

Miasm-Integrated Model of Tumorigenesis: Bridging Molecular Oncology with Classical Homoeopathic Pathophysiology

Author

Dr. Rajneesh Kumar Sharma

MD (Homoeopathy), PhD

Homoeo Cure & Research Institute,

NH 74, Dr. Rajneesh Marg, Moradabad Road

Kashipur (Uttarakhand) 244713 India

Abstract

Cancer development is a multistage biological process involving genetic mutations, epigenetic dysregulation, immune escape, and progressive remodeling of the tumor microenvironment (TME). Modern oncology recognizes sequential stages—initiation, promotion, progression, malignant conversion, invasion, and metastasis—driven by clonal evolution and ecological selection pressures. [1]. Classical homoeopathy conceptualizes chronic disease progression through miasms: **Psora** (functional disturbance), **Sycosis** (proliferative excess), and **Syphilis** (destructive degeneration), with later recognition of **tubercular (pseudopsoric)** and **cancer miasms** [15].

This review integrates contemporary molecular oncology with miasmatic theory, mapping oncogenic drivers, tumor suppressor loss, epithelial–mesenchymal transition (EMT), angiogenesis, protease-mediated invasion, and metastatic homing to corresponding miasmatic phases. The objective is not therapeutic substitution but conceptual alignment for education, early detection strategy, case structuring, and ethically defined adjunctive care. The universal law of cure may be applied at various stages with critical analysis of the stages. This integrative framework aims to support interdisciplinary understanding while maintaining evidence-based oncology as the standard of care. [1,2,15,21]

Keywords

carcinogenesis; tumor microenvironment; metastasis; EMT; angiogenesis; miasms; integrative oncology; homoeopathy; universal law of cure

Introduction

Cancer is now understood as an evolutionary disease characterized by accumulated genetic and epigenetic alterations, immune editing, and ecological adaptation within tissues [1,2]. The classical linear model of carcinogenesis has expanded to include dynamic interactions between malignant cells, stromal components, immune populations, and metabolic niches [3–5].

Homoeopathic literature, since Hahnemann, has described chronic disease evolution through miasms—Psora, Sycosis, and Syphilis—representing progressive disturbances in regulation, structure,

and integrity. Although miasms are not biological entities, they function as **clinical heuristics** describing disease behavior over time.

Universal law of cure, also called as the law of similia, as articulated by Samuel Hahnemann, states that a substance capable of producing a specific pattern of symptoms in a healthy individual may, when administered in a suitably prepared form, i.e. sequentially diluted and potentized with strict principles, stimulate recovery in a patient presenting with a similar symptom pattern. [15,18]

This article synthesizes these two perspectives, proposing a **stage-wise correlation between tumor biology and miasmatic progression**, intended for academic discussion, teaching, and integrative clinical reasoning.

Biological Stages of Tumor Evolution and Miasmatic Correlation

A sequential interplay of miasmatic influences, when precisely integrated, initiates, manifests, and progressively consolidates malignant pathology, ultimately leading to rapid and often devastating compromise of the host. When these miasmatic phases are accurately identified, critically understood, and addressed at appropriate stages, disease progression may be interrupted or reversed. The universal law of cure operates at each level of this process, facilitating restoration of health in a sustained and orderly manner. [15,21]

1. Initiation – Psora (Functional Disturbance)

Oncology perspective:

Initiation begins with irreversible genetic or epigenetic alterations in a single cell. These include activation of oncogenes (e.g., *RAS*, *MYC*, *EGFR*), inactivation of tumor suppressors (*TP53*, *RB1*, *PTEN*), or DNA repair defects (*BRCA1/2*, *MSH2*, *MLH1*) [1,6].

Miasmatic correlation:

Psora represents functional imbalance without structural damage. At this stage, immune surveillance may eliminate altered cells (elimination phase of immunoediting) [7].

Clinical implication:

Disease is clinically silent; emphasis lies on **screening and prevention**.

2. Promotion – Psora to Sycosis (Clonal Expansion)

Oncology perspective:

Growth-promoting signals, hormones, cytokines, and chronic inflammation drive clonal expansion. Early angiogenic signaling (VEGF, FGF) and altered adhesion (E-cadherin downregulation) appear [2-3,8].

Miasmatic correlation:

Transition from Psora to Sycosis reflects **excessive growth and accumulation**, often seen clinically as hyperplasia or benign tumors.

