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Dedicated to Dr. Henry Jasik (1919-1977)

An internationally known authority in the an-
tenna engineering field, Dr. Henry Jasik was
highly respected for his breadth of information,
keen insight, and depth of knowledge in both
fundamentals and applications. He received
the degree of Bachelor of Science in Electrical
Engineering in 1938 from Newark College of
Engineering and the degrees of Master and
Doctor of Electrical Engineering in 1951 and
1953, respectively, from the Polytechnic Insti-
tute of Brooklyn.

Dr. Jasik worked in the Navy Department
from 1938 to 1939 and in the Civil Aeronautics
Administration (CAA) from 1939 to 1944. Whilein the CAA, he worked on
radio aidsto air navigation, including instrument landing systems and VHF
radio ranges. From 1944 to 1946, he was an officer in the United States
Navy, where he worked on the development of airborne radar and commu-
nications antennas at the Naval Research Laboratories.

From 1946 to 1949, Dr. Jasik was associated with Andrew Alford,
Consulting Engineers, as Senior Project Engineer and as Vice-President of
the Alford Manufacturing Company. From 1949 to 1952, he was employed
by the Airborne Instruments Laboratory (AIL), where he was associated
with the Special Devices Section and the Antenna Section as Assistant
Supervising Engineer. In 1952, he became an independent consultant.

In 1955, Dr. Jasik started Jasik Laboratories, Inc., a completely inte-
grated operation for the design, development, and production of antennas.
Under his leadership, the company grew and prospered. With design expe-
rience from simple Yagi-Uda arrays to exotic multiple-feed systems, Jasik
Laboratories became widely known throughout the electronics industry as
an unusually talented team of antenna specialists. They designed, manu-
factured, and tested a wide variety of antennas, such as dipoles, horns, log
periodics, double-conical feeds, and many others. In 1969, Cutler-Hammer
(which later became the Eaton Corporation) acquired Jasik Laboratories,
and at the time of his death, Dr. Jasik was a Vice-President in Eaton’s AIL
Division.

Dr. Jasik was elected a Fellow of the Institute of Electrical and Elec-
tronic Engineers in 1958 for his contributions to “the theory and design of
VHF and microwave antennas.” He was a member of Sigma Xi and Eta
Kappa Nu and was a registered professional engineer in New York and
Massachusetts.

In the course of his distinguished career, Dr. Jasik was awarded several
patents, and he designed practical antennas for U.S. Navy ships and for the
FM broadcast antenna which operated for many years at the top of the
Chrysler Building in New York City. He also made many important contri-




butions to the young science of radio astronomy by designing and produc-
ing improved feed structures for many paraboloidal-reflector radio tele-
scopes. His innovative work significantly improved the tools of radio
astronomers.

Dr. Jasik was Editor of the First Edition of the Antenna Engineering
Handbook, published by McGraw-Hill in 1961. His vision and creative
work produced the most valuable reference book for antenna engineers
throughout the world. This new edition is dedicated to his memory in order
to convey appreciation for his outstanding and lasting contributions to the
field of antenna engineering.
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Preface

THIRD EDITION

It has been more than three decades since Henry Jasik envisioned and edited the First
Edition of the Antenna Engineering Handbook. During this time, many significant and
far-reaching advances have been made in the field of antenna technology.

The Second Edition was published more than two decades after the First Edition,
and it required many major revisions and additions. For example, it contained 15 new
chapters to cover new subject areas,

Work on this Third Edition of the Handbook began 10 years after starting work on
the Second Edition. Ten years is a long time given today’s rapid advancements in antenna
technology, so an update is welcome and beneficial.

This new edition again contains four major parts:

introduction and Fundamentals Part | presents basic comments, defines parame-
ters, and discusses fundamentals that are common to most antennas.

Types and Design Methods Part 2 presents the primary antenna types and design
methods that currently are in use. Emphasis is on succinct descriptions, design data, and
references.

Applications Part 3 discusses major applications of antennas. Emphasis is on how
antennas are employed to meet electronic system requirements. Design methods which
are unique to the applications are presented.

Topics Associated with Antennas  Part 4 deals with topics that are closely related to
antenna design. The topics are covered succinctly, but more detailed information can be
found in the references. :

Thanks are extended to the many publishers who have granted permission to use
material from their publications. As was done in the previous editions, we have tried to
credit all sources of information by references; any omissions are due to oversight rather
than intent.



The work of many outstanding engineers who reviewed and updated the individual
chapters has made this Third Edition of the Handbook possible. Their magnificent efforts
enabled this project to be completed according to the initial schedule.

It is impossible to acknowledge all the other individuals who have made contribu-
tions to this book, so I thank them all as a group. Again, I extend special thanks to Maurice
W. Long and J. Searcy Hollis, who introduced me to the fascinating world of antennas.
Their keen insight and guidance helped me, in many cases, to “see” the electrical currents
flowing on an antenna.

Finally, I want to acknowledge the lasting contributions of Henry Jasik, who con-
ceived and edited the First Edition of this Handbook. When I took the assignment to edit
the Second Edition, 1 considered several alternate ways to organize the subject matter;
however, in the end, I concluded that Henry’s outline was better than all the others. This
Handbook is dedicated to the memory of Henry Jasik. His influence is clearly present in
this Third Edition, and it probably will continue through future editions.

RICHARD C. JOHNSON
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1-1 FUNCTIONS AND TYPES

An antenna usually is defined as the structure associated with the region of transition
between a guided wave and a “free-space” wave, or vice versa. The adjective free-
space is in quotation marks because in practice there always is some interaction with
the surroundings. On transmission, an antenna accepts energy from a transmission line
and radiates it into space, and on reception, an antenna gathers energy from an inci-
dent wave and sends it down a transmission line.

When discussing an antenna, one usually describes its properties as a transmit-
ting antenna. From the reciprocity theorem, however, we know that the directional
pattern of a receiving antenna is identical with its directional pattern as a transmitting
antenna, provided nonlinear or unilateral devices (such as some ferrite devices) are
not employed. Thus, no distinction needs to be made between the transmitting and
receiving functions of an antenna in the analysis of radiation characteristics. It should
be pointed out, however, that the reciprocity theorem does not imply that antenna
current distributions are the same on transmission as they are on reception.

A large variety of antennas have been developed to date; they range from simple
structures such as monopoles and dipoles to complex structures such as phased arrays.
The particular type of antenna selected for a certain application depends upon the
system requirements (both electrical and mechanical) and, to a lesser extent, upon the
experience of the antenna engineer.

1-2 BASIC CONCEPTS AND DEFINITIONS

Consider an antenna which is located at the origin of a spherical coordinate system as
illustrated in Fig. 1-1. Suppose that we are making observations on a spherical shell
having a very large radius r.

Assume that the antenna is transmitting, and let

. P, = power accepted by antenna, watts
. P, = power radiated by antenna, watts
. 7 = radiation efficiency, unitless
oF
|
I}
!
~ |
S =
LOCATION |
\ !
~ H 14
~o ]
|
’ o
~d

X

FiG. 1-1  An antenna in a spherical coordinate
system.
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The above quantities are related as follows:

P,
== 1-1
"= 5 (1-1)
Let
° &(0,4) = radiation intensity, watts/steradian

Note that since r was assumed to be very large, & is independent of r. This indepen-
dence of r is a characteristic of the far-field region. The total power radiated from the

antenna is

2x x
o= " [ o06) sinoa s (1-2)
0 0
and the average radiation intensity is
P,
Qnvg = ; ( 1'3)
Let
o D(8,¢) = directivity, unitless

Directivity is a measure of the ability of an antenna to concentrate radiated power in
a particular direction, and it is related to the radiation intensity as follows:

2(0.¢) _ ¥(6.9)
D(0,¢) = ——=2L o 2\08) 1-4
08) = 2 = 2 (1-4)

The directivity of an antenna is the ratio of the achieved radiation intensity in a
particular direction to that of an isotropic antenna. In practice, one usually is inter-
ested primarily in the peak directivity of the main lobe. Thus, if one says that an
antenna has a directivity of 100, it is assumed that 100 is the peak directivity of the
main lobe.

Let

¢ G(0,¢) = gain, unitless

The gain of an antenna is related to the directivity and power radiation intensity as
follows:

G(0.¢) = 2D(6,¢)
_ 19(0.9) (1-5)
- P./4x

and from Eq. (1-1),

Go) = 32 (1-6)

Thus, the gain is a measure of the ability to concentrate in a particular direction the
Power accepted by the antenna. Note that if one has a lossless antenna Gie,n=1),
the directivity and the gain are identical.

Let

o P(8,¢) = power density, watts/square meter
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The power density is related to the radiation intensity as follows:
%(6,¢) A0 Ag

PO.®) = G a8)(r 20)
or
P(b,9) = ?&fl (1-7)

Substituting Eq. (1-6) into Eq. (1-7) yields
— _Po -

The factor Py/4xr* represents the power density that would result if the power
accepted by the antenna were radiated by a lossless isotropic antenna.
Let

° A,0,¢) = effective area, square meters

It is easier to visualize the concept of effective area when one considers a receiving
antenna; it is a measure of the effective absorption area presented by an antenna to
an incident plane wave. The effective area is related! to gain and wavelength as
follows:

2
A4L00) = 3= GO (1-9)

Many high-gain antennas such as horns, reflectors, and lenses are said to be aper-
ture-type antennas. The aperture usually is taken to be that portion of a plane surface
near the antenna, perpendicular to the direction of maximum radiation, through which
most of the radiation flows. Let

L n, = antenna efficiency of an aperture-type antenna, unitless
L A = physical area of antenna’s aperture, square meters
Then,
A
Na = :‘-‘ (1-10)

The term 7, sometimes has been called aperture efficiency.
When dealing with aperture antennas, we see from Egs. (1-9) and (1-10) that

G=n,‘;—’{,4 (1-11)

The term 7, actually is the product of several factors, such as
Na = MMM2M: * ° ° (1-12)

The term 7 is radiation efficiency as defined in Eq. (1-1). The term n, is aperture
illumination efficiency (or antenna illumination efficiency), which is a measure of how
well the aperture is utilized for collimating the radiated energy; it is the ratio of the
directivity that is obtained to the standard directivity. The standard directivity is
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obtained when the aperture is excited with a uniform, equiphase distribution. (Such
a distribution yields the highest directivity of all equiphase excitations.) For planar
apertures in which 4 > A2, the standard directivity is 4x4/A? with radiation confined
to a half space.

The other factors, mym,13 . . . , include all other effects that reduce the gain of the
antenna. Examples are spillover losses in reflector or lens antennas, phase-error losses
due to surface errors on reflectors or random phase errors in phased-array elements,
aperture blockage, depolarization losses, etc.

Polarization (see Refs. 2 and 3 for a more detailed discussion) is a property of a
single-frequency electromagnetic wave; it describes the shape and orientation of the
locus of the extremity of the field vectors as a function of time. In antenna engineering,
we are interested primarily in the polarization properties of plane waves or of waves
that can be considered to be planar over the local region of observation. For plane
waves, we need only specify the polarization properties of the electric field vector since
the magnetic field vector is simply related to the electric field vector.

The plane containing the electric and magnetic fields is called the plane of polar-
ization, and it is orthogonal to the direction of propagation. In the general case, the
tip of the electric field vector moves along an elliptical path in the plane of polariza-
tion. The polarization of the wave is specified by the shape and orientation of the
ellipse and the direction in which the electric field vector traverses the ellipse.

The shape of the ellipse is specified by its axial ratio—the ratio of the major axis
to the minor axis. The orientation is specified by the ¢ilt angle—the angle between the
major axis and a reference direction when viewed looking in the direction of propa-
gation. The direction in which the electric field vector traverses the ellipse is the sense
of polarization—right-handed or left-handed when viewed looking in the directions of
propagation.

