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Abstract 24 

During fertilization, mammalian sperm undergo a winnowing selection process that reduces the candidate pool 25 

of potential fertilizers from ~106-1011 cells to 101-102 cells (depending on the species). Classical sperm 26 

competition theory addresses the positive or ‘stabilizing’ selection that acts on sperm phenotypes within 27 

populations of organisms but does not strictly address the developmental consequences of sperm traits among 28 

individual organisms that are under purifying selection during fertilization. It is the latter that is of utmost concern 29 

for improving assisted reproductive technologies (ART) because ‘low fitness’ sperm may be inadvertently used 30 

for fertilization during interventions that rely heavily on artificial sperm selection, such as intracytoplasmic sperm 31 

injection (ICSI). Importantly, some form of sperm selection is used in nearly all forms of ART (e.g., differential 32 

centrifugation, swim-up, or hyaluronan binding assays, etc.). To date, there is no unifying quantitative framework 33 

(i.e., theory of sperm selection) that synthesizes causal mechanisms of selection with observed natural variation 34 

in individual sperm traits. In this report, we reframe the physiological function of sperm as a collective diffusive 35 

search process and develop multi-scale computational models to explore the causal dynamics that constrain 36 

sperm ‘fitness’ during fertilization. Several experimentally useful concepts are developed, including a probabilistic 37 

measure of sperm ‘fitness’ as well as an information theoretic measure of the magnitude of sperm selection, 38 

each of which are assessed under systematic increases in microenvironmental selective pressure acting on 39 

sperm motility patterns.       40 

Introduction 41 

Assisted reproductive technologies (ARTs) are widely used in medicine and agriculture and include a variety of 42 

strategies such as in vitro fertilization, intra-uterine insemination, and embryo transplantation. Efficiency of ART 43 

is of utmost importance because of the implications for parental and offspring well-being, and significant time 44 

and cost investments. Though there are a multitude of factors that influence ART efficiency, one particularly 45 

salient challenge has been the pre-selection of sperm that have the potential to maximize the paternal 46 

contribution to the number and quality of viable embryos[1–3]. Identifying and isolating sperm with high fertility 47 

and developmental potential presents a significant challenge due to their structural and phenotypic 48 

heterogeneity, dynamic post-ejaculatory maturation processes, and the large quantity of cells in an ejaculate 49 

(i.e., order of 106-1011 depending upon species)[4–10].   50 
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Phenotypic variation in sperm has generally been explained by a game-theoretic competition model in which 51 

males adopt evolutionarily stable strategies that maximize fitness payoffs under sexual selection[11]. For 52 

example, mammalian sperm exhibit relatively high swimming velocity and/or greater sperm number per ejaculate 53 

in socioecological scenarios where there is strong between-male competition for mates[12]. Largely inspired by 54 

those observations, swimming velocity and sperm count have been regarded as heuristic guides for clinical 55 

sperm selection under the straightforward assumption that the ‘highest quality’ sperm can be identified from an 56 

idealized set of competitive traits[13].  57 

However, heuristic approaches may be misleading because the predictions of sperm competition theory apply 58 

only to between-male variation, while within-male variation in sperm phenotype is the primary concern of assisted 59 

reproduction[11,14]. Importantly, male gamete function not only co-evolves with the competitive traits of other 60 

males, but also with the corresponding micro/macro-scale anatomy of the female reproductive tract. This effect, 61 

known as ‘cryptic female choice’, facilitates sperm selection in the reproductive microenvironment through 62 

various physical and chemical barriers (e.g., epithelial folds, cervical mucous, etc.)[15]. For example, mammalian 63 

sperm have evolved time-dependent changes in motility pattern (e.g., progressive to hyperactivated transition) 64 

that assist navigation of the labyrinth-like epithelial surfaces of the oviducts[16]. Within-male sperm selection 65 

may be an important component of mammalian reproduction and is a powerful candidate for the improvement of 66 

ART outcomes. However, our understanding of sperm selection at the cell population scale remains limited, and 67 

there is currently no underlying theory that enables precise description of the key aspects of sperm selection - 68 

including a quantitative definition of sperm ‘fitness’, or a measure of the magnitude of selective pressure acting 69 

on sperm traits under a given set of conditions. 70 

In this report, we investigate sperm selection as a consequence of the interaction between phenotypic variation 71 

among sperm populations and the constraints imposed on sperm fitness by the reproductive microenvironment. 72 

We use empirical data to develop agent-based computational models (ABMs) and simulate ‘bottom up’ sperm 73 

population dynamics. We then extend concepts from probability and information theory to define a quantitative 74 

measure of sperm fitness (i.e., the posterior probability distribution of ‘successful’ traits obtained using Bayes 75 

theorem), as well as a measure of the magnitude of selection imposed on a sperm population during fertilization 76 

(i.e., the relative information gain). The results from this work lay a foundation for high-precision male fertility 77 
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diagnostics to improve sperm classification and/or selection in conjunction with existing semen analysis and 78 

laboratory pre-selection procedures.   79 

Materials and Methods 80 

Model implementation - Agent-based models were developed and implemented using the Netlogo modeling 81 

environment (V6.2.2)[17]. Netlogo BehaviorSpace was used for repeated simulations with parameter scaling. 82 

The models and other supporting information are available at (https://github.com/cas-mitolab/Fertilization_ABM). 83 

Simulations were run on a standard laptop computer with 16 GB of RAM and an Intel Core i7 1.7GHz processor. 84 

Markov state transition simulations and calculations related to Bayesian inference and relative information gain 85 

(Kullback-Leibler divergence) were performed using the Python (V3.9) programming language and the NumPy 86 

library (https://github.com/cas-mitolab/Fertilization_ABM)[18].  87 

Model aim and context- The models are meant to simulate physiologically relevant aspects of sperm motility that 88 

contribute to sperm selection under microenvironmental constraints. The core models were designed using 89 

simple particle physics, similar to the methods used in Computer Aided Sperm Motility Analysis (CASA), in which 90 

motility parameters are obtained by digitally segmenting, tracking, and summarizing the velocities of sperm nuclei 91 

in microscopy videos[19].  The models were fit to empirical data to improve accuracy and physiological relevance. 92 

