
 

Riemann Hypothesis 
Introduction 

The Riemann Hypothesis is the holy grail of mathematics. An unsolved problem 

with the potential for redefining our understanding of number theory. The Clay 

Institute of Mathematics has declared a 1 million USD cash prize for anyone 

who can solve this problem. This is some real shit. 

So, lets dig a bit deeper into why this is so important. Do not worry, you do not 

require high level mathematics knowledge for the purposes of this article, just a 

bit of high school math should suffice to understand this at a very surface level. 

This will be a bit lengthy though, and I encourage you to skim some parts if you 

are already familiar with it but do so with caution.  

This hypothesis has to do with the distribution of prime numbers. For the 

readers who are a bit rusty on primes, a prime number is one that has no factors 

apart from itself and 1. For example, 2 is a prime number as the only factors are 

1 and 2 itself. 5 is also a prime number. 19 is also a prime number. 27 is NOT 

since it has factors of 1,3,9, and itself. So on and so forth. 

Until now, we have not seen any pattern that describes the distribution of prime 

numbers along the number line. It is a mystery and prime numbers have allured 

mathematicians everywhere. We’ve been at this for almost 150 years and still no 

concrete pattern has been discerned. The closest we have gotten is the Riemann 

Hypothesis (RH). If RH was solved, then we would be able to predict where the 

next prime number is and how they are distributed along the number line.  

Okay, let’s get into a little bit of the nitty gritty of this topic. 

The Riemann Hypothesis states that the non-trivial solutions for a Riemann 

Zeta function would all have a real part of ½.  

Confused? Yeah, so was I. As promised, I will break this down piece by piece. 

Remember, Riemann Hypothesis is a theory that says something about a 

special function called the Riemann Zeta function. Do not confuse them 

both. 

 



Funk it up with Functions 

Let’s have a quick discussion on what functions are for any readers who would 

appreciate a small detour to freshen up their knowledge. Functions are like 

microwaves with some settings that have been predetermined. You put 

something into the microwave, switch it on at whatever the predefined settings 

are, and then afterwards whatever you put inside is now converted to something 

else. A frozen pizza becomes a delicious piping hot pizza with cheese just 

oozing from every pore...mmmmmm...oh wait I’m getting distracted. So yeah, 

you put something in and something else comes out. That’s a function. The 

inputs and corresponding outputs may change but the process undergone 

remains constant. 

For example, lets define a function ourselves: 

Function for x : 𝑥2 − 1 

For ease of denoting this function let’s use  F(x) 

So, F(x) =  𝑥2 − 1 

Say that we input 2 into this function, then: 

F(2) = 22 − 1 = 4 -1 = 3 

We put 2 into F(x) and 3 comes out. Amazing. Exactly like a microwave. 

Totally not a confusing and ridiculous analogy. 

With me till now? Hopefully yes 

A solution to this function F(x) would mean all possible inputs, x,  such that 

F(x) = 0 

2 CANNOT be a solution since F(2) = 3 

What about F(1)? 

F(1) = 12 − 1 = 0 

Yes! 1 is a solution of F(x). 

How about -1? 

F(-1) = (−1)2 − 1 = 1 -1 = 0 

Yes, this is also a solution of F(x). 



Great! We have 2 solutions of F(x). So, this should give you an understanding of 

functions and solutions. 

Mathematicians are a funky crowd so they decided that calling the solution a 

“solution” was too simple and decided to call them “zeroes” of the function 

instead. If you put the “zeroes” of the function into the function it becomes zero. 

Such genius. 

So, F(x) has 2 zeroes (a.k.a. solutions): 1 and -1.  

Remember this point. The zeroes of a function are those values that when 

inputted into a function gives out 0. Let’s move on.  

Quick Note: 

Do you know the different sets of numbers? Natural, Whole, Integers, etc.. 

Natural: Integers from 1 to infinity: 1,2,3,... 

Whole: Integers from 0 to infinity: 0,1,2,... 

Integers: Numbers with NO decimal or fractional parts: -3,-2,-1,0,1, 2,... 

Rational: All numbers that have a finite value, they can have decimal and 

fractional part: -56.8, ¾, 1093.22, etc.. 

Irrational: All numbers that do not have a finite value. Basically, when 

expressed in decimal form the numbers keep going and never stop. There is no 

definitive value they have 

Example: π, √2, etc.. 

Real numbers: Rational and Irrational every possible number.  