The polarization of an antenna in a specific direction is defined to be the polar-
ization of the far-field wave radiated in that direction from the antenna. Usually, the
polarization of an antenna remains relatively constant throughout the main lobe, but
it varies considerably in the minor lobes.

It is convenient to define a spherical coordinate system associated with an
antenna as illustrated in Fig. 1-2. The polarization ellipse for the direction (6,¢) is
shown inscribed on the spherical shell surrounding the antenna. It is common practice
to choose u, (the unit vector in the @ direction) as the reference direction. The tilt angle
then is measured from u, toward u,. The sense of polarization is clockwise if the elec-
tric field vector traverses the ellipse from u, toward u, as viewed in the direction of
propagation and counterclockwise if the reverse is true. _

In many practical situations, such as antenna measurements, it is convenient to
establish a local coordinate system. Usually, the u; axis is the direction of propagation,
the u, axis is horizontal, and the u, axis is orthogonal to the other two so that the unit
vectors are related by u;Xu, = u;. The tilt angle is measured from u,.

When an antenna receives a wave from a particular direction, the response will
be greatest if the polarization of the incident wave has the same axial ratio, the same
sense of polarization, and the same spatial orientation as the polarization of the
antenna in that direction. The situation is depicted in Fig. 1-3, where E, represents a
transmitted wave (antenna polarization) and E,, represents a matched incident wave.
Note that the sense of polarization for E, and that for E,, are the same when viewed
in their local coordinate system. Also, note that the tilt angles are different because
the directions of propagation are opposite. As depicted in Fig. 1-3, 7, is the tilt angle
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ANTENNA S P
LOCATION

FIG. 1-2 Polarization ellipse in relation to antenna coordinate
system. (After Ref. 2.)

> ——— — ]
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FIG. 1-3 Relation between polarization properties of an antenna when
transmitting and receiving. (After Ref. 2.)

of the transmitted wave and 7, is the tilt angle of the polarization-matched received
wave; they are related by

T = 180" — 7, (1-13)
The polarization of the matched incident wave, as described above, is called the receiv-
ing polarization of the antenna.

When the polarization of the incident wave is different from the receiving polar-
ization of the antenna, then a loss due to polarization mismatch occurs. Let

. n, = polarization efficiency, unitless
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The polarization efficiency is the ratio of the power actually received by the antenna
to the power that would be received if the polarization of the incident wave were
matched to the receiving polarization of the antenna.

The Poincaré sphere, as shown in Fig. 1-4, is a convenient representation of
polarization states. Each possible polarization state is represented by a unique point
on the unit sphere. Latitude represents axial ratio, with the poles being circular polar-
izations; the upper hemisphere is for left-handed sense, and the lower hemisphere is
for right-handed sense. Longitude represents tilt angles from O to 180°. An interesting
feature of the Poincaré sphere is that diametrically opposite points represent orthog-
onal polarizations.

The Poincaré sphere also is convenient for representing polarization efficiency.
In Fig. 1-5, W represents the polarization of an incident wave, and A, represents the
receiving polarization of the antenna. If the angular distance between the points is
2¢, then the polarization efficiency is

n, = cos? £ (1-14)

1-3 FIELD REGIONS

The distribution of field strength about an antenna is, in general, a function of both
the distance from the antenna and the angular coordinates. In the region close to the
antenna, the field will include a reactive component. The strength of this reactive com-
ponent, however, decays rapidly with distance from the antenna so that it soon

LH‘C/- POLES REPRESENT
CIRCULAR POLARIZATIONS

UPPER HEMISPHERE:
LEFT-HANDED

SENSE\

LATITUDE
REPRESENTS
AXIAL RATIO

EQUATOR
REPRESENTS
LINEAR
POLARIZATIONS

45° LINEAR

LOWER HEMISPHERE:
RIGHT-H_AE_I_D_EP// LONGITUDE
SENSE REPRESENTS

TILT ANGLE

RHC
FIG. 1-4 Polarization states on the Poincaré sphere. (After Ref. 2. )
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LHC

»

RHC

45° LINEAR

FIG. 1-5 Receiving polarization of an antenna A, and polarization of

an incident wave W.

becomes insignificant compared with the strength of the radiating component. That
region in space in which the reactive component of the field predominates is called the
reactive near-field region, and beyond this region the radiating field predominates.

That region in which the radiating field predominates is further subdivided into
the radiating near-field region and the radiating far-field region. In the radiating near-
field region, the angular distribution of radiated energy is dependent on the distance
from the antenna, whereas in the radiating far-field region the angular distribution of
radiated energy is essentially independent of distance from the antenna.

FIG. 1-8 Schematic representation of a
planar-antenna aperture in the xy plane, an
observation point P, and distances to the
observation point from the origin and two
elements of the antenna.

In the radiating near-field region,
the relative phases and the relative
amplitudes of contributions from various
elements of the antenna are functions of
the distance from the antenna. To visu-
alize the situation refer to the schematic
representation of Fig. 1-6. For simplicity,
assume that the antenna is planar and is
located in the xy plane; the distances to
the observation point P from two arbi-
trary elements of the antenna are repre-
sented by 7, and r,. Notice that as the
observation point is moved farther from
the origin, in a fixed angular direction,
the relative distance to the arbitrary ele-
ments (7, minus r,) changes; this causes



introduction to Antennas 1-11

the relative phases and amplitudes of contributions from elements 1 and 2 to change
with distance from the antenna. By extending this argument to include all contributing
elements of the antenna, one sees that the measured radiation pattern of the antenna
will depend upon the radius to the observation point.

When the distance to the observation point gets very large, straight lines from
any two contributing elements to the observation point (r; and ry, for example, in Fig.
1-6) are essentially parallel and the relative distance to the elements (r, minus ry) is
essentially constant with changes in distance to the observation point. Thus, at large
distances, the relative phases and amplitudes of contributions from the various ele-
ments change very slowly with distance, and the angular distribution of radiated
energy measured at such large distances is essentially independent of the distances to
the observation point. This condition is indicative of the radiating far-field region.

Thus, the space surrounding an antenna is composed of three regions: the reac-
tive near-field region, the radiating near-field region, and the radiating far-field
region.* These three regions are shown pictorially in Fig. 1-7. The boundaries between

REACTIVE RADIATING
NEAR-FIELD FAR-FIELD
REGION —\ \ REGION
v
s g
-+ ———— \
-»>
e ————— -—-——"‘\"
ANTENNA| | ¥ ——————— %_.,
A ——— - !
By S
——-b————-__\\\\ Il
~a
RADIATING /
NEAR-FIELD
REGION

FIG. 1-7 Pictorial representation of the three regions
surrounding an antenna.

the regions are not well defined, but for any antenna the reactive near-field region
extends only a short distance.® The commonly accepted distance to the boundary
between the reactive and radiating near-field regions is A\/2x. For electrically large
antennas of the aperture type, such as that depicted in Fig. 1-7, the commonly used
criterion to define the distance to the boundary between the radiating near-field and
far-field regions is®

_ 2w
A

where D is the largest dimension of the aperture and A is the wavelength.

_ Although the aforementioned criterion to define distance to the far-field region
1s generally accepted and is used quite widely, one must always remember that it is
an arbitrary choice and that it is inadequate for some special situations. For example,
if one must accurately measure patterns of antennas having very low sidelobes or if
one must make accurate gain measurements of pyramidal horns which have large
phase deviations across their apertures, the measurement distance may have to be
much longer than 2D*/A.

R (1-15)



[l I 3 minvuuLuIw and runuaiiieiilians

Arguments have been advanced for decreasing or for increasing the accepted
distance to the boundary between the near-field and far-field regions; however, 2D%/
A seems to be the most popular choice. The situation is analogous to trying to decide
the ideal height for a stepladder. Most of us might agree that 2 m is an ideal height,
but there will be special jobs which require a higher ladder and other jobs in which a
shorter ladder is acceptable and more convenient.

It has been customary in the past to refer to field regions as Fresnel or Fraun-
hofer, after the approximations described. As pointed out by Hansen,’ this practice
should be discouraged. It is better to define field regions as reactive near field, radiat-
ing near field, and radiating far field as discussed earlier and illustrated in Fig. 1-7.
Then, the terms Fresnel and Fraunhofer can be used more correctly to refer to ana-
lytical approximations.

1-4 POWER TRANSFER

Consider power that is transferred from a transmitting antenna to a receiving antenna;
assume that the antennas are in free space and are separated by a large distance R
(in the far field of each other).

The received power will be equal to the product of the power density of the inci-
dent wave and the effective aperture area of the receiving antenna; that is,

P, = PA,
Substituting from Eqs. (1-8) and (1-9),
_ G, NG,
" 47R? 4rx
or \ Y
P, = <ﬁ) G,G.P, (1-16)

The subscripts 7 and 7 refer to the receiving and transmitting antennas, respectively.
Note in the above case that G, is the gain of the transmitting antenna in the direction
of the receiving antenna and that G, is the gain of the receiving antenna in the direc-
tion of the transmitting antenna. A form of this equation was presented first by Friis,’
and it usually is called the Friis transmission formula,

Similar arguments can be used to derive the radar equation. From Eq. (1-8), the
power density at distance R from the antenna is

G,P,
4rR?

The radar cross section o of a target is a transfer function which relates incident
power density and reflected power density. The term ¢ has units of area (e.g., m?),
and one might think of the process as having the target intercepting the incident power
density over an area ¢ and then reradiating the power isotropically. The return power
density at the radar is then

GP, o
47 R? 4z R?
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and the received power is
G,P,2 T 4,
47R° 47 R

where A, is the effective area (or capture area) of the receiving antenna.
Using Eq. (1-9), the received power is

_GP, o GN
b= R mR & (1-17)

If the same antenna is used for both transmission and reception of energy, then
G, = G, = G, and the received power may be written as

GA%s
P Gy ”

which is a simple form of the radar equation.

(1-18)

1-5 RADIATION PATTERNS

When the power radiation intensity $(6,¢) and the power density P(6,¢) are presented
on relative scales, they are identjcal and often are referred to as the antenna radiation
battern. The main (or major) lobe of the radiation pattern is in the direction of max-
imum gain; all other lobes are called sidelobes (or minor lobes).

There are many types of antenna radiation patterns, but the most common are
the following:

Omnidirectional (azimuthal-plane) beam
Pencil beam

Fan beam

Shaped beam

BWON

The omnidirectional beam is most popular in communication and broadcast
applications. The azimuthal pattern is circular, but the elevation pattern will have
some directivity to increase the gain in the horizontal directions.

The term pencil beam is applied to a highly directive antenna pattern consisting
of a major lobe contained within a cone of small solid angle. Usually the beam is
circularly symmetric about the direction of peak intensity; however, even if it is
slightly fanned, it often is still called a pencil beam. A radar pencil beam, for example,
is analogous to an optical searchlight beam.

A fan beam is narrow in one direction and wide in the other, A typical use of a
fan beam would be in search or surveillance radar in which the wide dimension of the
beam would be vertical and the beam would be scanned in azimuth, Another use of a
fan beam would be in a height-finding radar in which the wide dimensjon of the beam
Wwould be horizontal and the beam would be scanned in elevation.

There are a number of applications that impose beam-shaping requirements
Upon the antenna. One such application is in an air search radar that js located on the
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ground or on a ship. The antenna for such an application is required to produce a
narrow beam in azimuth and a shaped beam in elevation; azimuth coverage is
obtained by scanning the beam.

The elevation shape of the beam must provide sufficient gain for detection of
aircraft up to a certain altitude and angle of elevation and out to the maximum range
of the system. To accomplish this without wasteful use of available power, the general
shape of the coverage in the vertical plane should be as indicated in Fig. 1-8.

A'RCR‘%:. RADAR BEAM

-

LOCATION

1
|
1
|
Ih
OF RADAR !
!

[l
VA7 L7227, Y7 Y
FiG. 1-8 Vertical beam shape (amplitude) of ground-based radar for
detecting aircraft up to a certain altitude.