System boundaries- The physical environment simulated by the models approximates a 10X field-of-view under 93 

a light microscope with 680 X 680 μm side lengths and approximately 4.62x105 μm2 area. Sperm motility imaging 94 

is typically performed using ~20 μm depth chambered slides that restrict the axial mobility of the cells for the 95 

study of ‘planar’ flagellar beating[20]. Although the models are 2D, they can be considered to have a 3D quality 96 

because the sperm are allowed to freely cross paths, as would occur in depth-chambered slides. The 97 

environment is comprised of a regular grid-space arranged in four quadrants. The grid squares were assigned a 98 

length scale value chosen to facilitate accurate approximation of empirically derived microscopy data (40 μm for 99 

the dimensions described above)[21]. The length scale factor can be adjusted to facilitate modeling any spatially 100 

defined environment. A separate agent-based model was designed to facilitate drawing and saving the 101 

environment (available at https://github.com/cas-mitolab/Fertilization_ABM). White barriers are imposed in the 102 

model as boundaries that sperm cannot cross, simulating the physical and physiological barriers that constraint 103 
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sperm motility in the female reproductive tract. These maze-like environments can be customized using the 104 

drawing model mentioned above. 105 

Time in the models advances in discrete steps during which agent states are independently updated in random 106 

sequence (i.e. asynchronously). Model-time was scaled to real-time by setting the timestep of an advancement 107 

to previously reported beat cross-frequencies for isolated mouse sperm[21]. For example, if reported sperm 108 

cross beat frequency is 25 Hz, and each sperm crosses its average straight-line path once per model-time 109 

advancement, then one advancement is approximately 1/25 seconds or 40 milliseconds. The model length and 110 

time scales can be readily adjusted to simulate collective behavior of sperm from species other than mouse, but 111 

mouse parameters are used throughout this report. 112 

Sperm as agents. In this report, sperm are entities that follow a simple set of algorithmic instructions with 113 

stochastically generated inputs. We start with simple random walks and progress to more complex sperm with 114 

motility patterns that are refined to behave like ‘real world’ CASA data. At each timestep, sperm receive a 115 

uniformly generated cross angle (θ; degrees) and step length (δ; μm) that are each drawn from a range of 116 

possible values. In their simplest form, the sperm follow a Gaussian random walk in which δ is drawn from a 117 

normal distribution with mean µ and standard deviation σ, and θ is a randomly chosen integer between 0 and 118 

359 degrees. More realistic sperm motility patterns such as progressive, intermediate, slow, and hyperactive 119 

states arise by constraining the combinations of cross angle and step sizes, resulting in correlated movement 120 

patterns[21]. The movement functions are both simple and flexible and can be modified to accommodate 121 

heterospecific motility patterns such as the helical paths observed in sea urchin sperm or even the aflagellate 122 

sperm of some species such as the nematode C. elegans.  123 

Time dependent behavior - In this report, sperm are modeled as simple non-adaptive agents. For contrast, an 124 

adaptive sperm would be capable of modifying the sensitivity of responses to environmental conditions. Rather, 125 

the motility states of the sperm in this report depend only on the pre-defined relationship between the 126 

environmental conditions and pre-existing ‘perception-action rules’ that are stochastically implemented. The 127 

behavior of a given sperm is defined by its movement function and sperm in some of the models change 128 

movement functions over time via implementation of a time homogeneous Markov process that associates state 129 

transitions with a user-defined matrix of probabilities. For example, a progressively motile sperm may have a 130 
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99% chance of remaining in a progressive state at given time-step, and a 1% chance of transitioning to an 131 

intermediate motility state (each characterized by different movement parameters). At the next timestep an 132 

intermediate motility sperm may have a 30% chance of remaining in its current state, but a 70% chance of 133 

transitioning to a progressive state. Over time, these transition probabilities can be designed to ‘absorb’ into a 134 

macro-state in which most of the sperm are moving uniformly. These stable attractor states can be fit to empirical 135 

data depending on the aims of the model.  136 

Phenotype distributions - Mammalian sperm exhibit changes in motility pattern during residence in the female 137 

reproductive tract or in chemically-defined media conditions in vitro (a maturation process termed- 138 

‘capacitation’)[22–24]. To facilitate modeling physiological changes of sperm over time, a squared sine function 139 

was assigned to each sperm and was used to simulate intracellular calcium concentration. When the intracellular 140 

calcium concentration of any given sperm was above 95% of the maximum, motility pattern state transitions were 141 

made according to a Markov transition table. For any timestep that the intracellular calcium was below 95% of 142 

the maximum, the sperm would remain in the motility state of the previous model timestep. This logic models the 143 

empirically measured effects of intracellular calcium oscillations on the motility state of sperm [9,25,26], and 144 

simulates natural (stochastic) variation in the rates at which individual sperm undergo capacitation. For example, 145 

sperm with a frequency parameter of 1 will have an opportunity to transition once per second (in real-time), 146 

whereas sperm with a frequency of 10 will have an opportunity to transition 10 times per second. A Poisson-147 

distributed calcium oscillation frequency with a mean (λ) of one, in the population will result in most sperm 148 

exhibiting low-frequency oscillations, with a few ‘rare variants’ exhibiting higher oscillation frequencies. The effect 149 

of selection (conditioning on the microenvironment) on sperm populations can be explored by comparing 150 

distributions with different means, or by using different phenotype distributions altogether (i.e., Gaussian, 151 

exponential, etc). These distributions take on important meaning in the context of overall fitness of the sperm 152 

population and facilitate exploration of how sperm phenotype distributions impact the aggregate fitness of sperm 153 

populations.   154 

Animals - Adult male outbred CD-1 retired breeder mice were obtained from Charles River Laboratories (Raleigh, 155 

NC, USA). All work adhered to the guidelines outlined in the National Research Council Guide for the Care and 156 

Use of Laboratory Animals and was approved by the Institutional Animal Care and Use Committee of East 157 
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Carolina University (approval A3469-01). Mice had free access to water and food, were maintained on a 12 hour 158 

light/dark cycle and were humanely euthanized by CO2 asphyxiation followed by thoracotomy.  159 

Isolation of mouse epididymal sperm - Testes with epididymides were isolated in phosphate buffered saline 160 

(PBS) at 37°C. Cauda epididymides were transferred to isolation media where gently dissected. Following a brief 161 

swim-out period (~15 minutes at 37°C), sperm were isolated from epididymal tissue by centrifugation at 100 x g 162 

for 2 minutes. Cell counts were determined using a hemocytometer after dilution in water. Cells were then 163 

incubated at 37 °C for 30 minutes with 10 µM Indo-1-AM cell permeable free-calcium dye in HEPES buffered, 164 

bicarbonate-free, media containing glucose and lactate (2.88 mM and 21 mM respectively). Cells were then 165 

washed by centrifugation at 800 x g for 5 minutes.  166 

Calcium clamp and microtiter plate assay - 1 mM EGTA (ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-167 

tetraacetic acid) was used to clamp the ‘free’ Calcium ion concentration in assay preparations. Calcium 168 

concentrations were measured using ion selective electrodes (Kwik Tip electrodes; World Precision Instruments, 169 

Sarasota Fl, USA). Two concentration ranges were determined, requiring two separate electrode filling solutions 170 

(low range - 150-300 µM; high range - 1.2-2.0 mM) with different concentrations of CaCl2 to obtain an appropriate 171 

working range. Once determined, the buffer conditions that clamped the Calcium concentrations were included 172 

in the assay in conjunction with sodium bicarbonate pseudo-titrations. pH of the media during the assays did not 173 

change and was confirmed using glass tipped pH microelectrodes (World Precision Instruments, Sarasota Fl, 174 

