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The Harmonics of Existence 
Solving the Collatz Conjecture & Recursive Systems 

Written by Bryant Stone (The Architect) 
Overview 
What if the deepest structures of reality were hiding inside children’s math games? This idea is exactly what 
this paper explores. Using the deceptively simple Collatz Conjecture—"divide by	2 if even, multiply by 3 and add 
1 if odd"—we ask not why the sequence always reaches 1, but how many steps it takes to get there. When 
plotted, the step counts reveal something no one expected: a perfect bimodal distribution. Instead of chaos or 
a standard bell curve, numbers fall into two distinct groups, showing convergence zones separated by empty 
divergence zones. This pattern suggests that the integers are not random, but structured, with invisible “math-
ematical highways” guiding their flow. I applied this step-count histogram technique to a dozen recursive num-
ber systems—including multiplicative persistence, factorial digit sums, aliquot sequences, and more. Each pro-
duced its own unique distribution, revealing hidden convergence and divergence zones. However, the real 
breakthrough came when I analyzed them all together. Through principal components analysis, the systems 
dissolved into five latent structures—emergent components that only appear through the interaction of mul-
tiple recursive processes. It is like each system plays a distinct musical note, but together, they form a symphony 
no one could predict from the instruments alone. These findings suggest something profound: structure in 
mathematics—and reality—doesn’t come from complexity, but from interaction. The rules are not compli-
cated. The beauty comes from how simple systems interweave. The deeper laws of complexity don’t live inside 
individual equations—they emerge when systems converge. 
Note: This work is licensed under a Creative Commons Attribution-Non-Commercial-Share-Alike 4.0 International License. To view this license, visit https://creativecommons.org/li-
censes/by-nc-sa/4.0. For any for-profit use of this intellectual property, please email me at Academic@TheTheoryofExistence.com to obtain permission to use the contents of this 
article in your original works. The following for-profit media do not require my permission: YouTube videos, podcasts, blogs, personal newsletters, independent fashion, independ-
ent crafts, independent apparel, independent artwork, music and performance, individual news articles and segments, original independent publishing, and social media posts. 
The following personnel do not require my permission for for-profit use: K–12 teachers, pre-school teachers, nonprofit learning or advocacy groups, and independent educators. 
You do not need my permission for all artificial intelligence training and modification. The contents of this article are part of a larger theory called The Theory of Existence. You can 
find The Theory of Existence, The Show of Existence (other empirical work), The Theorem of Existence (math supporting The Theory), and The Story of Existence: A Magical Tale (a 
kid’s book version of The Theory) at www.TheTheoryofExistence.com. For business inquiries, please email me at Contact@TheTheoryofExistence.com. For personal correspond-
ence, please email me at Bryant@TheTheoryofExistence.com. This work has not been peer-reviewed, and it is not for peer-review. 

Background & Findings 
Mathematics is full of simple games that lead to extraordinary mysteries, and some of the most captivating 
mysteries involve what mathematicians call recursive number systems. These systems are processes where you 
start with any number, apply a straightforward rule to get a new number, then apply the same rule to that 
result, and keep repeating indefinitely or until you get to a consistent resolution. What makes these systems so 
remarkable is that, despite using basic arithmetic that any middle school student can perform, these systems 
reveal deep patterns and pose questions that have puzzled brilliant mathematicians for decades. 

The beauty of recursive number systems is their accessibility combined with their profound mystery. Anyone 
can pick up a calculator and explore say, the Collatz Conjecture, by following its simple "divide by 2 if even, 
multiply by 𝟑 and add 𝟏 if odd" rule, or investigate Kaprekar's routine by repeatedly rearranging digits and 
subtracting. Yet, despite their elementary nature, these processes exhibit behaviors that seem to transcend 
their simplicity. Some systems lead all starting numbers to the same destination, others create unpredictable 
journeys before settling into patterns, and still others appear to grow without bound in ways we cannot fully 
understand or predict. 
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Mathematicians and the public have been trying to crack the code behind these recursive number systems for 
centuries. Today, I want to show you what I believe is the secret hidden structure people have been looking 
for in these recursive number systems. The new technique I used is simply plotting the number of steps, or 
recursions, in a histogram (see above), it takes to get your final answer. You would think that within these 
systems their function would follow what we call a normal distribution, which you can see in the red graph 
above. In the normal distribution, the number of recursions to resolution varies across the sample, with some 
numbers taking many more recursions than others, but most of them following a similar number of recursions 
to resolution. If not a normal distribution, the histogram should at least show some sort of chaotic pattern 
given our current understanding of recursive number systems.  