To maintain a fixed minimum of illumination on the aircraft at various points
along the upper contour of the coverage diagram, it is necessary that the amplitude
of the antenna pattern be proportional to the distance r from the antenna to the air-
craft on the upper contour. In other words, the coverage contour of Fig. 1-8 can be
taken to be the amplitude pattern of the antenna. Since r = h csc 8, the amplitude
pattern must be proportional to csc 8, or the power pattern (or gain) must be propor-
tional to csc? 6. Such proportionality must hold over the required coverage pattern;
thus, such a pattern is said to have a csc?shape.

In the case of a csc? pattern, note that the gain is proportional to csc? 8 and the
range is proportional to csc 6. Thus, we see from Eq. (1-18) that a target of constant
cross section approaching at a constant altitude will produce a constant received-signal
level.

Antenna radiation patterns are three-dimensional, but we have a need to describe
them on two-dimensional paper. The most popular technique is to record signal levels
along great-circle or conical cuts through the radiation pattern. In other words, one
angular coordinate is held fixed, while the other is varied. A family of such two-dimen-
sional patterns then can be used to describe the complete three-dimensional pattern.

Patterns usually are displayed as relative field, relative power, or logarithmic
relative power versus angle on rectangular or polar diagrams. The rectangular dia-
gram can easily be expanded along the angular axis by merely changing diagram
speed relative to the angular rate of the antenna positioner; this is a big advantage
when measuring patterns of narrow-beam antennas. Polar diagrams give one more
realistic “pictures” of the radiation pattern, so they often are used for broad-beam
antennas.

Another popular technique for displaying patterns is the radiation distribution
table. In this type of display, signal levels are plotted in decibels at preselected inter-
vals of the two angular coordinates, ¢ and 6. A contour appearance is obtained by
printing only the even values of signal level and omitting the odd values.

With the advent of computers, a new type of ““three-dimensional” pattern display

g
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has become popular. The two orthogonal far-field angles are represented by the base
of the display, and relative gain is represented by height above the base. Such pattern
displays can be generated from either calculated or measured gain data.

1-6 ESTIMATING CHARACTERISTICS OF
HIGH-GAIN ANTENNAS

There are many occasions when it is desirable to make quick estimates of the beam-
widths and gains of aperture antennas. A convenient rule of thumb for predicting 3-
dB beamwidths is

BW, 45 = k% (1-19)

where k is a beamwidth constant, X is the wavelength, and D is the aperture dimension
in the plane of the pattern.

Most antenna engineers seem to use a value of ¥ = 70°. This is adequate for
most rough estimates; however, more accurate estimates must take into account the
fact that the value of k depends upon the aperture illumination function. Generally
speaking (but not always), illumination functions that yield lower sidelobes result in
a larger value of %.

Komen® reported on the variation of the beamwidth constant for reflector-type
antennas. From computed patterns for various edge illuminations, he determined that

k = 1.052381 + 55.9486 (1-20)

where [ is the absolute value of edge illumination (including space attenuation) in
decibels and k is in degrees. (In practice, one normally would calculate % to only a
few significant figures.) By applying Egs. (1-19) and (1-20) to measured data from
several antennas, Komen concluded that the relationship between beamwidth and
edge illumination holds regardless of frequency, reflector size, reflector type, or feed
type.

The beamwidth constant and approximate sidelobe level versus edge illumination
for reflector-type antennas are illustrated in Fig. 1-9. The beamwidth constants for
antennas having one of several special aperture distributjons are illustrated in Figs.
46-7 and 46-9 in Chap. 46.

. A convenient rule of thumb for predicting gain (of a relatively lossless antenna)
is
X

vy (1-21)

G =

where X is a unitless constant and 6, and 6, are the 3-dB beamwidths (in degrees) in

the two orthogonal principal planes. The correct value of K for an actual antenna

depends on the antenna efficiency. A popular value used by many antenna engineers

is 30,000, but many other values are in use, For example, Stutzman and Thiele!® sug-

Best a value of 26,000, and Stegen'! suggests a value of 35,000. One should subtract

ibout 1% dB from the estimated gain for antennas with cosecant-squared-shaped
eams,
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Beamwidth Constant, k(°)
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FIG. 1-9 Beamwidth constant and approximate first sidelobe level versus edge illumination
(including space attenuation) for paraboloidal-reflector antennas. The SLL curve is solid for
plane-wave feeds and dashed for feeds having parabolic primary patterns (dB versus angle).
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2-1 RADIATION FROM ELECTRIC
CURRENT ELEMENTS

One of the types of radiators frequently used in antenna practice is some form of thin
wire arranged in a linear configuration. If the current distribution on such a wire is
known or can be assumed with a reasonable degree of accuracy, then the radiation
pattern and the radiated power can be computed. This computation is based on the
integration of the effects due to each differential element of the current along the wire.
It is therefore of interest to set down the complete expressions for the fields at any
distance due to a differential element of current oriented along the z axis as shown in
Fig. 2-1. The rms electric and magnetic field components are given as follows:

E, = 608% dz {@lr? - (6Jr ,] cos § e
E, = j308? 1__J 1 in g e=r
s = j308%I dz &G G fe

.8 [L_ J ] in 8 =¥
H,—j41rldz & Gy} sinfe

E,=H =H=0

where I dz = moment of differential current element (I is given in rms amperes and
dz is given in meters.)

= distance, m, to observation point

= 2x/\

= wavelength, m

= V=1

E is given in volts per meter

H is given in amperes per meter
A time factor of e* has been omitted, since for all the cases in which we are

interested it is assumed that we have a sinusoidally time-varying current of constant
frequency.
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FIG. 2-1 Coordinate system for an electric
dipole.



Fundamentals of Antennas 2-3

For most problems of interest it is only necessary to know the components in the
far field, i.e., when r is very much greater than the wavelength. Under these condi-
tions, the field components are simply given by

3081 dz sin 6 e
r

e =7

.60rl dz
=1J

sin 8 e #"

BI dz
4rr

Ey
1207

These expressions apply only for a very short element of current having a con-
stant value along its length. However, they may readily be used to determine the field
from any wire having a known current distribution by integrating the field due to each
of the differential current elements along the length of the antenna. Taking into
account the variation of current and the phase differential due to the varying distance
from the observation point to each current element, the general expression for the field
of any current distribution becomes

sin 0 e~

Hy=j

ing 2 ‘
E, = jS0rsnd f I(z) dz e®
rA -¢2

where both I(z) and r(z) are now functions of z and the integration takes place along
the length of the antenna from —£/2to +£/2.
For very short antennas, the above expression can be simplified to

in 0
j 60 sin LL.e

E' =
where I, = current at center of antenna
L, = effective length of antenna defined as

1 /2
L. =— J. K(z) dz
Io —t/2

The effective length is of interest in determining the open-circuit voltage at the ter-
minals of a receiving antenna. It is also used on occasion to indicate the effectiveness
of a transmitting antenna.

For a short top-loaded linear antenna which has uniform current distribution as
shown in Fig. 2-2a, the effective length is simply equal to the physical length. For a
short antenna which is much less than a half wave long, as shown in Fig. 2-254, the
current distribution is essentially triangular and its effective length is one-half of its
physical length.

For antennas with an overall length greater than about a quarter wavelength, the
variation of the phase term cannot be neglected and the integral must be evaluated
by taking this term into account. The method will be very briefly illustrated for the
case of a thin half-wave radiator which can be assumed to have a sinusoidal current
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FIG. 2-2 Current distribution on a short lin-  FIG. 2-3 Coordinates for computing radia-
ear antenna. (a) With top loading. (b) tion from a half-wave dipole.
Without top loading.

distribution so that I(z) is given by I cos 8z. The geometry for finding ~(z) is shown
in Fig. 2-3, from which it is readily seen that

nz) =r—zcosd

The field for a half-wave dipole is then given by

60 sin 6 [t )
E, = jOL;lE— Toe %" j cos Bz e/ = dz

r ~e/2
601 cos (g cos 0)
E, =] 20 e

¢ r sin 8

which reduces to

The relative-radiation pattern for a half-wave antenna is shown in solid lines in
Fig. 2-4. For comparison purposes, the relative-radiation pattern of a very short dipole
is shown in dotted lines. The patterns shown are those in a plane which contains the
axis for the antenna. The pattern in the plane perpendicular to the antenna is perfectly
circular because of symmetry.

There are a number of other properties for the half-wave dipole which are of
considerable interest, such as radiation resistance, gain, and input impedance. These
properties are discussed in Chap. 4.

The method of computing radiation
—— —— patterns for thin linear radiators is basic
regardless of the length or complexity of
shape. As a matter of interest, the follow-
ing formula gives the radiated field from a
center-fed thin wire of arbitrary length £
with an assumed sinusoidal current
distribution:

\\_—/ — -

Be Bé
—— HALF-WAVE DIPOLE _jgr €O | =5 cos 8) — cos—
— —— SHORT DIPOLE , 601pe™ 2 2
]

FIG. 2-4 Radiation patterns. / r sin 8
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It will be noted that the radiated field perpendicular to the antenna continues to
increase as the length is increased until the overall length is about 1% wavelengths.
Beyond this point the field starts falling off. When the overall length is two wave-
lengths, the field is zero normal to the axis of the antenna. For this length, the radia-
tion pattern has broken up into two major lobes which are directed off the normal to
the antenna. For a still longer length the antenna pattern will continue to break up
into a large number of lobes whose positions depend on overall length of the antenna
(Chaps. 4 and 11).

2-2 RADIATION FROM MAGNETIC
CURRENT ELEMENTS

Another basic radiator which is frequently used in antenna practice is a magnetic
current element. Although magnetic currents do not exist in nature, a number of con-
figurations produce fields identical with those which would be produced by a fictitious
magnetic current. For instance, a circular loop carrying electric current whose diam-
eter is very small in terms of wavelengths will produce fields which are equivalent to
those of a short magnetic dipole. The fields for any distance are given by the following
expressions:

&=mﬁm[1 J]muw

Br = (Br)?
3 : 1
H, = zﬁ—wdm [@Jr?-*_ (ﬁr)’] cos § e Jr
3 1 ' 1 ]
H, = —f—ﬁ_dm [E—ﬁ—w]smﬂe”

E,=E,=H,=0

where the coordinate system is as shown in Fig. 2-5, and dm is defined as the differ-
ential magnetic dipole moment. For a small-diameter loop, the magnetic moment of
the loop is equal to the electric current I flowing through the loop times its area 4.

For the far field, when r is very much greater than the wavelength, the field
components reduce to

0 2
E, = ﬁ;ﬂ sin 0 e ¥
2 4
Hy = — 2 msinﬂe‘f‘”
4rr
= — E,
1207

It will be noted that the field expressions for the magnetic current element are
almost exactly analogous to those for the electric current element except for the inter-
change of electric and magnetic quantities. The radiation of a short magnetic dipole
or a small-diameter loop is also a doughnut pattern, as in the case of an electric dipole.
For a small loop the radiation pattern in the plane of a loop is perfectly circular, while
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FIG. 2-5 Coordinate system for a mag- FIG. 2-6 (&) Thin slot in ground plane.
netic dipole. ( b) Complementary dipole.

the pattern in the plane through the axis of the loop is a figure of eight whose ampli-
tude is proportional to sin 8. The expressions given are accurate for loop diameters
which are considerably less than one-tenth wavelength. As a matter of fact, for very
small loops, the radiation pattern does not depend on the exact shape of the loop,
which may be square, rectangular, or some other shape, provided the overall circum-
ference remains much less than a quarter wavelength.

For loops whose diameter is of the order of the wavelength, the radiation pattern
can deviate considerably from the doughnut form, depending on the nature of the
current distribution along the loop and diameter of the loop. These considerations are
treated in Chap. 3.