USA). Indo-1 stained cells were added into the microtiter plate at unform cell density across the plate and 175 

fluorescence (340/400:475 nm) was obtained for ratiometric analysis at 37 °C with sampling every 5 minutes for 176 

two hours in a microtiter plate reader (Molecular Devices ID3, San Jose CA, USA). The calcium ionophore 177 

ionomycin (10 µM) was used as a positive control.    178 

Flow cytometry - Assessment of sperm subpopulation distribution was performed using a 5-laser Aurora spectral 179 

analyzer with SpectroFlo acquisition software (V2.2; Cytek, Fremont, CA, USA)[27]. Flow cytometry 180 

measurements were performed in capacitating media with corresponding pseudo-titrations of calcium chloride 181 

and sodium bicarbonate. Scatter gating was used to identify intact single cells. Live-cell impermeable ToPro3 182 

dye (Thermo Fisher; Waltham MA, USA) was used to monitor cell viability during the assays and mild detergent 183 

titrations (digitonin, 24-240 µM) were used to prepare single stain reference for dead cells. Indo-1-AM was 184 
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excited using a 405nm laser and emission collected at 400 and 475 nm. Conditions were optimized prior to flow 185 

cytometry by spectral scanning using a Horiba Duetta fluorometer (Kyoto, Kyoto, Japan). Ionomycin was 186 

included as a positive control condition. Scatter plots of fluorescence intensity were manually gated and exported 187 

using FlowLogic (V8.7, Inivai Technologies; Victoria AUS). Kernel density estimates of fluorescence ratios for 188 

various pseudotitration conditions were plotted using Python (V3.9) with Matplotlib, NumPy, and Pandas 189 

libraries.     190 

Data analysis and statistics - Data were analyzed and visualized using Graphpad Prism (V9.1.2), or NumPy, 191 

Pandas, and Matplotlib[18,28,29]. Statistical analyses were performed using Graphpad Prism (V9.1.2, San 192 

Diego, CA, USA). Two tailed Student’s t-test was used for comparison of group means. Normal quantile-quantile 193 

plots were used to assess whether normal based inference procedures should be replaced with nonparametric 194 

methods. The presence of outliers, both their magnitude and number, was also used to check the assumptions 195 

of inference procedures. For multifactorial designs one- or two-way analysis of variance (ANOVA) was performed 196 

for one or two factor designs, with Dunnett or Sidak post hoc tests for multiple comparison respectively. All data 197 

are presented as raw values with the median represented by a bar. An α value of 0.05 was used as the threshold 198 

of statistical significance.       199 

Results  200 

Diffusive search is an intrinsic property of agents performing a random walk - The agent-based models in this 201 

report were designed to simulate sperm motility in an experimentally tractable setting- i.e., a typical 20 μm depth-202 

chambered slide, like those used in standard computer aided sperm motility analysis (CASA). A diagram of the 203 

modeling environment is shown (Figure 1A). The agents in the simulations represent the spermatozoon nucleus, 204 

in the same manner that sperm nuclei are typically imaged, filtered, and tracked using phase contrast microscopy 205 

for 2D path reconstruction in CASA. The agents in the model execute a straightforward core movement function 206 

in which a cross angle (θ) and step length (δ) are chosen and updated with every unit advancement of model 207 

time using a random number generator (Figure 1B). With repetition, the agents gain the ability to move and 208 

explore space in a complex manner that depends upon their individual movement function characteristics. An 209 

agent with a fixed δ and a random θ will perform a Pearson random walk, which is the simplest model of particle 210 

diffusion[30].  211 
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Next, the sperm-agent behavior was improved by incorporating a Gaussian random walk. Gaussian agent 212 

movements are characterized by random steps with values of θ and δ randomly drawn from a normal (Gaussian) 213 

distribution. A collection of agents performing a Gaussian random walk will exhibit distinct exploration patterns 214 

that depend on small variations in their movement parameters. For instance, increasing the mean (µ) will cause 215 

the agents to bias their movement towards a specific direction, resulting in more directed exploration. On the 216 

other hand, modifying the standard deviation (σ) will influence the spread of steps taken by the agents and will 217 

lead to more dispersed exploration, covering a wider range of space.  Minor adjustments to the mean or standard 218 

deviation of the distribution can have significant effects on the agents' diffusive search behavior. The root mean 219 

square displacement (RMSD), represents the average displacement of the agents from their initial positions, and 220 

is a useful metric to represent the way the agents search space. Agents with movement parameters that allow 221 

them to search space more quickly than others will exhibit a more rapidly increasing RMSD. Such an effect can 222 

be observed in the RMSD traces reported from simulations of three agents with fixed µ and increasing σ (Figure 223 

1C,D). Simple variation in the movement parameters can yield diverse exploration strategies, from localized 224 
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search patterns to broader exploration of the surrounding environment ultimately resulting in altered diffusive 225 

search outcomes.  226 

 

Figure 1: Simulated random walkers explore space in a manner that depends on their movement properties. (A) Diagram of the model 

environment, which is designed to emulate an isolated portion of the field of view of a light microscope with a 10X objective and a 20 µm deep 

chambered glass microscope slide. (B) Diagram of the core movement functions employed by the agent-based model. Each ‘agent’ is modeled as a 

round particle of known dimension. At each timestep, the agent randomly chooses a direction (θ degrees) and then takes a ‘step’ in that direction of 

length δ. (C) Examples of three-agent Gaussian random walks, in which δ is chosen randomly from a normal distribution with mean = µ, and standard 

deviation = σ. (D) Root mean square displacement of the agents as a measure of the relative distance traveled by the particles on average from their 

point of origin after 1000 steps (in model-time). (E) Examples of 100-agent Gaussian random walks constrained by decreasing available angular 

ranges (θ). Smaller angular ranges result in locally constrained ‘progressive’ or forward directed movement. (F) Histograms of agent counts vs. 

displacement. θ indicates the maximal allowable angle.      
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Mammalian sperm exhibit a range of motility symmetries and patterns that vary from seemingly random 227 

exploration of local space (e.g., hyperactivated motility) to correlated random walks in which their future direction 228 

is constrained by their current path resulting in net linear-progressive motility patterns. To model correlated 229 

random walks, we performed simulations in which the agents had fixed δ, but θ constrained to specified ranges. 230 

Those with smaller ranges had fewer directions to go at each timestep and exhibited behavior that resembled 231 

crude progressive motility patterns (Figure 1E). As predicted, histograms of the displacement of each of the 100 232 

agents in the simulations indicated that those with relatively short θ range exhibited greater average 233 

displacement compared with their less directionally moving counterparts (Figure 1F). Taken together, the results 234 

of these simplified models highlight the diffusive search functionality that emerges from large numbers of 235 

randomly moving sperm and sets the stage for tailored simulations of empirically-derived CASA data.  236 

Converting simple random walkers to artificial sperm - Isolated mouse epididymal sperm have been studied 237 

extensively to define the molecular mechanisms and phenotypic characteristics of fertilization competent sperm. 238 

Though there is a large set of possible movement characteristics that a given sperm may occupy at a particular 239 

time, some common features of motility can be classed into specific patterns. For example, ‘progressive’ motility 240 

consists of a symmetric cross beat with low lateral head amplitude and rapid straight-line movement about a 241 

central moment[19]. Similarly, ‘intermediate’ motility follows a similar movement pattern, but with greater 242 

magnitude of lateral head displacement. Here, we define five categorical motility patterns, based on previous 243 

work[21].  244 

Typical CASA motility parameters consist of: VAP (average path velocity), VSL (straight line velocity), VCL 245 

