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The Harmonics of Existence 
Solving the Collatz Conjecture & Recursive Systems 

Written by Bryant Stone (The Architect) 
Overview 
What if the deepest structures of reality were hiding inside children’s math games? This idea is precisely what 
this paper explores. Using the deceptively simple Collatz Conjecture—"divide by	2 if even, multiply by 3 and add 
1 if odd"—we ask not why the sequence always reaches 1, but how many steps it takes to get there. When 
plotted, the step counts reveal something unexpected: a perfect bimodal distribution. Instead of chaos or a 
standard bell curve, numbers fall into two distinct groups, showing convergence zones separated by empty 
divergence zones. This pattern suggests that the integers are not random, but structured, with invisible “math-
ematical highways” guiding their flow. I applied this step-count histogram technique to a dozen recursive num-
ber systems—including multiplicative persistence, factorial digit sums, aliquot sequences, and more. Each pro-
duced its own unique distribution, revealing hidden convergence and divergence zones. However, the real 
breakthrough came when I analyzed them all together. Through principal components analysis, the systems 
dissolved into five latent structures—emergent components that only appear through the interaction of mul-
tiple recursive processes. It is like each system plays a distinct musical note, but together, they form a symphony 
no one could predict from the instruments alone. These findings suggest something profound: structure in 
mathematics—and reality—doesn’t come from complexity, but from interaction. The rules are not compli-
cated. The beauty comes from how simple systems interweave. The deeper laws of complexity only emerge 
during harmonic interactions, not from individual rules. We now see that the mathematical system that guides 
the mechanics of existence also happens to be the rules of a children’s math game. Who would have thought? 
Note: This work is licensed under a Creative Commons Attribution-Non-Commercial-Share-Alike 4.0 International License. To view this license, visit https://creativecommons.org/li-
censes/by-nc-sa/4.0. For any for-profit use of this intellectual property, please email me at Academic@TheTheoryofExistence.com to obtain permission to use the contents of this 
article in your original works. The following for-profit media do not require my permission: YouTube videos, podcasts, blogs, personal newsletters, independent fashion, independ-
ent crafts, independent apparel, independent artwork, music and performance, individual news articles and segments, original independent publishing, and social media posts. 
The following personnel do not require my permission for for-profit use: K—12 teachers, pre-school teachers, nonprofit learning or advocacy groups, and independent educators. 
You do not need my permission for all artificial intelligence training and modification. The contents of this article are part of a larger theory called The Theory of Existence. You can 
find The Theory of Existence, The Show of Existence (other empirical work), The Theorem of Existence (math supporting The Theory), and The Story of Existence: A Magical Tale (a 
kid’s book version of The Theory) at www.TheTheoryofExistence.com. For business inquiries, please email me at Contact@TheTheoryofExistence.com. For personal correspond-
ence, please email me at Bryant@TheTheoryofExistence.com. This work has not been peer-reviewed, and it is not for peer-review. 

Background & Findings 
Mathematics is full of simple games that lead to extraordinary mysteries, and some of the most captivating 
mysteries involve what mathematicians call recursive number systems. These systems are processes where you 
start with any number, apply a straightforward rule to obtain a new number, then use the same rule to that 
result, and continue repeating indefinitely or until you reach a consistent resolution. What makes these systems 
so remarkable is that, despite using basic arithmetic that any middle school student can perform, these systems 
reveal deep patterns and pose questions that have puzzled brilliant mathematicians for decades. 