 



Riemann Zeta Func...what? 

The Riemann Zeta function is just a kind of function. It takes in an input and 

gives an output after doing whacky shenanigans to the input. This is how it 

looks like:  

 

Oh wait, this is that Pythagoras dude’s theorem. Let me get the correct Riemann 

Zeta function. 

Ah, here it is: 

 

 

 

We represent the Riemann Zeta function with the Greek symbol ζ . The symbol 

∑ means to sum up all the terms by replacing n with 1, then 2, then 3 and so on 

till infinity. The expression next to the ∑ is 1 𝑛𝑠⁄  hence we sum up 1 1𝑠⁄  , 1 2𝑠⁄  , 

1
3𝑠⁄  and so on and so forth. Below are a few examples: 

 

ζ(2)  =
1

12
+ 

1

22
+ 

1

32
+ ⋯ 𝑡𝑖𝑙𝑙 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

 

ζ(3)  =
1

13
+ 

1

23
+ 

1

33
+ ⋯ 𝑡𝑖𝑙𝑙 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 



 

If we actually try to calculate the value, using limits and some advanced maths, 

we get: 

ζ(2) =  
𝜋2

6
 

How we got this is not very important, but the point is that even though it is an 

infinite series, it’s possible to get a value. This is possible because each term in 

the series gets smaller and smaller and hence, we are able to converge. Such 

types of infinite series where it converges to a value is called a convergent 

series.  

What about the Riemann Zeta for -1? 

ζ(−1)  =
1

1−1
+ 

1

2−1
+ 

1

3−1
+ ⋯ 𝑡𝑖𝑙𝑙 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

ζ(−1) = 1 + 2 + 3 + ⋯ 𝑡𝑖𝑙𝑙 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

This clearly does not converge to any value, it diverges and so we say it tends to 

infinity. Such types of infinite series that diverge are called divergent series. 

ζ(−1) =  ∞ 

Another interesting point here is that if we try to calculate the Riemann Zeta 

function of 1, that would also diverge!  

ζ(1)  =
1

11
+ 

1

21
+  

1

31
+ ⋯ 𝑡𝑖𝑙𝑙 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

ζ(1) =  ∞ 

That seems a bit counter-intuitive since each term in the series is getting smaller 

but it isn’t getting smaller fast enough so it still tends to infinity. It’s quite weird 

but don’t worry about understanding this fully. What’s important here is that 

the zeta function for values greater than 1 will always converge to a value. 

The guy who came up with this function and the hypothesis, is Bernhard 

Riemann. A German mathematician. The Riemann Hypothesis and the Riemann 

Zeta function both are his namesake. He decided to do something cheeky with 

the Riemann Zeta function. He decided to use complex numbers as the input... 

 



Complexity for Simplicity’s sake 

I highly recommend reading through this section regardless of your familiarity. 

If you aren’t familiar with Complex Numbers, how I envy your free and relaxed 

existence. It doesn’t just stop at Real Numbers. There’s an even bigger group. 

We’ve been taught from a very elementary age that you CANNOT have roots of 

negative numbers. Guess what mathematicians did... 

They created a special number, i, which is equal to √−1 

Then they created a whole new set of numbers called Imaginary numbers to 

encompass numbers like 2i, 3i, -1000i, 403.7i 

Then they were like hmm let’s combine real numbers with imaginary numbers 

and gave birth to Complex Numbers: 1 + 4i, 78 + 90i, -23 + 46.8i  

A complex number is a number that can be expressed as: 

𝑧 = 𝑎 + 𝑏𝑖 

Here, z is the complex number. a is called the Real Part and b is called the 

Imaginary part. This is important. Take note. 

Now the big question: WHY? Why do this? Why torture our poor naïve souls 

with such incredulities. 

The answer is that these Complex Numbers are actually amazingly useful. They 

are widely used in mathematics and even in the practical sciences to reduce 

complicated problems to simpler ones. You can now find out roots for ANY 

polynomial equation, and this could be used to analyze so many different things. 

If I asked you what the zeroes of the function g(x) = 𝑥2 + 3 are, do you have an 

answer? 

𝑥2 + 3 = 0 

𝑥2 =  −3 

𝑥 =  √−3 

𝑥 =  √−1 ∗ 3 

𝑥 =  √−1 ∗ √3 

𝑥 =  𝑖√3 



Tada! It’s not obvious why this is useful, but this is a gamechanger. From 

quantum mechanics to electrical engineering, complex numbers are used widely. 