These mathematical curiosities matter because they represent the frontier where computation meets theory, 
where the concrete meets the abstract. They demonstrate that mathematics is not just about solving textbook 
problems but about discovering fundamental truths about numbers and patterns that govern existence itself. 
The fact that such simple rules can generate endlessly complex behaviors mirrors patterns we see throughout 
nature and science, from population dynamics to weather systems. More importantly, these unsolved problems 
remind us that mathematics is very much alive, with new territories waiting to be explored and mysteries that 
may take generations to unravel. They show that you do not need advanced degrees to participate in mathe-
matical discovery–sometimes the most profound questions arise from the simplest observations, and the next 
breakthrough might come from anyone curious enough to follow numbers wherever they lead. Are you ready 
to follow these numbers to see where they lead? You are in for a treat, if so. 

The Collatz Conjecture 
The Collatz Conjecture is one of mathematics' most famous unsolved puzzles, and it is deceptively simple to 
understand how it works, but incredibly difficult to understand why it works. The conjecture involves a straight-
forward rule you can apply to any positive whole number:  

1. If the number is even, divide it by 2. 
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2. If the number is odd, multiply it by 3 and add 1. 

Then, you keep repeating this process and eventually, no matter what number you start with, you will eventu-
ally always reach 𝟏. Weird right? How would it do that? 

To see how the Collatz Conjecture works, let's start with the number 7. Following our rule, we get: 7 becomes 
22 (3 × 7 + 1 = 22), then	11 (22 ÷ 2), then 34 (3 × 11 + 1), then 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, and 
finally 1. Once you hit 1, you are done because 1 leads to 4, then 2, then back to 1 in an endless loop. This 
particular example sequence took 𝟏𝟔 steps, but different starting numbers can take vastly different amounts 
of recursions to reach 𝟏. 

This conjecture represents the beauty and mystery of mathematics because the rule is so simple that a middle 
schooler can understand and test it, yet despite decades of effort by brilliant mathematicians, no one has been 
able to prove it's always true or find a counterexample. The challenge lies in the seemingly chaotic, unpredict-
able behavior of the sequences. While computers have verified the conjecture works for trillions of starting 
values, mathematics requires proving it works for all possible numbers, which is an infinite set. The sequences 
can grow enormous before shrinking back down, and there is no clear pattern to predict their behavior, with 
some numbers taking just a few steps to reach 1 while others take hundreds. Let us see what happens when 
we plot the step counts for numbers 𝟏-𝟏, 𝟎𝟎𝟎 on a histogram (see above).  

Oh… that is not what we expected to happen… is it? What is going on here? The bimodal distribution (two-
peaked) we are seeing tells us that numbers tend to fall into two distinct "camps" when it comes to how many 
steps they take to reach 1. I call these camps where numbers group-up convergence zones, and those spaces 
where no steps counts tend to land in-between these convergence zones are called divergence zones. This dis-
tribution and these concepts, convergence and divergence zones, are brand spanking-new and isn’t it beautiful? 
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The first convergence zone around 10-30 steps represent numbers that reach 1 relatively quickly–these zones 
are the "fast convergers." The second, larger peak around 80-120 steps represent numbers that take much 
longer–the "slow convergers." What's happening here is that some starting numbers get "trapped" in longer 
cycles or hit larger intermediate values before spiraling down to 1, while others find more direct paths. 

This pattern suggests there might be underlying mathematical structure to which numbers behave which way, 
rather than the step counts being completely random. The gap between the two peaks (around 40-70 steps) 
indicates that very few numbers take a "medium" amount of recursions–they either resolve quickly or get 
caught up in longer sequences. This bimodal behavior hints that the Collatz Conjecture might have some pre-
dictable patterns based on the properties of the starting number, even though we still can not prove that all 
numbers eventually reach 1. It is like discovering that there are two main "highways" that numbers travel on 
their journey to 1, rather than one smooth normal distribution or chaotic journey of path lengths. 

