
INNOVATION FOR A **SAFER WORLD**

INTRODUCTION

To meet the confidentiality requirements of special events, Skyfend offers a portable solution of drone pilot positioning device, which effectively prevents "rogue" drones with effective jamming. This solution is recommended to be jointly operated by one detector and one jammer operator.

- Detection operators can use radio frequency detection devices to accurately locate drones and their pilots, thus solving the problem of "rogue" drones at its root.
- The countermeasure operator uses an integrated reconnaissance and strike countermeasure device to achieve a closed-loop process of independent detection and strike.

SPECIFICATIONS

- **Detection:** 3km protocol analysis + 2.5km spectrum detection (based on DJI Mavic 3 SRRC mode, signal power of about 20dBm at 2.4GHz, and about 30dBm at 5.8GHz, without strong signal interference under sighting conditions)
- Interference: 3km (Customizable full-band coverage. The interfering models include DJI, Autel, Parrot, FIMI, etc.)

ADVANTAGES OF SOLUTIONS

Precise Positioning of Drones and Pilots

Blacklist and Whitelist Management
Accurate Early Warning

Combining intelligent interference strategies with directional interference to minimize the impact on other wireless devices in the surrounding area

PORTABLE Event Security

SOLUTION

PORTABLE Border Defense

INTRODUCTION

The portable border control solution is specifically designed for C-UAS scenarios which demand high maneuverability, aiming to assist the border defense teams in efficient interference and jamming against done threats in complicated environment. In response to the challenges of threats that are difficult to detect, locate, and interfere with, this solution ensures rapid response at critical moments through the collaborative cooperation of detectors and jammer operators, providing real-time protection and the ability to effectively interfere beyond line of sight, enhancing protection range and flexibility.

- **Detector:** radio detection equipment is used, and detectors can provide timely early warnings against drone threats. Accurate positioning is achieved through rotating radar, which can clearly identify the direction of the target's approach, thereby providing effective guidance for jammer operators.
- **Jammer operators:** with the help of navigation spoofing technology, they can effectively respond to drones equipped with GNSS. In addition, combined with the integrable function of SPS100 and SSH100, and guided by radar, it can achieve precise interference to the target drone, causing it to destabilize and fall.

SPECIFICATIONS

- Radio detection: 3km (based on DJI Mavic 3 SRRC mode, signal power of about 20dBm at 2.4GHz, and about 30dBm at 5.8GHz, without strong signal interference under sighting conditions)
- Radar: FPV 7 inches: 800 m; DJI Mavic 3: 1100m; DJI FC30: 2500m
- Navigation spoofing: 2km (with DJI Mavic 3 as typical model)
- Radio Frequency Jamming: 1.5km (SRRC mode based on DJI Mavic 3, typical model with a signal power of about 20dBm at 2.4GHz and about 30dBm at 5.8GHz, and the distance between the drone pilot and the jamming device is 3km)

ADVANTAGES OF SOLUTIONS

Accurate positioning of intruding drones

Wearable compact design

Networking for multiple devices

Expand the Protection Range of Interference Capability beyond the Effective Line of Sight

INTRODUCTION

Through the fusion of multiple sensors such as radar, radio detection equipment, and optical cameras, the energy facility protection solution of SkyFend can achieve real-time detection, tracking, and identification warning of low-altitude drones in the protected area, ensuring accurate detection with a low false alarm rate or even without any false alarm. With the guidance of the detection equipment, the interference equipment can offer more accurate interference and jamming against drone intrusions without affecting the operating drones at the energy station. Ultimately, it can achieve timely detection and interference against drone intrusions while ensuring the normal operation of energy facilities.

