> Add your code -> Save All -> npm install -> now-cli develop --
open and finally now-cli deploy -> Open Agent Workspace definition -> Open UI Builder -> Add component to the
landing page

g:\uex\knowledge>now-cli project --name rg1c-knowledge --description ‘UEX rg1c-knowledge’

Step 3: Create a NOW Project using now-cli from Terminal window within the Visual Studio code

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

Rakesh Goel, Founder & CTO, ServiceData

g:\uex\knowledge >npm install

Step 4: Install project dependencies – or node packages needed by our newly created project

g:\uex\knowledge >npm install

Step 6: Install project dependencies – or node packages needed by our newly created project

Step 5: Use this Skeleton code to make a UEX component that will say “Hello World!....”
const view = (state, {updateState}) => {

return (
<div>’Hello World! This is my first ServiceNow component’</div>

);
};

Step 7: Invoke now-cli to develop the component based on our code and also open the component in
browser

g:\uex\knowledge >now-cli develop --open

• Important note: At two instances this command failed for me giving an error message. In that case I deleted the directory

knowledge and re-performed all the above steps directly under DOS command window instead of terminal session within IDE

and it worked. Only the step 5 was performed within the IDE as I had to change the code.

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

Rakesh Goel, Founder & CTO, ServiceData

Step 8: Opened g:\uex\knowledge folder within the IDE and performed the following changes

• Created a directory named sed-rg1c-knowledge-results under the directory src to have the code of our secondary component.

Also created two empty file named index.js and styles.scss.

Step 9: Make changes to the code

• We will change index.js and styles.scss of our primary component sed-rg1c-knowledge

• We will change index.js and styles.scss of our secondary component sed-rg1c-knowledge-results

• We will make changes to package.json to add the packages that we are importing in our code so that npm install can install

those packages

• We will make changes to now-ui.json to specify all the ServiceNow provided inner components that we are using

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

Rakesh Goel, Founder & CTO, ServiceData

Step 10: Important: The name of the primary component (in my code it is sed-rg1c-knowledge) to be
same in element.js file, index.js of sed-rg1c-knowledge and now-ui.json files.

• If you are doing hands-on by downloading whole of the code (with directories and sub-directories) than you are ok. However, if

you create your own skeleton directory structure based on the detailed steps Step 1 to Step 9 including copying my code into

your directory structure, make sure that the name of the primary component sed-rg1c-knowledge is same in the following three

files. Though the name of the directories can stay as generated as those are taken care of by the import statements

• File element.js in the parent directory where we have createElement command

import '../src/sed-rg1c-knowledge';

const el = document.createElement('DIV');
document.body.appendChild(el);

el.innerHTML = `
<sed-rg1c-knowledge></sed-rg1c-knowledge>
`;

• File index.js of sed-rg1c-knowledge

createCustomElement('sed-rg1c-knowledge', {
renderer: {type: snabbdom},
initialState: {

searchWords : 'Email'
},
view,
styles

});

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

Rakesh Goel, Founder & CTO, ServiceData

• File now-ui.json

{
"components": {

"sed-rg1c-knowledge": {
"innerComponents": [

"now-icon",
"now-card",
"now-button",
"now-modal",
"now-loader",
"now-rich-text",
"now-heading"

],
"uiBuilder": {

------ continued ----

Step 11: Ensure that import statements like this within the .js files are matching with your directory
names

import '../src/sed-rg1c-knowledge’;
import '../sed-rg1c-knowledge-results';

Step 12: Give npm install and now-cli develop --open commands within the terminal session of IDE

• Make sure that you were already logged into your instance using now-cli login from within the terminal session of the IDE

In file element.js

In index.js of main component

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

44
Rakesh Goel, Founder & CTO, ServiceData

1: element.js

import '../src/sed-rg1c-knowledge';

const el = document.createElement('DIV');
document.body.appendChild(el);

el.innerHTML = `
<sed-rg1c-knowledge></sed-rg1c-knowledge>
`;

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

45
Rakesh Goel, Founder & CTO, ServiceData

2: index.js of main component - sed-rg1c-knowledge

import {createCustomElement} from '@servicenow/ui-core';
import snabbdom from '@servicenow/ui-renderer-snabbdom';
import '@servicenow/now-icon';
import '@servicenow/now-card';
import styles from './styles.scss';
import '../sed-rg1c-knowledge-results';
const view = (state, {updateState}) => {

return (
<div>

<header>
<now-icon icon="magnifying-glass-outline"></now-icon>
<input

value={state.searchWords}
on-input={e => updateState({searchWords: e.target.value})}