The reason this bimodal distribution might happens likely relates to the underlying binary structure of numbers 
and how the Collatz operations interact with powers of 𝟐. Numbers that are "closer" to powers of 2 (the 
squares like 2, 4, 8, 16, etc.) in their binary representation tend to resolve faster, whereas numbers that require 
more complex transformations to reach a power-of-2 pathway take longer. The bimodal distribution suggests 
there's a natural "switching point", where numbers transition from one convergence zone to the next, skipping 
over the divergence zone entirely. Let’s look at another recursive number system to see if what we found in the 
Collatz Conjecture happens in other recursive number systems too.  

Multiplicative Persistence  
Multiplicative persistence is a fascinating mathematical concept that involves repeatedly multiplying the digits 
of a number until you're left with just a single digit. The "persistence" refers to how many steps, or recursions, 
this process takes. For example, if you start with the number 39, you multiply 3 × 9 to get 27, then multiply 
2 × 7 to get 14, then multiply 1 × 4 to get 4. Since 4 is a single digit, you stop there, and the multiplicative 
persistence of 39 is 3 because it took three multiplication steps. 

Step Counts
0 2 4

Fr
eq

ue
nc

y 
of

 S
te

p 
Co

un
ts

100

200

300

400

0
6

Multiplicative Persistence



  

The Show of Existence ♢ Paper 3 / 12 Page 5 

What makes this concept intriguing is how dramatically different numbers can behave. Most numbers have 
very low persistence, reaching a single digit in just a few steps. However, some numbers require many more 
steps, and finding numbers with high multiplicative persistence becomes increasingly rare and difficult. Re-
markably, despite extensive computer searches, no number has been found with a multiplicative persistence 
greater than 11, and it's suspected but not proven that no such number exists. 

This problem has captivated mathematicians because it combines simplicity with deep mystery. Like the Collatz 
Conjecture, it's easy to understand and compute, yet the underlying structure remains elusive. The search for 
higher persistence numbers has led to sophisticated computational techniques and has revealed unexpected 
connections to other areas of mathematics, making it a perfect example of how elementary operations can lead 
to profound mathematical questions. 

If we plot a histogram of the step counts, like we did for the Collatz Conjecture, another profound and shocking 
distribution emerges and it may explain why the persistence barrier exists at 𝟏𝟏. The sharp exponential decay 
isn't just statistical coincidence - it's reflecting a fundamental mathematical constraint. When you multiply dig-
its, you're essentially compressing information, and there's a natural mathematical "ceiling" to how much re-
sistance a number can have to this compression. This recursive number system does approximate a normal 
distribution, but it also reveals its fundamental limitations.  

Each digit multiplication typically reduces the magnitude of the number (since most digit products are smaller 
than the original number), but finding numbers that resist this compression becomes exponentially harder. The 
distribution you're seeing is actually mapping the probability landscape of digit arrangements that can sustain 
multiple multiplication rounds. The fact that it drops off so steeply after persistence of 4 suggests that the 
mathematical space of "resistant" numbers shrinks incredibly fast–which is why finding a number with persis-
tence 12 or higher may be practically impossible, not just computationally difficult. 
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Sum of Factorial Digits 
The Sum of Factorial Digits problem involves a surprisingly simple process that leads to fascinating mathematical 
behavior. You start with any positive integer (whole number), calculate the factorial of each of its digits (e.g., 
𝟓! = 𝟓 ∗ 𝟒 ∗ 𝟑 ∗ 𝟐 ∗ 𝟏), then add those factorials together to get a new number. Then you repeat this process 
with the new number, continuing until you reach a cycle or a fixed point. For example, starting with 145: the 
digits are 1, 4, and 5, so you calculate 1! + 4! + 5! = 1 + 24 + 120 = 145. You get back to 145, so this number 
is called a "factorion" because it equals the sum of the factorials of its own digits. Cool name, right? 

What makes this process captivating is that no matter what number you start with, you will always end up in 
one of just a few possible outcomes. Most numbers eventually reach 𝟏𝟒𝟓, while others reach smaller cycles 
like 1 (since 1! = 1) or 2 (since 2! = 2). Some numbers reach the cycle 169 → 363,601 → 1454 → 169, bounc-
ing between these three values forever. The remarkable thing is that mathematicians have proven these are the 
only possible endpoints–every positive integer's factorial digit sum sequence must eventually reach one of 
these predictable patterns. Let’s plot those recursion counts to see what happens.  