Another antenna whose radiation characteristics are essentially similar to those
of a magnetic dipole consists of a very thin slot in an infinitely large metallic ground
plane, as shown in Fig. 2-6a. For this type of antenna, the electric field is applied
across the narrow dimension of the slot. It is possible to show that the field radiated
by this slot is exactly the same as would be radiated by a fictitious magnetic dipole
with a magnetic current distribution M which is numerically equal to the distribution
of electric voltage V across the slot. Thus the radiation pattern of a thin rectangular
slot is identical with the radiation pattern of the complementary electric dipole which
would just fill the slot, as shown in Fig. 2-6b. The only difference between the two
types of radiators is the fact that the electric and magnetic quantities have been inter-
changed. This complementary relationship has been treated in considerable length in
technical literature and will not be elaborated on in this section.

It is pertinent to point out a few precautions concerning the application of these
complementary relationships. For one thing, the complementary relationship is based
on the assumption that only electric field exists within the slot and that no magnetic
field is present. This is true only for vanishingly thin slots. For slots whose width is
appreciable in comparison with their length, the above assumption is no longer valid
and the radiation pattern will be somewhat modified as compared with the case of the
very thin slot. Another agsumption on which the complementary relationship is based
is that the size of the conducting ground plane is infinitely large. This, of course, is
never true in practice, and for finite ground planes the size of the ground plane may
exert a large influence on the radiation pattern, particularly at angles close to the
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plane of the sheet. Even for sheets which are fairly large in terms of wavelength, there
are some minor modifications of radiation pattern.

It might also be mentioned that the complementary relationship holds only when
the slot is cut in a large flat ground sheet. For slots cut in circular cylinders, the pattern
can be considerably different from that predicted by the complementary relationship,
particularly in the plane perpendicular to the axis of the cylinder. However, use of the
complementary relationship is still very useful to engineers as an intuitive guide, and
while in many cases the results will not be exact, they will certainly give a first approx-
imation to the actual radiation pattern.

2-3 ANTENNAS ABOVE PERFECT GROUND

The characteristics of antennas operating near ground level will be modified by the
effect of ground reflections. This is particularly true of antennas operating at frequen-
cies below 30 MHz when the height of the antenna above ground may be less than
one or two wavelengths. For airborne antennas or for large-aperture, narrow-beam
antennas, in which the main beam is elevated upward at least several beamwidths, the
ground may play a relatively small role. In all cases, the ground will play a part in the
propagation between transmitter and receiver, and to compute its effect the charac-
teristics of the ground and the geometry of the propagation path, as well as the pattern
characteristics of the receiving and transmitting antennas, must be known.

For antennas at relatively small heights above ground, the ground is a basic part
of the antenna system and will affect not only the radiation pattern of the antenna but
also its impedance properties. To obtain a first-order estimate of the effect of ground,
simple image theory can be applied to the case of a perfectly conducting ground sur-
face. It is well known from electromagnetic theory that the tangential field on a perfect
conductor must be zero and that the electric field must be normal to the conducting
surface. To satisfy this requirement, a conducting charge above a conducting plane
will induce a charge distribution on the plane exactly equivalent to that which would
be produced by an equal charge of the opposite sign at the same distance below the
plane, as shown in Fig. 2-7a. Since current is a movement of charge, it is readily
possible to deduce the direction of the images for vertical, horizontal, and inclined
wires above ground, as shown in Fig. 2-7b-d. The image for any other configuration
can readily be determined by using the rule that vertical components are in the same
direction while horizontal components are in opposite directions.

ANTENNA
+ o * — /

GROUND

! ~,
- *: Dt \\
| ~ IMAGE
(a) (b) (c) {d}
FIG. 2-7 images above a perfectly conducting ground plane. (a) Point
charge. ( b) Vertical wire. (c) Horizontal wire. ( d) Inclined wire.
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The field in any direction above the ground plane can easily be determined by
replacing the ground plane by the image and computing the resulting field due to the
antenna plus its image. This is valid above the ground plane, since for a perfect con-
ductor the field below the ground plane is zero.

Although the above method is rigorously true only for antennas above highly
conducting ground, it does give good results in many cases of interest. The same tech-
nique can be used when the ground has arbitrary values of conductivity and dielectric
constant by assuming an image current which is related to the antenna current by the
ratio of the complex-reflection coefficient for the appropriate angle of incidence.

The effect of the ground on the impedance of an antenna can also be determined
by image theory. For instance, the input impedance of an antenna above perfectly
conducting ground is simply the input impedance of the antenna in free space plus the
mutual impedance due to the image antenna. For arbitrary ground, the same sort of
relation is still true except that the mutual impedance due to the image must be mul-
tiplied by the complex-ground-reflection coefficient for normal incidence.

A special case of considerable interest occurs when one end of the antenna above
ground is exactly one-half of the input impedance of the antenna plus its image when
driven in free space. For example, the input impedance of a quarter-wave dipole above
ground is exactly one-half that of a half-wave dipole in free space.

2-4 RADIATION FROM APERTURES

The computation of radiation patterns for linear-wire antennas is relatively simple if
the current distribution on the wire is known. The current distribution is not usually
known exactly except for a few special cases. However, physical intuition or experi-
mental measurement can often provide a reasonable approximation to the current dis-
tribution, and for many engineering purposes a sufficiently accurate result can be
obtained. In theory, of course, an exact result can be derived from a boundary-value
solution if the nature of the exciting sources is known. From a practical point of view,
the amount of labor involved in obtaining numerical results is excessive even for those
cases in which the geometry is relatively simple and a rigorous solution can be
expressed in terms of a series of tabulated functions. It is therefore necessary in many
situations to be able to compute the radiation pattern by alternative methods based
on a reasonable assumption of the nature of the electromagnetic fields existing in the
vicinity of an antenna structure.

The Equivalence Princlple

One powerful technique for simplifying this type of computation makes use of an
equivalence principle given by Schelkunoff.!? Briefly stated, this principle supposes
that a given distribution of electric and magnetic fields exists on a closed surface
drawn about the antenna structure. These fields are then canceled by placing a suit-
able distribution of electric and magnetic current sheets on the closed surface so that
the fields inside the closed surface are zero. The radiation is then computed from the
electric and magnetic current sheets and, except for a difference in sign, is identical
to the radiation which would have been produced by the original sources inside the
closed surface. It will be noted that this principle is essentially a more rigorous for-
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mulation of Huygens’ principle. If the fields on the closed surface are known exactly,

then the resulting computation is also exact. The degree of approximation which can

When the electric and magnetic field strengths are respectively given by £ and
H, then the equivalent densities are given by

Electric current density: J=nXH
Magnetic current density: M= -aXE

where both J and H are expressed in amperes per meter and M and F are expressed
in volts per meter.

The vector cross product has been used to show that the electric current is per-
pendicular to direction of propagation and to the magnetic field vector. If the initial
E and H fields are as shown in Fig. 2-8a, then the resulting electric and magnetic
currents are directed as shown in Fig. 2-85,

One way of visualizing the effect of a small portion of the wavefront is to consider
the physical equivalent of the electric and magnetic current sheets, The electric cur-
rent is equivalent to a short electric dipole, while the magnetic current is equivalent
to a short magnetic dipole or a small electric current loop, as was discussed in Sec. 2-

{o

(a)

)
(b)
M

\
/

MAGNETIC DIPOLE OR
ELECTRIC CURRENT
(Relel

ELECTRIC

(e) DIPOLE

FIG. 2-9 Radiation patterns in plane of
n electric current loop. (a) Pattern of
FIG. 2.8 Cyrrent sheet relations. (a) Ini- electric current loop. ~~-— Pattern of elec-
tial £ and H fields. (&) Resulting electric tric dipole. ( b) Cardioid pattern due to com-
and magnetic currents. (c) Orientation of bination of electric current loop and electric
electric dipole and electric current loop. dipole.
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2. The electric dipole is oriented in the direction of the electric field E, while the elec-
tric current loop is located in the plane defined by the electricfield E and the direction
of propagation n, as shown in Fig. 2-8¢.

If we look at the radiation pattern in the plane of the loop, the component due
to the electric dipole will have a cos § type of variation while the component due to
the electric current loop will have a cir-
cular pattern as shown in Fig. 2-9a. For
a portion of wavefront in free space in
which the E and H fields are related as

E = 120=H

the relative amplitudes of the two com-
ponents will be such that the radiation
pattern of the combination is given by (1
+ cos 6) or a cardioid pattern as shown
in Fig. 2-9b.

Although the concept of the electric
and magnetic current sheets is most use-
ful for derivation purposes and for
obtaining a physical picture of radiation
from apertures, it is possible to compute
the reradiated field from an aperture
directly in terms of the tangential electric
and magnetic field components in the aperture itself. With reference to Fig. 2-10, the
aperture lies in the xy plane with field components E\® and H®. At a distant point
P, the radiation components of the electric field are given by

FIG. 2-10 Coordinates for current sheet
computation.

E, = —jlE® + 120xH{Y cos 6] 00;;# dx dy e
E, = + JIE® cos§ + 120w H{"] 5%;—" dx dy e

The above is true for an aperture in which E® and H{? take on arbitrary values.
An important special case is that in which the field components are the same as exist
in a free-space plane wave. For this case

E® = 1207HY

and the distant fields are now given by

E, = —jE®( + cos 6) 5;—;” dx dy e

E, = JE®(1 + cos 6) s—‘;;r‘f dx dy e

Applications of the Equivalence Principle

One typical application of these results is to the problem of determining the radiation
patterns from an electromagnetic horn.’ The tangential fields at the aperture of such
a horn can be approximated by assuming that the fields at the aperture plane are the
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same as would be obtained if the guiding surfaces of the horn were extended to infin-
ity. Although not exact, this assumption is quite good when both linear dimensions of
the aperture are greater than one or two wavelengths. After this assumption of the
electric and magnetic fields at the aperture, the far-field relationships are then for-
mulated by taking the fields across the aperture and integrating over the aperture,
taking into account the amplitude and phase variations of the field incident on the
aperture and the phase differential due to the varying distance from the observation
point to each area element of the aperture.

The above method gives results which are good to a high degree of approxima-
tion, particularly for large-aperture horns. The equivalence principle can also be used
with small-aperture horns, but caution must be exercised with regard to the assump-
tions of the relative values of electric and magnetic field strengths. In small horns, it
is not true that the aperture fields are those which would exist if the waveguide were
extended to infinity. For instance, in a waveguide radiator whose E-plane width is
small, the field at the aperture will be predominantly electric and the magnetic field
may be quite small. For this condition, the equivalent current sheet will consist mainly
of magnetic current, and for a small aperture this will have a substantial effect on the
radiation pattern, particularly in the E plane. For those cases in which it is possible
to measure the standing waves in the waveguide leading to the aperture, it is possible
to estimate the relative values of electric and magnetic field strength at the aperture
and to make a first-order correction to the radiation-pattern computation.

The equivalence principle can also be used to determine the radiation from the
open end of a coaxial line. For this case, the field at the aperture is predominantly
electric, with only a small component of magnetic field. The field variation in the aper-
ture is assumed to be that of the dominant mode in the coaxial line. The problem is
readily formulated in cylindrical coordinates.*

Another problem which can be solved by using the equivalent-current-sheet
method is the case of reflection from a conducting sheet such as paraboloidal reflector
or a plane reflector as employed in microwave relay applications. To formulate this
problem, the tangential fields that would have existed if the reflector were not present
are determined by using only the magnetic field term for the aperture field and inte-
grating over the surface, taking into account variations of the aperture field amplitude
and phase and the phase differential to the observation point.

2-5 |MPEDANCE PROPERTIES OF ANTENNAS

Self-impedance

The input impedance of an antenna is a characteristic of considerable interest to engi-
neers since they are concerned with the problem of supplying the antenna with the
maximum amount of transmitter power available or in abstracting the maximum
amount of received energy available from the antenna. Except for the simplest types
of antenna configuration, the theoretical computation of the input impedance is an
extremely arduous task, and for a large number of antenna types it is usually easiest
tf) make a direct experimental measurement of the input impedance. However, for
linear antennas which are relatively small in size, it is possible to make some reason-
ably good estimates as to the magnitude of the input resistance. It is also possible 1o
assess, with a reasonable degree of accuracy, the mutual impedance between linear
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radiators for the purpose of estimating the input impedance of an individual element
in an array of radiators.

