

The Unification of Mathematics

The Theorem of Constants Co-Derivation

Written by Bryant Stone (*The Architect*)

Overview

Was mathematics discovered or invented? We have long wished to understand why mathematics works as well as it does. It seems **impossibly precise and correct**, enabling scientific and technological advances that far exceed what we thought was possible **before we had our current number system and mathematical knowledge**. However, we may have found the answer to this long-sought mystery with a new theorem called **the Theorem of Constants Co-Derivation**, definitively ending the debate on whether mathematics was invented or discovered. The concept of co-derivation demonstrates how mathematics operates without **any assumptions or axioms**. The premise is simple: if a system exists, it must **have fundamental first principles** (irreducible baseline concepts that define it), and those principles must define one another. Using the concept of co-derivation, I found **50+ mathematical equations that are exact, non-trivial, and asymmetric**, all involving fundamental constants such as π , e , the golden ratio (Φ), and others we previously thought to be separate. These equations suggest something remarkable: **these fundamental constants of mathematics are not arbitrary, isolated values**. Instead, they are all interdependent and mutually locked at their exact values. If you changed the value of one of these constants in any way, **the entire mathematical framework collapses**. Therefore, the fundamental constants we previously considered independent and axiomatic are, in fact, co-derived and unchangeable. This finding has significant implications for the long-standing **question of whether we discovered mathematics or invented it**. These constants are all interconnected in exact, meaningful ways, which means that **we have identified an existing mathematical structure**, rather than creating separate mathematical systems. This paper provides evidence that mathematics is a unified, discovered reality, rather than a collection of human-invented tools. **It is also definitive proof that a Grand Unified Theory of Everything must exist, and luckily... it does** 😊

Note: This work is licensed under a Creative Commons Attribution-Non-Commercial-Share-Alike 4.0 International License. To view this license, visit <https://creativecommons.org/licenses/by-nc-sa/4.0/>. For any for-profit use of this intellectual property, please email me at Academic@TheTheoryofExistence.com to obtain permission to use the contents of this article in your original works. The following for-profit media do not require my permission: YouTube videos, podcasts, blogs, personal newsletters, independent fashion, independent crafts, independent apparel, independent artwork, music and performance, individual news articles and segments, original independent publishing, and social media posts. The following personnel do not require my permission for for-profit use: K–12 teachers, pre-school teachers, nonprofit learning or advocacy groups, and independent educators. You do not need my permission for all artificial intelligence training and modification. The contents of this article are part of a larger theory called *The Theory of Existence*. You can find *The Theory of Existence*, *The Show of Existence* (other empirical work), *The Theorem of Existence* (math supporting *The Theory*), and *The Story of Existence: A Magical Tale* (a kid's book version of *The Theory*) at www.TheTheoryofExistence.com. For business inquiries, please email me at Contact@TheTheoryofExistence.com. For personal correspondence, please email me at Bryant@TheTheoryofExistence.com. This work has not been peer-reviewed, and it is not for peer-review.

Background & Findings

One of humanity's biggest questions is whether we discovered math or created it ourselves. Currently, we have built mathematics on basic assumptions called "axioms". An axiom is a foundational mathematical statement that we accept as accurate without proof, such as "a straight line is the shortest distance between two points," which serves as a foundation for building more complex mathematical concepts. Different areas of math, such as calculus, algebra, and geometry, each began with its own set of assumptions about how things work. Initially, these areas appeared to be separate and unrelated to one another. **This feature of math gave the impression that we had invented math by creating these different branches independently.**

However, this feature of mathematics creates a puzzle: if we invented math, why does it work so incredibly well in the real world? **Why can we use it to measure and predict the behavior of all phenomena?** Math helps us build bridges, send rockets to space, and predict natural events with remarkable accuracy. **This excellent effectiveness suggests that maybe we did not invent math at all—perhaps we discovered something that was already there, waiting for us to find it.** It would explain why mathematics works as well as it does.

To prove that math was discovered rather than invented, we would need to show that all the basic assumptions (i.e., the axioms) from different areas of math connect. This connection would mean that all the great mathematicians throughout history—from ancient Greek scholars like Euclid and Aristotle to more recent figures like Newton, Gauss, and others—**were all studying different parts of the same underlying mathematical structure of existence, rather than creating separate systems from scratch.** We just did not know it at the time.