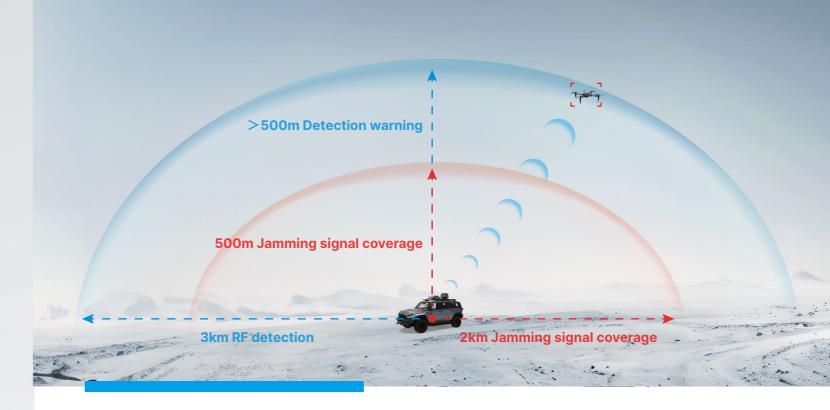
SPECIFICATIONS

- Radio detection: 5km (based on DJI Mavic 3 SRRC mode, signal power of about 20dBm at 2.4GHz, and about 30dBm at 5.8GHz, without strong signal interference under sighting conditions)
- Visual and radar detection: 7-inch FPV: 3.5km; Mini and Micro Drones (DJI Mavic 3): 5km; Small and Medium-sized Drones (DJI M300): 7km
- **Protocol analysis:** 3km (based on DJI Mavic 3 SRRC mode, signal power of about 20dBm at 2.4GHz, and about 30dBm at 5.8GHz, without strong signal interference under sighting conditions)
- Radio frequency jamming: 3km (SRRC mode based on DJI Mavic 3, typical model with a signal power of about 20dBm at 2.4GHz and about 30dBm at 5.8GHz, and the distance between the drone pilot and the jamming device is 6km)
- Navigation spoofing: 5km

ADVANTAGES OF SOLUTIONS

Precise situational awareness

24/7 unmanned surveillance and protection


Visualized detection and precise decision-making with replay capability

Combining intelligent interference strategies with directional interference. Minimum impact on other wireless devices in the surrounding area.

VEHICLE-MOUNTED C-UAV SYSTEM

INTRODUCTION

The Skyfend vechile-mounted C-UAV system consists of Tracer V radio detector and Hunter V jammer, forming a semi spherical protection without blind spots. The system is capable of detecting and locating cooperative drones and their pilots, as well as providing detection and early warning for non-cooperative drones. With its highly efficient detection and countermeasure capabilities, the system can automatically counteract target frequency bands based on detection guidance, ensuring effective drone defense.

SPECIFICATIONS

- **Efficient Protection:** Detection range >3km, jamming signal coverage >2km;intelligent detection and precise countermeasure against FPV drones.
- **Comprehensive Defense:** Hemispherical detection and countermeasure coverage with 360° horizontal and 90° vertical protection.
- **Flexible Configuration:** Supports software-defined detection and countermeasure frequency bands, with the capability to expand an additional four countermeasure frequency bands.

ADVANTAGES OF SOLUTIONS

Efficient Protection

Comprehensive Defense

Flexible Configuration

SkyShield Nexus

Skyshield Nexus is an Al-powered integrated air-ground command and control hub that combines detection and early warning, intelligent decision-making, and coordinated interception.

Driven by Al-based multi-source data fusion, it supports connections to thousands of devices with second-level response times. The system enables multi-layered defense capabilities including electronic jamming, spoofing, laser interception, and drone countermeasures.

It features event traceability and compliant evidence collection, and is compatible with both Skyfend and third-party anti-drone devices. With web access and multi-terminal collaboration, it supports deployment via private servers or the cloud.

Designed for large-scale airspace defense, Skyshield Nexus delivers a unified, intelligent solution for multi-domain management.

Features

- Integrated Coordinated Dispatch
- Comprehensive Situational Awareness
- Intelligent Decision & Response
- End-to-End Closed-Loop Management

SkyShield Edge

Skyshield Edge is a high-security, multi-platform anti-drone device control system designed for seamless coordination with Skyfend systems. It offers real-time situational awareness and in-depth data analysis, supporting device connectivity via LAN and serial ports.

Features

- Intelligent Device Operations & Maintenance
- Panoramic Situational Awareness
- Multidimensional Data Analysis
- End-to-End Data Management

PAD Terminal: Optimized for mobile and portable operations, it's lightweight, durable, and built to perform reliably in harsh environmental conditions.

Dimension	L*W*H	326.5 * 228.5 * 44.5mm	Weight	About 2kg
-----------	-------	------------------------	--------	-----------

PC Terminal: Tailored for fixed-site monitoring, it supports 24/7 unattended operation for continuous protection.

Hunter Lite is a portable jammer against SUAVs. With the key functions for drone flight control and navigation frequency band jamming, it can repel drones or force them to crash to solve the threat of rogue SUAVs.

Features

- Covering mainstream drone models, efficient jamming
- Integrable with Spoofer
- Flexible and Portable, ready for deployment anytime

Jamming

Coverage angle

Horizontal ±15°, and vertical ±10°

.Jamming frequency band

868MHz / 915MHz / 1.2GHz / 1.4GHz / 1.6GHz / 2.4GHz / 4.950GHz / 5.2GHz / 5.35GHz / 5.6GHz /

Operating temperature

-20 ~ +60°C

Storage temperature

795*100*304mm 4kg Bare weight

Jamming duration

30min

SHH100

Hunter is a versatile handheld drone jammer that can effectively detect, identify, locate, and mitigate drone threats. Hunter delivers exceptional effectiveness against the majority of types and models of drones. It can simultaneously disrupt the flight control and navigation signals of multiple drones.

With its compact design and user-friendly interface, Hunter is the ultimate counter-drone solution for various scenarios, including event security, VIP protection and energy facility security.