/>
</header>
<sed-rg1c-knowledge-results searchText={state.searchWords}>
</sed-rg1c-knowledge-results>

</div>
);

};
createCustomElement('sed-rg1c-knowledge', {

renderer: {type: snabbdom},
initialState: {

searchWords : 'Email'
},
view,
styles

});

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

46
Rakesh Goel, Founder & CTO, ServiceData

3: styles.scss of main component - sed-rg1c-knowledge

@import '@servicenow/sass-kit/host';

:host{
display: block;
max-width: 30rem;
margin: $now-global-space--xl auto;

header {
display: flex;
align-items: center;
width: 100%;
padding: 0 $now-global-space--md;
border: 1px solid ($now-color--divider-tertiary);
border-bottom: none;
}

input {
width: 100%;
margin:0;
padding: $now-global-space--md 0;
border:none;
outline:none;
font-size: inherit;
}

}

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

47
Rakesh Goel, Founder & CTO, ServiceData

4: index.js of secondary component - sed-rg1c-knowledge-results

import {debounce} from 'lodash';
import {createCustomElement, actionTypes} from '@servicenow/ui-core';
import snabbdom from '@servicenow/ui-renderer-snabbdom';
import {createHttpEffect} from '@servicenow/ui-effect-http';
import '@servicenow/now-button';
import '@servicenow/now-icon';
import '@servicenow/now-card';
import '@servicenow/now-loader';
import '@servicenow/now-modal';
import '@servicenow/now-rich-text';
import styles from './styles.scss';

const requestSearchResults = ({properties, dispatch}) => {
if (properties.searchText) {

dispatch('SEARCH_RESULTS_REQUESTED', {
table: 'kb_knowledge',
sysparm_query: `short_descriptionLIKE${properties.searchText}`

});
}

};

const view = (state, {updateState}) => {
return (

<now-card>
{state.showLoading ? (
<now-loader />
) : (

{state.searchResults.length ? (
state.searchResults.map(result => (

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

48
Rakesh Goel, Founder & CTO, ServiceData

4: index.js of secondary component - sed-rg1c-knowledge-results (continued)

<now-button-iconic
bare
icon="circle-info-outline"
size="md"
on-click={() =>

updateState({selectedResult: result}
)

}></now-button-iconic>
{result.short_description}

))
) : (

No matches found
)}

)}
{state.selectedResult ? (
<now-modal

opened={state.selectedResult}
size="1g"
footerActions={[

{
label: 'Done',
variant: 'secondary',
clickActionType: 'NOW_MODAL#OPENED_SET'

}
]}>

<now-rich-text html={state.selectedResult.text}>
</now-rich-text>

</now-modal>
) : null }

</now-card>
);

};

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

49
Rakesh Goel, Founder & CTO, ServiceData

4: index.js of secondary component - sed-rg1c-knowledge-results (continued)

createCustomElement('sed-rg1c-knowledge-results', {
renderer: {type: snabbdom},
initialState: {

showLoading: true,
searchResults: [],
selectedResult: null

},
properties: {

searchText: {
default: 'something'

}
},
view,
actionHandlers: {

[actionTypes.COMPONENT_CONNECTED]:
requestSearchResults,
[actionTypes.COMPONENT_PROPERTY_CHANGED]:
debounce(requestSearchResults, 250),
SEARCH_RESULTS_REQUESTED: createHttpEffect('/api/now/table/:table', {

pathParams: ['table'],
queryParams: ['sysparm_query'],
startActionType: 'SEARCH_RESULTS_STARTED',
successActionType: 'SEARCH_RESULTS_FETCHED'

}),
SEARCH_RESULTS_STARTED: ({updateState}) =>

updateState({showLoading: true}),
SEARCH_RESULTS_FETCHED: ({action, updateState}) =>

updateState({searchResults: action.payload.result, showLoading: false})
},
styles

});

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

50
Rakesh Goel, Founder & CTO, ServiceData

5: styles.sccs of secondary component - sed-rg1c-knowledge-results (continued)

@import '@servicenow/sass-kit/host';
:host {

display: block;
ul {

list-style: none;
margin: 0;
padding: 0;
li {

display: flex;
align-items: center;

}
li + li {

margin-top:
$now-global-space--sm;

}
}

}

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

51
Rakesh Goel, Founder & CTO, ServiceData

6: package.json component - sed-rg1c-knowledge
{

"name": "rg1c-knowledge",
"version": "0.0.1",
"private": false,
"description": "'UEX",
"keywords": [

"ServiceNow",
"Now Experience UI Component",
"rg1c-knowledge"