3. Progression – Sycosis (Proliferative Dominance)

Oncology perspective:

Tumors acquire genomic instability, telomere dysfunction, angiogenic switch, and a supportive TME composed of cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), extracellular matrix (ECM) remodeling, and hypoxic niches [4,9].

Miasmatic correlation:

Sycosis dominates—unchecked proliferation, mass formation, and metabolic excess.

4. Malignant Conversion – Sycosis to Syphilis

Oncology perspective:

Malignancy begins with epithelial–mesenchymal transition (EMT) mediated by transcription factors *Snail*, *Slug*, *Twist*, *ZEB1/2*. Basement membrane degradation occurs via matrix metalloproteinases (MMP-2, MMP-9) and urokinase plasminogen activator (uPA) [10,15,21].

Miasmatic correlation:

Syphilis signifies **boundary loss, tissue destruction, and invasive behavior**.

5. Invasion and Metastasis – Syphilis (Destructive Spread)

Oncology perspective:

Cancer cells intravasate, survive in circulation via platelet cloaking, extravasate, and colonize distant organs guided by chemokine axes (CXCR4–CXCL12, CCR7–CCL21). Metastatic inefficiency is high; only a few cells successfully seed secondary tumors [11–13,15].

Miasmatic correlation:

Systemic syphilitic phase—ulceration, cachexia, organ failure.

6. Pseudopsoric (Tubercular) Miasm – Dormancy and Relapse

Oncology perspective:

Micrometastatic dormancy and relapse are regulated by immune pressure, ERK/p38 signaling balance, and niche-specific cues [14-15,18-21].

Miasmatic correlation:

Periodic flare, remission, wasting, and relapse typify tubercular behavior.

7. Cancer Miasm – Constitutional Predisposition

Oncology perspective:

Familial clustering, germline mutations (*BRCA1/2*, *TP53*), and epigenetic instability increase lifetime risk [15,21].

Miasmatic correlation:

Deep constitutional dyscrasia marked by despair, perfectionism, and loss of adaptive resilience (as described in homoeopathic literature).