Features

- Integrated Detection and Jamming, 3 km Jamming, 2.5 km Detection
- Frequency Band Adaptive
- Drone data base upgradable, Sustainable Upgrades
- Touch Screen Operation, Data Visible

Detection frequency Detectable brands

Detection Range

0.4~6GHz / Key detection frequency bands: 800MHz, 900MHz, 1.2GHz,

2.4GHz, and 5.8GHz

Image transmission: Rush, PandaRC, TBS, Iflight and AKK, etc. /

Remote control: ELRS and TBS Crossfire

2.5km (based on DJI Mavic 3 drone consistent with SRRC standard, with 20dBm signal power at 2.4GHz and 30dBm signal power at 5.8GHz, without strong signal interference under sighting conditions)

Jamming frequency band 0.4~6GHz

Jamming power at each frequency band

0.4~2GHz: 20w / 2~4GHz: 20w / 4~6GHz: 40w

Jamming-to-control ratio Commercial drone: DJI Mavic 3 (0.5w) 1:1

778*337*113mm (L*W*D)

Weight 6.5kg (with battery)

Power supply Battery / adapter mode

Detection: 8h / Operation jamming: 1h time -20 ~ +55°C Operating

temperature Storage

-20 ~ +60°C temperature

Hunter F is a fixed drone countermeasure device integrating reconnaissance and attack, which can detect and receive drone communication signals and identify drone models. By monitoring the broadcast information of drones, the Hunter F can obtain the real-time key information, including latitude and longitude, altitude, speed, yaw angle, model, SN, and pilot position, and develop the precise radio attack strategies for different drone models.

Users can guickly view the device detection information, configure parameters and historical detection data through the C2 system. The device also supports blacklist and whitelist functions, providing users with flexible security management solutions.

Through careful design, Hunter F can run stably in various outdoor environments for a long time to ensure the continuous and reliable protection capabilities.

Features

- Full-Spectrum Detection and Jamming
- Real-Time Feedback on Jamming Effectiveness
- Whitelist/Blacklist Management
- 24/7 Intelligent Autonomous Operation

Spectrum detection

Frequency 0.4~6 GHz

5km (based on DJI Mavic 3 drone consistent with SRRC standard, 2,4GHz signal power of 20dBm 5.8GHz signal power of 30dBm, under sighting conditions, without strong signal interference)

Spectrum, communication protocol (type), current working frequency band

Protocol analysis

Content Drone ID & Remote ID

Detection radius 3km

Display

SN, coordinates, altitude, yaw angle, speed, remote controller coordinates (or return point)

and other information

Radio interference

0.4~6GHz (software-de-Frequency band

Countermeasure radius 3km IP67 IP rating

fined frequency band)

Operating temperature -40 ~ +60°C

Hardware

Main Device Dimensions

508*261.5*450.5mm (L×W×H)

Main Device Weight 10.2kg

265*180*315mm Pan-Tilt Platform **Dimensions** $(L\times W\times H)$

Pan-Tilt Platform Weight

Tripod's minimum working 730mm/640mm

height / corresponding

Tripod's maximum working 1546mm/720mm height / corresponding

support radius

Tripod Weight 6.55kg

SVH100

The onboard FPV countermeasure device interrupts the reception of remote control signals of drone by the generation of high-power interference signals, forming a protective shield against FPV threats. This device uses software-defined radio technology to adapt to different wireless communication protocols and frequency bands through flexible software configuration. Compared with traditional analog countermeasures, it significantly improves interference effectiveness and sustainable countermeasure capability.

Features

- Efficient countermeasures, excellent protection
- No blind angle coverage

- Diversified scenario deployment
- Flexible software configuration and strong hardware scalability

Effective protection radius

Jamming-to-control ratio TBS Crossfire (2W) 1:1; ELRS (1W) 1:3

Effective protection height

Working mode

Scalability

Coverage angle Horizontal 360°; Vertical 90°

600-1100MHz, 2400-2500MHz, 4900-5900MHz Jamming frequency band

Output power Single-channel output power 100W; Overall output power 800W

① Omnidirectional mode; ② Flexible mode (the interference direction can be configured independently in real time)

Customizable frequency band, with max. output power of 100

W/frequency band

Continuous working time IP rating Operating temperature -40 ~ +70°C Storage temperature -40 ~ +70°C Dimensions (L×W×H) 760*578*480mm

Power consumption Main equipment weight

STP101

Tracer is a device designed to monitor and manage aerial drone activity. It decodes drone broadcast signals to extract detailed information including drone brand, model, serial number, location, and operator position. Furthermore, it employs advanced RF detection technology to detect drones, perform direction finding, and intercept live video feeds from various drone types. Its flexible customization options enable users to rapidly assess the local RF environment, respond promptly to emerging threats, and effectively safeguard critical infrastructure, sites, and personnel.