Think of it as a helpful intermediary to reach a useful conclusion rather than the 

useful conclusion itself. A catalyst to help reduce complicated equations to 

simpler ones. You don’t have to understand much about complex numbers, just 

that they exist and how to represent them. 

Given a complex number z = 3 + 4i: 

Real part of z = Re(z) = 3 

Imaginary part of z = Im(z) = 4 

i is the square root of -1 so 𝑖2 =  −1  

Coordinate Exes Axes 

Do you remember the co-ordinate plane? 

 

 

 

 



 

There is an x-axis and a y-axis. Each point on this plane can be represented as a 

point (x,y) where x is the length along x-axis and y is the length along the y-

axis. 

 

If I wanted to plot the function F(x) : x - 1 on the graph it would look like this: 

  

Each x-coord is the input to the function and the y-coord is the corresponding 

output. So, all points on the red line are (x, F(x)) 

If we take x = 1. Then F(1) = 1 -1 = 0. Hence when the x-coord is 1, the y coord 

is 0: (1, 0). This point lies on the red line. It has been circled. (2,1) is another 

point. 



Now, say that the x-axis represents all Real numbers: -2.9, -1.99999, 1, π, 3, ... 

Let’s also say that the y-axis represents all Imaginary numbers: -8.6i, -1i, 1.8i, 

√2i, 3i... 

Et voila! We get the complex co-ordinate plane and can express any complex 

number on this plane: 

 

For a complex number z = a + ib 

The Real part of the complex number is the x-coord. Re(z) = a 

The Imaginary part of the complex number is the y-coord. Im(z) = b 

Okay, so now that we have a complex plane. How do we denote a function that 

is in the complex plane? Just think about it for a second. Normally, we have a 

simple function F(x) where the input is just the x-coord and whatever the output 

is we will just mark that as the y-coord. For a complex plane, we need both the 

x and y coord to denote a specific input, so where do we mark the output? Even 

if your input is just an integer like 2. In the complex plane that would be 

denoted as 2 + 0i. So (2,0). That uses both x and y coord to denote a single 

input. In the normal coordinate plane, any input is just on the x-axis directly.  



A bit of a mindbender, yea? 

We can’t really use the rules of normal coordinate systems to plot functions in 

the complex plane. But there’s till something else we can do.  

Let’s take a function in the complex plane: 𝑓(𝑧) =  𝑧2 where z is a complex 

number. 

f(2) = 22 = 4 

f(2i) = (2𝑖)2 =  22 ∗  𝑖2 = 4 ∗ (−1) =  −4 

On the complex plane a representation for f(2) would be: 

 

Here the blue dot represents z and the red dot represents f(z) 

 

 

 

 



 

Similarly, f(2i) would be:  

 

Let’s introduce some gridlines. The gridlines cover the space from -5 to 5 on the 

Real and Imaginary axes. This is what we call our input space. We will now 

perform a transform of the graph by applying the function f(z) to each point in 

the input space and SHIFTING it to its output. Essentially, we are pulling each 

point to its output. You can imagine a lot of stretching and rotating that will 

happen. We’re giving this graph a proper yoga workout. 

Before transform: 

 



 

 

After transform: 

 

Notice how the max limit on the Real axis is 25 and on the Imaginary axis is 50. 

This is because the maximum Real value is from an input like (5,0) in the input 

space.  

f(5,0) = 52 = 25 

and the maximum imaginary value is from an input like (5,5) in the input space. 

f(5,5) = (5 + 5𝑖)2 = 52 + (5𝑖)2 = 25 + 25(-1) + 2(5)(5i) = 50i 

Remember (𝑎 +  𝑏)2 = 𝑎2 +  𝑏2 + 2𝑎𝑏 

 



This is how we represent functions in the complex plane, all the possible 

outputs for a predefined input space are displayed. You can’t really figure out 

which output corresponds to which input just by looking at the graph, but you 

will know what the possible outputs of a function are.  

This is called complex transformation. 

Complex Multiplication 

Okay so we are successfully able to plot complex numbers on the graph and 

have even seen how to transform a function in the complex plane. Let’s look at 

multiplication. 

Take a complex number 𝑧1 = 3 + 4i 

Here’s how it would look like on the complex plane: 

 

What if we multiply this by 𝑧2 = 0 + 1𝑖. Just a fancy way of saying to multiply 

by i.  