In most practical cases, the input impedance of even a simple antenna is affected
to a considerable degree by the terminal conditions at the point where the transmission
line feeds the radiator. For most accurate results, it is therefore necessary to measure
the various impedances involved and to use the calculated values primarily as a guide
during the design procedure.

For very short wire dipoles, the radiation resistance is a quantity which is closely
allied with the resistive component of the input impedance. The radiation resistance
is normally defined as the ratio of the total power radiated by an antenna divided by
the square of the effective antenna current referred to a specified point. For short
antennas this is a useful quantity because it enables one to estimate the overall radia-
tion efficiency of the antenna by separating the radiation component of the input resis-
tance from the loss resistance due to the ground system or the loss resistance due to
the impedance-matching elements.

To compute the radiation resistance, it is necessary to know the radiation field
pattern of the antenna in terms of the current flowing at the point to which the radia-
tion resistance is referred. The total radiated power is then computed by integrating
the total power density passing through a sphere surrounding the antenna. This com-
putation will be carried through very briefly for the case of a very short dipole having
an effective length L, and carrying a current I, The electric field intensity for this
antenna is given in Sec. 2-1 as

60m Iy L
|E,| = XM ote in g
23

The power density in the far field is given by the Poynting vector, which is equal to
E?/120w, where the electric field is given in rms volts per meter and the power density
is expressed in watts per square meter. Integrating over a large sphere surrounding
the antenna, we then obtain

x 2
P= L —E'—Z-:rrzsinGdG

1207
80232
- %
Dividing this result by I3, we obtain
Lz
R, = 80r* 3

where R, is a radiation resistance in ohms. It will be noted that the important variable
is the ratio of the effective length L, to the wavelength and that the larger this ratio
the greater the radiation resistance. Thus for a short antenna of physical length ¢
which is top-loaded so as to give a uniform current distribution, the effective length
will be equal to the physical length and the radiation resistance will be 80x?¢2/A2 For
an antenna with no top loading, the current distribution will be triangular (Sec. 2-1),
and the effective length will be equal to one-half of the physical length, so that the
radiation resistance will be 20w2£2/)% It can be seen that the radiation resistance for
the uniform-current case is thus equal to 4 times that obtained in the case of triangular

S e o i DS
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current distribution, despite the fact that the radiation pattern and directivity are the
same for both antennas since their length is small with respect to the wavelength.

The problem of computing the input impedance of a dipole of finite diameter
whose length is of the order of a half wavelength is one that has been considered at
great length by a number of writers. The subject is treated in detail in Chap. 4, where
a considerable amount of measured data is presented.

For the case of a very thin half-wave dipole, the input resistance may be com-
puted by assuming a sinusoidal current distribution and integrating the total power
radiated over the surface of a large sphere, in the same fashion as just described for
the short current element, Using the far field for the half-wave dipole as given in Sec.
2-1 and performing the appropriate operations, the input resistance of the half-wave
thin dipole is found to be 73.1 Q. The reactive component of the input impedance
cannot be determined by the far-field method since the reactance is governed primar-
ily by the electromagnetic fields in the vicinity of the antenna itself. The input reac-
tance is also a function of the relative diameter of the dipole and of the terminal cop-
ditions at the driving point.

Mutual Impedance

In an array of antennas, the driving-point impedance of an individual element may
differ considerably from its self-impedance because of the effect of mutual coupling
with other elements of the array.® In a multielement array, the relations between the
currents and voltages are given by

Vl = IIZ“ + IZZ]Z + .- + I,,Z],,
VZ = I]Z]z + IzZzz + .- + InZZ;I

Va=hZ,+ LZ,,+ - - + 1,Z,,

= impressed voltage at nth element
I, = current flowing in nth element
Z,, = self-impedance of nth element
Zom = Z,,, = mutual impedance between mth and nth elements

The driving-point impedance for element 1, for instance, is found from the ratio
of the impressed voltage to the current and is obtained from the above equations as
follows:

12 [’l
11 11 12 11 In

Vi

Zlinpul = I_l

between elements. In an array in which the current distribution in the elements is
critical because of pattern requirements, it is necessary to determine the input imped-
ance from the above relationship and to design the transmission-line coupling system
to match the input impedance rather than the self-impedance. Some examples of this
are given in Ref. 6.
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An alternative method for accurately controlling the current distribution in cer-
tain types of arrays is to use a transmission-line distribution system which forces the
required current to flow in an antenna element regardless of the effect of mutual
impedance. For instance, the constant-current properties of a quarter-wave line are
such that the current in a load at the end of a quarter-wave line is equal to the driving
voltage divided by the characteristic impedance of the quarter-wave line regardless of
the load impedance. This property is also true for a line whose length is an odd number
of quarter wavelengths. Thus, for example, in order to feed an array of four dipole
elements with exactly equal currents regardless of mutual coupling, the length of
transmission line from the dipole to the junction would be an odd number of quarter
wavelengths. By making use of the constant-voltage properties of a half-wavelength
transmission line, it is possible to build up a distribution system to feed a large number
of antenna elements by means of combinations of half-wave and quarter-wave lines.
It is worth mentioning that although the uniform half-wave line behaves as a voltage
transformer with a transformation ratio of 1, it is possible to obtain other transfor-
mation ratios by constructing the half-wave line of two quarter-wave sections of dif-
fering characteristic impedances.

In many situations it is not possible to sidestep the effects of mutual coupling and
it is necessary to have a reasonably accurate estimate of the value of mutual imped-
ance between antenna elements. It is possible to calculate the mutual impedance for
very thin dipoles, and the results are given in Chap. 4 for several cases of interest.
Although the finite diameter of a dipole does have some effect on the magnitude of
the mutual impedance, the effect is a second-order one and for many computations
may be neglected. This is not true for self-impedance, whose value is very definitely a
function of the dipole diameter.

For antenna elements other than the simple dipole or slot radiator, little theo-
retical work is available on the magnitude of mutual-coupling effects and it is neces-
sary to use experimental methods for determining the mutual impedance. Even in the
case of dipole elements, it is frequently desirable to measure the mutual impedance,
particularly for a dipole whose diameter is not small compared with its length.

Several experimental methods are available. When the antenna elements are
identical and reasonably small physically, one simple method is to measure the input
impedance when the element is isolated and then to repeat the measurement when a
ground plane is placed near the element to simulate the effect of an image. The dif-
ference between the two impedance measurements is the mutual impedance for a dis-
tance corresponding to the distance between the driven element and its image. An
alternative method when two elements are available is to measure the input impedance
when one element is isolated, and then to repeat the measurement when the second
element is in place and has a short circuit across its terminals.

2-6 DIRECTIVITY PATTERNS FROM CONTINUOUS
LINE SOURCES

For antenna systems that have apertures which are very large in terms of wavelength,
it is frequently desirable to use a continuous type of aperture distribution because of
the relative simplicity, as compared with a discrete-clement type of array which
requires a large number of driven elements. For instance, a common form of large-
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aperture antenna is a paraboloidal reflector illuminated by a point-source feed. To
replace an aperture of the order of 100 wavelengths in diameter by a discrete-element

be fed with current of the correct amplitude and phase.

For very large apertures it js apparent that a reflector type of antenna is consid-
erably simpler than a discrete-element array. In addition, the reflector can be made
to operate over a wide range of frequency simply by changing the feed, while a dis-

tor system will offer some improvement because of the elimination of blocking by the
feed and its supports, but even for this type of structure special techniques are nec-
essary to achieve sidelobe levels lower than 30 dB down.

Although the continuous-aperture type of antenna has practica] limitations with

Line-Source Distributions

For line sources, the current distribution is considered to be a function of only a single
coordinate. The directivity pattern E(u) resulting from a given distribution is simply
related to the distribution by a finite Fourier transform,”~® as given below:

E(uw) = g f_:lf(x)e-’“" dx

where f(x) = relative shape of field distribution over aperture as a function of x
u = (xf/\) sin ¢
¢ = overall length of aperture

¢ = angle measured from normal to aperture

* = normalized distance along aperture —1 < x < |

The simplest type of aperture distribution is the uniform distribution where Ax)

= 1 along the aperture and is zero outside of the aperture. The directivity pattern is
given as

sin u sin [(ng) sin ¢J
i
E(uy=¢ =/

u (,,._g .
X sin ¢
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This type of directivity pattern is of interest because of all the constant-phase
distributions the uniform distribution gives the highest gain.” As in the case of the
discrete-element uniform distribution, it also has high sidelobe levels, the intensity of
the first sidelobe being 13.2 dB down from the maximum.

The intensity of the sidelobe levels can be reduced very considerably by tapering
the aperture distribution in such a way that the amplitude drops off smoothly from
the center of the aperture to the edges. There are an unlimited number of possible
distributions. However, a few simple types of distributions are typical and illustrate
how the beamwidth, sidelobe level, and relative gain vary as a function of the distri-
bution. Table 2-1 gives the important characteristics of several distributions having a
simple mathematical form.

TABLE 2-1 Line-Source Distributions

WALF POWER | _ ANGULAR
BEAMWIDTH IN| DISTANCE TO
TYPE OF DIRECTIVITY DEGREES | FIRST ZERO |INTENSITY OF | can
DISTRIBUTION PATTERN Ist SIDELOBE | xcToR
-l xs| E(u) _ﬂ_ C ; db BELOW  MAX|
(]
sinu A A
—l—_—_I 01+| s 50 50.8% 573% 13.2 10
tlx)=1
a={10 5084 5734 13.2 10
siny
I |T 20+ =~ 8 s2.7% 60.75- 158 94
T | e 5563 6533 7.1 970
- 2
fHx)el-{I-A)xE du 0 65.9% 8193 206 833
_ﬁl_ ws COS U A iy
I v 6883 859 23 810
cos 3 b
AN DY
= | P ez} 1465 2 867
cos2 5
sin
. 4 (== 734% 463 264 s
0 H 2\ 4 4 24
Hx=i-1x 2

Of considerable interest is the manner in which the sidelobes fall off as the angle
from the main beam increases or as u increases. For the uniform distribution which
has a discontinuity in both the function and its derivatives at the edge of the aperture,
the sidelobes decrease as »~. For the gable distribution or for the cosine distribution,
both of which are continuous at the edge of the aperture but which have a discontin-
uous first derivative, the far-out sidelobes fall off as 4~2. For the cosine-squared dis-
tribution which has a discontinuous second derivative, the far-out sidelabes fall off as

u
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Many distributions actually obtained in practice can be approximated by one of
the simpler forms or by a combination of simple forms. For instance, suppose that it
were desired to find the directivity pattern of a cosine-squared distribution on a ped-
estal, i.e., a combination of a uniform distribution and a cosine-squared distribution
as given by

f(x) = C + cos? %x
The resulting directivity pattern is then obtained directly by adding the two functions
for the directivity pattern as follows:
2

sin u

E(u) = Co= L

2 u wt—u?

It should be noted that the sidelobes and other characteristics of the pattern must
be obtained from the new directivity pattern and cannot be interpolated from Table
2-1. It is of some interest to note that by choosing the proper relative intensities of a
uniform distribution and a cosine-squared distribution, it is possible to obtain a theo-
retical sidelobe level which is very low. For instance, if C = 0.071, then the intensity
of the largest sidelobe will be 43 dB below the maximum of the main beam with a
half-power beamwidth given by 76.5A/¢, a value which is somewhat lower than that
for the cosine-squared distribution by itself.