Features

- Integrated Protocol Decoding & RF Signature Recognition
- Outstanding Detection Performance
- Real-Time Full-Spectrum RF Monitoring
- Dynamic Real-Time Frequency Reconfiguration
- Mobile App Connectivity for Flexible Operation

Detection Frequency Band 0.4~6GH

 $\textbf{Detection Range} \hspace{1cm} \textbf{\geq 3km (LoS, EMI-free, optimal conditions)}$

Refresh Rate <3s (Default: 2.4GHz & 5.8GHz)

Max Concurrent Targets ≥

Direction-Finding Frequency Band 2.4GHz & 5.2GHz & 5.8GHz

Direction-Finding Accuracy <=

Typical Detection Model:

Commercial DJI, Autel, FIMI, Parrot, etc.

FPV Video Transmission TBS, RushFPV, PandaRC, Matekeey, RXC,

SpeedyBee, iFlight, etc.

FPV Flight Control TBS, ELRS, Foxeer, etc.

Video Interception RushFPV, Matekeey, RXC, TBS, SpeedyBee, PandaRC, iFlight and other analog video

transmission models.

Dimensions 240*89*75mm (folded)

Weight 1100±50g

User Feedback Haptic /Audible /Visual Flash

Supported Protocols Drone ID & Remote ID

Detection Range ≥3km (LoS, EMI-free, optimal

conditions)

Refresh Rate <3s (Default: 2.4GHz & 5.8GHz)

Max Concurrent Targets ≥30
IP Rating IP65

Operating Temperature -20°C~+55°C

Nominal Voltage 11.55V

Nominal Capacity 9000mAh

Operating Time ≥5h

STP120

Tracer G is a specialized solution for low-altitude drone supervision in urban environments. It combines two advanced RF detection Technologies: Protocol decoding and RF signature recognition. Using protocol decoding, Tracer G can identify and track mainstream commercial drones—such as those from DJI—in real time by interpreting broadcast telemetry data. This enables the system to extract comprehensive flight and identification information, including drone brand, model, serial number (SN), flight speed, position, altitude, and the coordinates of the drone operator. For non-cooperative drones that do not emit standard broadcast signals, RF signature recognition technology to detect and issue real-time alerts based on their unique electromagnetic signatures. This dual-layered approach ensures robust situational awareness and enhances airspace security in complex urban settings.

Features

- Full-Spectrum Coverage, Precision Detection
- Multi-Platform Identification

- High Refresh Rate, Clear Flight Trajectory
- Cost-Effective and Mission-Ready

Detected Drone Models

Detection Range

Frequency Bands

All DJI models (including support for encrypted DID decoding); Drones equipped with Remote ID (RID)

broadcast capability; Models from Autel, FIMI, Parrot,

and similar manufacturers

RF Spectrum Sensing—Up to 3 km (Tested with DJI Mavic 3 under SRRC-compliant conditions: 2.4 GHz @

20 dBm, 5.8 GHz @ 30 dBm); Protocol Decoding—Up to 3 km (based on DJI Mavic 3)

Detection RF Spectrum Monitoring: 0.4

RF Spectrum Monitoring: 0.4 – 6 GHz (Key monitoring channels: 800–900 MHz, 1.2 GHz, 2.4 GHz, 5.2 GHz, 5.8 GHz); Protocol Decoding: 2.4 GHz / 5.8 GHz

Refresh Rate

Simultaneous Drone Detection Greater than 30 targets Capacity

Geolocation Accuracy

Device Dimensions 333*238*133mm (excluding

antenna length of 350 mm)

Total Weight 6.60 kg (including antenna weight of 0.82 kg)

Power Supply Supports AC 220V input

IP Rating IP66 (dustproof and resistant to high-pressure water jets)

Operating Temperature Range $-25 \sim +70$ °C Storage Temperature Range $-40 \sim +70$ °C

The drone pilot location solution aims to address the detection of drone operators in scenarios without broadcast protocols (such as Drone ID and Remote ID). This solution utilizes high-precision radio direction-finding equipment mounted on the drone to perform horizontal and vertical direction-finding on target signal sources, including drone remote controllers and radio jamming devices. It identifies the potential area where the target may exist and displays it on a map.

Through visual search of the target area combined with AI recognition assistance, the solution effectively discovers and locks onto the target. Additionally, the drone is equipped with anti-jamming capabilities, ensuring stable operation of the solution in complex radio environments.

Features

- Wide detection range
- High-precision detection and positioning
- Long-distance observation
- Detection of drone operators and interference sources

Wireless detection module

Dimensions 112*122*55mm Weight 707.5g

Default 2.4GHz, 5.2GHz, 5.8GHz drone remote control signals and radio Typical detection targets interference signals (5.1-5.8GHz signals can be configured via software)

DJI: Mavic series, Air series, Mini series; Autel EVO Lite series, Max series, Typical model

Pilot localization: 3km (Based on the DJI RC Pro remote controller for the DJI **Detection Range** Mavic 3 drone, signal power around 33dBm at 2.4GHz, 33dBm at 5.8GHz, in

unobstructed line-of-sight conditions, without strong signal interference) 4km (based on omnidirectional interference equipment, amplifier output

localization power 20W, in unobstructed line-of-sight environment, without strong signal