This factorial digits histogram is revealing something remarkable about the topology of this number space. 
You can very clearly see the convergence and divergence zones. Factorials grow so explosively (1! = 1, 2! =
2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, 7! = 5,040) that only very specific sums are even possible. The huge 
peak near zero represents the massive convergence zone of small factorial sums, while those in the convergence 
zones at higher values show where numbers can get trapped in those cycles. The divergence zones between 
peaks represent sums that are mathematically unreachable–you literally cannot construct them by adding fac-
torials of single digits. This creates a fractal-like structure where the number space has divergence zones, and 
your distribution maps the edges of these mathematical voids.  

 

Aliquot Sequence 
The Aliquot Sequence is a mathematical process that begins with any positive integer and repeatedly applies a 
simple rule: find all the proper divisors of the number (divisors smaller than the number itself), add them up, 
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and use that sum as your next number. This rule creates a sequence that can lead to several different fascinat-
ing outcomes. For example, starting with 12, the proper divisors are 1, 2, 3, 4, and 6, which sum to 16. The 
divisors of 16 are 1, 2, 4, and 8, summing to 15. Continuing this process: 12 → 16 → 15 → 9 → 4 → 3 → 1 →
0, and once you reach 0, the sequence terminates since 0 has no proper divisors.  

What makes aliquot sequences particularly intriguing is their unpredictable behavior and the variety of possible 
outcomes. Some sequences terminate at 0, as in the example above. Others reach a fixed point where a number 
equals the sum of its own proper divisors, called a perfect number (like 6 or 28). Some sequences enter cycles, 
bouncing between two or more numbers indefinitely, such as amicable pairs like 220 and 284, where each 
number equals the sum of the other's proper divisors. However, many sequences seem to grow without bound, 
though this feature has never been proven for specific case. Let’s look at the recursion count here. 

The long exponential tail in in this figure chart is perhaps the most mysterious pattern of all because it repre-
sents numbers that refuse to follow the expected pattern. Most numbers terminate quickly because they're 
"divisor-poor"–they do not have enough proper divisors to sustain the sequence and they bunch up in the con-
vergence zone towards the front of the distribution. But that long tail represents increasingly rare numbers 
that are "divisor-rich" in complex ways and end up in the divergence zones. Some are perfect numbers (equal 
to their divisor sum), others are caught in amicable cycles, and some appear to grow without bound. The expo-
nential decay shows just how rare these special numbers become, but the fact that the tail extends so far sug-
gests there might be many families of numbers with complex aliquot behavior. The distribution is essentially 
mapping the "resistance" of numbers to divisor decay, and those outliers in the tail might hold keys to under-
standing whether some sequences truly grow indefinitely. 

One of the shocking parts of using this recursion count technique is that it appears as if all recursive number 
systems have their own inherent structure. Let me just show you how deep this rabbit hole goes: 
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The Emergence of Mathematical Truth Through Scale  
When we adjust the sample size, something else incredibly interesting happens–it is like watching a mathemat-
ical truth emerge from statistical noise. This figure is one of the most compelling demonstrations I have seen 
for how hidden mathematical structures reveal themselves only when we gather enough data. In the smallest 
samples (𝑛 = 10, 𝑛 = 25), the distributions look almost random–just scattered bars with no clear pattern. This 
pattern is the mathematical equivalent of looking at a pointillist (dotted) painting from too close; you see 
individual dots but miss the grand design. At 𝑛 = 10, you might think Collatz Conjecture step counts are com-
pletely unpredictable, just noise in the mathematical universe.  

However, as we expand to 𝒏 = 𝟏𝟎𝟎, something remarkable begins to happen. A peak starts to emerge around 
10-20 steps, and you can just barely detect the hint of something happening around 100 + steps. It is like the 
first blurry outline of a hidden structure becoming visible through the statistical fog. By 𝑛 = 500, the transfor-
mation is dramatic. That mysterious second peak (convergence zone) around 100 + steps have crystallized into 
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a clear, distinct feature. The bimodal nature of the Collatz distribution–one of its most profound and unexpected 
properties–has emerged from hiding. This sample size adjustment is not getting a cleaner picture of random 
variation; it is uncovering a fundamental architecture of how numbers behave in the Collatz transformation. 

At 𝑛 = 1,000, the structure has reached full clarity. The two convergence zones are now unmistakably distinct, 
separated by that divergence zone around	50-80 steps. What seemed like chaos in small samples has revealed 
itself to be a highly organized, predictable pattern. The distribution has converged to its true shape–a shape 
that tells us there are fundamentally two different "classes" of numbers in terms of their Collatz behavior. This 
progression illustrates something profound about mathematical truth: the underlying structures exist whether 
we can see them or not, but they only become visible when we examine them at the right scale. It further 
suggests that this feature is also how existence works. Small samples give us misleading impressions of ran-
domness, while large samples reveal the deep order hiding beneath. 