],
"readme": "./README.md",
"engines": {

"node": ">=8.6.0",
"npm": ">=5.3.0"

},
"module": "src/index.js",
"dependencies": {

"@servicenow/ui-core": "paris",
"@servicenow/ui-renderer-snabbdom": "paris",
"@servicenow/cli-archetype": "18.0.0",
"@servicenow/cli-component-archetype": "18.0.0",
"@servicenow/sass-theme": "paris",
"@servicenow/sass-kit": "paris",
"@servicenow/library-translate": "paris",
"@servicenow/now-button": "paris",
"@servicenow/now-card": "paris",
"@servicenow/now-icon": "paris",
"@servicenow/now-loader": "paris",
"@servicenow/now-modal": "paris",
"@servicenow/now-rich-text": "paris",
"@servicenow/ui-effect-http": "paris"

},
"devDependencies": {

"@servicenow/cli-archetype-dev": "18.0.0",
"@servicenow/cli-component-archetype-dev": "18.0.0"

}
}

Manually
added into
the file
package.json

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

52
Rakesh Goel, Founder & CTO, ServiceData

7: now-ui.json component - sed-rg1c-knowledge

{
"components": {

"sed-rg1c-knowledge": {
"innerComponents": [

"now-icon",
"now-card",
"now-button",
"now-modal",
"now-loader",
"now-rich-text",
"now-heading"

],
"uiBuilder": {

"associatedTypes": ["global.core", "global.landing-page"],
"label": "My rg1c-knowledge Component",
"icon": "document-outline",
"description": "Description My rg1c-knowledge component",
"category": "primitives"

}
}

},
"scopeName": "x_sed_rg1c_knowl_0"

}

Manually added into the file
named now-ui.json

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

53
Rakesh Goel, Founder & CTO, ServiceData

• Start:

DOM for displaying into the browser starts getting formed from the index.js of Primary component which in our case is sed-rg1c-
knowledge. The view of this index.js returns a header element with a OOTB component <now-icon icon="magnifying-
glass-outline"></now-icon> and <sed-rg1c-knowledge-results searchText={state.searchWords}>
</sed-rg1c-knowledge-results>

Note that while invoking the secondary component sed-rg1c-knowledge-results we are setting a property named

searchText of sed-rg1c-knowledge-results to state.searchWords of the component sed-rg1c-knowledge.

On invoking of the secondary component sed-rg1c-knowledge-results an Action named
COMPONENT_CONNECTED takes place and therefore the following Action Handler of sed-rg1c-knowledge-results is
invoked

[actionTypes.COMPONENT_CONNECTED]:
requestSearchResults,

This handler calls requestSearchResults function which fills up the array named searchResults which is one of the State
objects. The view of sed-rg1c-knowledge-results returns the content of this filled array within the DOM using Map function

8. Logic

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

54
Rakesh Goel, Founder & CTO, ServiceData

• On user modifying the search words which are within component sed-rg1c-knowledge

On User modifying the value inside the primary component that is displaying the magnifying glass, the state of sed-rg1c-

knowledge is Updated using the logic:

<input
value={state.searchWords}
on-input={e => updateState({searchWords: e.target.value})}

/>
and therefore the view logic of sed-rg1c-knowledge is executed again with new value of state object named

state.searchWords.

This time the sed-rg1c-knowledge-results is invoked with the changed value of the property named searchText. This

invokes action handler [actionTypes.COMPONENT_PROPERTY_CHANGED] which calls function named

requestSearchResults again to refresh the searched results array. The view displays the refreshed results

8. Logic - continued

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

55
Rakesh Goel, Founder & CTO, ServiceData

• On user clicking "circle-info-outline“ icon in front of any one of the results displayed in sed-rg1c-

knowledge-results output

On User clicking circle-info-outline icon in front any one of the results, the following logic is called:

on-click={() =>
updateState({selectedResult: result}
)

}
This logic makes the value of selectedResult from null to a non-null value which is the result row identifier.

Since the selectedResult has a non-null value, the following logic calls an out of the box component named now-modal

which displays state.selectedResult.text

8. Logic - continued

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

56
Rakesh Goel, Founder & CTO, ServiceData

• Miscellaneous

Every time updateState function is called. One or more the state objects are updated by this function and the concerned

component is re-invoked.

User actions create DOM events which in turn either call updateState or dispatches an Action. The updateState re-

invokes the component while dispatch action invokes the related ActionHandler.