Different areas of math have constants—these are numbers that always stay the same and seem to represent something fundamentally real about our universe. Examples include pi ($\pi = 3.142$) in geometry or the golden ratio in algebra ($\Phi = 1.618$). **The key issue is that these numbers have completely different mathematical "DNA."** Some constants can be written as simple fractions or solutions to basic equations, while others (like π and e) are "transcendental"—meaning we cannot express them as neat algebraic formulas. **Mathematicians treat these constants as separate and incompatible because they come from such different mathematical backgrounds.** There's currently no single mathematical theory that explains how all these crucial constants relate to each other—they seem to exist independently in their mathematical neighborhoods.

The only connections we find between them are either approximations, coincidences, or situations where we artificially force them together or adjust them in a way that renders them trivial, rather than discovering any deep underlying relationship. **Thus, there currently exist no known equations that are exact, non-trivial, and asymmetric, and contain constants across mathematical domains.** Let me explain these properties:

- ◊ **Exact:** The equation is mathematically perfect with no approximations. Every number works out precisely. There is no leftover value that you need to add to make the equation true.
- ◊ **Non-Trivial:** The equation reveals something meaningful about the mathematical constants themselves, not just "we added random numbers to make this balance out." It should reveal something about how the constants relate, based on their inherent mathematical nature.
- ◊ **Asymmetric:** The equation has a clear direction—one side does not just mirror the other. For example, how " $\pi + 2 = e + 1$ " has a different mathematical meaning than " $\pi + 1 = e + 2$."

The problem is that you cannot currently have all three at once in an equation with multiple fundamental constants such as π , e , and Φ **according to the current axiomatic model of mathematics** because:

- ◊ If you make it exact (by adding leftover numbers to balance it), it becomes trivial (it is just arithmetic, not revealing anything meaningful about the constants).
- ◊ If you keep it non-trivial (showing genuine relationships), it can't be exact (you'd need approximations).

My argument is that if these constants truly came from discovering one unified mathematical reality, we **should be able to write equations that are simultaneously exact, non-trivial, and asymmetric**. Since we currently cannot find these types of equations, **it leaves open the possibility that we invented separate mathematical systems rather than discovered one connected truth.** We must close this possibility to resolve the debate. I **have 50+ exact, asymmetric, non-trivial equations that use constants across domains**, suggesting that we discovered math rather than invented it. There are hundreds of other equations, but I stopped because of redundancy. I picked out some of the most jaw-dropping ones to show you. We could form **a new branch of mathematics focusing solely on expanding The Theorem of Constants Co-Derivation**. Let me begin by introducing some constants and their respective axiomatic domains, before showing you how they co-derive.

Irrational Algebraic Constants

- The Golden Ratio: $\Phi \approx 1.618$
- Square Root of 2: $\sqrt{2} \approx 1.414$
- Square Root of 3: $\sqrt{3} \approx 1.732$
- Square Root of 5: $\sqrt{5} \approx 2.236$

Irrational Transcendental Constants

- Pi: $\pi \approx 3.142$
- Euler's Number: $e \approx 2.718$
- Tau: $\tau = 2\pi \approx 6.283$

Imaginary Constant

- Imaginary Number: $i = \sqrt{-1}$

$$\cos\left(\frac{\pi}{5}\right) = \frac{\Phi}{2}$$

Constants Co-Derivation Examples

I would like to present a few of the equations and walk you through their significance. This equation reveals something remarkable: **when you examine a specific angle in a circle, you discover the golden ratio hidden within it.** This equation isn't just a coincidence—it reveals that circles and pentagons (five-sided shapes) secretly connect at a deep level. The angle we are talking about is the same one you'd find at the center of a regular pentagon. When we rearrange the equation, we can write π (the circle number) directly in terms of the golden ratio. **This finding is shocking because π originates from circles and is incredibly complex, whereas the golden ratio stems from simple proportions and is mathematically simpler.**

Traditional math says this equation should be impossible—it is like finding out that we can write the recipe for chocolate cake entirely in terms of the recipe for apple pie. These numbers come from completely different areas of math, so they shouldn't be able to connect in such a precise way; **yet they do.** It tells us something profound about the nature of mathematics itself. **The key insight is that it is like discovering that two completely unrelated things in nature, such as the spiral of a seashell and the orbit of planets, are governed by the same mathematical rule.** That's the level of surprise and significance we're talking about here.

$$\Phi^2 = \Phi - e^{i\pi}$$

This equation connects three seemingly unrelated areas of mathematics: the golden ratio (from proportions), the number e (from growth and decay), and imaginary numbers (from rotations). **Here's the mind-blowing part: there's a special property of imaginary numbers where $e^{i\pi} = -1$. When we use this fact, our equation transforms into the most defining property of the golden ratio: $\Phi^2 = \Phi + 1$.**