In recent years, work has been done on line-source distributions which produce
patterns approaching the Chebyshev type of pattern in which all the sidelobes have a
constant level. Van der Maas'® has shown that it is possible to find the element exci-
tations for a discrete array with a large number of elements by determining the shape
of the envelope function as the number of elements is increased indefinitely.

80 This problem has also been investi-
gated in detail by Taylor!! for the case of
/ a continuous line-source distribution. Of
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1 considerable interest is the relationship
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@
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between the half-power beamwidth ver-
500 V.

sus the sidelobe ratio for the ideal space
factor (i.e., the equal-sidelobe type of
space factor) since this relationship rep-
resents the limits of the minimum beam-
width that can be obtained for a given
40° sidelobe level. Figure 2-11 is taken from
Taylor’s paper. For the details of com-
puting the desired space factor, the

30°
f reader is referred to the original paper.!!
For many applications the equal-
0 30 40 so Sidelobe-level pattern may be undesira-
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FIG. 2-11 Half-power beamwidth (multi-
plied by the aperture-to-wavelength ratio)
versus sidelobe ratio for an ideal space
factor,

ble, and a more suitable pattern would be
one in which the sidelobes decrease as the
angle from the main beam, or the param-
eter u, increases. Work on this form of
distribution has been carried out by
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Taylor'? in an unpublished memorandum. Basically, the approach is to represent the

directivity pattern by a function of the form

() = sin

W — ©°B

smvy — %
Vi — # B2

where the ratio of the main beam to the first sidelobe is given by

R = 4.603

sinh =B

i

B

When B is equal to zero, the directivity pattern reduces to the familiar sin u/ u for the
case of a uniform distribution and the first sidelobe ratio is 4.603, or 13.2dB.
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FIG. 2-12 Half-power beamwidth (muilti-
plied by the aperture-to-wavelength ratio)
versus sidelobe ratio for space factor
defined by
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As B is increased in value, the side-
Jobe ratio increases, and by the appropri-
ate choice of B a theoretical sidelobe level
as low as desired can be chosen. Tt will be
noted that because of the expression for
the directivity, at large values of u the
sidelobes decrease as 1/u. Hence we have
a directivity pattern whose sidelobes
decrease in a similar fashion to that of
the uniform distribution but has the prop-
erty that the maximum sidelobe level can
be arbitrarily chosen.

Fortunately, the aperture distribu-
tion function for this type of pattern has
a relatively simple form and is given by

f(x) = J(jxBVI = )
=0

x| =1
|x} > 1

Jo is a Bessel function of the first kind
with an imaginary argument. Tables of
this function are readily available.!*"
Taylor has tabulated the important
characteristics of this type of distribu-
tion, and some of these data have been
plotted in Fig. 2-12. By comparing Fig. 2-
11 with Fig. 2-12 it can be seen that for

a given maximum sidelobe level the half-power beamwidth of the distribution produc-
ing a decreasing sidelobe pattern is approximately 12 to 15 percent greater than the
percent half-power beamwidth of the distribution which produces an equal-sidelobe
pattern. This nominal loss in theoretical performance is a small price to pay when
sidelobe levels must decrease as the angle from the main beam increases. When a
decreasing sidelobe level which falls off inversely as the first power of the angle is
desired, this type of distribution will result in a narrower beamwidth than that
obtained by distributions which produce sidelobes falling off as a higher inverse power

of the angle.
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2-7 PATTERNS FROM AREA DISTRIBUTIONS

Rectangular Apertures

The directivity pattern of an area distribution is found in a similar manner to that
used for line-source distributions except that the aperture field is integrated over two
dimensions instead of one dimension. If the aperture distribution is given by f(x,y),
where x and y are the two coordinates, then the directivity pattern is given by

E@®0,0) = [[f(x.y) oJ8 5in 0 (x cos ¢+ sin 9) 7. dy

The difficulty of evaluating this expression will depend on the form of the distribution
function. For many types of antennas, such as the rectangular horn, for example, the
distribution function is separable; that is,

S(xy) = f()f(y)

The directivity patterns in the principal planes are readily determined for the sepa-
rable case since the pattern in the xz plane is identical with the pattern produced by
a line-source distribution f(x), while the pattern in the yz plane is identical with the
pattern produced by a line-source distribution f(»). If the distribution function is not
separable, the integral must be evaluated either analytically or graphically.

Circular Apertures

An antenna that is frequently used in microwave applications is a paraboloid having
circular symmetry. The radiation pattern may be computed by projecting the field
distribution on the paraboloid to a plane at the opening of the paraboloid and com-
puting the directivity pattern due to the plane aperture.

If the field in the aperture plane is a function of the normalized radius r and the
aperture angular coordinate ¢', then the directivity pattern is given by’

2z 1
E(ug) = & J-o J-o S(r,¢)ehr o= 6~ dr dgy

where a = radius at outside of aperture

p = radius at any point of aperture

=p / a

u = (2ra/)\) sind = (xD/X) sin 8

D = 2a = aperture diameter
and f(r,¢') is the normalized aperture distribution function. The coordinates are as
shown in Fig. 2-13.

The simplest forms of aperture distributions to evaluate are those in which the

distribution is not dependent on the angular coordinate ¢’ but depends only on the
radial coordinate 7. The integral for the directivity pattern then becomes

1
E(u) = 2xa® J-o S()Jo(ur)r dr

When the distribution is constant, the integral becomes

E(u) = 2xa* !'-f‘i)
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It is frequently desired to evaluate the directivity pattern for an illumination
which tapers down toward the edge of the aperture. One function which is convenient
for representing the aperture distribution is

fin =0 -ry

This function behaves in a similar fashion to the nth-power distributions as discussed
for the line-source case (Sec. 2-6). When the exponent increases, the distribution
becomes more highly tapered and more concentrated in the center of the aperture.
When the exponent decreases and approaches zero, the distribution approaches uni-

form illumination.

P FIG. 2-13 Coordinates for a circular
y aperture.

TABLE 2-2 Circular-Aperture Distributions

HALF POWER ANGULAR
BEAMWIDTH IN| DISTANCE TO
DEGREES FIRST ZERO

TYPE OF DIRECTIVITY INTENSITY OF GAIN
DISTRIBUTION |  PATTERN 1st SIDELOBE FACTOR
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Evaluating the directivity pattern, we have

E(u)

1
2wa® J.o (1 — A?Jy(ur) dr

270\ T, (U a?
= rd? Pu::‘u( ) _ s )

Both the Bessel functions J,.1(u) and the lambda function A,, () are available in
tabular form."

The principal characteristics of the directivity patterns are given in Table 2-2 for
the cases p = 0, 1, 2. Comparison of the patterns of the uniformly illuminated circular
aperture (i.e., when p = 0) with the results for the uniformly illuminated line source
(Sec. 2-6) shows that the circular aperture has a lower sidelobe level and a broader
beamwidth. This would be expected since projection of the circular-aperture illumi-
nation onto a line would produce an equivalent line source which is no longer uniform
but has some degree of tapering.

Elliptical Apertures

In some applications an elliptically shaped refiector is used to permit control of the
relative beamwidth in the two principal planes and to control the sidelobes by shaping
the reflector outline. Computation of the directivity patterns for this aperture shape
can be carried out from a knowledge of the Fourier components of the illumination
function over the aperture.

2-8 EFFECTS OF PHASE ERRORS ON LINE SOURCES

The discussions on aperture distributions in Secs. 2-6 and 2-7 were concerned only
with those aperture distributions in which the field was in phase across the entire
array. In certain types of antenna systems, particularly those in which the beam is to
be tilted, deviations from a uniform phase front do occur, so that it is desirable to
evaluate the effects of phase errors on the directivity pattern.

For simplicity, the following discussions are limited to the case of a line-source
distribution. Results will be first derived for the simple uniform amplitude distribu-
tion, and graphical results will be presented for a tapered amplitude distribution.

The most common phase-front errors are the linear, quadratic, and cubic phase
errors. The linear phase error is expressed simply by

®(x) = Bix
where 8, = phase departure at edge of aperture

x = aperture coordinate as defined in Sec. 2-6
The directivity pattern is given by

1
E(w) = g J._lf(x)e"""e"""" dx

For a uniform illumination, the result is
sin (u — 6,)

Blu) = ¢ = —!
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Thus the directivity pattern has the same form as for the in-phase case except that
the pattern maximum is shifted in angle as defined by
U = ﬂ] or sin ¢0 = QI—A
xf

For other than a uniform illumination, the patterns will also be the same as for
the in-phase case, except that 4 — S, is substituted for u in the expression for the
directivity.

In the vicinity of the main beam, the directivity pattern is the same as that of an
aperture tilted by ¢, whose length is £ cos ¢¢. The half-power beamwidth is increased
by the factor 1/cos ¢, while the gain is decreased by cos ¢,. For small angles of beam
tilt, the pattern and gain are affected by only a minor amount.

The quadratic, or square-law, phase error is inherent in flared horn antennas. It
also occurs in lens-type antennas and reflector antennas when the feed is defocused
along the axis of symmetry. This type of phase error also appears when the directivity
pattern of an antenna is measured at a finite distance.

The quadratic phase error is expressed by

$(x) = Bx?
and the directivity pattern is expressed by
e ! .
E(u) = > f SF(x)e e P= dx
-1
The integral is not readily evaluated except when f{x) is constant or one of the cosine

distributions. For these cases, the directivity can be expressed in terms of the Fresnel
integrals. The directivity pattern for the uniformly illuminated case is given by'?

E(u) = g \/Z—W—;{C(mz) — C(my) — jIS(my) — S(my)]}

- 28, u
e = vr(l zm)

V(-5

and the Fresnel integrals are defined by

C(m) = LM cos <§ y’) dy

S(m) = J;m sin (g y2> dy

The expressions for the cosine and higher-order cosine distributions become increas-
ingly complicated, and the problem of computation becomes exceedingly laborious.
Some simplification in the computation problem can be obtained by the use of oper-
ational methods as developed by Spencer® and also by Milne.!* Figure 2-14a-c is
reproduced from Milne’s paper.

where

m

Lo T S
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FIG. 2-14a Effects of square-law phase error in radiation patterns
tor uniform aperturs illumination.

It will be noted that the principal effects of a quadratic phase error are a reduc-
tion in gain and an increase in sidelobe amplitude on either side of the main beam.
For moderate amounts of phase error, the nulls between the sidelobes disappear and

the sidelobes blend into the main beam, appearing as shoulders rather than as separate
sidelobes.

The cubic phase error is expressed by
B(x) = B;x*

Computation of the directivity integrals for the cubic phase error becomes even
more laborious than for the quadratic phase error, although the use of operational
methods for computation simplifies the formal handling of the problem. Some typical
results from Milne’s paper are given in Fig. 2-15a—c.
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FiG. 2-14b Effects of square-law phase error in radiation patterns
for cosine aperture illumination.

It will be observed that the cubic phase error produces a tilt of the beam in addi-
tion to a loss in gain. The sidelobes on one side of the beam increase in amplitude,
while those on the other side diminish.

In general, when the feed is moved off axis to tilt the beam, both a linear phase
term and a cubic phase term appear. The linear phase term causes a beam tilt which
is a function of the geometry of the antenna system. For the case of a parabolic reflec-
tor, the cubic phase term causes a lesser amount of tilt in the opposite sense so that
the resulting beam tilt is somewhat less than would be computed from geometrical
considerations. For this case, the sidelobe increase appears on the side of the beam
toward the axis.
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FIG. 2-14¢ Effects of Square-law phase error in radiation patterns
for cosine-squared aperture {lumination.

29 EFFECTS OF RANDOM ERRORS ON
GAIN AND SIDELOBES

T_he Preceding section has discussed the effect of systematic phase errors on several

In 2 given design and are a function primarily of the geometry of the antenna. In
addition to systematic errors, a problem which commonly arises is that caused by ran-
dom errors in both the phase and the amplitude across the aperture because of man-
ufacturing tolerances,
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FIG. 2-1548 Effects of cubic phase error on radiation pattern for uniform aperture
illumination.