(curvilinear velocity), ALH (amplitude of lateral head), BCF (beat cross frequency), STR (straightness), and LIN 246 

(linearity). VSL, VCL, and VAP were used for parameterization of the sperm movement functions in our models. 247 

Means and standard deviations of the movement parameters for each motility type were obtained from a previous 248 

report, and Gaussian distributions were simulated using Graphpad Prism[21]. Temporally-coded phase contrast 249 

images of representative cauda epididymal mouse sperm movement patterns at 40X magnification are 250 

qualitatively like those produced by the sperm (shown to approximate 10X magnification; Figure 2A). Movement 251 

function parameters (VSL, VCL, and VAP) for the agents of each prescribed motility class were adjusted to 252 
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match the simulated Gaussian 253 

distributions from data (Figure 254 

2B-D). The resulting sperm 255 

motility patterns are 256 

quantitatively and qualitatively 257 

like mouse sperm and could be 258 

readily updated in future model 259 

iterations to accommodate any 260 

species or context if labeled 261 

CASA data is available. If 262 

labeled data is not available, 263 

meaning that categorical motility 264 

types are not classified, the 265 

models could still be fit to CASA 266 

parameter distributions (e.g., 267 

VCL, VSL, ALH, etc).    268 

Sperm-Agent Search is a 269 

Function of Motility Pattern - We 270 

performed simulations and 271 

sensitivity analysis to investigate 272 

the relationships between 273 

motility pattern and local search 274 

time. Each simulation was 275 

performed with agents of only one motility type (progressive, intermediate, hyperactive, slow, weak, or mixed in 276 

equal proportions). Sperm began in a randomized position in the environment with the same total number in 277 

each simulation (N=250). The environment consisted of an underlying grid of 40 x 40 µm unit squares. Each grid 278 

 

Figure 2: Converting simple random walkers to artificial sperm. (A) Temporally coded phase 

contrast images of heuristic mouse sperm motility patterns. 10 second videos with 0.04 s intervals. 

10X objective magnification. Color scale is blue (early) to white (late) frames in the video. (B) 

Consensus data from published studies were used to generate normal distributions of curvilinear 

velocity (VCL) values (indicated by the subscript ‘Data’). Parameters (i.e., δ, θ) of each motility type in 

the agent-based models (i.e., subscript- ABM) were adjusted to approximate the mean VCL values 

with those identified in the ‘Data’ distributions. N = 250 data points for all groups. 
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square was considered ‘searched’ if at 279 

least one sperm passed through it. 280 

Simulations ended after two seconds 281 

(model-time). The time color-coded 282 

movement paths of a representative 283 

simulation with ‘mixed’ sperm motility types 284 

is shown (Figure 3A). Populations of 285 

sperm with mixed motility types exhibited 286 

average movement patterns and an ability 287 

to search space that was reflective of the 288 

proportions of different motility types in the 289 

population (Figure 3B,C). These results 290 

demonstrate that the average diffusive 291 

search capability of a sperm population 292 

reflects the underlying distribution of sperm 293 

phenotypes. In other words, the ability to 294 

efficiently search space is an emergent 295 

property of the sperm population.  296 

Modeling microenvironmental complexity - 297 

The simulations presented thus far predict 298 

that sperm populations will function on 299 

average to search all the space that they occupy, and the kinetics of the search process depend on the 300 

distribution of sperm motility patterns within the cell population. The microanatomy of mammalian female 301 

reproductive tracts impose spatial limitations on sperm movement that act as physical barriers to eventual 302 

contact with the egg(s). In the uterus, the luminal volume is large relative to the size of a single sperm, and 303 

convective flow predominates in the dispersion of cells [31]. However, the luminal volume in the cervix and 304 

 

Figure 3: Sperm-Agent Search is a Function of Motility Pattern. (A) Representative 

model simulation of 250 sperm with equal proportions of each motility type searching a 

closed space. Color scale is blue (early) to white (late) frames in the video.  (B) Root 

mean squared displacement (µm) for simulations involving the indicated composition of 

motility types. Mixed populations consisted of 50 sperm of each motility type. (C) Search 

progress (%) for the simulations described in subpanel (B).     
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oviducts are much smaller 305 

relative to the size of a sperm 306 

and the relative volumes are 307 

constrained by the presence of 308 

laminar epithelial folds which 309 

form a tight labyrinth-like 310 

environment[32].  311 

To model the relationship 312 

between microenvironmental 313 

complexity and sperm selection, 314 

three simulation environments 315 

were developed. Mazes (more 316 

specifically labyrinths, or ‘acyclic’ 317 

mazes) were chosen as a simple 318 

model of microenvironmental 319 

spatial complexity because they 320 

can be compared quantitatively 321 

using foundational concepts 322 

from graph theory (Figure 4). 323 

These simple structures are not 324 

necessarily intended to serve as 325 

accurate models of oviducts, 326 

which are much more complex 327 

and involve adaptive 328 

physiological variables including 329 

hormones, metabolites, 330 

hydrodynamic forces, and 331 

 

Figure 4: Modeling Microenvironmental Complexity. (A) The simplest simulation 

microenvironment consisting of an open space with an egg located in the bottom right corner. Sperm 

begin at position 1 (red) and end at the egg position 2 (red). TCw = total weighted complexity, a 

measure of the graph complexity of the maze. P(S→E) = the probability of a sperm taking the shortest 

direct path to the egg. (B) A more complex maze with increased TCw relative to maze A. (C) The most 

complex maze used in the simulations. Mazes were constructed using a separate agent-based model 

in Netlogo. Vertex numbers are indicated on the maze diagrams. Graph networks with numbered 

vertices connected by edges are shown on the right.   
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thermal gradients. Rather, the simple mazes enable quantitative exploration of the fundamental constraints 332 

imposed on sperm fitness by a selective pressure (in this case- spatial complexity), and can be more readily 333 

mimicked in vitro, making them more tractable for experimental validation.  334 

The mazes in this report were defined by internal barriers that the sperm could not cross. When a sperm 335 

encountered a barrier, the sperm would reorient within a range of possible new directions determined by their 336 

motility state and corresponding movement function. The ‘egg’ was a designated grid square in the environment, 337 

and egg-contact occurred when a sperm moved over the square. The mazes consisted of ‘dead-ends’ and 338 

‘intersections’ as vertices of an undirected graph G(v,e), where v is a set of vertices {vi} and (e) is a set of edges 339 

where eij is the unordered vertex pair {vi, vj}. We define a path as the set of edges that connects two specified 340 

vertices. To quantify the complexity of the mazes, the total weighted complexity (TCw) was calculated as: 341 