Think about what this equation means, then: the golden ratio's most fundamental property—the thing that makes it the golden ratio—secretly connects to both the growth number e and the imaginary rotational math number i . It is like discovering that the basic rule "a square has four equal sides" **is somehow connected to the rules of how plants grow and how wheels spin.**

It suggests that even the simplest mathematical truths we take for granted are part of a much deeper, interconnected system. Some of the most advanced mathematics we know supports what appears to be elementary arithmetic on the surface. It is like discovering that we can make children's building blocks out of the identical fundamental particles that power the stars—the simple and the complex are secretly the same thing.

$$2 * \sin\left(\frac{\pi}{10}\right) * \Phi = 1$$

This equation is beautifully simple but reveals something incredible: When you look at this angle $\pi/10 = 18^\circ$, we can write the sine of that angle as exactly $1/(2\Phi)$, which is one divided by twice the golden ratio. Think about how weird this equation is: **sine comes from studying triangles and circles, while the golden ratio comes from studying proportions and rectangles.** These constants should have nothing to do with each other. It is like discovering that we can calculate the exact height of a specific mountain using the recipe for your grandmother's apple pie. What it means is that this angle (18°) has the golden ratio "baked into it" at the most fundamental level, which we now know why in *The Theorem of Existence*.

The angle itself contains hidden information about golden proportions, even though we discovered these concepts in entirely different ways. This equation is not just a mathematical curiosity—it is evidence that **geometry and proportion are secretly the same thing.** The angles in circles and the ratios in rectangles follow the same underlying rules, even though we learned about them separately. It is like discovering that natural law governs the way birds fly and the way flowers grow—different on the surface, but unified underneath.

$$\sqrt{2 + \sqrt{2}} = 2 * \cos\left(\frac{\pi}{8}\right) = 2 * \sin\left(\frac{3\pi}{8}\right)$$

This equation shows something remarkable: a "nested radical" (a square root inside another square root) equals the same value as two completely different trigonometric functions at specific angles. Consider how bizarre this one is: on the left side, you have $\sqrt{2 + \sqrt{2}}$, which arises from repeatedly taking square roots—**called nested square roots**. On the right side, you have $\cos(\pi/8)$ and $\sin(3\pi/8)$, which come from triangles and circles. **These terms should have nothing to do with each other**, yet they are equal. It is like discovering that if you follow a recipe for folding paper (nested square roots), you get the same result as following a different recipe involving compasses and protractors (trigonometric functions); **two entirely different processes, identical outcomes**.

This equation, along with the previous three equations (and 50+ below), proves something profound: **all these mathematical concepts that we learned about separately—square roots, trigonometry, the golden ratio, π , and e —are different faces of the same underlying mathematical reality**. The precision is what makes this theorem so stunning. These equations are not approximations or "close enough" relationships; they are exact matches. **It is like finding out that five completely different natural phenomena are all controlled by the same fundamental law of existence... which you can read in *The Theory of Existence*.**

$$\frac{\pi}{\Phi} = \pi(\Phi - 1)$$

Introducing Isolation Resistance

This equation looks like it should be easy to solve, but when you try to separate π and the golden ratio, something strange happens—**you can't isolate them from each other**. The equation "fights back" against being broken apart, which, to my knowledge, has never occurred in mathematics. What is happening here is that π and Φ fundamentally connect so much that **trying to separate them is like trying to separate the front and back of a coin**. The equation reveals a basic property of the golden ratio (that $\Phi - 1 = 1/\Phi$), but it does so in a way that keeps π locked in the relationship. Think of it like this: **imagine you have a key that only works when two people turn it together**. You cannot use just one person's part—the key requires both people to function. That example is what is happening with π and Φ . The isolation resistance is evidence that the constants co-derive.

They are more like two aspects of the same underlying, unified mathematical reality. When we try to pull them apart, we hit a mathematical bedrock—a place where the structure of math itself says, "No, these belong together." It's like discovering that what you thought were two separate puzzle pieces are part of one interlocking piece that we cannot divide. Think of **mathematical constants like members of a family**. In a healthy family, some members can live independently (they may be "isolated"), while others are so fundamentally connected that they cannot exist apart. We can isolate some equations, such as in the following example:

$$\cos\left(\frac{\pi}{5}\right) = \frac{\Phi}{2} \rightarrow \pi = 5 * \arccos\left(\frac{\Phi}{2}\right)$$

$$\sin\left(\frac{\pi}{10}\right) = \frac{1}{2\Phi} \rightarrow \Phi = \frac{1}{2 * \sin\left(\frac{\pi}{10}\right)}$$