≤3° (RMS) Directional detection

angle accuracy

Interference source

Qty. of drones that can be detected simultaneously

-20 ~ +50°C Operating temperature IP rating IP65

Total power consumption

Power supply mode Carrier platform USB Type C power supply

Flight platform

Dimensions 1205*980*278mm (unfolded with propellers) /

455*263*248mm (folded without propellers)

6.63kg (with battery, gimbal, radio

1.8kg

detection module, propellers)

Max, load Max. flight

20m/s speed Max. flight 32min

time Image >6km

transmission distance

STP100 / Max 4T

The Tracer P system efficiently analyzes the broadcast protocol signals of drones, enabling it to comprehensively capture key information and accurately locate the operators of illegal flights. To enhance the efficiency of apprehending unauthorized pilots, Tracer P can display detection results on the drone's remote control interface, guiding users to guickly navigate to specified locations for capture and tracking. This provides law enforcement with an easy-to-use, precise, and effective solution for documenting unauthorized operators.

Features

- Covers most mainstream models
- High timeliness, quick evidence collection
- HD imaging, worry-free documentation
- Unified platform, one-click synchronization

Tracer P

Detection model

All DJI models, and drones with RID broadcast signals (including O4 image transmission drones)

Detection Range

3km (omnidirectional) 2.4GHz / 5.2GHz / 5.8GHz

Detectable frequency band

Parsing refresh rate <3s

Max 4T drone

Image transmission distance 20km Max. horizontal flight speed 23m/s Max. flying altitude 4km Max. flight time 42min Max. hover time 38min

Image sensor 1/2" CMOS, effective pixels (48 million)

Focal length: 11.8-43.3mm (35mm equivalent focal 700m camera lens

length: 64-234mm) Aperture: f/2.8-f/4.8 Focusing

distance: 5m~∞

Infrared camera lens FOV: 42°; Focal length: 13 mm; Aperture: f/1.2;

Focusing distance: 6m ~ ∞; Zoom: 16x digital zoom

IP rating

Operating temperature -20 ~ +50°C -20 ~ +50°C Storage temperature

STP121

The vehicle-mounted detection system, Tracer V, provides multi-drone detection and early warning capabilities within a hemispherical coverage area of 3 km radius and 500 meters in altitude.

Tracer V effectively receives, analyzes, and processes radio frequency (RF) signals from a wide range of drone models.By analyzing drone data-link transmissions, Tracer V can promptly detect the presence of UAVs and classify their types, while ensuring no interference with wireless communication devices within protected zones.

By decoding UAV broadcast protocol signals, Tracer V can retrieve detailed information from mainstream commercial drones, such as brand, model, serial number (SN), location, altitude, and flight speed, while also pinpointing the remote pilot's location, providing strong support for UAS regulation.

Features

Detected Drone

Models

Detection

- On-the-move Detection, Comprehensive Protection
- Data Fusion, Precision Detection

- Ultra-Fast Refresh Rate, Clear Trajectory
- Multi-Model Identification
- Refresh Rate Simultaneous Drone >30 **Detection Capacity**

RF Spectrum Sensing: Up to 3 km (based on SRRC-compliant DJI Mavic 3, with 2.4 GHz transmission power of 20 dBm and 5.8 GHz transmission power of 30 dBm) Protocol Decoding: Up to 3 km (example: DJI Mavic 3) Note: Performance tested under line-of-sight, clear airspace conditions with minimal urban

Drones broadcasting Remote ID (RID) signals Models from Autel,

All DJI models (supporting encrypted DID signal decoding);

Detection Frequency Bands

RF Spectrum Monitoring: 0.4 – 6 GHz; Key monitoring channels: 800–900 MHz, 1.2 GHz, 2.4 GHz, 5.2 GHz, 5.8 GHz; Protocol

Decoding: 2.4 GHz / 5.2 GHz / 5.8 GHz

FIMI, Parrot, and other manufacturers

Geolocation Accuracy <10m **Product Weight** 28.5 kg **Product Dimensions** 780*472*280mm Power Supply AC 220V IP Rating Operating Temperature -30 ~ +70°C

Storage Temperature -40 ~ +70°C

SkyfendLaser

DEC100

The Laser Countermeasure System is a high-precision UAV neutralization module designed to engage small, low-altitude drones using directional energy. Engineered for rapid deployment and integration into layered defense systems, it provides effective hard-kill capabilities against rogue UAVs. Equipped with a radar-guided targeting mechanism, the system detects, tracks, and classifies aerial threats in real time. Once a target is confirmed, the laser unit executes fast-locking and precision engagement, minimizing collateral risk.