An estimate of the effect of random errors can be made in at least three different
ways. The first method is to measure directly the radiation performance of the antenna
in question. By comparison with the computed performance, it is possible to estimate
the magnitude of the errors in the field distribution across the antenna.

The second method is to measure the amplitude and phase of the field distribu-
tion across the aperture. From these data, the effect of the errors on the antenna per-
formance can be computed.

A third method is to compute the effect of manufacturing tolerances on the
desired aperture distribution and from this, in turn, to compute the effect on the
radiating properties of the antenna. This method is of considerable interest to the
antenna designer, who must specify what sort of tolerances are necessary to achieve a
desired result. As is true in all fabrication work, extremely tight tolerances result in
excessive costs, while tolerances that are too loose can result in inadequate perfor-
mance or failure of operation. It is therefore desirable to know how much accuracy is
required for a given level of performance.

A theory of random errors is necessarily based on statistical considerations, so
that the results predicted will not be on an absolute basis but rather in terms of a given
probability level. The main use of this theory is to estimate what the effect will be on
the average performance of a large number of antennas when a given tolerance level
is specified.
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FIG. 2-15b Effects of cubic phase error on radiation pattern cosine aperture
illumination,

Dlscrete-Element Arrays

The problem of the discrete-element array starts off with the premise that the ideal
fadiation pattern desired is specified by a uniformly spaced array of N elements, with
cach element carrying a specified current. If we denote the current in the nth element

by I, and the actual current by I, + ¢,7, then the radiation pattern due to the desired
Currents is given by

N
,2rnd |
E(¢) = > I exp (J ——sin ¢)
R=j A
Where d = spacing between elements
# = angle measured from normal to array
The radiation Pattern due to the error terms is given by

N
R(®) = 3" A, exp (8;)
n~]
where §; = 0n + (2rnd/M) sin ¢

A, = ratio error of nth current
s = phase error
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FIG. 2-15¢ Effects of cubic phase error on radiation pattern for cosine-squared
aperture illumination.

It can readily be seen that the desired radiation pattern E(¢) is altered by the
addition of the error-term radiation pattern R(¢). If measured data are available for
the individual element currents, then it is possible to compute R(¢) exactly, even
though this may be a rather laborious process.

As is often the case, experimental data are not available beforehand, and it is
desirable to know what degree of precision is required in driving the array in order to
achieve a given performance. For a large number of elements and for small errors, it
is reasonable to assume that the individual errors are independent of one another and
are distributed as a normal, or gaussian, distribution. The problem has been treated
on a statistical basis by Ruze,' who has computed the sidelobe-level probabilities in
terms of the rms error in the current values.

In statistical analysis, it is not possible to predict the exact pattern of a particular
array with errors but rather the average pattern of a large number of similar arrays.
If P(¢) denotes the power pattern for an “average system” and Py(¢) the power pat-
tern for an antenna without errors, we have :

@) = Pu9) + S@)P
° (T1,)? ,
where S5(¢) = a slowly varying function closely related to the power pattern of a sin-

gle element
e=A1+§
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€ = total mean square error

A’ = mean square amplitude error

& = mean square phase error, rad?
On the average, then, the effect of the random errors is to add to the pattern a constant
power level which is proportional to the mean square error. For individual arrays and
in particular directions, the sidelobe radiation will differ from this constant jevel in a
fashion governed by the probability distribution for the particular array.

It is of interest to note that the spurious radiation is approximately proportional
to 1/N, so that for a given mean square error lower sidelobe levels are more readily
obtained with larger antennas.

Computations have been made for a Dolph-Chebyshev type of array consisting
of 25 elements with a design sidelobe leve] of 29 dB below the main beam. For an
angular position where the no-error minor lobes have maxima, Fig. 2-16 shows the
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FIG. 2-16 Sidelobe distribution for 25-element broadside array,

designed for 29-dB sidelobe suppression and computed at design-

lobe maxima.
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probability that the radiation will be below a specified number of decibels when a
given mean error exists in the antenna currents.

As a check on the above theory, Ruze has computed the actual pattern of the
25-element antennas with a specific set of error currents. For a 0.40-rms error in each
element with random phase, the radiation pattern was computed. Figure 2-17 shows
the theoretical patterns for the cases with and without error. Analysis of the sidelobe
magnitudes on this figure shows that their distribution compares very well with the
theoretical distribution obtained on a statistical basis.
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FIG. 2-17 Theoretical effect of error currents on radiation pattern of 25-element
broadside array designed for 29-dB sidelobe suppression. (&) No error. (b) 0.40-
rms errof in each element at random phase.

The loss in gain can also be determined from this analysis. An excellent approx-
imation for the actual gain G with errors as compared with the theoretical gain Gy
when no errors are present is given by
G 1
G -~ 2
ANCIOE
4 /\A
where d = spacing between elements
A = wavelength

The above analysis has concerned itself only with the accuracy of the current
values required for the array. To translate these results into mechanical tolerances for
a given antenna system depends on the nature of the individual elements, the type of
feed system used, and a variety of other factors. One particular array which readily
lends itself to this type of analysis is a waveguide-fed shunt-slot linear array. Some
results for an X-band waveguide array have been obtained in Refs. 17 and 18. In the
latter reference, computations for the probable sidelobe level have been made for a
manufacturing tolerance with a standard deviation of 0.002 in (0.0508 mm) in a
Dolph-Chebyshev array. The effect of the design sidelobe level and the number of
elements is readily shown in Table 2-3.

It should be noted that the figures in Table 2-3 are based on a normal distribution
in which the tolerances can take on all values but have a standard deviation of 0.002
in. In actual manufacturing practice, physical dimensions are not allowed to deviate
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TABLE 2-3

Design sidelobe
level, dB

Number of

elements 20 30 40
12 18.6 25.9 29.1
24 19.0 26.7 31.8
48 19.1 27.3 333

—
NOTE: 84 percent of the sidelobe levels will be less than the tabulated value.

from the design value by more than an arbitrary amount so that the tolerance distri-
bution is actually a truncated normal distribution. For this condition, the deterioration
in sidelobe level is somewhat less than that given.

Two conclusions can be drawn regarding the effect of random errors in discrete-

element arrays:

1 For a given sidelobe level, the effect of random errors becomes somewhat less
critical as the number of elements in an array increases.

2 For a given number of array elements, the effect of random errors becomes more
critical as the required sidelobe level is further suppressed.

As a practical matter, when designing low-sidelobe-level arrays, it is usually nec-
essary to overdesign the array in order to be certain of achieving the desired sidelobe
level in the presence of random errors. For instance, to attain a 26-dB sidelobe level,
it may be desirable to design the aperture distribution for a 32-dB sidelobe level.
Actually, the amount of overdesign required depends on a compromise between eco-
nomical manufacturing tolerances and the loss in aperture efficiency due to the
overdesign.

Continuous Apertures

The statistical analysis of continuous apertures, such as reflector-type antennas, is
similar to that for discrete-element arrays, except for two important differences. For
the discrete array, the error in one element has been assumed to be independent of
the errors in adjacent elements. However, for a continuous-aperture array, a large
error at one point implies that the error will be large in the immediate area around
that point since the error could be due to warping of the reflector or a bump in the
reflector. Also, the error will be purely a phase error since the amplitude distribution
will be essentially unaffected by moderate changes in the reflector surface.

The fact that an error will extend over an area makes it convenient to use the
concept of a correlation interval ¢. On the average, ¢ is that distance in which the
errors become essentially independent of one another. For instance, an error consisting
of a bump extending over a large area implies a large value of ¢, while errors consisting
of a number of bumps, each of which covers a small area, imply a small value of c.
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In an analysis similar to that for the discrete array it has been shown'® that the
power pattern for an “average” system with small errors is given by

- 4t i3? rc?sin’ ¢

P(@) = Pio) + S(6) 35— exp X
where the symbols have the same meaning as used earlier in this section, except for c,
which is defined as the correlation interval. The effects of random errors on the side-
lobes and gain of a circular paraboloid have been computed by Ruze. Some of his
results for the case of a cosine-squared:illumination are shown in Figs. 2-18 and 2-19.
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The relationships for the loss in gain have also been worked out by Ruze. For
small errors, simplified formulas have been obtained for the limiting cases of small
and large correlation intervals, as follows:

G _ 3 5t c

G0~l 46 3 when)\<<l
and

-a-ozl—w—f" wheni»l

Some results for the loss in gain are given in Fig. 2-20.

Periodlc Errors in Aperture lllumination

In addition to random errors introduced in the manufacturing process, certain types
of antennas may also introduce periodic errors due to the particular technique used in
fabricating the antenna. For instance, in certain types of reflectors using the bulkhead-
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FIG. 2-19 Average 8ystem pattern for circular para-
boloid with cosine-squared illumination. Correlation
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and-trusswork type of construction, mechanical stresses set up during fabrication are
such that the surface hag periodic errors at roughly equal intervals along the surface.
This results in a periodic phase error along the aperture.

The effect of a sinusoidal phase error on the sidelobes has been treated in Ref.
19, which points out that a sinusoidal phase error will produce two equal sidelobes
whose amplitude relative to the main-beam amplitude is equal to one-half of the peak

where m is the number of cycles of phase error along the aperture, £ is the total length
of the aperture, and X is the wavelength expressed in the same units as 2.

The effect of any type of phase error on the antenna gain has been treated by
Spencer,® who shows that the fractional loss in gain is equal to the mean square phase
error from the least-square plane-wave approximation to the phase front. Since a peri-



2-34 Introduction and Fundamentais

odic phase error would not alter the direction of the unperturbed phase front, the loss

in gain is equal to the mean square value of the periodic phase error. It is inter-

esting to note that this represents the limiting case for random errors as shown in
Fig. 2-20.

RMS REFLECTOR ERROR IN RADIANS Another type of distribution error

0% 22 04 06 which can occur under certain conditions

N \\\ >} is a periodic amplitude error.?! The side-

2 | lobe behavior of the amplitude-modu-

N \ \\ lated distribution is very similar to that

for the case of the sinusoidal phase error.

\ Two equal sidelobes on either side of the

main beam will appear for each sinusoi-

—\ dal component of the amplitude modu-

///

2 lation. For a uniform-amplitude dis-
\ c= L\ tribution with a sinusoidal ripple, the

\ \ amplitude of each sidelobe due to the rip-
ple will have a value relative to the main-

| beam amplitude which is equal to one-
Eﬁ#‘fﬁg S half of the ratio of the ripple amplitude
VALUE ——\ \ to the amplitude of the constant term. As

was true for the periodic phase error, the
periodic amplitude error will produce two
\ symmetrically located sidelobes on either
>N side of the main beam at an angular dis-
5 — tance of mA/¢ rad, where m is the num-
FIG. 2-20 Loss of gain for paraboloid as ber of cycles of amplitude variation
function of reflector error and correlation across the aperture whose total length
interval, is €.
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2-10  METHODS OF SHAPING PATTERNS

A variety of radar system applications require that the radiation pattern of the
antenna be shaped to meet certain operational requirements. One common require-
ment for the vertical-plane pattern is the cosecant-squared pattern, which produces a
uniform ground return echo from an airborne radar antenna. There are, of course,
other shapes of interest, but the basic principles of obtaining shaped beams are the
same for a wide variety of shapes.

Methods Usefui for Linear Arrays

One of the techniques useful with slot arrays or dipole arrays is to determine what
aperture distribution will produce the desired radiation pattern and then design the
array feed system so as to achieve the required aperture distribution.