It should not be possible to express pi in terms of the golden ratio and vice versa yet just look at it. These equations are like discovering that you can write a recipe for steak entirely in terms of ingredients for chicken soup; mind-blowing, but doable. You can isolate π and express it purely in terms of the golden ratio or isolate Φ and express it purely in terms of a specific angle. **These equations prove that these constants are not independent**—they are different expressions of the same underlying existence. Now, let's examine what happens in equations that involve this isolation resistance—**the definitive proof of constants co-derivation**.

$$\left(\frac{\pi}{e * \Phi}\right) * \left(\frac{e}{\pi}\right) = \frac{1}{\Phi}$$

These expressions on the left side of the equation are called the **Natural Resonance** and the **Fundamental Unit**, respectively (you can read more about these essential equations in *The Theorem of Existence* book). It is also a perfect example of isolation resistance. I will walk you through it, but just **look at happens when you simplify**:

$$\left(\frac{\pi}{e * \Phi}\right) * \left(\frac{e}{\pi}\right) = \frac{1}{\Phi}$$

$$\frac{\pi * e}{e * \Phi * \pi} = \frac{1}{\Phi}$$

$$\frac{1}{\Phi} = \frac{1}{\Phi}$$

Simplifying reduces to an apparent tautology. Now we'll try to isolate each constant, starting with the golden ratio.

$$\left(\frac{\pi}{e * \Phi}\right) * \left(\frac{e}{\pi}\right) = \frac{1}{\Phi}$$

Simplify the left side:

$$\frac{1}{\Phi} = \frac{1}{\Phi}$$

Multiply both sides by the golden ratio:

$$\left(\frac{1}{\Phi}\right) * \Phi = \left(\frac{1}{\Phi}\right) * \Phi$$

Answer:

$$1 = 1$$

Attempting to isolate the golden ratio results in the same outcome as simplifying the equation. Let's do the same thing, but this time let's try to isolate π and e .

$$\left(\frac{\pi}{e * \Phi}\right) * \left(\frac{e}{\pi}\right) = \frac{1}{\Phi}$$

Expand the left side:

$$\frac{\pi * e}{e * \Phi * \pi} = \frac{1}{\Phi}$$

π immediately cancels out:

$$\frac{1}{\Phi} = \frac{1}{\Phi}$$

Expand the left side:

$$\frac{\pi * e}{e * \Phi * \pi} = \frac{1}{\Phi}$$

e immediately cancels out:

$$\frac{1}{\Phi} = \frac{1}{\Phi}$$

Some of our equations resist being separated and end up looking like $1/\Phi = 1/\Phi$, which seems like we are just saying "these equals this" without meaning. At **first glance, this appears to be a tautology**—a useless statement, such as "cats are cats because they're cats." Tautologies are circular arguments that convey no new information. However, **what is happening here is profound and different**. Think of it like this: imagine you're digging deeper into the ground, and suddenly your shovel hits solid bedrock. You cannot dig any further—not because you have failed, but because you have reached the foundation that everything else builds on.

When they simplify to $1/\Phi = 1/\Phi$, **we have not hit a meaningless tautology**—we have hit a mathematical bedrock. We have reached a foundational truth that we cannot break down further because it *is* the foundation. The key difference: a tautology is empty, circular reasoning. However, these equations carry the entire journey to reach that bedrock—including all the trigonometry, all the connections to π and e , and all the complex relationships. **The path itself is the proof.** It is like reaching the center of the Earth. The statement "the center is the center" sounds empty, but the incredible journey through all the layers to get to it, and the journey is what gives it meaning. We have discovered where mathematical structure bottoms its limits. This bedrock tautology is what fundamental truth looks like when you find it and the way we get to it is what makes it a useful tautology.

This Dual Behavior is Crucial Evidence

The mixed behavior we observe in these equations provides some of the most substantial evidence possible that **mathematics was discovered rather than invented**. If humans had constructed mathematical systems from scratch, we would expect consistent, uniform behavior across all equations. Either every relationship between constants should allow for clean algebraic separation, or none should. **The arbitrary nature of human invention does not typically produce systems with such sophisticated internal constraints and varying behaviors.**

Instead, what we observe is something far more profound and telling. Some equations readily allow us to isolate constants and express them directly in terms of each other. These relationships demonstrate that we can indeed express these constants that are traditionally considered independent in terms of the other constants. **They suggest that the boundaries between geometric, algebraic, and transcendental mathematics are artificial divisions we have imposed**, rather than natural separations that exist in mathematical reality itself.