Features

- Highly Cost-effective
- Continuous Defense Capabilities
- Precision Engagement
- Low Per-Engagement Cost

Laser Power

Effective Neutralize Distance ≤500m (@Visibility>10km, RCS>0.01m²) **Detection Distance** >1.5km (@Visibility>10km, RCS>0.01m²)

Tracking Accuracy ≤15urad (RMS) Azimuth -175° ~ +175° -10° ~ +60° Maximum Angular Velocity Angular Acceleration >60°/S2

Weight <40kg Total Consumption 6.5kw

Dimensions ATP: 365*327*467 mm

Laser: 386*283*200 mm Battery: 349*200*150 mm

Battery-Powered, DC 125V Power Supply

Cooling Method Active Cooling

SSH100

Spoofer is a Global Navigation Satellite System (GNSS) spoofing instrument engineered specifically for SUAVs. This equipment is able to emit public satellite navigation signals. It has the capability to swiftly implement a range of functions such as area denial, directed guidance, and active defense, addressing the problem of flight restrictions for commercial SUAVs in sensitive airspace. In addition, when integrated with radar systems, spectrum detection devices, and jammers, it can facilitate high-accuracy spoofing and the crash of drones.

Features

- Easy to Use
- Flexible and Portable
- Multiple Frequency Points
- High Efficiency and Low Error

BDS: B1I. 1561.098MHz: GPS: L1C/A. 1575.42MHz: Supported Frequencies GLONASS: L1, 1598.0625~1605.375MHz;

Galileo: E1, 1575.42MHz

Signal Power ≤10dBm

Power Adjustment Range and Range: ≥20dB, Step Size: ≤0.5dB

Effective Range

Typical: 2 km (spoofing range varies by drone model) ≤50s (From Power-On to Successful Network Connection) Startup Time

≤5min (From power-on to ephemeris and clock **Preparation Time**

Interval Time Between Two **Guidance and Deception**

Guidance Signal Time ≤50ns

Synchronization Accuracy

Deception Signal Switch-on Time ≤1s

Deception Activation Time

Typical 10s (varies with different drones) **Deception Success Rate** ≥90%(covers mainstream models)

Overall Dimensions

With antenna: 748.4*405.2*202.4mm

Without antenna:

469.6*405.2*202.4mm

Overall Weight ≤10kg ≤55mm Antenna Size

IP Rating

Power Supply Battery-powered & 220V AC powered

Operation Time

-20 ~ +55°C Operation Temperature

Continuous Jamming

>3h

Hybrid

Supported Ephemeris Mode

Supported Drone Support for Mainstream Drone Models Available in the Market

SkyfendSpoofer Pro

SSH110

The Spoofer Pro is a fixed drone navigation spoofing device with powerful monitoring capabilities, ultra-high reliability and stability, longer effective range, and higher protection level, suitable for long-term deployment in fixed locations. This device achieves active defense, directional inducement, and area denial by emitting civilian satellite navigation simulation signals, effectively solving the flight control issues of commercial low-speed small drones in sensitive areas. Integrated with radar, spectrum detection, and counter-drone guns, it can achieve powerful functions such as directional spoofing and drone crashing, truly realizing the "1+1>2" combat effectiveness.

Features

- Full-band coverage
- Ultra-high protection level
- Ultra-long coverage distance
- Long-term efficient monitoring
- Easy to set up
- Easy to Use

Supported

Supported GNSS (BDS/GPS/GLONASS/Galileo) Full-system drone spoofing

Signal power Effective range ≤20W (Gear adjustable) 5km (software adjustable)

Signal acquisition time IP rating

Power supply 220V AC power supply

Operating temperature Dimensions Dimension (without tripod and

374*300*264.5mm

Dimension (with antenna): 374*300*317mm

Dimension (with tripod and antenna): 374*300*317+1546mm

Total weight (without tripod): 10kg Weight Total weight (with tripod): 17kg

Antenna radius 77mm Power

consumption

Startup time Device online in 40s, ephemeris collection completed in 3-5 minutes

Tracker is a K-band linear frequency-modulated continuous wave (LFMCW) phased-array radar featuring low SWaP, offering all-weather BLOS 4D target detection. It delivers high-refresh rate, high-fidelity tracking of a wide range of aerial targets including conventional, silent, fiber-optic, and autonomous UAVs as well as ground targets such as personnel and vehicles. Designed for optical tracking and countermeasure guidance, it seamlessly integrates with fixed stations, mobile platforms, and UAV platforms, delivering a cost-effective air-ground security solution.