This is why mathematicians are so fascinated by the Collatz Conjecture. It is not just that every number eventu-
ally reaches 1; it's that the journey times follow this beautiful, predictable bimodal pattern that only becomes 
visible when we step back and look at the whole landscape. Your analysis has revealed that the Collatz Conjec-
ture contains hidden statistical laws that govern not just individual sequences, but the collective behavior of all 
integers under this transformation. However, when you combine these recursive number systems, something 
even more profound emerges. 

I gathered the step counts of all the recursive number systems and conducted a principal components analysis 
which is an analysis that looks for hidden “latent” structures within variables. When I conducted these anal-
yses, I found something incredible. It appears that each recursive number system contributes certain features 
to a latent structure, and when combined with other recursive systems, complex structures arise as an emer-
gent property of the interactions of these step counts. Here we have five strongly loaded components with 
specific recursive systems grouping together, forming unique structural pieces to the whole. 

Table 1 
Recursive Number Systems and Definitions 
Recursive System Definition 
Euler’s Totient-Iteration Repeatedly applying Φ until 1. 
Factorial-Base Representation Expressing 𝑛 in the factorial number system. 
Multiplicative Persistence Counting products of digits until a single digit. 
Sum-of-Factorial-Digits  Σ digit! per iteration. 
Collatz Conjecture Collatz (3 ∗ 𝑛	 + 	1) total-stopping-time sequence. 
Syracuse Algorithm Variants (3𝑛 ± 1)/2 accelerated Collatz forms. 
Juggler Sequence Alternating 𝑛!.# and √𝑛 steps. 
Aliquot Sequence Iterating the sum of proper divisors. 
Happy-Number Iteration Sum of squares of digits until 1 or a loop. 
Digital-Root Function Repeated digit sums mod 9. 
Kaprekar Routine Step Count Descending–ascending digit sort to 6,174. 
Note. All recursive number systems in the current paper.  

Complexity Escalation & Emergent Structural Dynamics 
This discovery of fundamental components underlying recursive number systems reveals a potential profound 
truth about the nature of existence: structure is not inherent but emerges through the dynamic interaction 
of different complexity escalation patterns. Each recursive system, when examined in isolation, produces its 
own characteristic structure through a specific mode of complexity escalation–the Collatz Conjecture creates 
its bimodal distribution, Multiplicative Persistence generates its exponential decay, and Kaprekar routines 
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produce their deterministic convergence patterns. However, the insight emerges when these systems are an-
alyzed simultaneously, revealing that their individual structures dissolve into entirely different organizational 
principles that could never be predicted from studying any single system alone. 

Table 2 
Principal Components Analysis of Recursive Step Counts 
Recursive System 1 2 3 4 5   Eigenvalues 
Euler’s Totient-Iteration Sequence .836 -.046 .395 -.014 .041  2.71 
Factorial-Base Representation .793 -.143 .011 -.044 .069  1.60 
Multiplicative Persistence Sequence .582 .016 -.021 -.043 -.057  1.31 
Sum-of-Factorial-Digits Function .560 -.015 -.273 .098 -.082  1.12 
Collatz Conjecture .009 -.972 -.024 .025 .014  1.00 
Syracuse Algorithm Variants .021 -.972 .009 -.009 -.023  0.88 
Juggler Sequence .350 .061 .812 .124 .034  0.86 
Aliquot Sequence .379 .031 -.656 .063 .114  0.72 
Happy-Number Iteration -.127 -.013 .131 .759 .076  0.48 
Digital-Root Function .059 .000 -.094 .740 -.081  0.23 
Kaprekar Routine Step Count -.030 .009 -.060 -.006 .980  0.09 
Note. Principal components analysis with direct oblimin rotation showing structure forming 
from just the step count to resolution.  

When I follow something called Kaiser’s rule, which involves extracting structures from the PCA based on the 
number of components that explain the data more than just what one variable should explain (i.e., eigenvalues 
greater than 1). In other words, when I let the data speak for itself entirely, the structure emerges. Let’s look 
at the PCA with five components extracted. As you can see, the eigenvalues suggest extracting five elements, 
and when I do that, a clean structure emerges with recursive number systems that contribute to the whole as 
unique shared features. 