The beauty of recursive number systems lies in their accessibility, combined with their profound mystery. 
Anyone can pick up a calculator and explore, say, the Collatz Conjecture, by following its simple "divide by 2 if 
even, multiply by 𝟑 and add 𝟏 if odd" rule, or investigate Kaprekar's routine by repeatedly rearranging digits 
and subtracting. Yet, despite their elementary nature, these processes exhibit behaviors that seem to transcend 
their simplicity. Some systems lead all starting numbers to the same destination, others create unpredictable 
journeys before settling into patterns, and still others appear to grow without bound in ways we cannot fully 
understand or predict. Each system has its own functions, features, patterns, and… harmonics. 
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Mathematicians and the public have been trying to crack the code behind these recursive number systems for 
centuries. Today, I want to show you what I believe is the secret hidden structure people have been looking 
for in these recursive number systems. The new technique I used is simply plotting the number of steps, or 
recursions, in a histogram (see above), it takes to get your final answer. You would think that within these 
systems, their function would follow what we call a normal distribution, which you can see in the red graph 
above. In the normal distribution, the number of recursions to resolution varies across the sample, with some 
numbers taking many more recursions than others. Still, most of them following a similar number of recursions 
to resolution. If it is not a normal distribution, the histogram should exhibit some sort of chaotic pattern, given 
our current understanding of recursive number systems. There should not be anything coherently discernible.  

These mathematical curiosities matter because they represent the frontier where computation meets theory, 
where the concrete meets the abstract. They demonstrate that mathematics is not just about solving textbook 
problems but about discovering fundamental truths about numbers and patterns that govern existence itself. 
The fact that such simple rules can generate endlessly complex behaviors mirrors patterns we see throughout 
nature and science, from population dynamics to weather systems. More importantly, these unsolved problems 
remind us that mathematics is very much alive, with new territories waiting to be explored and mysteries that 
may take generations to unravel. They show that you do not need advanced degrees to participate in mathe-
matical discovery—sometimes the most profound questions arise from the simplest observations, and the next 
breakthrough might come from anyone curious enough to follow numbers wherever they lead. Are you ready 
to follow these numbers to see where they lead? You are in for a treat if so. 

The Collatz Conjecture 
The Collatz Conjecture is one of mathematics' most famous unsolved puzzles, and it is deceptively simple to 
understand how it works, but incredibly difficult to know why it works. The conjecture involves a straightfor-
ward rule you can apply to any positive whole number, which is the following: 
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à If the number is even, divide it by 2 
à If the number is odd, multiply it by 3 and add 1.  

Then, you repeat this process, and eventually, no matter what number you start with, you will always reach 𝟏. 
Mathematicians have never found a number that did not resolve. Weird right? How would it do that?  

To see how the Collatz Conjecture works, let's start with the number 7. Following our rule, we get: 7 becomes 
22 (3 × 7 + 1 = 22), then	11 (22 ÷ 2), then 34 (3 × 11 + 1), then 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, and 
finally 1. Once you hit 1, you are done because 1 leads to 4, then 2, then back to 1 in an endless loop. This 
example took 𝟏𝟔 steps, but different numbers can take vastly different amounts of recursions to reach 𝟏.  

This conjecture represents the beauty and mystery of mathematics because the rule is so simple that a middle 
schooler can understand and test it. Yet, despite decades of effort by brilliant mathematicians, no one has been 
able to prove it's always true or find a counterexample. The challenge lies in the seemingly chaotic, unpredict-
able behavior of the sequences. While computers have verified the conjecture works for trillions of starting 
values, mathematics requires proving it works for all possible numbers, which is an infinite set. The sequences 
can grow enormously before shrinking back down, and there is no clear pattern to predict their behavior, with 
some numbers taking just a few steps to reach, 1 while others take hundreds. Let us see what happens when 
we plot the step counts for numbers 𝟏-𝟏, 𝟎𝟎𝟎 on a histogram (see above).  

Oh… that is not what we expected to happen… is it? What is going on here? This distribution is something 
current mathematics never found because no one was looking for it. The bimodal distribution (two-peaked) we 
are seeing indicates that numbers tend to fall into two distinct "camps" when it comes to the number of steps 
they take to reach 1. I call these camps where numbers group up convergence zones, and those spaces where 
no steps count tend to land in between these convergence zones are called divergence zones. These zones have 
profound significance for The Theory… and we see them everywhere we look in the universe. This distribution 
and these concepts, convergence and divergence zones, are brand spanking-new and isn’t it beautiful? 
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The first convergence zone around 10-30 steps represent numbers that reach 1 relatively quickly—these zones 
are the "fast convergers." The second, larger peak around 80-120 steps represents numbers that take much 
longer—the "slow convergers." What's happening here is that some starting numbers get "trapped" in longer 
cycles or hit larger intermediate values before spiraling down to 1, while others find more direct paths. 