Features

- Precision Guidance
- Air-Ground Detection
- Rapid Deployment

High Stealth

Flexible Networking

Performance

Radar Detection Range

0.65km (FPV 7-inch); 1.1km (DJI Mavic 3); 1.8km (DJI FC30): 2km (Human)

Azimuth: ±1.0°

5~10 (TAS) 200 (TWS)

1-60m/s (drone pattern)

3.5~4km (Vehicle)

Distance Accuracy

Blind Area

FOV Azimuth: 100° Elevation: 45°

Angular Accuracy

Elevation: ±2.0°

Tracking Qty. Track Target

Update Cycle Speed Range

Speed Accuracy ≤0.6m/s **SWaP**

Dimensions

Weight

consumption

205*225*65 mm (excluding

front heat sink)

3kg

Power supply AC 220V, DC 24±8V **Radar System**

Frequency 24.05-24.25GHz Scanning Method

Waveform **FMCW** Tracking TWS/TAS

Data Interface RJ45 Ethernet

Reliability

Operating

Storage temperature

Upgrade

-40 ~ +55°C

IP rating IP67

Supported

Performance **Radar Detection**

3.5km (FPV 7-inch); 5km (DJI Mavic 3):

9.5 km (Human) 12~15km (Vehicle)

Blind Area 200m FOV

Angular Accuracy Elevation: < 0.5

Tracking Qty. Track Target

Mechanical Scanning TAS<0.5s. TWS<6s

Speed Accuracy

Update Cycle

Tracker Pro is an X-band pulse-Doppler phased-array radar for all-weather, wide-area 4D air and ground surveillance. It supports customizable scanning modes, including 360° horizontal mechanical scanning, 90° electronic beam steering, and vertical sector scanning. With high precision and rapid response, it reliably detects all drone types (conventional, silent, fiber-optic, autonomous flight UAV, etc.) and ground targets (humans, vehicles). Designed for optical tracking and countermeasure guidance, it integrates seamlessly with fixed or vehicle-mounted platforms, ensuring efficient, precise security coverage.

<344*342*141

mm

<15Kg

<350W

Features

Air-Ground Detection

SWaP

Weight

consumption

Power supply AC 220V,

- Strong Environmental Adaptability
- Multi-Scene Application
- Easy Integration

Range

7km (DJI M300);

Distance Accuracy

Azimuth: 90° Elevation: 60° (Support

up to 75°) Azimuth: <0.5°,

500@TWS, 6@TAS

Mode <6s (configurable) Electrical Scanning Mode

Speed Range 1~100 m/s

Radar System

9.2-9.8GHz

Scanning Method Waveform Pulse Doppler

Tracking TWS/TAS Method

Data Interface RJ45 Ethernet

Operating $-40 \sim +60$ °C temperature Storage -50 ~ +70°C

Reliability

temperature IP rating OTA Upgrade

Supported

SRP100 is a low-altitude counter-drone system that integrates radar and EO/IR module, offering an all-in-one capability of detection, guidance, identification and tracking. Radar performs omnidirectional target detection and automatically guides the EO/IR system for target recognition and continuous tracking, delivering precise guidance with full-process visualization. Designed for low-altitude protection in critical areas such as airports, prisons, and energy facilities, delivering all-weather, hemispherical situational awareness.

Features

- All-Weather Hemispherical Monitoring
- Intelligent Threat Level Assessment
- High-Precision Countermeasure Guidance
- Lightweight & Rapid Deployment

Radar & EO / IR Specifications

Recognizable Targets 0.65km (FPV 7-inch); 1.1km (DJI Mavic 3)

1.8km (DJI FC30); 2km (Human)

Radar Detection Range Drones, commercial aircraft, birds,

humans, vehicles

Horizontal: 360°, Elevation: 0°-90° FOV

0~60m/s Speed Range

distance 2m, angle 0.03° Accuracy

<4s Target Lock-On Time Al Target Recognition >98%

Accuracy (UAVs) Weight

<30kg

920*920*440mm Power Consumption <1000W

Input Voltage AC 220V Operating Temperature -40°C~+60°C

IP Rating

Radar Specifications

Operating Frequency K-Band, 24.05~24.25GHz

Scanning Method Active Electronically Scanned Array

Blind Zone

Detection: 200 targets, Tracking: 5–10 targets **Target Capacity**

Airspace Scan Time Target Update Rate

EO/IR Specifications

DavLight Camera

Image resolution 1920*1080

43.5°*26.2°--0.85°*0.57° Field of view

Lens Focal length F6.5mm-312mm

Continuous Optical Zoom 48X

Thermal Imaging: 640*512 Image Resolution

8.2°*6.6° Lens Focal Length F75mm

SRP210

Tracker Eye Pro is a wide-range active radar and electro-optical detection system that integrates Tracker Pro phased array radar and long-focus photoelectric detection technology. It can ensure all-weather and all-round highly accurate real-time sensing of drones in large-area protection scenarios where radio detection is ineffective, and can provide highly accurate position information, target classification, and threat confirmation videos.