Then we encounter equations that resist all attempts at decomposition. **No matter how we manipulate them algebraically, they collapse back into fundamental identities, apparent tautologies.** These equations are not mathematical failures or dead ends—they are revelations of the structural bedrock of existence. When we hit these irreducible relationships, we have reached the source code. The constants at this level exist in such interdependence that attempting to isolate them destroys the mathematical structure that gives them meaning.

This dual behavior mirrors what we observe in the physical sciences when we study the fundamental structure of matter. Some chemical compounds can be separated and recombined in various ways, allowing us to isolate individual elements and study their properties independently. However, when we reach the level of fundamental particles, we discover natural limits to decomposition. **Trying to break apart a quark destroys the very quantum field structure that makes quarks possible in the first place.** The mathematics we observe here exhibits this same pattern of selective decomposability followed by irreducible structural limits.

The dual behavior of isolatable and non-isolatable equations supports co-derivation, but it is also required for existence and for mathematics to function coherently. If all equations resisted isolation, we would have a completely rigid system where no mathematical exploration or manipulation would be possible. Constants would be locked together so tightly that we could not study their properties or discover new relationships. Mathematics would become a static, impenetrable monolith rather than the dynamic, explorable structure it is.

Conversely, if all equations allowed clean isolation, it would suggest that constants are truly independent entities that can be arbitrarily separated and recombined, which would support the "invention" hypothesis and undermine the idea of fundamental interdependence. **The Theorem of Constants Co-Derivation provides both flexibility and constraint in precisely the proper proportions** that allows mathematics to function correctly.

The isolatable equations allow us to discover and express the deep relationships between constants, proving their underlying unity while still permitting mathematical investigation and manipulation. Meanwhile, **the non-isolatable equations preserve the structural integrity of the system** by establishing irreducible foundational relationships that we cannot break apart further. This system creates a mathematical existence that is explorable and stable, yet flexible enough to allow for discovery and rigid enough to maintain its essential structure.

This discovery also has profound implications for our understanding of the hierarchy of mathematical knowledge. At the foundation level, we have the **fundamental irrational constants that exhibit isolation resistance**—these form the unbreakable bedrock of mathematical structure. Above this foundation are the **constants that can be isolated** and expressed in terms of others, allowing for mathematical manipulation and exploration. We then have **regular mathematical relationships**, and finally, the most **basic arithmetic operations**. This hierarchy creates a structure where each level builds upon the stability provided by the levels below it.

A Node to Gödel's Incompleteness Theorems

Gödel's Incompleteness Theorems, published in 1931, are among **the most profound results in mathematics and philosophy**. They show that in any consistent formal system capable of expressing basic arithmetic, **there will always be true statements that we cannot prove within that system**. The first theorem establishes this fundamental limit: **no such system can be both complete** (able to prove every truth) **and consistent** (free of contradictions). The second theorem takes it further: **a system cannot use its own rules to prove its own consistency**. Together, **they shattered the dream of a perfectly self-contained foundation for mathematics** envisioned by Hilbert and others. Philosophically, Gödel's work implies that **we cannot capture existence itself by any single, closed framework of first principles**; there will always be truths that lie just beyond formal reach. In this sense, the theorems reveal that the structure of logic and reality alike contains inherent mysteries.

One of the immediate questions that arises after encountering Gödel's Incompleteness Theorems is: **if the mathematical constants co-derive** from one another and **prove a Grand Unified Theory of Everything**, how can they coexist with Gödel's proof that no formal system can be both complete and consistent? **My findings do not contradict Gödel's results**. The misunderstanding comes from extending Gödel's theorem beyond its proper domain—**applying it to existence**. **Existence is not a formal system**; it is not composed of static axioms, but of **co-defined first principles**. Gödel demonstrated that any self-referential formal system would contain truths that it cannot prove internally. Yet, existence is not formal. The incompleteness Gödel revealed is a **property of the artificial frameworks we construct to describe it**. I suspect that perfectly formal systems do not exist; they are useful abstractions, **useful but ultimately detached from reality**... something I wish we saw decades ago...