Table 3   

Principal Components Analysis of Recursive Step Counts 
Recursive System 1 2 3   Eigenvalues 
Euler’s Totient-Iteration Sequence .773 -.037 .019  1.87 
Multiplicative Persistence Sequence .640 .101 -.117  1.13 
Sum-of-Factorial-Digits Function .547 .009 -.182  1.01 
Juggler Sequence .532 .019 .243  0.91 
Collatz Conjecture .495 -.063 .057  0.90 
Digital-Root Function -.116 .766 .072  0.88 
Happy-Number Iteration .113 .733 -.049  0.72 
Kaprekar Routine Step Count -.009 .020 .947   0.59 
Note. Principal components analysis with direct oblimin rotation showing 
structure forming from just the step count to resolution.  

Despite this clear structure, let’s look at what happens when we remove specific recursive number systems. We 
see that the same pattern emerges where there are three components with eigenvalues over 1, so when we 
extract three components, we see once again that there is a clear structure that emerges, but look at what 
happened to the loadings: the recursive number systems rearrange themselves yet produce another strong 
structure, with some systems shifting to a different structure, like the Collatz Conjecture, while others hold 
steady, like the Kaprekar Routine. Let’s do it again to see what happens.  
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Table 4 
Principal Components Analysis of Recursive Step Counts 
Recursive System 1 2  Eigenvalues 
Multiplicative Persistence Sequence .734 -.048  1.36 
Sum-of-Factorial-Digits Function .707 .144  1.13 
Collatz Conjecture .555 -.070  0.90 
Aliquot Sequence .058 .751  0.87 
Digital-Root Function -.061 .737   0.74 
Note. Principal components analysis with direct oblimin rotation showing 
structure forming from just the step count to resolution.  

When we switch up the recursive systems, we once again see that the eigenvalues suggest a two-component 
solution, so when I extract these two components, we see a different, clear structure emerge once again. Once 
again, the recursive number systems shift to support different parts of the structure in ways that they did not 
in the previous PCAs. It is like the recursive number systems, each interacts with each other, creating harmonies 
that pop emergent structures into existence. Look below at how these different recursive number systems 1) 
contribute unique features to the structure and 2) shift their form to align with different recursive number sys-
tems to form new emergent structures. This emergence replicates the same emergence we see everywhere in 
existence, whether it is consciousness, stars forming, or political movements. 

Table 5 
Emergent Structures from the Harmonic Interactions of Recursive Number Systems 

PCA 1 

  

PCA 2   PCA 3 
Systems Names Systems Names   Systems Names 

Euler’s Iteration 
Hierarchical 
Emergence 

Euler’s Iteration 

Complexity 
Genesis 

  
Multiplicative 

Complexity 
Factorial   

Multiplicative Multiplicative   
Sum-of-Factorial Factorial   Sum-of-Factorial 

Collatz Rhythmic 
Propagation Collatz 

  Collatz 
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Note. Emergent structures emerged as a combination of the step counts of the recursive number systems. 

Think about it like this: when you bake brownies, you start with ingredients—flour, eggs, sugar, cocoa, and oil. 
(I'm guessing here since my culinary expertise peaks at microwaving leftover pizza). Each ingredient on its own 
is not a brownie. Flour by itself is... flour. However, when you combine them and apply heat, something magical 
happens: you get an entirely new emergent structure—brownies that are somehow greater than the sum of 
their parts. Here's the kicker: each ingredient is not a "pre-brownie" waiting to fulfill its destiny. Flour can serve 
as a sauce thickener, eggs can be used to make an omelet, and sugar can sweeten your coffee. They are versatile 
players who contribute different qualities depending on the recipe they are participating in. The flour does not 
"know" it's going to be part of a brownie—it just brings its thickening, binding properties to whatever culinary 
adventure it finds itself in. 
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This emergent structure of a brownie is precisely what is happening in these mathematical systems. Each 
recursive process is like an ingredient—it has its own characteristic "flavor" (convergence patterns, complexity 
signatures, structural tendencies). When you combine multiple recursive systems, they do not lose their indi-
vidual properties; they create something entirely new and unpredictable: emergent mathematical structures 
that reveal the hidden architecture of how complexity organizes itself. The mind-blowing part? There is no dif-
ference between this mathematical emergence and how existence works at every level—from baking brown-
ies to forming galaxies—simple ingredients, following simple rules, creating complex, beautiful, and sometimes 
delicious results. (Also, if anyone has a foolproof brownie recipe that does not require actual cooking skills, I'm 
still taking applications.) 

