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Fig. 1 to the left is the Equivalent deformation of a triangle, which you
probably studied in elementary school. It stands in the Euclidean World,
doesn't it? How about in the Hyperbolic Non-Euclidean World?

Look at Fig. 2 right. The

Fig., 2
ide BC of a triangle AB
Is X ol Th'Vt' X't' BE[3.0664] B=[72.3767] Area =| 1.2302
1S movabole. 1S time 1t 1S -|2.|:|315| Gzl 1?.55530| B+B+C =103 . 51258

moved to point A' while
keeping the hyperbolic
area S of the triangle
constant. This is an
equivalent deformation.
All of the numerical
values shown at the top
change with every
movement of vertex A,
except the area value,
which remains constant.
The dotted line is the
locus of point A. It is
neither parallel with the
fixed side BC nor equally
spaced from the straight
line that passes points B
and C. The locus is not
even a straight line.

Equivalent Trianegle

It is because that in the Hyperbolic Non-Euclidean World, the area S of the
triangle ABC is calculated in a strange way:
S=n-(A+B+C). - (1)

You see,

The area consisting of length is defined by only angles.
We cannot believe it right away. Where is this formula taken from? Well, in

(Euclidean) spherical geometry, the area S of a triangle on a sphere with radius r is

S=r2((A+B+C)-m). === (2)
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Lambert pointed out that hyperbolic geometry is an imaginary-spherical geometry,
though he himself did not believe in hyperbolic geometry. If we replace radius r
with © (= 4-1), we will get the above formula (1).

It is not easy for us to imagine a sphere with a radius consisting of an imaginary
number, is it? Well, we will see it later.
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Look at Fig. 3.
We have seen some models of hyperbolic geometry. Now let us compare them with
the model of elliptic geometry. The model of elliptic geometry is a sphere. It is
inconvenient for us to compare it with a flat model of hyperbolic geometry. So we
try to make a flat model of elliptic geometry.

(I): The blue sphere on

N the yellow plane is a
@ modele of elliptic
geometry. A triangle on

0. the sphere is projected

p from the north pole N

_,_/ Euclidean plane
G R
N

to the plane.

(2): The plane is set
horizontally and we
view through the
sphere with rays.

2 We project point P
from north pole N to
point Q on Euclidean
plane, and we also

)
<

\ s project the point P
"’? %{u:“ﬂ from the center O to
S point R on the plane.

Such projection from
north pole N is called
stereographic projection, and the sphere is called Riemann's sphere. The
projection from the center O of sphere has no name. So let us name it ball-core
projection.

@: We put a spherical regular triangle on the right bottom of sphere and project it
to the plane, N-P-Q and O-P-R. We project the equator to the plane, too. The
projected equator plane (yellow circle) is our disk model of elliptic geometry,.
However, it is on condition that we pay attention to the southern hemisphere only.
Because antipodal points of Rieman's sphere are identified for elliptic geometry,
and so we do not need the northern hemisphere.

Also we do not consider antipodal points on the equator for our disk model.
Otherwise, our disk would become a plane in projective geometry. That is to say,
our disk is open as well as the disk of hyperbolic gometry.

In conjunction with Euclidean plane, we agree on that ball-core projection is
appropriate rather than stereographic projection. See chapter 3. So we project point
R on the Euclidean plane to point P on the sphere, and then we core-project it to
the original plane that becomes our model of elliptic geometry as point Q. Namely
the sphere is a relay land between Euclidean plane and our model. The reason why
we use stereographic projection is because it is conformal mapping and good for
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comparison with Poincare disk.

Look at Fig.
4.

(1): We tilted
@ of Fig. 3
some more so
that we can see
the situation on
the plane easily.
We cut the
sphere so that
the only
southern
hemisphere
remains. The
frame of plane
is omitted. The
spherical
triangle is dyed
pink. The ball-core projection O - P - R forms the black triangle on the plane. The
Stereographic projection N - P - Q forms the red triangle on the plane.

2): It is the top view. The red triangle is equiangular to the pink angle. But the
black angle is not so. The sides of red triangle is curved, but those of the black
triangle are straight.

Thus we can move among three worlds, Euclidean plane, Riemann's sphere and
our disk model of elliptic geometry. Stereographic projection is what is called
conformal mapping so that an angle on the sphere and a projected angle on the
plane are always identical. In core-projection no angle is kept unchanged but a
straight line (great circle) on the sphere becomes a straight line on the plane. That
is to say, two straight lines on Euclidean plane change into two great circles. And
those two great circles are to be transferred to our disk model of elliptic geometry
while keepig the angle of intersection.

The radius of our disk in this @ is double sized of the equator but we will draw it
in the same size as Poincare disk. We chose a regular triangle just for easy drawing.
Needless to say, the way of measurement (metric) on our disk is different from that
of the sphere.

Look at Fig. 5.