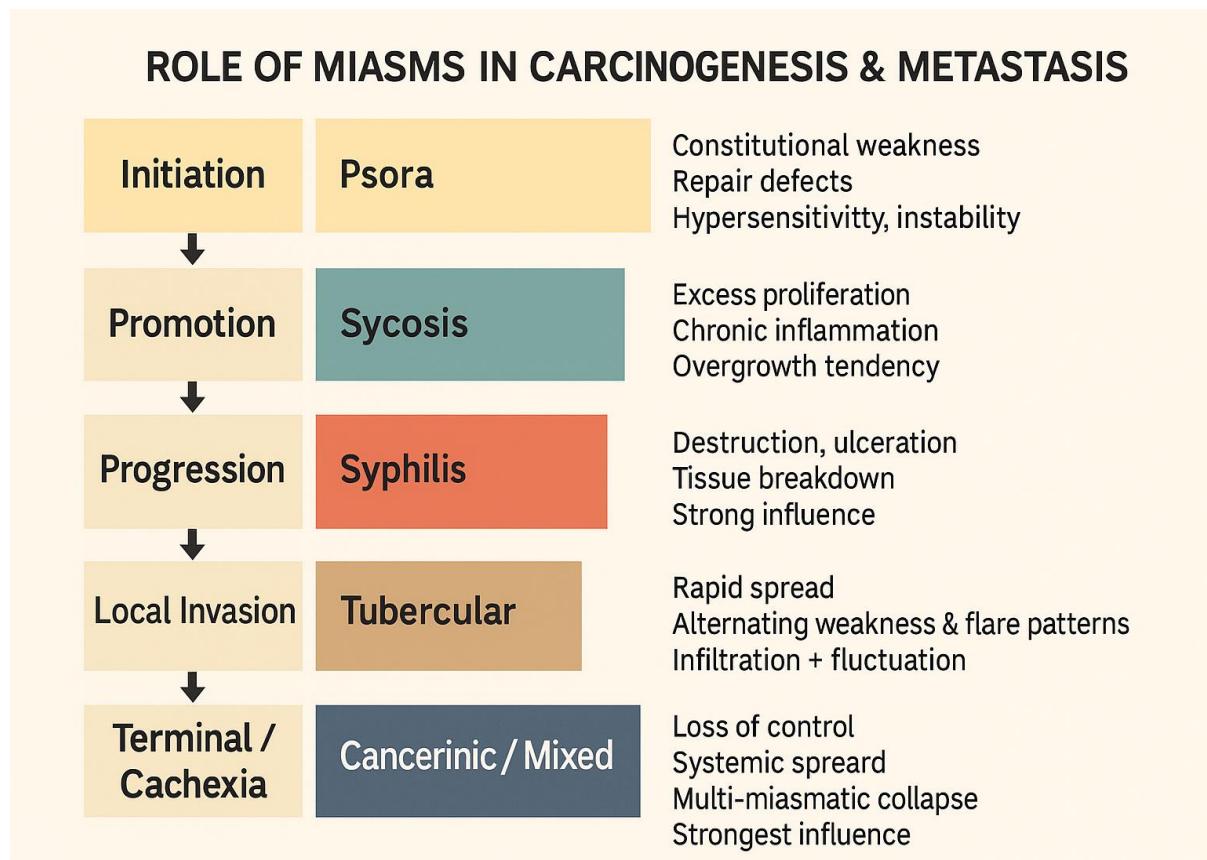


Figure showing role of miasms in carcinogenesis and metastasis

Clinical and Research Implications

Screening and Early Detection

Interrupting progression before invasive Syphilis stage is critical. Evidence-based screening programs (breast, cervical, colorectal, lung) remain foundational [16].

Targeted and Systemic Therapies

- Targeted therapy: EGFR, HER2, BCR-ABL inhibitors
- Immunotherapy: PD-1/PD-L1, CTLA-4 blockade
- Anti-angiogenic agents: VEGF inhibitors [17,18,21]

Adjunctive Homoeopathic Role (Ethically Defined)

Homoeopathy may be considered **only as supportive care**, addressing symptom burden, quality of life, and treatment tolerance—**never as a replacement for oncologic therapy** [19-21].

Limitations

- Miasms are interpretive constructs, not biological mechanisms
- Tumor heterogeneity limits uniform mapping [10-14]
- High-quality randomized evidence for survival benefit of homoeopathy in cancer is limited
- Framework is educational and adjunctive only

Discussion

Cancer is increasingly understood as a dynamic, multistage process shaped by genetic alterations, epigenetic modulation, immune surveillance, and continuous interaction with the tumor microenvironment. Contemporary oncology conceptualises malignancy as an evolutionary continuum rather than a discrete event. The present framework aligns this biological continuum with classical miasmic theory, offering a structured, interpretive model for understanding disease progression rather than a biological explanation of causation. [1-14]

Within this model, **Psora** corresponds to early functional dysregulation, where genomic instability and epigenetic drift may exist without irreversible structural damage. At this stage, immune-mediated elimination or equilibrium is possible, and disease often remains clinically silent. The miasmic description of susceptibility and irritability parallels these early oncogenic states, characterised by latent instability rather than overt pathology.

As disease advances, **Sycosis** aligns with the phase of proliferative dominance. Biologically, this stage is marked by clonal expansion, angiogenic signalling, metabolic adaptation, and establishment of a supportive tumor microenvironment. Clinically, this may manifest as hyperplasia, dysplasia, or localised tumour growth without invasive behaviour. The sycotic tendency toward excess and accumulation offers a heuristic parallel to these biological processes.

The transition to **Syphilis** represents a critical point of malignant transformation. Molecular events such as epithelial–mesenchymal transition, protease-mediated tissue invasion, and loss of architectural integrity dominate this phase. Clinically, destructive infiltration, ulceration, cachexia, and organ dysfunction become evident. At this stage, reversibility is limited, reinforcing the importance of early detection and intervention.

The incorporation of **pseudopsoric (tubercular)** and **cancer miasms** further refines this conceptual model. Tumour dormancy, relapse, and fluctuating clinical courses resemble tubercular patterns of alternation and instability. Familial clustering, germline mutations, and constitutional vulnerability may be interpreted within the construct of a cancer miasm, reflecting predisposition rather than an independent pathological entity. [15-20]

It is essential to emphasise that this miasmic mapping is **conceptual and pedagogic**, not mechanistic. It does not replace molecular oncology, histopathology, or staging systems, but serves as an

interpretive framework to contextualise disease behaviour, symptom evolution, and host response. When applied judiciously, it may aid clinical reasoning and interdisciplinary communication.

From a therapeutic perspective, **evidence-based oncology remains the cornerstone of cancer management**. Surgical, radiotherapeutic, chemotherapeutic, targeted, and immunotherapeutic interventions are indispensable for disease control and survival benefit. Any role for homoeopathy must remain **strictly adjunctive**, focused on symptom management, quality-of-life support, and treatment tolerability. Claims of curative efficacy in malignancy without standard oncologic care are neither scientifically substantiated nor ethically defensible.