We use a function named requestSearchResults defined in component sed-rg1c-knowledge-results. This function

dispatches an action named SEARCH_RESULTS_REQUESTED. This action’s action handler takes help of a ServiceNow

provided function named createHTTPEffect. This function uses supporting action handlers named

SEARCH_RESULTS_STARTED and SEARCH_RESULTS_FETCHED to fill the array named searchResults (which is one

of the objects of the state).

8. Logic - continued

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

57
Rakesh Goel, Founder & CTO, ServiceData

Component sed-rg1c-knowledge

state: searchWords
properties:
ActionHandlers:

Component sed-rg1c-knowledge-results

state: showLoading: true,
searchResults: [],
selectedResult: null

properties: searchText

ActionHandlers:

[actionTypes.COMPONENT_CONNECTED]:

[actionTypes.COMPONENT_PROPERTY_CHANGED]:

SEARCH_RESULTS_REQUESTED

SEARCH_RESULTS_STARTED

SEARCH_RESULTS_FETCHED

now-modal

Passes:
state.searchWords
from sed-rg1c-
knowledge
component to
property
searchText of
component sed-
rg1c-knowledge-
results

Components View
Flow Logic

A. Initial State
1. sed-rg1c-knowledge has ‘Email’

based on value in
state.searchWords from
Initialstate

2. sed-rg1c-knowledge-results gets
property searchText set as Email
from index.js of sed-rg1c-
knowledge. And, in sed-rg1c-
knowledge-results using the
ActionHandler
[actionTypes.COMPONENT_CONNE
CTED]it fills state.searchResults
array. The action handler calls the
function requestSearchResults.
This in turn takes help of action
handler
SEARCH_RESULTS_REQUEST
ED. The searched results are
displayed in the return from the
view of the sed-rg1c-knowledge-
results component.
SEARCH_RESULTS_STARTED
and
SEARCH_RESULTS_FETCHED
support createHTTPEffect
function that fetches the results.

properties: opened

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

58
Rakesh Goel, Founder & CTO, ServiceData

Component sed-rg1c-knowledge

state: searchWords
properties:
ActionHandlers:

Component sed-rg1c-knowledge-results

state: showLoading: true,
searchResults: [],
selectedResult: null

properties: searchText

ActionHandlers:

[actionTypes.COMPONENT_CONNECTED]:

[actionTypes.COMPONENT_PROPERTY_CHANGED]:

SEARCH_RESULTS_REQUESTED

SEARCH_RESULTS_STARTED

SEARCH_RESULTS_FETCHED

now-modal

Passes:
state.searchWords
from sed-rg1c-
knowledge
component to
property
searchText of
component sed-
rg1c-knowledge-
results

Components View
Flow Logic

B. User changes the value of
Search Words to os – this is an
event in component sed-rg1c-
knowledge
1. On input sed-rg1c-knowledge

calls logic
on-
input={e => updateState({searc
hWords: e.target.value})}

to update the searchWords to
new value.

2. The tag <sed-rg1c-knowledge-
results> in index.js of primary
component therefore updates
property searchText to the new value
of searchWords.

3. In sed-rg1c-knowledge-results
using the ActionHandler
[actionTypes.COMPONENT_PROPERTY
_CHANGED] refills it’s
state.searchResults array. The action
handler does this by calling the
requestSearchResults function again.
The searched results are displayed in
the return from the view of the sed-
rg1c-knowledge-results component.
SEARCH_RESULTS_STARTED and
SEARCH_RESULTS_FETCHED
support createHTTPEffect function
that fetches the results.

properties: opened

Tutorial 6: Develop a Master Detail Component – Search Knowledgebase

59
Rakesh Goel, Founder & CTO, ServiceData

Component sed-rg1c-knowledge

state: searchWords
properties:
ActionHandlers:

Component sed-rg1c-knowledge-results

state: showLoading: true,
searchResults: [],
selectedResult: null

properties: searchText

ActionHandlers:

[actionTypes.COMPONENT_CONNECTED]:

[actionTypes.COMPONENT_PROPERTY_CHANGED]:

SEARCH_RESULTS_REQUESTED

SEARCH_RESULTS_STARTED

SEARCH_RESULTS_FETCHED

now-modal

Passes:
opened={state.sel
ectedResult} to
now-modal
component

Passes:
state.searchWords
from sed-rg1c-
knowledge
component to
property
searchText of
component sed-
rg1c-knowledge-
results

Components View
Flow Logic

C. User clicks on circle-info-
outline icon – this is a user
action on sed-rg1c-knowledge-
results component

1. This invokes the following logic in
index.js of sed-rg1c-knowledge-
results:

on-click={() =>

updateState({selectedResult:
result}

)

2. This makes the value of
selectedResult from null to a non-null
value equal to the identifier of the
result row selected.