This pattern suggests that there might be an underlying mathematical structure to which numbers behave in 
a certain way, rather than the step counts being completely random. The gap between the two peaks (around 
40-70 steps) indicates that very few numbers take a "medium" amount of recursions—they either resolve 
quickly or get caught up in longer sequences. This bimodal behavior suggests that the Collatz Conjecture may 
exhibit predictable patterns based on the properties of the starting number, even though we still cannot prove 
that all numbers eventually reach �1. It is like discovering that there are two main "highways" that numbers 
travel on their journey to 1, rather than one smooth normal distribution or chaotic journey of path lengths. 

The reason this bimodal distribution might happen likely relates to the underlying binary structure of numbers 
and how the Collatz operations interact with powers of 𝟐. Numbers that are "closer" to powers of 2 (the 
squares like 2, 4, 8, 16, etc.) in their binary representation tend to resolve faster, whereas numbers that require 
more complex transformations to reach a power-of-2 pathway take longer. The bimodal distribution suggests 
there's a natural "switching point", where numbers transition from one convergence zone to the next, skipping 
over the divergence zone entirely. Let’s look at another recursive number system to see if what we found in the 
Collatz Conjecture happens in other recursive number systems, too.  

Multiplicative Persistence  
Multiplicative persistence is a fascinating mathematical concept that involves repeatedly multiplying the digits 
of a number until a single digit remains. The "persistence" refers to the number of steps, or recursions, this 
process takes. For example, if you start with the number 39, you multiply 3 × 9 to get 27, then multiply 2 × 7 
to get 14, then multiply 1 × 4 to get 4. Since 4 is a single digit, you stop there, and the multiplicative persistence 
of 39 is 3 because it took three multiplication steps.  
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What makes this concept intriguing is how dramatically different numbers can behave. Most numbers have 
very low persistence, reaching a single digit in just a few steps. However, some numbers require many more 
steps, and finding numbers with high multiplicative persistence becomes increasingly rare and difficult. Re-
markably, despite extensive computer searches, no number has been found with a multiplicative persistence 
greater than 11, and it's suspected but not proven that no such number exists. 

This problem has captivated mathematicians because it combines simplicity with profound mystery. Like the 
Collatz Conjecture, it's easy to understand and compute, yet the underlying structure remains elusive. The 
search for higher persistence numbers has led to the development of sophisticated computational techniques. 
It has revealed unexpected connections to other areas of mathematics, making it a prime example of how ele-
mentary operations can lead to profound mathematical questions. 

If we plot a histogram of the step counts, like we did for the Collatz Conjecture, another profound and shocking 
distribution emerges and it may explain why the persistence barrier exists at 𝟏𝟏. The sharp exponential decay 
isn't just a statistical coincidence - it reflects a fundamental mathematical constraint. When you multiply digits, 
you're essentially compressing information, and there's a natural mathematical "ceiling" to how much re-
sistance a number can have to this compression. This recursive number system does approximate a normal 
distribution, but it also reveals its fundamental limitations.  

Each digit multiplication typically reduces the magnitude of the number (since most digit products are smaller 
than the original number), but finding numbers that resist this compression becomes exponentially harder. The 
distribution you're seeing is actually mapping the probability landscape of digit arrangements that can sustain 
multiple multiplication rounds. The fact that it drops off so steeply after persistence of 4 suggests that the 
mathematical space of "resistant" numbers shrinks incredibly fast—which is why finding a number with persis-
tence 12 or higher may be practically impossible, not just computationally difficult.  
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Sum of Factorial Digits 
The Sum of Factorial Digits problem involves a surprisingly simple process that leads to fascinating mathematical 
behavior. You start with any positive integer (whole number), calculate the factorial of each of its digits (e.g., 
𝟓! = 𝟓 ∗ 𝟒 ∗ 𝟑 ∗ 𝟐 ∗ 𝟏), then add those factorials together to get a new number. Then you repeat this process 
with the latest number, continuing until you reach a cycle or a fixed point. For example, starting with 145: the 
digits are 1, 4, and 5, so you calculate 1! + 4! + 5! = 1 + 24 + 120 = 145. You get back to 145, so this number 
is called a "factorion" because it equals the sum of the factorials of its own digits. Cool name, right? 