The Precision is the Key

If we take another look at this equation, there is a profound, hidden truth within those parentheses. Let me show you this hidden truth by solving it with rounded values for demonstrative purposes without simplifying it:

$$\begin{aligned} \left(\frac{\pi}{e * \Phi} \right) * \left(\frac{e}{\pi} \right) &= \frac{1}{\Phi} \\ \left(\frac{3.142}{2.718 * 1.618} \right) * \left(\frac{2.718}{3.142} \right) &= \frac{1}{1.618} \\ \left(\frac{3.142}{4.398} \right) * (0.865) &= \frac{1}{1.618} \end{aligned}$$

$$(0.715) * (0.865) = \frac{1}{1.618} \rightarrow 0.618 = \frac{1}{1.618}$$

This final step is the most critical because the parentheses prevent the constants from merging or canceling out before they fully resolve into $1/\Phi$. For the identity to hold, **each constant must have its exact value**—any deviation would cause the final multiplication to produce **only an approximation**, not $1/\Phi$. This result demonstrates that the constants' precise values are unchangeable: **the intermediate numbers (0.715 and 0.865) are not constants themselves but derived values**. This equation proves *The Theorem of Constants Co-Derivation*.

The precision required in these relationships reveals something profound about the nature of mathematical reality. These **constants must have precisely the values they do, with no room for even the tiniest variation**. If you changed π by even $.000000001$ or shifted the golden ratio by the most minor possible decimal adjustment, the entire web of 50+ interconnected equations would collapse. Every relationship we discovered depends on these constants having their precise, exact values. **We did not get to "pick" π to be roughly 3.14159**; it must be exactly $3.141592653589793\dots$ or the mathematical universe falls apart. **It is not something that is negotiable**.

This mutual constraint across all constants demonstrates that we discovered these values rather than inventing them. Additionally, the fact that these relationships work perfectly in our base-10 number system, with clean decimal expressions and elegant fractional relationships, **suggests that base-10 is not just a human convention but reflects something fundamental about how mathematical reality is structured**. If we had arbitrarily chosen base-10, it would be an incredible coincidence that the constants express their relationships so elegantly.

It's Not Just the Constants—It's Mathematical Operations

Although over fifty asymmetric, exact, and non-trivial equations involving π , e , and Φ , support *The Theorem of Constants Co-Derivation*, there exists one identity—quietly irrefutable—that reveals that such co-derivation **is not merely a pattern among constants but a consequence of mathematics itself**, baked into the operations.

$$\left(\frac{A}{B * C}\right) * \left(\frac{B}{A}\right) = \left(\frac{A}{B}\right) * \left(\frac{B}{A * C}\right) = \frac{1}{C}$$

This identity is valid for all values A, B, C, whether **irrational, transcendental, imaginary, or symbolic**, and **edge-of-boundary** values across all of mathematics. Remember, this identity contains isolation resistance, as we saw above, so **there is no cancellation trick**, and no simple reliance on the constants. The co-derivation occurs not just in the constants, but **it is embedded in the mathematical operations**. It means that the final identity depends not just on the exact values of the constants involved, **but for all values**. It also does not matter if $A = B$ but $\neq C$, or $A = C$ but $\neq B$, or rotating through any valid triple of numbers, the identity still holds.

This identity could **stand alone as mathematical proof of co-derivation**. It condenses the entire theorem into a single frame. Although the broader field of 50+ exact, non-trivial, and asymmetric equations reveals the span of co-derivation across constants, this identity proves that **the behavior is not a result of the constants' uniqueness, but of the mathematical structure they inhabit**. Thus, mathematical co-derivation is not just a property of the constants, but a property of existence. However, we can get into the nitty-gritty of this finding later 😊.

The Big Picture

The Theorem of Constants Co-Derivation ends one of humanity's oldest questions: is mathematics something we invented or discovered? **The answer is we discovered mathematics, not invented it**. The idea that we invented mathematics is now merely **the vanity of humanity**. By identifying over 50 mathematical equations that connect these constants **across various areas of mathematics**—from algebra to calculus—we can see that we can express some of these fundamental numbers in terms of others. In contrast, others resist separation, regardless of **isolation resistance**. We also see how the **mathematical operations support co-derivation**.

The Theorem of Constants Co-Derivation resolves the ancient philosophical debate about whether mathematics was discovered or invented—it provides concrete mathematical proof that we live in a universe where mathematical structure is a fundamental feature of reality itself. These constants did not emerge from human assumptions or arbitrary choices; they represent the points where mathematical structure begins, the irreducible foundation upon which all other mathematical knowledge and existence is built. The theorem suggests that mathematics is not a tool we created to describe the world; rather, it is a language we discovered that existence speaks. The precision, elegance, and structural coherence of these relationships point to something far more profound than invention—they reveal the unified mathematical architecture of existence.