3. Therefore, the following logic gets
executed to display the now-modal in
the DOM

{state.selectedResult ? (
<now-modal

……..

<now-rich-
text html={state.selectedResul
t.text}></now-rich-text>
</now-modal>

properties: opened

Rakesh Goel, Founder & CTO

ServiceNow
NOW Experience
Component
Development Series

60

Tutorial # 6 Add On
Master Detail Component (continued) – Quick explanation of

the code

ServiceNow Technology Tutorial Series by ServiceData

Learning reinforced through:
a. Power Point slides
b. Source code
c. Hands-on session
Slides & Code Download link at: www.servicedata.com/tutorials/

Tutorial 7: Master Detail Knowledge component – Quick code explanation

• The action starts at element.js file which creates an element e1 with the e1.innerHTML as the tags which in our case are:

el.innerHTML = `
<sed-rg1c-knowledge></sed-rg1c-knowledge>
`

Rakesh Goel, Founder & CTO, ServiceData

Start Action

• The control now goes to index.js file in sed-rg1c-knowledge directory the component sed-rg1c-knowledge is created. The

createCustomElement statement initializes the objects stored in State. Like, we initialize state.searchWords = Email.

• The control goes to the return from the View. Here the initialized state objects are used to form the initial html.

• In our case the initial html has a text box in the header with first an icon of magnifying glass and then the text as initial value of

state.searchWords which is email.

• This is followed with tags for results component <sed-rg1c-knowledge-results searchText={state.searchWords}>……

• This takes the control to the index.js of sed-rg1c-knowledge-results with value of the property named searchText set as

state.searchWords which is Email in our case.

• In this file since we have defined Action handler for COMPONENT_CONNECTED, on component connection this handler is

called, which in turn calls requestSearchResults func to fill the search results. These are displayed by Views return statement

Initial Display

Tutorial 7: Master Detail Knowledge component – Quick code explanation

• When user inputs new Search words, the following logic is triggered which updates the state.searchWords of sed-rg1c-

knowledge component.

on-input={e => updateState({searchWords: e.target.value})}

• This updateState will make the sed-rg1c-knowledge component render again with the modified value of

state.searchWords, for example state.searchWords = os.

• The rendering of sed-rg1c-knowledge component will re-execute return logic in View. This time with state.searchWords

as os. This will render the input text box with searchWord os. While executing , <sed-rg1c-knowledge-results> tags it

will go to index.js of sed-rg1c-knowledge-results with changed value of the property named searchText.

• In index.js of sed-rg1c-knowledge-results, we have an action handler defined for change in any property –

COMPONENT_PROPERTY_CHANGED.

• This action handler calls requestSearchResults function again. This function in turns dispatches an action called

SEARCH_RESULTS_REQUESTED. This action handler uses NOW provided API call named createHttpEffect to fill an

array named state.SearchResults with the search results. createHTTPEffect is supported by supporting action

handlers SEARCH_RESULTS_STARTED and SEARCH_RESULTS_FETCHED

• state.searchResults.map call in return of view displays the search results

Rakesh Goel, Founder & CTO, ServiceData

On User inputing a new set of search words in primary component

Tutorial 7: Master Detail Knowledge component – Quick code explanation

• The index.js of sed-rg1c-knowledge-results component’s following logic is triggered:

<now-button-iconic
bare
icon="circle-info-outline"
size="md"
on-click={() =>

updateState({selectedResult: result}
)

}></now-button-iconic>

• This updates the state of sed-rg1c-knowledge-results component making selectedResult from null to the selected

result row.

Rakesh Goel, Founder & CTO, ServiceData

On User selecting info icon in front of one of the results

Tutorial 7: Master Detail Knowledge component – Quick code explanation

• This updateState will make sed-rg1c-knowledge-results render again. When it renders this time, within the return of

View, the control goes to

{state.selectedResult ? (
<now-modal

..
<now-rich-text html={state.selectedResult.text}>
</now-rich-text>

</now-modal>

• This logic will open <now-model> component with the details of the selected result in state.selectedResult.text

Rakesh Goel, Founder & CTO, ServiceData

On User selecting info icon in front of one of the results

Rakesh Goel, Founder & CTO

ServiceNow
NOW Experience
Component
Development
Learning Series

65

Thank you for attending

ServiceNow Technology Learning Series by ServiceData

Learning reinforced through:
a. Power Point slides
b. Source code
c. Hands-on session
Slides & Code Download link at: www.servicedata.com/tutorials/