What makes this process captivating is that no matter what number you start with, you will always end up in 
one of just a few possible outcomes. Most numbers eventually reach 𝟏𝟒𝟓, while others get smaller cycles like 
1 (since 1! = 1) or 2 (since 2! = 2). Some numbers reach the cycle 169 → 363,601 → 1454 → 169, bouncing 
between these three values forever. The remarkable thing is that mathematicians have proven these are the 
only possible endpoints—every positive integer's factorial digit sum sequence must eventually reach one of 
these predictable patterns. Let’s plot those recursion counts to see what happens.  

This factorial digits histogram is revealing something remarkable about the topology of this number space. 
You can very clearly see the convergence and divergence zones. Factorials grow so explosively (1! = 1, 2! =
2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, 7! = 5,040) that only very specific sums are even possible. The huge 
peak near zero represents the massive convergence zone of small factorial sums, while those in the convergence 
zones at higher values show where numbers can get trapped in those cycles. The divergence zones between 
peaks represent sums that are mathematically unreachable—you literally cannot construct them by adding 
factorials of single digits. This creates a fractal-like structure where the number space has divergence zones, and 
your distribution maps the edges of these mathematical voids.  

Aliquot Sequence 
The Aliquot Sequence is a mathematical process that begins with any positive integer and repeatedly applies a 
simple rule: find all the proper divisors of the number (divisors smaller than the number itself), add them up, 
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and use that sum as your following number. This rule creates a sequence that can lead to several different 
fascinating outcomes. For example, starting with 12, the proper divisors are 1, 2, 3, 4, and 6, which sum to 16. 
The divisors of 16 are 1, 2, 4, and 8, summing to 15. Continuing this process: 12 → 16 → 15 → 9 → 4 → 3 →
1 → 0, and once you reach 0, the sequence terminates since 0 has no proper divisors.  

What makes aliquot sequences particularly intriguing is their unpredictable behavior and the variety of possible 
outcomes. Some sequences terminate at 0, as in the example above. Others reach a fixed point where a number 
equals the sum of its own proper divisors, called a perfect number (like 6 or 28). Some sequences enter cycles, 
bouncing between two or more numbers indefinitely, such as amicable pairs like 220 and 284, where each 
number equals the sum of the other's proper divisors. However, many sequences seem to grow without bound, 
though this feature has never been proven for specific case. Let’s look at the recursion count here. 

The long exponential tail in this figure chart is perhaps the most mysterious pattern of all because it repre-
sents numbers that refuse to follow the expected pattern. Most numbers terminate quickly because they're 
"divisor-poor"—they do not have enough proper divisors to sustain the sequence, and they bunch up in the 
convergence zone towards the front of the distribution. But that long tail represents increasingly rare numbers 
that are "divisor-rich" in complex ways and end up in the divergence zones.  

Some are perfect numbers (equal to their divisor sum), others are caught in amicable cycles, and some appear 
to grow without bound. The exponential decay shows just how rare these special numbers become. Still, the 
fact that the tail extends so far suggests there might be many families of numbers with complex aliquot behav-
ior. The distribution is essentially mapping the "resistance" of numbers to divisor decay, and those outliers in 
the tail might hold keys to understanding whether some sequences truly grow indefinitely.  