(1) TC𝑤 = ∑ 𝑑𝑖
𝑘
𝑖=1  342 

where di is the ith vertex degree (i.e., the total number of paths that lead to and from the vertex) and the vertex 343 

indices {1, 2, …, k} is a proper subset of v. An open space in which sperm start at one position and an egg is 344 

located at another position within the space, has a total weighted complexity of 1 (Figure 4; Maze A). Mazes 345 

with more vertices, or with more edges connecting vertices are more complex and reflect a larger TCw (Figure 346 

3; Mazes B,C). As an additional measure of spatial complexity, we considered the probability of a sperm 347 

traversing a direct path from the start (S) position to the (E) egg position, which can be calculated as:  348 

(2) 𝑃(𝑆 → 𝐸)  = ∏
1

𝑑𝑖

𝑘
𝑖=1   349 

where k is the total number of vertices along the shortest path from the sperm to the egg. For example, the 350 

probability of a direct path taken (Figure 4; Maze C) is extremely low (i.e., 1/34,992 possible paths). This 351 

highlights an interesting feature of diffusive search by non-adaptive sperm – i.e., that a population of sperm will 352 

converge on the most direct path to the egg as a function of the number of sperm (or more accurately, the density 353 

of sperm in the microenvironment).     354 

Sperm number and diffusive search properties - To explore the relationship between sperm-agent number (or 355 

density within the simulation space) and diffusive search in complex spatial microenvironments, we performed 356 

100 simulations each for increasing numbers of sperm (1-104 progressively motile sperm). The simulations 357 
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ended when the ‘egg’ was contacted for the first time by one of the sperm (Figure 5A; top- TCw =1; middle- TCw 358 

= 22; bottom- TCw = 54). Notably, the time to first contact was not symmetrically distributed for each sperm-agent 359 

density, which became symmetric when placed on a logarithmic scale. Simulations involving 103 and 104 sperm 360 

became much more likely to be normally distributed rather than lognormally distributed in Mazes B and C, but 361 

not A. However, tests for lognormality were inconclusive and it is not clear what the underlying distributions were 362 

in either case, though it was clear that the distributions were skewed in simulations with fewer sperm (Figure 363 

5A; inlay histograms).  364 

 

Figure 5: Sperm Number and Diffusive Search Properties. (A) Time to first contact with an egg in microenvironments with TCw=1 (maze A; top), 

TCw= 22(maze B; middle), and TCw=54 (maze C; Bottom). Inlays are the relative frequency distributions for search time of N=1 sperm in the simulation. 

Shown to highlight the search time distribution when not represented on a logarithmic axis. When represented on a logarithmic axis, the distributions 

became symmetric about the mean. (B) Simulation space searched at first contact with the egg for microenvironments with increasing weighted 

complexity (top to bottom as in subpanel A). lines indicate the median. N = 100 simulations for each condition.    
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Next, we investigated the relative impact of environmental complexity on the efficiency of the search process by 365 

examining what percentage of the total searchable area was accessed during each simulation (Figure 5B; top- 366 

TCw =1; middle- TCw = 22; bottom- TCw = 54). We hypothesized that sperm-agent populations would perform 367 

something like a ‘depth first’ search in which all preceding branches of the maze were likely to be searched prior 368 

to finding the egg[33]. As anticipated, sperm searched more space prior to finding the egg as the number of 369 

agents increased (Figure 5B). Interestingly, at low sperm-agent numbers, the role of chance was large 370 

compared to higher numbers, and in many cases the sperm were able to contact the egg without searching a 371 

large proportion of the space. This effect was particularly relevant in the open environment of maze A, but was 372 

diminished with increasing environmental complexity in mazes B and C. 373 

Taken together, these results predict that diffusive search by non-adaptive sperm will exhibit a non-linear 374 

relationship with sperm density and that the role of chance in finding shortest path to the egg is modified by the 375 

spatial complexity of the microenvironment. As the microenvironment becomes more complex, more sperm are 376 

required to minimize the time to egg contact, but the benefit gained by increasing sperm number above a critical 377 

threshold also diminishes nonlinearly due to convergence on the most direct path to the egg. These insights may 378 

provide a basis for optimal prediction of sperm number for ART procedures such as IVF, though these models 379 

do not explicitly account for the risk of polyspermy which should be carefully considered.    380 

A time homogeneous Markov model of sperm phenotype heterogeneity - Individual sperm undergo dynamic 381 

changes that are conditioned on nutrients and signaling factors in the microenvironment. These factors ultimately 382 

influence sperm behavior, lifespan, and ability to recognize and bind to an egg[5,34–37]. In mammalian sperm, 383 

intracellular calcium is a key second messenger that mediates capacitive changes, and heterogeneity in calcium 384 

transients are a key source of individual sperm variation within cell populations[9,25]. To aid in choosing 385 

parameter distributions for the agent-based models, we explored the effect of natural variation in isolated mouse 386 

cauda epididymal sperm in response to well-defined capacitive signaling inputs (Figure 6). To account for the 387 

controlling effect of exogenous free calcium, we performed simultaneous pseudo-titrations of total calcium using 388 

an ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) chemical ‘clamp’ system to buffer 389 

the free calcium at defined concentrations (Figure 6A). We then combined this method with pseudo-titrations of 390 

sodium bicarbonate (HCO3
-), a key signaling factor that stimulates capacitation via activation of soluble adenylate 391 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2024. ; https://doi.org/10.1101/2024.06.17.599386doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.17.599386
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

kinase. Intracellular calcium was monitored using an acetoxy-methyl ester Indo-1 (ratiometric) dye. HCO3
- 392 

stimulated intracellular calcium increase concomitant with exogenous free calcium concentration over a period 393 

of  two hours (Figure 6B). These measurements highlight the average responses that sperm populations make 394 

to signaling inputs.   395 

Next, we sought to determine how intracellular calcium was distributed among individual sperm at the 60-minute 396 

timepoint using spectral flow cytometry, with a similar multi-dimensional culture array scheme (Figure 6C). 397 

Examination of the qualitative distributions of intracellular calcium ([Ca2+]i with increasing concentrations of 398 

HCO3
- revealed that [Ca2+]i exhibited a positively skewed distribution. We interpreted this distribution as an 399 

indication that high [Ca2+]I cells are a relatively ‘rare’ phenotype relative to the mean, a pattern which was 400 

invariant to the magnitude of the HCO3
- signal.  401 

Impact of phenotype heterogeneity on diffusive search - We then updated the agent-based models to include a 402 

‘calcium oscillator’ function that influences the behavior of the sperm in proportion to the ‘frequency’ of calcium 403 

 

Figure 6: A Time-Homogeneous Markov Model of Sperm Phenotype Heterogeneity: (A) Linear regression curves for different calcium ion 

selective electrode filling solutions used to calculate the free Ca2+ concentrations in HEPES buffered assay media in the presence of 1mM EGTA. 