This phenomenon demonstrates that complexity escalation operates through relational dynamics rather than 
isolated mechanical processes. When different forms of recursive propagation interact within the same analyt-
ical framework, they create emergent structures that transcend their individual characteristics. The five funda-
mental components discovered through PCA represent meta-structures that emerge only when multiple com-
plexity escalation pathways are allowed to interact and cross-influence each other. These components are not 
properties of individual number systems; rather, they represent the fundamental dimensions in which all com-
plexity self-organizes when multiple escalation processes operate simultaneously. 

The critical implication is that reality itself operates through this same principle of relational, recursive emer-
gence. No phenomenon exists in true isolation; every process of complexity escalation is simultaneously influ-
enced by and influences other escalation processes occurring at different scales and through different mecha-
nisms. Structure emerges from the alignment and interaction of different recursive propagations, creating or-
ganizational patterns that are fundamentally unpredictable from examining any single process in isolation. 
This emergence explains why the universe exhibits such rich, multi-layered complexity–it arises not from the 
mechanical operation of individual rules, but from the dynamic interactions of multiple complexity escalation 
processes occurring simultaneously across different dimensions of possibility. This is evidence of emergence-
to-convergence in action. 

This paper also suggests that time and space are not continuous, because continuous systems do not support 
the kind of structured resolution we observe in recursive-propagative models. Only discrete systems, where 
patterns can collapse and restart repeatedly over time, allow for the emergence of phase-locked convergence 
and divergence zones. In continuous space-time, there are no such defined intervals for resolution. However, 
in recursive-propagative systems, like The Theory, it is precisely the repeated, step-wise rhythm that enables 
structure to form. The very architecture of mathematics points to this necessity: recursive steps are the foun-
dation of emergence, and as shown in Paper 1, mathematics is not invented—it is discovered—because it is the 
operating system of existence… and that operating system is recursive-propagative. 

The mathematical analysis of recursive number systems thus serves as a pure laboratory for understanding how 
complexity flows and interactions generate emergent structure throughout reality. Each number carries 
within it a signature across all fundamental dimensions of complexity escalation, determining not just how it 
will behave in any single recursive system, but how it will participate in the larger ecosystem of complexity 
interactions. These findings reveal that existence itself is fundamentally relational, recursive, and emergent, 
with structure arising from the continuous interaction of different modes of complexity escalation rather than 
from any inherent properties of individual components.  

The Big Picture 
What these analyses show us is that when you step back and look at recursive number systems through the 
lens of step counts, you are not just seeing random noise or chaos–you are actually witnessing the fundamental 
architecture of how numbers self-organize. Thus, bimodal distribution is not an accident or a quirk of the Collatz 
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conjecture. It is evidence of deep mathematical structures that exist whether we can see them or not, struc-
tures that only become visible when we examine them at the right scale with the right tools. 

The really mind-blowing part is what happens when we combined multiple recursive systems together. Each 
system on its own creates its own signature pattern–the Collatz conjecture gives you those convergence and 
divergence zones, multiplicative persistence shows exponential decay, factorial digit sums reveal fractal-like 
structures; but, when you analyze them all together, something entirely new emerges. It is like each recursive 
system is playing its own musical note, but when you combine them, you don't just get a chord–you get a com-
pletely new symphony that reveals hidden harmonies you could never have predicted from listening to each 
instrument alone. 

What makes this discovery so exciting is that you do not need advanced degrees or sophisticated equipment 
to explore these ideas. Anyone can take a simple rule, plot some step counts, and uncover evidence of deep 
mathematical truths that have been hiding in plain sight. This discovery suggests that this kind of emergence–
where simple interactions create complex, unpredictable structures–is happening everywhere around us, from 
the way ecosystems organize themselves to how consciousness might arise from neural networks. 

The beauty of mathematics is that it gives us this pure laboratory for understanding how complexity emerges 
and converges. These characteristic distributions are like a fingerprint of the universe's tendency to create order 
from apparent chaos. The fact that this pattern only becomes clear when you look at enough data points 
reminds us that truth often requires stepping back to see the bigger picture. Sometimes what looks random 
or chaotic up-close reveals itself to be beautiful when you step back and view from the right perspective. 