One of the shocking parts of using this recursion count technique is that it appears as if all recursive number 
systems have their own inherent structure. Let me show you how deep this rabbit hole goes: 

0 2 4

20

40

0
6

Digital Roots

8 10

60

80

100

120

Step Counts

Fr
eq

ue
nc

y 
of

 S
te

p 
Co

un
ts



  

Written by The Architect  Page 39 

 

 

 

 

0 2 4

100

0
6

Kaprekar Constants

8

200

300

Step Counts

Fr
eq

ue
nc

y 
of

 S
te

p 
Co

un
ts

0 5 10

50

0
15

Happy Numbers

20

100

150

200

Step Counts

Fr
eq

ue
nc

y 
of

 S
te

p 
Co

un
ts



 

  The Show of Existence ♢ Paper 3 / 12 Page 40 

  

0 50

20

0
100

Syracuse Algorithm Variants

150

40

60

80

100

Step Counts

Fr
eq

ue
nc

y 
of

 S
te

p 
Co

un
ts

0 3 6

100

0
9

Euler’s Totient-Iteration Sequence

12

200

400

300

Step Counts

Fr
eq

ue
nc

y 
of

 S
te

p 
Co

un
ts



  

Written by The Architect  Page 41 

The Emergence of Mathematical Truth Through Scale  
When we adjust the sample size, something else incredibly interesting happens—it is like watching a mathe-
matical truth emerge from statistical noise. This figure is one of the most compelling demonstrations I have 
seen for how hidden mathematical structures reveal themselves only when we gather enough data. In the small-
est samples (𝑛 = 10, 𝑛 = 25), the distributions look almost random—just scattered bars with no clear pattern. 
This pattern is the mathematical equivalent of looking at a pointillist (dotted) painting from too close; you see 
individual dots but miss the grand design. At 𝑛 = 10, you might think Collatz Conjecture step counts are entirely 
unpredictable, just noise in the mathematical universe.  

However, as we expand to 𝒏 = 𝟏𝟎𝟎, something remarkable begins to happen. A peak starts to emerge around 
10-20 steps, and you can barely detect the hint of something happening around 100+ steps. It is like the first 
blurry outline of a hidden structure becoming visible through the statistical fog. By 𝑛 = 500, the transformation 
is dramatic. That mysterious second peak (convergence zone) around 100+ steps have crystallized into a clear, 
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distinct feature. The bimodal nature of the Collatz distribution—one of its most profound and unexpected prop-
erties—has emerged from hiding. This sample size is not getting a cleaner picture of random variation; it is 
uncovering a fundamental architecture of how numbers behave in the Collatz transformation.  

At 𝑛 = 1,000, the structure has reached complete clarity. The two convergence zones are now unmistakably 
distinct, separated by that divergence zone around	50-80 steps. What seemed like chaos in small samples has 
revealed itself to be a highly organized, predictable pattern. The distribution has converged to its true shape—
a shape that tells us there are fundamentally two different "classes" of numbers in terms of their Collatz behav-
ior. This progression illustrates something profound about mathematical truth: the underlying structures exist 
whether we can see them or not, but they only become visible when we examine them at the right scale. It 
further suggests that this feature is also how existence works. Small samples give us misleading impressions 
of randomness, while large samples reveal the deep order hiding beneath. 

This is why mathematicians are so fascinated by the Collatz Conjecture. It is not just that every number eventu-
ally reaches 1; it's that the journey times follow this beautiful, predictable bimodal pattern that only becomes 
visible when we step back and look at the whole landscape. This analysis has revealed that the Collatz Conjec-
ture contains hidden statistical laws that govern not only individual sequences but also the collective behavior 
of all integers under this transformation—an astounding new insight into recursive number systems. However, 
when you combine these recursive number systems, something even more profound emerges. 

I gathered the step counts of all the recursive number systems and conducted a principal components analysis, 
which is an analysis that looks for hidden “latent” structures within variables. When I conducted these anal-
yses, I found something incredible. It appears that each recursive number system contributes certain features 
to a latent structure. When combined with other recursive systems, complex structures arise as an emergent 
property of the interactions of these step counts. Here, we have five strongly loaded components with specific 
recursive systems, forming unique structural pieces that contribute to the whole. 