(B) Representative heat map showing Indo-1 fluorescence ratios for sperm under the indicated Ca2+ and HCO3
- pseudotitration conditions. Iono = 

ionomycin. Free calcium concentrations (bottom) are in micromolar units. T = time since the beginning of the assay in minutes. (C) Probability density 

estimate from spectral flow cytometry for approximately 105 live cells per indicated condition. Dead cells were excluded from analysis based on 

ToPro3 fluorescence intensity. (D) Representative intracellular calcium oscillations derived from a squared sine function assigned to each sperm in 

the model simulations. Teal bar at the top of the graph indicates the upper 5% of the concentration range during which the cells were allowed to 

transition motility states according to a Markov probability transition table. (E) Relative proportion of sperm in each indicated motility state over time 

(in model-timestep units). In the long run, sperm in the models absorbed into a weak motility state.      
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transients (Figure 6D). Each cell was assigned 404 

a randomly generated oscillation frequency 405 

drawm from a Poisson distribution. Most cells 406 

will exhibit low frequency oscillations and will, as 407 

a result, maintain relatively low intracellular 408 

calcium on average, whereas some rare agents 409 

will have high oscillation frequencies 410 

accompanied by high time-averaged 411 

intracellular calcium concentrations. To model 412 

changing population states over time, all sperm 413 

began with a progressive motility state and 414 

change motility states when the intracellular 415 

calcium was above 97% of the maximum in 416 

accordance with a Markov transition matrix that 417 

resulted in motility pattern dynamics that 418 

ultimately absorbed into a weak (non)motile 419 

state over a long run period (Figure 6E)[21]. 420 

These model updates facilitated more 421 

physiologically relevant predictions about 422 

population scale dynamics during capacitation 423 

controlled by a cell intrinsic ‘causal’ predictor 424 

(i.e., intracellular calcium transients).  425 

We then simulated search for an egg in 426 

microenvironments with increasing spatial 427 

complexity (Figure 7). Simulations consisted of 100 sperm, which was chosen as a reasonable (minimal) number 428 

that supported consistent random phenotype distributions across simulation runs. A two-factor design was 429 

implemented to compare the relative effects of sperm population heterogeneity (mean calcium oscillation 430 

 

Figure 7: Impact of Sperm Phenotype Heterogeneity on Diffusive Search. 

(A) Histogram of the sperm intracellular calcium oscillation frequencies randomly 

drawn from a Poisson distribution with the indicated means (λ). (B) Search time 

for sperm populations with different phenotype distributions in 

microenvironments with increasing total weighed complexity (TCw). (C) 

Logarithmically transformed search times from subplot B used for statistical 

analysis to satisfy 2-way ANOVA assumptions. Ns = not significant, *p<0.05, 

****p<0.0001. Lines indicate medians. Simulations consisted of N = 100 agents.    
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frequency; λ) and microenvironmental complexity (TCw) on search time. Intracellular Calcium oscillation 431 

frequencies assigned to each sperm were drawn from one of three Poisson distributions characterized by 432 

different means/variances (λ) (Figure 7A). A low λ value indicates that most of the sperm had low Calcium 433 

oscillation frequencies, and thus, would absorb into a weak motility state slowly, giving them more time to actively 434 

search for the egg. Conversely, a high oscillation frequency might absorb into a weakly motile state quickly, 435 

making it less likely to find the egg by comparison.  436 

A plot of search time vs. TCw for each value of λ qualitatively indicated that both microenvironmental complexity 437 

and phenotypic heterogeneity influenced the search time (Figure 7B). Due to the asymmetry of the search time 438 

distributions, the assumptions of a two-way ANOVA were not met. To address this issue, we performed a two-439 

way ANOVA on logarithmically transformed search time (Figure 7C), and a statistically significant interaction 440 

was detected between TCw and λ (F (4, 891) = 22.41; P<0.0001); however, the effect only accounted for 0.29% 441 

of total variation. Simple main effects analysis revealed that λ accounted for only 0.82% of variation (F (2, 891) 442 

= 127.6; P<0.0001), while TCw accounted for most of the variation (95.99%; F (2, 891) = 14808; P<0.0001). Post 443 

hoc analysis using a Tukey’s multiple comparison test indicated statistically significant differences between the 444 

λ levels in all three microenvironments with mean search time differences as large as ~627 seconds in the most 445 

extreme case (TCw=54; λ=1 Vs. λ=20). Together these simulation outcomes predict that both phenotypic 446 

heterogeneity and microenvironmental constraints interact to impose selective pressure on fertilizing sperm. An 447 

important remaining question is how to quantify both the impact and magnitude of selection on sperm fitness.      448 

Measures to infer sperm fitness and quantify the magnitude of sperm selection- Further exploration of the 449 

interaction between sperm-agent population dynamics, spatial constraint, and the effect of selection requires 450 

measures of how the distribution of sperm phenotypes changes under selection as well as the magnitude of 451 

effect caused by the selective pressure. We considered two useful measures 1.) Bayesian inference - the 452 

posterior probability of contact with an egg given that a sperm has a particular Calcium oscillation frequency, 453 

and 2.) Kullback-Leibler divergence (a.k.a. relative information gain) - an information theoretic measure of the 454 

magnitude of effect of selection on the distribution of Calcium oscillation frequencies following diffusive search 455 

in microenvironments with differing degrees of complexity.  456 
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The posterior distribution provides a quantitative measure of sperm fitness - For these simulations, the agent-457 

based models were updated to facilitate tracking the number, assignment, and duration of contact time with the 458 

egg by each of the sperm. A total contact-time threshold of five seconds was defined as a condition to end the 459 

simulations. The underlying assumption was that after a reasonable number of contacts by one or more sperm, 460 

the fertilization process is likely to occur. As in the previous sections, 100 simulations involving 100 sperm were 461 

carried out for each factor and corresponding level (i.e., {λ: λ = 1, 10, 20}, and {TCw : TCw = 1, 22, 54}) (Figure 462 

8). The relative proportion of the ith Calcium oscillation frequency is denoted qi. To visualize the initial distributions 463 

 

Figure 8: Measures to Infer Sperm ‘Fitness’ and Quantify the Magnitude of Sperm Selection. (A) Cumulative distributions total probability P(qi) 

for each oscillation frequency in the initial sperm population for each simulation condition. (B) The Bayesian likelihood (frequency of sperm for each 

oscillation frequency that made contact with the egg). (C) Cumulative posterior probability of egg contact for each oscillation frequency. Note, a prior 

distribution of 1/N, where N is the total number of sperm in the simulation, was used in the calculation. This can be interpreted to mean that each 

sperm had an assumed equal chance of contacting the egg. (D) Relative information gain (a.k.a. Kullback-Leibler divergence) calculated for each 

simulation condition. ****p<0.0001. TCw = total weighted complexity. N = 100 sperm in each simulation. Points in A-C represent the median of 100 

simulations. Points in D represent relative information gain for each of 100 simulations.      
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across the λ and TCw levels, cumulative probability distributions were calculated, demonstrating approximately 464 

identical initial distributions across the simulations (Figure 8A).  465 

The distribution of each discrete Calcium oscillation frequency among the sperm that made contact with the egg 466 

is also known as the likelihood function (P(qi | contact). Plotting the likelihood function vs. each Calcium 467 

oscillation frequency indicated that increasing environmental complexity narrowed the range of frequencies 468 

among sperm that successfully made contact (Figure 8B). It also reduced the absolute number of unique sperm 469 

that made contact (data not shown). Though the likelihood function is the typical empirical measure used in 470 

laboratory experiments related to sperm fertility competence, it lacks information about prior assumptions 471 

regarding the fitness of sperm traits as well as the phenotype distribution of those traits within the initial sperm 472 

population (before fertilization outcomes are known). In other words, the likelihood function is a sampling 473 

distribution, but what we are most interested in is the inferential (posterior) distribution, which can be obtained 474 

using Bayes theorem: 475 

𝑃(𝑐𝑜𝑛𝑡𝑎𝑐𝑡 | 𝑞𝑖)  =  
𝑃𝑟𝑖𝑜𝑟 ∗ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 =  