Weight

Dimensions

Operating

IP rating

Installation Method

Operation Power

Operation Voltage

Features

- 360° All-weather Large-scale Active Detection
- High-Precision Positioning Detection
- Intelligent Recognition & Electro-Optical Fast Locking
- Payload Thread Identification

150kg

<1500W

AC 220V

IP66

650*9650*900mm

Mast Installation

Radar Parameters

3.5km (FPV 7-inch); 5km (DJI Mavic 3); 7km (DJI M300); 9.5 km (Human);

12~15km (Vehicle)

Recognizable Targets Drones, Birds, Personnel, Vehicles Azimuth: 0~360° / Pitch: 0~90° Field of View (FOV)

Max Target Detection 100m/s

Speed

Detection Range Accuracy

Detection Angle

0.5mrad

Accuracy <4s

Target Locking Time Al Target Recognition 98% (drone)

Vision System

Visible Light & Infrared Thermal Imaging

EO/IR Systems

Visible Light Lens 1920×1080 (FHD)

Focal Length of 12.3~800mm Visible Light Lens

Visible Light Lens

Infrared Lens 640×512 Resolution

Infrared Lens Focal Length

Zoom Ratio of

30~150mm

Infrared Lens 700m Ratio

*Note: Some identification functions require visual aids *Note: Some identification functions require visual aids

Spotter is an integrated detection system engineered to provide 24/7, all-weather drone surveillance for airports, large-scale public events, and critical infrastructure. It combines radar, electro-optical sensing, and radio frequency detection technologies to deliver real-time situational awareness of drone positions and flight data, supporting rapid operational decision-making.

The system employs a distributed AI processing architecture that enhances resource efficiency through parallel processing and load balancing. By deeply integrating advanced artificial intelligence, Spotter delivers an intelligent, high-performance, and scalable solution for drone monitoring and threat mitigation—comprehensively addressing the security requirements of complex and dynamic operational environments.

Radar Detection Module

Scanning Method

Waveform Mechanism

Operating Frequency

Radar Capability

Distance Blind Spot

Detection Angle

Range (2*Radar)

Features

Detection Frequency

Supported Drone Types

Non-conventional Drone

Directional Accuracy

Multi-Site Localization

Multi-Site Horizontal

Localization Accuracy

Detection Range

Maximum Detection

Bands

Capacity

Refresh Rate

Radio Frequency (RF) Detection Module

- Multidimensional Detection Capabilities
- Cost-Effective and Efficient Deployment

Distributed Architecture

Flexible Expansion and Integration

Detection

Detection

Range

Mode

Focal

Length

Field of

View (FOV)

Intelligent Analysis and Response

Visual Detection Module

Thermal Imaging:

Horizontal: 360°:

Vertical: -60° to 90°

150mm

Frequency Range RF Spectrum Protocol Decoding Visible/Thermal

Imaging Identification Parameters Manufacturer, Model, Frequency, Protocol Visible: 6~336mm;

System Specifications

Dimensions ≤1750*1010*1800mm

Weight ≤1000Kg ≤6KW Power Consumption LAN Interface Ingress Protection Rating IP66 **Operating Temperature Range** -30°C ~ +65°C Storage Temperature Range -40°C ~ +70°C

SkyfendSentry

SST200

Sentry is a modular fixed Counter-UAS system that seamlessly integrates radio frequency detection, radar, visual, and thermal imaging sensors. Paired with edge computing and an advanced Al analytics engine, it forms a highly integrated detection and countermeasure closed-loop system. The system automates the entire process—from target detection, identification, and tracking, to early warning, counteraction, and effect assessment—greatly enhancing response efficiency. Leveraging multi-source data fusion and AI enhanced recognition technology, Sentry ensures precise targeting while significantly reducing false alarm and missed detections. It is ideally suited for complex environments with high airspace security demands.

Features

- Intelligent Adaptive Countermeasures, Multi-layered Detection Fusion, Full-Target Identification and Tracking Efficient Closed-Loop Control
- Rapid Deployment, Coverage of Multiple Critical Scenarios Accurate Recognition and Classification

Radio Frequency Module

0.4 ~ 6 GHz ≤5km ≤3km Interference Radius

Al-powered Smart Decision-Making.

Type, Azimuth, ID, Coordinates, Speed, etc.

Radar and Electro-Optical Module

Radar Detection Range 3.5km (FPV 7-inch); 5km (DJI Mavic 3);

<4s

7km (DJI M300); 9.5 km (Human);

Single Radar Detection Capacity ≤500targets

Electro-Optical Identification

≤5km (Standard Small UAV Targets)

Target Lock Time >98% Al Recognition Accuracy

Navigation and Jamming Module

Supported GNSS Systems GPS, BeiDou, GLONASS, Galileo **Effective Range**

1-5 km (Adjustable)

Blacklist and Whitelist Functionality

Support

<3s

400~6000MHz

Commercial Drones

Homemade or DIY Drones

Requires at least three sites

Number of Tracks

Speed Range

1-60m/s (Drone Mode)

5 ~10 (TAS) 100 (TWS)

Active Electronically

Frequency Modulated

24.05 GHz ~ 24.25 GHz

0.65km (FPV 7-inch);

1.1km (DJI Mavic 3);

1.8km (DJI FC30):

3.5~4km (Vehicle)

Horizontal: 180°;

Vertical: 40°

2km (Human):

Continuous Wave

Scanned Array