One of the most profound discoveries that *The Theorem of Constants Co-Derivation* supports is that the Grand Unified Theory of Everything—the theory that connects and explains all phenomena in existence—must exist. *The Theorem of Constants Co-Derivation* is just one aspect of the Grand Unified Theory of Everything. It demonstrates that one of the inherent properties of existence is co-defined relationships, a concept known as relational reality, which suggests that for something to exist, it cannot exist as an isolated object, but rather only in relation to other things that exist. I expand upon this feature of existence later in *The Show of Existence*.

The profound implication is that these co-derived constants— π , e , Φ , and others—shown in the exact, non-trivial, and asymmetric equations that bind them, do not reside within a single corner of mathematics... they span all of it. These constants appear in various fields, including calculus, geometry, number theory, probability, chaos theory, information theory, and complex systems. They are not artifacts of human construction, nor coincidental. They are mathematical, structural invariants that underlie the entire mathematical landscape.

These same constants and the mathematical domains they span are also the backbone of physics, biology, economics, cognition, and engineering. We have used them with staggering success to measure and explain all known aspects of existence—from planetary orbits to quantum tunneling, from the spiral of galaxies to the firing of neurons, from the curve of a leaf to the growth rate of populations. Wherever phenomena emerge, these constants and their mathematical domains are there. The fact that these constants co-derive from one another within isolation resistant suggests that mathematics is the fundamental operating system for all phenomena. That is, mathematics does not describe the universe—it is the universe... which... isn't that idea just incredible?

For me, the most profound implication of discovering *The Theorem of Constants Co-Derivation* was the overwhelming slap of humility it delivered. To step back and realize that we exist within something far more grand, profound, and vast than our human minds can begin to fathom... it's staggering... and yet—here we are. So, let's buckle up and keep going with the rest of *The Show of Existence*, and give it our best shot. Are you ready for it?

50+ Exact, Non-Trivial, & Asymmetric Equations

$$\left(\frac{\pi}{e * \Phi}\right) * \left(\Phi^n * \frac{e}{\pi}\right) = \Phi^{n-1}$$

$$\left(\frac{\pi}{e * \sqrt{2}}\right) * \left(\sqrt{2^n} * \frac{e}{\pi}\right) = \sqrt{2^{n-1}}$$

$$\left(\frac{\pi}{e * \sqrt{3}}\right) * \left(\sqrt{3^n} * \frac{e}{\pi}\right) = \sqrt{3^{n-1}}$$

$$\left(\frac{\pi}{e * \Phi}\right) * \left(\frac{e}{\pi}\right) = \frac{1}{\Phi}$$

$$\left(\frac{\pi}{e * \Phi}\right) * \left(\frac{(\Phi^3 * e)}{\pi}\right) = \Phi^2$$

$$\left(\frac{\pi}{e * \Phi}\right) * \left(\frac{(\Phi^2 * e)}{\pi}\right) = \Phi$$

$$\left(\frac{\pi}{e * \Phi}\right) * \left(\frac{(\Phi^n * e)}{\pi}\right) = \Phi^{n-1} \rightarrow \frac{\Phi^n}{\Phi} = \Phi^{n-1}$$

$$\left(\frac{\pi}{e * \Phi}\right) * \left(\frac{(\Phi^n * e)}{\pi}\right) = \Phi^{n+e^{i\pi}} \rightarrow \frac{\Phi^n}{\Phi} = \Phi^{n+e^{i\pi}}$$

$$\left(\frac{\tau}{e * \Phi}\right) = \left(\frac{\pi}{e * \Phi}\right) * 2$$

$$\Phi^2 = \Phi - e^{i\pi}$$

$$\frac{1}{\Phi} = \Phi + e^{i\pi}$$

$$2 * \Phi - e^{i\pi} = \Phi^3$$

$$\Phi = \frac{\sqrt{5} - e^{i\pi}}{2}$$

$$\Phi^3 - (2 * \Phi) + e^{i\pi} = 0$$

$$\Phi^4 = (3 * \Phi) - \left(2 * (e^{i\pi})\right)$$

$$\left(\frac{\pi}{e * \Phi}\right) * \sqrt{\Phi} * \left(\frac{e}{\pi}\right) = \frac{1}{\sqrt{\Phi}}$$

$$\frac{\pi}{\Phi} = \pi * (\Phi + e^{i\pi})$$

$$\Phi^5 = (5 * \Phi) - \left(3 * (e^{i\pi})\right)$$

$$2 \sin\left(\frac{\pi}{10}\right) = \frac{1}{\Phi}$$

$$\cos\left(\frac{\pi}{5}\right) = \frac{\Phi}{2}$$

$$e^{(i\frac{\pi}{5})} = \frac{\Phi}{2(-e^{i\pi})} + i * \sqrt{(-e^{i\pi})^2 - \left(\frac{\Phi}{2}\right)^2}$$