The **universal law of cure**, as described in homoeopathic philosophy, may be interpreted here as a guiding principle for observing patterns of disease regression rather than as a substitute for biological mechanisms. Its relevance lies in its emphasis on orderly reversal, prioritisation of functional restoration, and respect for host adaptability—principles that resonate with modern supportive and palliative care practices.

Several limitations must be acknowledged. Tumour heterogeneity, organ-specific biology, and inter-individual variability limit the generalisability of any unified conceptual model. Moreover, high-quality randomised evidence demonstrating survival benefit from homoeopathic interventions in cancer remains limited. Future integrative research should therefore focus on transparent outcome measures such as symptom burden, performance status, quality-of-life indices, and treatment adherence.

In conclusion, aligning miasmic theory with contemporary oncological understanding provides a structured, ethically grounded framework for education and clinical reflection. When applied with scientific restraint, it may enrich holistic assessment and interdisciplinary dialogue while firmly preserving evidence-based oncology as the foundation of cancer care. [15-21]

Conclusion

Tumorigenesis represents a progressive biological continuum that can be pedagogically enriched by miasmic interpretation. Psora, Sycosis, Syphilis, tubercular, and cancer miasms parallel functional disturbance, proliferative excess, destruction, relapse, and constitutional predisposition, respectively. When applied cautiously and ethically, this integrated framework supports deeper clinical understanding while preserving evidence-based oncology as the therapeutic cornerstone.

List of Abbreviations

Abbreviation	Full Form
TME	Tumor Microenvironment
EMT	Epithelial–Mesenchymal Transition
CAF	Cancer-Associated Fibroblast
TAM	Tumor-Associated Macrophage
ECM	Extracellular Matrix
VEGF	Vascular Endothelial Growth Factor

MMP	Matrix Metalloproteinase
CTC	Circulating Tumor Cell
PD-1	Programmed Death-1
PD-L1	Programmed Death Ligand-1

References

1. Hanahan D. Hallmarks of cancer: new dimensions. *Cancer Discov.* 2022;12:31–46.
2. Greaves M, Maley CC. Clonal evolution in cancer. *Nature.* 2012;481:306–313.
3. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression. *Nat Med.* 2013;19:1423–1437.
4. Brassart-Pasco S, et al. Tumor microenvironment and ECM alterations. *Front Oncol.* 2020;10:397.
5. Lambert AW, et al. EMT and MET plasticity. *Trends Cell Biol.* 2017;27:401–413.
6. Vogelstein B, et al. Cancer genome landscapes. *Science.* 2013;339:1546–1558.
7. Mittal D, et al. Cancer immunoediting. *Curr Opin Immunol.* 2014;27:16–25.
8. Ferrara N, Adamis AP. Anti-VEGF therapy. *Nat Rev Drug Discov.* 2016;15:385–403.
9. Fares J, et al. Molecular principles of metastasis. *Cancer Metastasis Rev.* 2020;39:707–732.
10. Valastyan S, Weinberg RA. Tumor metastasis. *Cell.* 2011;147:275–292.
11. Chaffer CL, Weinberg RA. Perspective on metastasis. *Science.* 2011;331:1559–1564.
12. Hoshino A, et al. Exosomes and organotropism. *Nature.* 2015;527:329–335.
13. Aguirre-Ghiso JA. Cancer dormancy. *Nat Rev Cancer.* 2007;7:834–846.
14. Siegel RL, et al. Cancer statistics 2024. *CA Cancer J Clin.* 2024;74:7–33.
15. Sharma RK. *Oncology for Advanced Homoeopathic Practitioners.* Notion Press 2025;23-27,31-42.
16. CureMe Research papers. CureMe.org.in (Research Section).
17. Banerjee K, et al. Homeopathy in supportive cancer care. *Integr Cancer Ther.* 2018;17:1014–1021.
18. Vithoulkas G. The science of homeopathy. *Int J High Dilution Res.* 2013;12:130–146.
19. Sharma RK. Endocrinology Decoded with Homoeopathy (A Multidimensional Clinical Perspective). Notion Press 2025;216-246.
20. Sharma RK. Homoeopathic Therapeutics in Universal Medical Terminology. Notion Press 2023-24
21. Sharma RK. Practice of Medicine Vol. 2. Notion Press 2025;635-647.