𝑧1 ∗ 𝑧2 = (3 + 4𝑖) ∗ 𝑖 

𝑧1 ∗ 𝑧2 = 3𝑖 + 4𝑖2 

𝑧1 ∗ 𝑧2 = 3𝑖 + 4 (−1) 

𝑧1 ∗ 𝑧2 = −4 + 3𝑖 

 



Let’s chart this on the complex plane as well 

 

Hmm…something seems weird. We multiplied and the new point seems to be 

the same length from the origin, and also at a perfect 90 degrees to the original 

point. 

 

Essentially, multiplying with i just rotated the point.  

This is quite an interesting result.  

So, what does this mean for the Riemann Zeta function? 

 

 



Let’s take a complex number z = 2 + ib. Never mind what b is. 

Plugging this into the Riemann Zeta: 

ζ(2 + ib)  =
1

12+𝑖𝑏
+ 

1

22+𝑖𝑏
+ 

1

32+𝑖𝑏
+ ⋯ 𝑡𝑖𝑙𝑙 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

ζ(2 + ib)  =
1

12 ∗ 1𝑖𝑏
+  

1

22 ∗ 2𝑖𝑏
+ 

1

32 ∗ 3𝑖𝑏
+ ⋯ 𝑡𝑖𝑙𝑙 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

ζ(2 + ib) = (
1

12
∗

1

1𝑖𝑏
) + (

1

22
∗

1

2𝑖𝑏
) + (

1

32
∗

1

3𝑖𝑏
) + ⋯ 𝑡𝑖𝑙𝑙 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

Anything raised to the power of an imaginary number, is just another complex 

number. And this complex number has the unique property that it does not 

change the magnitude at all, just rotates the point it is multiplied to! The 

derivation for this is out of the scope right now but it’s based on Euler’s formula 

that you should check out if you have the time. It is based on the observation we 

made earlier regarding the rotation when we multiply with i. The important 

point here is that raising to the power of i gives us another complex number 

that just rotates the point it is multiplied to, nothing else.  

So now, the zeta function can be reduced to the format below: 

ζ(2 + ib) = (
1

1
∗ 𝑧1) +  (

1

4
∗ 𝑧2) + (

1

9
∗ 𝑧3) + ⋯ 𝑡𝑖𝑙𝑙 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

 

 

 

 

 

 

 

 

 

 



Normally if we were to just take the input as just 2, and try to sketch out each 

term it would look like this: 

ζ(2)  =
1

1
+ 

1

4
+ 

1

9
+ ⋯ 𝑡𝑖𝑙𝑙 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

 

 

 

If we were to sketch out ζ(2 + ib) it would look like this: 

 

 



The series will still converge, just at a different value since we have to also 

consider rotations due to imaginary values. The Imaginary part DOES NOT 

AFFECT the magnitude in the Riemann Zeta function. Only the rotation. The 

Real part affects the magnitude. This means that whether we use real numbers 

or complex numbers; the convergence or divergence remains the same. It is only 

based on the Real part. So, even if we use complex inputs, as long as the Real 

part is >1 the Riemann Zeta function will converge and for all inputs with 

Real part <=1 it will diverge.   

We’re Almost There 

One final detour before we understand the Riemann Hypothesis. 

The Riemann Hypothesis says that, the non-trivial solutions for a Riemann 

Zeta function would all have a real part of ½. 

Umm wait, what does non-trivial mean? Well, simply put, non-trivial is 

basically mathematicians saying not the obvious solutions.  

For example, let’s take a new function  

F(x) : 𝑥2 − 2𝑥 

A very obvious solution to this is if x was 0. 

F(0) = 0 - 0 = 0 

A not so obvious one would be 2. 

F(2) = 22 − 2 ∗ 2 = 4 - 4 = 0 

So, there are 2 zeroes(solutions) for F(x) now but only 1 is not obvious. Hence, 

there is one non-trivial zero for F(x).  

The obvious solutions for the Riemann function are all the negative even 

integers like -2, -4, -6. How this came about is out of the scope of this article. 

Right now, it’s just important you get what non-trivial means. Basically, any 

zero for the Riemann Zeta function that isn’t a negative even integer will be 

considered a non-trivial solution. 

 

 

 



Putting it all together 

We have now reached a stage where we can understand the Riemann 

Hypothesis. 