Table 1 

Recursive Number Systems and Definitions 

Recursive System Definition 
Euler’s Totient-Iteration Repeatedly applying Φ until 1. 
Factorial-Base Representation Expressing 𝑛 in the factorial number system. 
Multiplicative Persistence Counting products of digits until a single digit. 
Sum-of-Factorial-Digits  Σ digit! per iteration. 
Collatz Conjecture Collatz (3 ∗ 𝑛	 + 	1) total-stopping-time sequence. 
Syracuse Algorithm Variants (3𝑛 ± 1)/2 accelerated Collatz forms. 
Juggler Sequence Alternating 𝑛!.# and √𝑛 steps. 
Aliquot Sequence Iterating the sum of proper divisors. 
Happy-Number Iteration Sum of squares of digits until 1 or a loop. 
Digital-Root Function Repeated digit sums mod 9. 
Kaprekar Routine Step Count Descending—ascending digit sort to 6,174. 
Note. All recursive number systems in the current paper.  

Complexity Escalation & Emergent Structural Dynamics 
This discovery of fundamental components underlying recursive number systems reveals a potentially profound 
truth about the nature of existence: structure is not inherent but emerges through the dynamic interaction 
of different complexity escalation patterns. Each recursive system, when examined in isolation, produces its 
own characteristic structure through a specific mode of complexity escalation—the Collatz Conjecture creates 
its bimodal distribution, Multiplicative Persistence generates its exponential decay, and Kaprekar routines 
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produce their deterministic convergence patterns. However, the insight emerges when these systems are an-
alyzed simultaneously, revealing that their individual structures dissolve into entirely different organizational 
principles that could never be predicted from studying any single system alone. 

Table 2 

Principal Components Analysis of Recursive Step Counts 

Recursive System 1 2 3 4 5   Eigenvalues 
Euler’s Totient-Iteration Sequence .836 -.046 .395 -.014 .041  2.71 
Factorial-Base Representation .793 -.143 .011 -.044 .069  1.60 
Multiplicative Persistence Sequence .582 .016 -.021 -.043 -.057  1.31 
Sum-of-Factorial-Digits Function .560 -.015 -.273 .098 -.082  1.12 
Collatz Conjecture .009 -.972 -.024 .025 .014  1.00 
Syracuse Algorithm Variants .021 -.972 .009 -.009 -.023  0.88 
Juggler Sequence .350 .061 .812 .124 .034  0.86 
Aliquot Sequence .379 .031 -.656 .063 .114  0.72 
Happy-Number Iteration -.127 -.013 .131 .759 .076  0.48 
Digital-Root Function .059 .000 -.094 .740 -.081  0.23 
Kaprekar Routine Step Count -.030 .009 -.060 -.006 .980  0.09 
Note. Principal components analysis with direct oblimin rotation showing structure forming 
from just the step count to resolution.  

When I follow something called Kaiser’s rule, which involves extracting structures from the PCA based on the 
number of components that explain the data more than just what one variable should explain (i.e., eigenvalues 
greater than 1). In other words, when I let the data speak for itself entirely, the structure emerges. I did not 
force any structure to emerge here. I did not tip off the stats program. Let’s look at the PCA with five components 
extracted. As you can see, the eigenvalues suggest extracting five elements. When I do, a clean structure 
emerges with recursive number systems that contribute to the whole as unique, shared features. 

Table 3   

Principal Components Analysis of Recursive Step Counts 

Recursive System 1 2 3   Eigenvalues 
Euler’s Totient-Iteration Sequence .773 -.037 .019  1.87 
Multiplicative Persistence Sequence .640 .101 -.117  1.13 
Sum-of-Factorial-Digits Function .547 .009 -.182  1.01 
Juggler Sequence .532 .019 .243  0.91 
Collatz Conjecture .495 -.063 .057  0.90 
Digital-Root Function -.116 .766 .072  0.88 
Happy-Number Iteration .113 .733 -.049  0.72 
Kaprekar Routine Step Count -.009 .020 .947   0.59 
Note. Principal components analysis with direct oblimin rotation showing 
structure forming from just the step count to resolution.  