𝑃(𝑐𝑜𝑛𝑡𝑎𝑐𝑡) 𝑃(𝑞𝑖 | 𝑐𝑜𝑛𝑡𝑎𝑐𝑡)

𝑃(𝑞𝑖)
      476 

where P(contact) is the hypothesized prior distribution, in this report 𝑃(𝑐𝑜𝑛𝑡𝑎𝑐𝑡)  =
1

𝑁
 , where N is the total number 477 

of sperm in the simulation. P(contact) can be interpreted to mean that all sperm were assumed to have an equal 478 

chance of contacting the egg (prior to observing the outcome). We posit that the posterior distribution is a useful 479 

quantitative measure of sperm fitness that facilitates addressing the question we are most interested in with 480 

regard to sperm selection - “what is the probability that a given sperm will be ‘successful’ given that it has a 481 

particular trait value?”. For the purposes of this report, ‘success’ is defined as egg contact, and the trait value of 482 

interest is calcium oscillation frequency. Cumulative posterior probabilities were calculated for each level of TCw 483 

and λ (Figure 8C). Interestingly, the range of successful oscillation frequency values was narrowed by increasing 484 

microenvironmental complexity, enabling identification of a subset of sperm that could be considered to have 485 

high ‘fitness’ within each microenvironment.  486 

Relative information gain (Kullback-Leibler divergence) provides a quantitative measure of the magnitude of 487 

selection- Sperm selection is often used in ART applications, but the magnitude of selective effect is generally 488 

not considered, despite the importance of such a measure for comparing the effectiveness of different selection 489 
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strategies. Here we describe use of relative information gain as measure of the magnitude of selection. As in the 490 

previous section, qi is the initial distribution of sperm-agent Calcium oscillation frequencies. The Bayesian 491 

likelihood distribution (P(qi | contact) will be denoted qi’  here for convenience. If qi and qi’ are the same, then 492 

there was no selection for Calcium oscillation frequency during the simulation. However, if qi and qi’ are not the 493 

same distribution, then some subset of Calcium oscillation frequencies did not make contact with the egg, 494 

implying they were selected against by the conditions of the simulation. The ‘divergence’ between the two 495 

distributions can be quantified with the following expression:  496 

𝐷(𝑞′ || 𝑞) = ∑ 𝑞𝑖′ 𝑙𝑜𝑔2(
𝑞𝑖′

𝑞𝑖
)𝑛

𝑖=1     497 

This expression is known as the relative information gain (or Kullback-Leibler divergence), and its units are in 498 

binary digits (bits). A relative information gain of 0 indicates the distributions are the same, and a positive number 499 

indicates the magnitude of the difference between the two distributions. The relative information gain cannot be 500 

less than 0 and this measure is not symmetric, meaning that it is not equivalent to D(q || q’). As anticipated, 501 

increasing TCw or λ increased the relative information gain (Figure 8D). Two-way ANOVA revealed a statistically 502 

significant interaction effect among TCw and λ (F (4, 891) = 19.47; P<0.0001), which only accounted for ~2% of 503 

the total variation. Simple main effects analysis indicated that TCw accounted for about 37% of the variation (F 504 

(2, 891) = 542.9; P<0.0001) and λ accounted for about 29% (F (2, 891) = 425.9; P< 0.0001). The results of a 505 

Tukey’s post hoc test comparing each λ level to λ=1 are indicated in (Figure 8D).       506 

Taken together, the results from these simulations reinforce the conclusion that simple spatial hindrance by the 507 

latent structure of the microenvironment combined with variation in individual sperm phenotypes exerts 508 

quantifiable selective pressure on sperm. The fitness can be represented as an inferential probability of 509 

‘success’, and the magnitude of selection can be represented using relative information gain.   510 

Discussion 511 

A systems perspective on fertilization - The molecular mechanisms that underpin the regulation of mammalian 512 

sperm post-ejaculatory maturation (capacitation) have been thoroughly studied over the past several decades. 513 

These mechanisms are multifaceted and consist of signaling pathways[36,38], metabolic processes[34,35,39], 514 

and complementary binding of cell surface molecules[40,41]. Though there are excellent physical models of 515 
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individual sperm motility function and regulation[16,42–46], few models account for the statistical interactions at 516 

the cell population scale that influence fertility outcomes; this gap in knowledge persists despite consistent 517 

observations of significant phenotypic heterogeneity within sperm populations (e.g., the localized expression of 518 

ion channels on the plasma membrane) [4,6,9,47]. Previous work modeling sperm search times in both 2D and 519 

3D environments detailed several potential scaling laws for the diffusive search process relating search time to 520 

sperm number[48]. Similar to our observations in this report, a non-linear relationship between sperm number 521 

and search time was described, and the scaling laws depended on the dimensions of the search space. However, 522 

those simulations used sperm with constant velocity and did not explicitly account for phenotypic heterogeneity 523 

or motility pattern changes over time. The agent-based models (ABMs) developed in this report are informed by 524 

empirical data and provide a structured framework to explore the complex collective dynamics of phenotypically 525 

heterogeneous sperm populations under various environmental conditions. The models facilitate a deeper 526 

understanding of the interactions between microenvironmental complexity and sperm phenotypic heterogeneity, 527 

emphasizing the stochastic nature of the variables that shape sperm fitness.  528 

Diffusive search under microenvironmental constraint - The spatial scale of motility is important when analyzing 529 

the consequences of motility pattern distributions on sperm selection. In vivo, peristaltic convective flow moves 530 

sperm suspensions over relatively large distances within the female reproductive tract independent of their 531 

motility status[31]. Though this phenomenon will distribute the cells on a macroscopic scale, at the microscopic 532 

scale, individual sperm must still ‘search’ local space using flagellar movement in a manner that increases 533 

probability of contact with the egg. This important property implies that critical cellular density thresholds, cell 534 

intrinsic motility characteristics, and microenvironmental factors such as physical/chemical barriers play critical 535 

roles in influencing which sperm from a given cell population will have an opportunity to fertilize. The degree to 536 

which this is due to chance alone is an important consideration, and a strong theoretical framework for sperm 537 

selection should account for the probabilistic dependencies of sperm fitness. The simulations in this report predict 538 

that increased microenvironmental complexity requires greater sperm density to maintain effective diffusive 539 

search and timely egg contact, highlighting potential tradeoffs between the collective diffusive search capability 540 

of a sperm population and the number of required sperm. However, the models also predict that critical 541 