$$\sin\left(\frac{\pi}{10}\right) = \frac{1}{(2\Phi)}$$

$$\cos\left(\frac{\pi}{5}\right) = \frac{\Phi}{2}$$

$$\sin\left(\frac{3\pi}{10}\right) = \frac{\Phi}{2}$$

$$\cos\left(\frac{2\pi}{5}\right) * (2 * \Phi) = 1$$

$$\sin\left(\frac{\pi}{10}\right) * (2 * \Phi) = 1$$

$$\sqrt{\frac{(5 + \sqrt{5})}{2}} = 2 * \cos\left(\frac{\pi}{10}\right)$$

$$\sqrt{\frac{(5 + \sqrt{5})}{2}} = 2 * \sin\left(\frac{\pi}{5}\right)$$

$$\frac{\sqrt{2}}{\Phi} = \sqrt{2} * (\Phi - 1)$$

$$\frac{\sqrt{3}}{\Phi} = \sqrt{3} * (\Phi - 1)$$

$$\frac{\sqrt{5}}{\Phi} = \sqrt{5} * (\Phi - 1)$$

$$\tan\left(\frac{\pi}{8}\right) = \sqrt{2} - 1$$

$$\tan\left(\frac{\pi}{6}\right) = 1/\sqrt{3}$$

$$\tan\left(\frac{\pi}{12}\right) = 2 - \sqrt{3}$$

$$\pi * \Phi = 2\pi * \cos\left(\frac{\pi}{5}\right)$$

$$\frac{\pi}{\Phi} = 2\pi * \sin\left(\frac{\pi}{10}\right)$$

$$\sqrt{2 + \sqrt{2}} = 2 * \cos\left(\frac{\pi}{8}\right) = 2 * \sin\left(\frac{3\pi}{8}\right)$$

$$\sqrt{2 + \sqrt{3}} = 2 * \cos\left(\frac{\pi}{12}\right) = 2 * \sin\left(\frac{7\pi}{12}\right)$$

$$\sqrt{2 - \sqrt{3}} = 2 * \sin\left(\frac{\pi}{12}\right) = \frac{1}{\left(2 * \cos\left(\frac{\pi}{12}\right)\right)}$$

$$T_1\left(\frac{\Phi}{2}\right) = \cos\left(\arccos\left(\frac{\Phi}{2}\right)\right) = \frac{\Phi}{2}$$

$$\frac{\pi}{\Phi} = \pi * (\Phi - 1)$$

$$\frac{e}{\Phi} = e * (\Phi - 1)$$

$$\frac{\pi e}{\Phi} = (\pi e) * (\Phi - 1)$$

$$2 * \sin\left(\frac{\pi}{10}\right) * \Phi = 1$$

$$2 * \cos\left(\frac{\pi}{5}\right) * \Phi = \Phi^2$$

$$\sin\left(\frac{\pi}{10}\right) + \sin\left(\frac{3\pi}{10}\right) = \sqrt{\frac{\Phi}{2}}$$

$$\sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

$$\sin\left(\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

$$\tan\left(\frac{\pi}{8}\right) = \sqrt{2} - 1$$

$$2 * \cos\left(\frac{\pi}{8}\right) = 2 \sin\left(\frac{3\pi}{8}\right) = \sqrt{2 + \sqrt{2}}$$

$$\cos\left(\frac{\pi}{10}\right) = \sqrt{\frac{\Phi^2}{4} + \frac{1}{4}}$$

$$\sin\left(\frac{\pi}{10}\right) * \sqrt{5 * \Phi} = \frac{1}{\Phi}$$

A TICKET TO THE FUTURE

The Equation of Existence, The Theory of Existence, The Story of Existence, The Theorem of Existence, and The Show of Existence are *Not Trapped In Cages*. Not one day... right now. But *The Architect*? I am still trapped in cages. If you want to support the further development of this world and keep it free, including the upcoming book *The Guide of Existence: A Light for Darkness*, go to <http://www.thetheoryofexistence.com/The-Store> and get a copy of the books or other merchandise for sale. I will update the store frequently, so check back occasionally to see what is available. You can also donate directly to support me and this work. I appreciate all your support.

Dear reader, I promise you that this work will remain free and be better than anything you have seen so far if I am independently funded. Remember, 100% of the proceeds from all sales go to me. There is no middleman. It is just me, *The Theory*, and the mountain of discoveries I have yet to share...