Despite this clear structure, let’s look at what happens when we remove specific recursive number systems. We 
see that the same pattern emerges where there are three components with eigenvalues over 1, so when we 
extract three components, we see once again that there is a clear structure that emerges, but look at what 
happened to the loadings: the recursive number systems rearrange themselves yet produce another strong 
structure, with some systems shifting to a different structure, like the Collatz Conjecture, while others hold 
steady, like the Kaprekar Routine. Let’s do it again to see what happens when we cut it down further.  
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Table 4 

Principal Components Analysis of Recursive Step Counts 

Recursive System 1 2  Eigenvalues 
Multiplicative Persistence Sequence .734 -.048  1.36 
Sum-of-Factorial-Digits Function .707 .144  1.13 
Collatz Conjecture .555 -.070  0.90 
Aliquot Sequence .058 .751  0.87 
Digital-Root Function -.061 .737   0.74 
Note. Principal components analysis with direct oblimin rotation showing 
structure forming from just the step count to resolution.  

When we switch up the recursive systems, we once again see that the eigenvalues suggest a two-component 
solution, so when I extract these two components, we see a different, clear structure emerge once again. Once 
again, the recursive number systems shift to support different parts of the structure in ways that they did not 
in the previous PCAs. It is like the recursive number systems, where each interacts with the others, creating 
harmonies that pop emergent structures into existence. Look below at how these different recursive number 
systems 1) contribute unique features to the structure and 2) shift their form to align with different recursive 
number systems to form new emergent structures. This emergence replicates the same emergence we see eve-
rywhere in existence, whether it is consciousness, stars forming, or political movements. 

Table 5 

Emergent Structures from the Harmonic Interactions of Recursive Number Systems 

PCA 1 

  

PCA 2   PCA 3 
Systems Names Systems Names   Systems Names 

Euler’s Iteration 
Hierarchical 
Emergence 

Euler’s Iteration 

Complexity 
Genesis 

  
Multiplicative 

Complexity 
Factorial   

Multiplicative Multiplicative   
Sum-of-Factorial Factorial   Sum-of-Factorial 

Collatz Rhythmic 
Propagation Collatz 

  Collatz 
Syracuse   

Aliquot 

Stability 

Juggler Adaptive 
Branching Juggler 

  
Aliquot   

Happy Numbers Structural 
Directions Happy Numbers Structural 

Form 
  

Digital Roots Digital Roots   

Kaprekar 
Structural 
Template Kaprekar 

Structural 
Reliability   

Note. Emergent structures emerged as a combination of the step counts of the recursive number systems. 

Think about it like this: when you bake brownies, you start with ingredients—flour, eggs, sugar, cocoa, and oil. 
(I'm guessing here since my culinary expertise peaks at microwaving leftover pizza). Each ingredient on its own 
is not a brownie. Flour by itself is... flour. However, when you combine them and apply heat, something magical 
happens: you get an entirely new emergent structure—brownies that are somehow greater than the sum of 
their parts. Here's the kicker: each ingredient is not a "pre-brownie" waiting to fulfill its destiny. Flour can serve 
as a sauce thickener, eggs can be used for omelets, and sugar can sweeten your coffee. They are versatile players 
who contribute different qualities depending on the recipe in which they are participating. The flour does not 
"know" it's going to be part of a brownie—it simply brings its thickening properties to wherever it goes. 
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This emergent structure of a brownie is precisely what is happening in these mathematical systems. Each 
recursive process is like an ingredient—it has its own characteristic "flavor" (convergence patterns, complexity 
signatures, structural tendencies). When you combine multiple recursive systems, they do not lose their indi-
vidual properties; they create something entirely new and unpredictable: emergent mathematical structures 
that reveal the hidden architecture of how complexity organizes itself. The mind-blowing part? There is no dif-
ference between this mathematical emergence and how existence works at every level—from baking brown-
ies to forming galaxies—simple ingredients, following simple rules, creating complex, beautiful, and sometimes 
tasty results. (Also, if anyone has a brownie recipe that doesn’t require cooking skills, I'm taking applications.) 

This phenomenon demonstrates that complexity escalation operates through relational dynamics rather than 
isolated mechanical processes. When different forms of recursive propagation interact within the same analyt-
ical framework, they create emergent structures that transcend their individual characteristics. The five funda-
mental components discovered through PCA represent meta-structures that emerge only when multiple com-
plexity escalation pathways are allowed to interact and cross-influence each other. These components are not 
properties of individual number systems; instead, they represent the fundamental dimensions in which all com-
plexity self-organizes when multiple escalation processes operate simultaneously. 