[1]: We let the area S of regular triangle be 2.
(1): The regular triangle is drawn in Euclidean geometry.
2): The hyperbolic regular triangle with the same area S is drawn on Poincare disk.
3): The elliptic regular triangle with area S is drawn on our disk model of elliptic
geometry.
The caluculation of area is done by above fomulae (1) and (2). & is the internal
angle of triangle. The triangle is a regular triangle so that A + B+C =3 & All
internal angles are just as we see by our own eyes. That is, each triangle has its
typical angles though the area equals to other triangles. £ is the length of side. In
elliptic geometry the length of side is Euclidean length on the corresponded great
circle on the sphere. Euclidean triangle looks very large but the area S of each
triangle is exactly equivalent to others.

[2]: This time, let the length of side be 2.
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Fiz. § Then, the appearaces of
& & triangles are shown as
IO D, @ and @. Of
course, all length of
sides are equal though
their appearace is very
different.

[3]: Let us see

isosceles triangles for a
8 = 7/ 8256 = 21808" 8 = 7/1833= 08197 reference. Angle-Side-

g=mi/3=00 - _
B =2140 £ =328 k=180 Angle is a rule used in

Euclideangeometry to
prove triangles are
congruent. Let two
angles be 37.819 7 is the
same as that of @ in
[2]. Similarly let the
length of base between
the two angles be 2. (D
. g - - ) is Euclidean triangle,
8= m/a=60 g f ﬁ;;-l#.?ﬁg = 37819 : ; ;193;11 329 = 13546 and @ is the triangle
5 =1732 o ' that has the same Angle-
Side-Angle on our disk
model of elliptic
@ geometry. The internal
angle of the upper
vertex is not identical
base £ = 2 each other.

A = 104.363° base & = 37819

(1]
BYErY areal
o=

[2]
every side:

k=12

(2]

By the way, let think
about "the same thing"
widely. The area does
not change in [1]. If we pay attention only to that, we can say three try angles are
the same. In [2] the length of side does not change. Similarly, if we pay attention
only to that, we can say three try angles are the same, too. But we can not say that
they are congruent.

A= 128417

Look at Fig. 6.
Now we make equivalent deformation of the triangle on our disk model of elliptic
geometry, and compare it with that of hyperbolic triangle. We fix the base and
move the upper vertex in the same way of Fig. 2.

[1]: Poincare disk (1) and our disk model of elliptic geometry 2 are put side by
side.
(): The green line is the locus of upper vertex when the vertex is moved while
keepin the srea constant like the black tip. The shape of locus is curved like ~—.
(2): The area of triangle is the same as that of Poincare disk. This time, the shape of
locus is oppositely curved like ~—-.
When we line the two disk models, We can easily guess that the character of plane
in hyperbolic geometry is quite contrary to that of elliptic geometry.
But we can not judge what kind of curve the locus is only by seeing 2,

[2]: To see it let us observe the equivalent deformation on the hemisphere that
is the origin of our disk of elliptic geometry.
(T: 1t is the view from the south pole S (bottom) of the hemisphere. The white line
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is the locus.

Fig. B a & It looks like
~— instead

[1] Of ~er
because of
the
hemisphere.
The triangle
on the
I &

(2] sphere is
. much bigger
than the
triangle on
the disk
because the
disk size is
made
uniform
with
[2] hypebolic
O 2@ one. Though
the triangle
on the

sphere looks
a similar
figure to
that of the
disk, it is
not true.

§=2953 §=2928  5=2816 S-p053 (constant ] @: The
south pole is

shifted
down.
Naturally
the locus
looks like
~_. Though the locus looks like () or 2, it shall be the curve in &' of [1].
3): 1t is the left side view of the openwork of (2.
@: We took out only the locus and put it on an exatra sphere with longitude and
latitude. Its earth’s axis is arranged just for our observation, not the same as 2 or
3. Seeing this, the locus might be a latitude line.
[3]: Let us confirm it.
Fix the base on the equator as shown in (1). And we moved the upper vertex along
a latitude line. The area S of triangle changes very slightly.
Then, we move the upper vertex while keeping the area S invariably as shown in
(2). The sky blue triangle is set as the standard. The locus, needless to draw, has
nothing to do with a latitude line. The entire sphere is not necessary for our disk
model, so that we drew triangles on the hemisphere (our side of the two halves).
Suppose we forget about projection and use the sphere entirely, it is possible to
extend the movable vertex going arond the sphere. But when the vertex arrives at
the opposite longitude of the sky blue triangle, the vertex falls to the equator and
we can not draw any triangle.

Similarly to Fig.2 that is in hyperbolic geometry, the locus is not parallel to the
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green base. It is natural because there is originally no parallel plines in elliptic
geometry. The locus is not an equidistant line like a latitude. Not a straight line
(great circle) either. It is not a small circle that can be made by cutting a sphere
with a plane, either.

We have tried to image up hyperbolic geometry by comparison with elliptic
geometry in equivalent deformation. We want to find something like Riemann's
sphere in hyperbolic geometry, don't we? There must be similar idea, we guess.
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