Let’s graph the Rieman Zeta in the complex plane. Remember this isn’t a simple 

graph where the input is x-coord and the output is y-coord. Each point in the 

graph has been shifted to its Reimann Zeta output. This means that all possible 

outputs of the Reimann Zeta function have been plotted:  

 

 

It looks quite beautiful, right? 

You will notice that a lot of the graph is blank, that’s because the Riemann Zeta 

function is only valid for inputs whose real part is >1. Remember the 

convergent and divergent series discussion? If we were to input any value 

whose real part<= 1 then the function would become infinity. So, we have 

transformed the graph only for inputs with Real part > 1.  

You will notice immediately that we kind of have one half of the graph. It’s just 

begging to be completed. Let’s say we want to just complete the graph for the 

sake of symmetry, there is actually a process called Analytical Continuation we 

can use. It’s just completing the other half of the graph. Like making a full 

circle from a semi-circle. Now the function looks like this: 



 

Amazing, isn’t it? Truly wonderful. 

This is the Riemann Zeta function in all its glory. With the applied Analytical 

Continuation.  

Let’s highlight the outputs whose inputs have real part equal to ½: So, anything 

in the format of ζ (
1

2
+ 𝑏𝑖) such as ζ(½ +  3i), ζ(½ −  7i) , etc... 

You would get the following highlighted part of the graph: 

 

 



This beautiful spiral. This is what all the fuss is about. Do you see how it keeps 

looping through 0? The Reimann Zeta function keeps becoming 0, taking a loop 

and crossing 0 again. And this happens only when the real part is ½ (except at 

the trivial solutions at negative even integers, but we can ignore those). 

So, all the non-trivial zeroes seem to only happen when the real part is ½. 

Some of the zeroes of the Riemann Zeta function are: ½ + 14.13i , ½ + 21.02i , 

½ + 25.01i 

And this my friends, is the Riemann Hypothesis. That all non-trivial zeroes have 

a real part of ½. There is absolutely no way we can definitely prove it as of yet, 

we can only keep trying to find more and more zeroes of the Riemann Zeta 

function and if even one of them does not have a real part of ½ then it is 

disproved. We have had supercomputers calculate the first 10 TRILLION 

solutions to this function and all of them have had the real part 1/2.  

So, what about Primes? 

Okay, so I’m not going to delve deeper as this article is far far longer than I 

thought it would be. But here’s a very brief overview. 

This is the prime counting function, it’s a simple function that jumps up by 

log(p) whenever you encounter a prime, where p is the encountered prime. It’s 

like a staircase that spikes whenever a prime number is encountered: 

 

 

 



 

There is another function that exists, the Gauss function, 1/log(x) and if you 

chart it out, it closely follows the above prime staircase function: the blue line is 

the Gauss function. 

 

This was discovered by mathematician Friedrich Gauss. There’s clearly some 

sort of correlation here but it’s not perfect... 

Enter Riemann. 

Let’s choose one of the non-trivial zeroes of the Riemann Zeta function, say: ½ 

+ 14.13i. 

Now let’s create a simple waveform from this zero, where the real part of the 

zero is the amplitude and the imaginary part of the zero is the frequency. So ½ 

would be the amplitude and 14.13Hz would be the frequency. This is how it 

would look like: 

 

 



Let’s superimpose this wave onto the Gauss function, 1/log(x), and check how it 

compares to the prime counting function: 

 

There’s a small correction here that makes the superimposed Gauss function 

track the prime counting function better. 

Let’s do the same thing for 89 non-trivial zeroes of the Riemann Zeta function 

and superimpose all of the waveforms onto the Gauss function: 

 

The superimposed function becomes so much closer to the prime counting 

function! 

A definitive equation we can use to completely predict where the next prime 

number is! 

 



 

This is the reason why the Riemann Hypothesis is so goddamn important. If we 

can actually prove it, not just confirm with observations, then that would lead a 

number theory revolution.  

There is SO MUCH I simply could not cover in this article. From the derivation 

of the solution of the zeta function, to the math behind the Analytical 

Continuation, to the Gauss Convergence of Primes...a lot has been omitted and 

skipped over. You can look into this on your own and I encourage you to do so 

after reading this article. My hope is that I spark a curiosity within and serve as 

a small introduction to the behemoth that is the Riemann Hypothesis. 

If you have taken the time and were patient enough to suffer through this, thank 

you. 

Have a great month ahead and goodbye till the next we meet. 

 