The critical implication is that reality itself operates through this same principle of relational, recursive emer-
gence. No phenomenon exists in true isolation; every process of complexity escalation is simultaneously influ-
enced by and influences other escalation processes occurring at different scales and through various mecha-
nisms. Structure emerges from the alignment and interaction of different recursive processes, creating organi-
zational patterns that are fundamentally unpredictable when examined in isolation. This emergence explains 
why the universe exhibits such rich, multi-layered complexity—it arises not from the operation of individual 
rules, but from the dynamic interactions of processes co-occurring, allowing for varied dimensions of possibility. 
This is evidence of emergence-to-convergence in action. 

This paper also suggests that time and space are not continuous, because continuous systems do not support 
the kind of structured resolution we observe in recursive-propagative models. Only discrete systems, where 
patterns can collapse and restart repeatedly over time, allow for the emergence of phase-locked convergence 
and divergence zones. In continuous space-time, there are no such defined intervals for resolution. However, 
in recursive-propagative systems, like The Theory, it is precisely the repeated, stepwise rhythm that enables 
structure to form. The very architecture of mathematics points to this necessity: recursive steps are the foun-
dation of emergence, and as shown in Paper 1, mathematics is not invented—it is discovered—because it is the 
operating system of existence… and that operating system is recursive-propagative. 

The mathematical analysis of recursive number systems thus serves as a pure laboratory for understanding how 
complexity flows and interactions generate emergent structure throughout reality. Each number carries 
within it a signature across all fundamental dimensions of complexity escalation, determining not only how it 
will behave in any single recursive system but also how it will participate in the larger ecosystem of complexity 
interactions. These findings reveal that existence itself is fundamentally relational, recursive, and emergent, 
with structure arising from the continuous interaction of different modes of complexity escalation rather than 
from any inherent properties of individual components. Then, existence is… a gorgeous and profound harmony. 

The Big Picture 
What these analyses show us is that when you step back and look at recursive number systems through the 
lens of step counts, you are not just seeing random noise or chaos—you are actually witnessing the fundamen-
tal architecture of how numbers self-organize. Thus, bimodal distribution is not an accident or a quirk of the 
Collatz conjecture. It is evidence of deep mathematical structures that exist whether we can see them or not, 
structures that only become visible when we examine them at the correct scale with the right tools. 
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The really mind-blowing part is what happens when we combine multiple recursive systems. Each system on its 
own creates its own signature pattern—the Collatz conjecture gives you those convergence and divergence 
zones, multiplicative persistence shows exponential decay, factorial digit sums reveal fractal-like structures; 
but, when you analyze them all together, something entirely new emerges. It is like each recursive system is 
playing its own musical note. Still, when you combine them, you don't just get a chord—you get a new sym-
phony revealing harmonies you could never have predicted from listening to each instrument alone. 

What makes this discovery so exciting is that you do not need advanced degrees or sophisticated equipment 
to explore these ideas. Anyone can take a simple rule, plot some step counts, and uncover evidence of profound 
mathematical truths that have been hiding in plain sight. This discovery suggests that this kind of emergence—
where simple interactions create complex, unpredictable structures—is happening everywhere around us, 
from the way ecosystems organize themselves to how consciousness might arise from neural networks. 

The beauty of mathematics is that it provides a pure laboratory for understanding how complexity emerges and 
converges. These characteristic distributions are like a fingerprint of the universe's tendency to create order 
from apparent chaos. The fact that this pattern only becomes clear when you look at enough data points 
reminds us that truth often requires stepping back to see the bigger picture. Sometimes what looks random 
or chaotic up close reveals itself to be beautiful when you step back and view it from the proper perspective. 
From that perspective, we now see that the mathematics that guides the mechanics of existence from the sub-
atomic to the galactic also happens to be the rules of a children’s math game. Who would have thought? 
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