thresholds exist, above which sperm number plays a diminishing role in diffusive search capability. importantly, 542 
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this threshold is not a fixed value, but rather, depends on the complexity of the microenvironment and the 543 

phenotypic heterogeneity of the sperm population.   544 

Impact of sperm phenotypic heterogeneity - Motility is the most fundamental physiological function of mammalian 545 

sperm and is a common distinguishing feature used in clinical sperm selection[49,50]. Our results demonstrate 546 

how intrinsic phenotypes of sperm, such as intracellular ion transients coupled with the regulation of motility 547 

pattern, critically influence selection outcomes. Sperm phenotypic variation is complex and caused by many 548 

different factors. Variation may be an important driver of optimal sperm number among (or within) species, based 549 

on the observation that sperm number is positively correlated with potential error from genomic recombination 550 

in meiosis[51]. Variation may also be undergirded by an evolutionarily stable strategy that optimizes the number 551 

of capacitated sperm during a post-copulatory fertilization window; a process facilitated by periodic synchronous 552 

capacitation among sperm subpopulations[52]. Regardless of the underlying causes of variation, our simulations 553 

suggest that the reproductive microenvironment is a critical factor in sperm selection because it ultimately 554 

determines which sperm phenotypes will have ‘meaningful’ access the egg. This  suggests that sperm selection 555 

protocols for ART should consider both the statistical distribution of biological variability among the sperm and 556 

the physical/chemical structure of the microenvironment in which fertilization will occur.   557 

Quantifying sperm fitness and selection pressures - Sperm pre-selection is almost ubiquitous in routine clinical 558 

diagnostics and ART procedures (e.g., gradient centrifugation, swim-up assays, hyaluronan binding assays, 559 

etc.). Though semen parameters such as motility and sperm count are known to influence ART outcomes[53], 560 

current methods of selection largely depend on simple correlation and qualitative assumptions about the effects 561 

of selection[54]. Additionally, use of ICSI has increased substantially in recent decades, a procedure which relies 562 

on direct selection of a single sperm for injection into the egg[55]. Currently, there is no quantitative framework 563 

that facilitates high-precision sperm selection from within-male samples and sperm ‘fitness’ remains nebulously 564 

defined.   565 

Though fitness could be quantitatively framed in many ways - Bayesian inference is a useful approach, drawn 566 

from the theory of natural selection, in which fitness is defined as a probability measure of ‘success’[56]. 567 

Classically, success has been defined by survival or reproduction of organisms within a given population. For 568 

the purposes of modeling fertilization, success can be defined flexibly depending on the scenario without altering 569 
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the underlying mathematical representation (e.g., egg contact, fertilization, passage through a selective barrier, 570 

etc). Most approaches to assessing sperm fitness are based on regression of sperm traits (or interventions) with 571 

fertility or developmental outcomes[57,58]. However, it is important to consider that the probability that a sperm 572 

has a particular trait given that it fertilized an egg, is not necessarily equivalent to the probability that a sperm 573 

will fertilize an egg given that it has a particular trait, though it is the latter condition (inference) that is of prime 574 

interest for sperm selection in ART. 575 

Bayes theorem incorporates useful information beyond simple sampling frequencies. For example, it accounts 576 

for the relative proportion of sperm with ‘successful’ sperm traits in the initial population and prior information 577 

about the traits’ contributions to fertilizing potential. Bayesian inference has been used recently in conjunction 578 

with dimensionality reduction to make fertility predictions from motility stereotypes in boar semen[59]. Expanding 579 

quantitative approaches to sperm fitness prediction is becoming more important as machine learning and 580 

computer vision technologies advance, allowing for high-dimensional data collection from semen samples[60]. 581 

One advantage of the approach taken in this report is the computational simplicity, which may be useful for 582 

developing classification or selection strategies that rely on interactive microscopy video manipulation in real-583 

time.     584 

A major limitation to improving current male fertility diagnostics and high-precision selection is that fertilization is 585 

an open-ended process, making it very difficult to predict which sperm will have a selective advantage from 586 

semen analysis alone. As mentioned previously, the microenvironment plays a substantial role in constraining 587 

which sperm will have access to the egg. For this reason, it is critical to have some measure that can compare 588 

between the selective effects introduced by different reproductive microenvironments in vivo or in vitro. To 589 

address this limitation, we propose another useful measure - relative information gain - for quantification of the 590 

magnitude of selection imposed by the reproductive microenvironment[56]. This measure, also known as 591 

Kullback-Leibler divergence, provides a useful way to compare selection strategies quantitatively[61]. It is a 592 

numerical representation of the ‘distance’ between the trait distribution of an initial (pre-fertilization) population 593 

of sperm and the ‘successful’ (post-fertilization) population of sperm. Notably, it is independent of the actual 594 

features of the microenvironment and is only dependent on the effect of microenvironmental constraint on sperm 595 
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fitness. Additionally, it lays the groundwork for a new biological context for reproduction by reframing the process 596 

of fertilization in information theoretic terms as a form of ‘learning process’[62].   597 

Model limitations - There are several notable limitations of the models developed in this report. Most of the 598 

limitations stem from the simplifying assumptions made about the physiological phenomena that underly 599 

mammalian reproduction. First, the sperm movement functions are simplified to just two parameters (ϴ and δ), 600 

but real sperm exhibit more complicated patterns such as helical progression[63]. Second, the regulatory 601 

systems in the model that control the timing and trajectory of capacitation are limited only to calcium transients 602 

with an assumed correlation between intracellular calcium concentrations and motility pattern transitions. This 603 

simplification ignores a much more complicated reality involving time-inhomogeneous plasma membrane 604 

potassium hyperpolarization, metabolic energy balance, protein tyrosine phosphorylation, and other key 605 

biochemical reactions. Though the results should be interpreted with caution, the models were designed to 606 

capture key elements of cell population scale dynamics and were constrained by empirical data to enhance their 607 

physiological relevance. These models may be extended to incorporate updated movement parameters and 608 

regulatory subsystems - for example through use of coarse-grain approaches such as Boolean networks or more 609 

involved systems of differential equations[9,64]. Finally, to approach this problem in a general way, we modeled 610 

only non-adaptive sperm, meaning sperm that do not change their motility pattern in response to environmental 611 

inputs. However, there are many ways by which mammalian sperm modulate behavior in response to their 612 

environment including chemotaxis, rheotaxis, and thermotaxis. Incorporating these behaviors will likely affect the 613 

statistical predictions about sperm fitness and should be pursued in future studies.          614 

Conclusion 615 

In this report we developed agent-based models (ABMs) and explored aspects of collective behavior of non-616 

adaptive sperm. Our results highlight the intertwined roles of microenvironmental complexity and sperm 617 

phenotypic heterogeneity in shaping sperm fitness, as defined by the probability of successful egg contact. 618 

Results from this study provide key insights and useful definitions for the further exploration of a theory of sperm 619 

selection in the context of ART. The insights provided by the models hold promise for optimizing real-time sperm 620 

diagnostics and selection strategies with broad applications in both clinical and agricultural settings.  621 
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