There are several methods in use for determining the form of the aperture dis-
tribution. Historically, the first method is based on the Fourier approximation to a
given function.?? For an equally spaced array of radiating elements, the radiated field
due to the array can be represented by a finite trigonometric series with a direct rela-
tionship between the current in each element and the coefficients of the trigonometric
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discontinuity; i.e.,
#E@® + 0) + E(p — 0]

A second method of approximating the desired radiation pattern is one that
enables the pattern to be specified exactly at a fixed number of points. This method,
which was independently proposed by Woodward?® and by Levinson, is particularly
appealing in that it gives the designer some physical insight into the way in which the
pattern is synthesized and in addition allows some control of the pattern at points of
discontinuity.

produced by each of the distributions adds up to the desired pattern. The required
aperture distribution is then found by adding up, in proper phase, the individua] uni-
form distributjons,

To simplify matters, the following discussion wil] dea] with the case of a contin-
uous aperture. The extension to the case of a uniformly spaced discrete-element array
will be obvious from the discussion. As pointed out in Sec. 2-6, the radiation pattern
for a uniform in-phase ilumination is given by

sin u
E(p) = PR

where u = 1—;£ sin ¢

The pattern will pass through zero whenever sin ¢ =n\én=]|, 2, 3, 4, etc., and
the pattern has its maximum when ¢ = 0. For a case in which ¢ = 107, the pattern
plotted against sin ¢ will appear as in Fig. 2-2] 4.

It will be noted that when the pattern is plotted against sin &, the zeros of the
pattern are equally spaced except for the two zeros on either side of the main beam,
which occupy two spaces. The width of one space is equal toA/2, the reciprocal of the
aperture width in wavelengths.

A uniform illumination with a linear phase variation will have a field pattern
given by

o Sin(u —8,)
E(p) = Y

where (8 is one-half of the tota] Phase variation across the aperture £. The maximum
of this pattern occurs when '
BA

=t
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FiG. 2-21 Radiation pattern of uniformly illuminated aperture 10X long. (&) 8, = O.
(b) B = 3x.

If the phase variation is chosen so that 3,

= nw, then the pattern will be shifted by

n\/¢, or nspaces when plotted against sin ¢. A typical pattern for £ = 10\ and 8, =
3« is shown in Fig. 2-215.

By combining a number of patterns shifted by integral numbers of spaces, it is

possible to synthesize a pattern which can be uniquely specified at 2m + 1 points for
an aperture which is m wavelengths in extent. The total radiation pattern is given by

E() = ZC sm(u —

B -3¢ sin (u — nr)

P 4— nr

and the corresponding normalized aperture distribution is given by

FIG.

0/020304 Q50607 08 09 IO gj ¢
2-22 E(¢) pattern for cosecant

f(x) = 3° G = 3 Gl

where —1 < x < +1.

As an illustration of this method, let
us consider a problem in which it is
desired to specify that the pattern have a
cosecant shape over the range in sin ¢
from 0.1 to 1.0 and that it have no radia-
tion for negative values of sin ¢. For an
aperture length of 10 wavelengths, sin ¢
is divided into spaces one-tenth wide from
—1 to +1 and ordinates erected at each
division with a height equal to E(¢). For
the problem at hand, £(¢) is proportional
to csc ¢. A plot of the E(¢) diagram is
shown in Fig. 2-22, where at each divi-
sion an individual pattern is to be speci-
fied with a maximum value equal to each
ordinate. The summation of the individ-
ual patterns is shown in Fig. 2-23, while
the resulting total aperture distribution,
consisting of the sum of each of the indi-
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FIG. 2-23 Synthesis of cosecant pattern for £(0) = 0,

AMPLITUDE
DISTRIBUTION
OVER APER-
TURE

{a)

— — — —1i80°

PHASE
DISTRIBUTION
490°OVER APERTURE

I 23 43
2
PN

—— L 2
“5-4 32
-90°

-180° (b}

s e o -

FiG. 2-24 Aperture distribution for Fig, 2-
23. () Ampiitude distribution, (b) Phass
distribution,

vidual aperture distributions, is shown in
Fig. 2-24.

For the case shown, E(0) has been
chosen to equal zero, and it will be noted
that the resulting pattern has a fair
amount of ripple in it. If the value of
E(0) is chosen to be 0.8, then the result-
ing pattern shown in Fig. 2-25 is consid-
erably smoother although the aperture
distribution is somewhat more peaked, as
seen from Fig. 2-26,

This particular method of synthesis
is quite useful because of the flexibility in
arriving at the final radiation pattern and
the designer’s ability to adjust the theo-
retical pattern by graphical procedures,
Although the example discussed has used
only real values for C, to simplify the cal-
culations, there is nothing in the proce-
dure which prevents the use of complex
values for C,. It is quite possible that a
judicious choice of the phase angles for
the C,’s might have given as effective a
control over the ripple as did the chang-
ing the value of E(0).

One note of caution should be
added. Although beams can be added for
values of |sin ¢| > 1 in order to control
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the amplitude at points intermediate
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FIG. 2-28 Aperture distribution for Fig. 2-
26. (a) Amplitude distribution. (b) Phase
distribution.

reduction of bandwidth and increase of
losses. It is therefore desirable to mini-
mize or eliminate those beams which
radiate in directions specified by |sin ¢}
> 1.

Methods Useful for Reflector-
Type Antennas

There are several methods useful for pro-
ducing shaped patterns with reflector-
type antennas. One technique, which is
readily applied to a standard paraboloi-
dal reflector, combines a number of nar-
row beams to form a wider beam, shaped
in the vertical plane by the use of an
extended feed system. In some respects,
this technique has a certain similarity to
the Woodward-Levinson method dis-
cussed earlier in the section.

In applying this technique, 2 rectan-
gular or elliptical section of a full para-

boloid is used as the reflector surface. The horizontal dimension of the reflector section

is chosen to give the desired

horizontal beamwidth, while the vertical dimension is
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chosen to control the rate of cutoff of the vertical beam. The vertical dimension also
influences the feed-system problem, particularly if a small value is chosen, since the
feed horn or dipole for each beam would have to have a sizable vertical dimension.
The aspect ratio of the reflector commonly has a value in the range of 2:1 to 4:1.

A considerable amount of experimental effort is necessary in the design of an
extended feed system. The basic principles can be seen from Fig. 2-27. For each feed
in the vertical plane, there is a corresponding vertical beam whose position is related

to the feed position. By exciting each feed

PARABOLOID with the appropriate amplitude and by
REFLECTOR

choosing the feed separation and phasing,
EXTENDED FEED it is possible to obtain a fairly smooth ver-
WITH TAPERED tical-plane pattern.

EXCITATION

A number of examples of this tech-
nique are given in Ref. 7. Although most
of the structures built to date have used
reflector structures for collimating each
beam, the same technique of combining
beams is also applicable to lens-type
antennas.

Another approach to the problem of
generating shaped beams is the use of
SHAPED BEAM shaped-reflector systems. One method
FIG. 2-27 Schematic of extended feed yges a line source to feed a shaped reflec-
system for pattern shaping. tor, while a second method uses a point-

source feed with a double-curvature
reflector. The shaped-reflector approach is treated in Chap. 17, so no further discus-
sion will be given here.

2-11 GAIN LIMITATIONS FOR AN APERTURE OF
SPECIFIED SIZE

It has been shown that the gain of a uniformly illuminated aperture-type antenna
without losses is expressed by

where A is'the area of the aperture. The value of gain obtained from this expression
normally represents an upper limit which can be realized with practical structures.

Certain classes of aperture distributions offer the theoretical possibility of higher
values of directivity than can be obtained with uniform distribution. In general, these
theoretical distributions are characterized by reversals of phase over a distance short
compared with the wavelength. One common feature of these superdirective distri-
butions is the large amount of stored energy in the aperture region since very high
values of field intensity are necessary to produce the same radiated field as would be
produced by a uniformly- illuminated aperture with much lower values of field
Intensity.
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The large values of stored energy in the aperture region of a superdirective
antenna cause 2 number of engineering problems which are severe enough to make
this type of antenna completely impractical. The first problem is that of extremely
high @’s, which limit the operating bandwidth to extremely small values. For instance,
it has been stated by Taylor** that an antenna designed within a sphere of 50 wave-
lengths diameter will have a beamwidth of approximately [°. If the same beamwidth
is to be maintained while the diameter of the sphere is reduced to 45 wavelengths, the
Q will rise to a value of 500. If the diameter is reduced to 40 wavelengths, the Q will
rise to a value of 5 X 10, For further reductions in diameter, the value of @ rises to
astronomical values. Since the bandwidth is of the order of the inverse of Q, it can be
seen that the bandwidth diminishes rapidly.

As a result of the high stored energy, large values of circulating current flow in
the antenna structure, and a point is very quickly reached at which the ohmic losses
completely nullify any gain increase due to increased directivity.

Another concomitant of the superdirective antenna is the extreme precision
required to achieve any substantial increase in directivity.

There is an abundant literature on the topic of superdirective antennas, and the
antenna designer who may be tempted to build such antennas should consult these
references. >~

Lest the situation be considered completely hopeless, it should be mentioned that
for certain end-fire arrays in which the values of gain are modest some increase in
gain can be achieved. One particular design in which a four-element end-fire array
has achieved a modest increase in gain and directivity at the expense of bandwidth
has been given in the literature.® However, aside from the special case of end-fire
arrays, the designer is to be discouraged from attempting to construct arrays which
have gains higher than the value given for the uniform-illumination case. This caution
is particularly true for broadside antennas in which the aperture is large in terms of
wavelengths.

2-12 SCALE MODELS OF ANTENNAS

One of the most useful tools of antenna engineers is the ability to scale their designs.
It is a direct consequence of the linearity of Maxwell’s equations that an electromag-
netic structure which has certain properties® at a given frequency f will have identi-
cally the same properties at another frequency nf, provided all linear dimensions are
scaled by the ratio 1/n. Thus an antenna design which works in one range of frequen-
cies can be made to work at any other range of frequencies without additional rede-
sign, provided an exact scaling of dimensions can be accomplished.

Quite aside from the ability to transfer design relationships is the ability to make
radiation-pattern studies on scale models which are convenient in size. The aircraft
antenna field is one in which full-size radiation studies are extremely awkward, time-
consuming, and expensive. The possibility of studying aircraft antennas on a scale
model*® which may be as small as one-twentieth or one-fortieth of full size brings such
studies within the realm of the laboratory rather than requiring an elaborate flight
operation.

For most types of antennas, scaling is a relatively simple matter. Table 2-4 shows
how the dimensions and electromagnetic properties vary as a function of the scale

b S e
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TABLE 2-4
N

Quality Full-scale system Model system
Length Lp Ly = Lg/n
Frequency Jr JSu = nfy
Dielectric constant € €y = €
Conductivity oF O = Nop
Permeability br By = pp

“—“

factor. It will be noted that all the quantities except conductivity can be satisfactorily
scaled. If the full-size antenna is constructed of copper or aluminum, then it is not
possible to obtain materials which have conductivities that are an order of magnitude
higher. Fortunately, conductivity losses affect the operation of most antennas to only
a minor degree, so that the inability to scale the conductivity is not usually serious.
This is not true for devices such as cavity resonators, for which the losses may be
appreciable. For a few types of antennas, such as very long wire antennas, in which
the conductivity losses of the antenna and of the ground may play a part in the radiat-
ing properties of the antenna, it may be hecessary to proceed with considerable caution
before making scale-model studies.

While it is true that an exact scale model will have exactly the same radiation
patterns and input impedance as the full-scale antenna, it is not always possible to
achieve perfect scaling. This is particularly true for such items as transmission lines,
screw fastenings, etc. Slight discrepancies in scaling will usually affect the impedance
properties much more than the radiation properties. It is therefore wise to consider
scale-model impedance studies as primarily qualitative in nature, even though it is
valid to consider scale-mode] radiation patterns as being highly accurate. Usually the
general trend of impedance characteristics is determined from the scale model, but
final impedance-matching work can be completed only on the full-size antenna,
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3-1 INTRODUCTION

A practical objective of directive communication is an improvement in received signal
as measured relative to the prevailing noise. More precisely, directivity improves the
signal-to-noise ratio. This improvement may be accomplished either at the transmitter
side by using an antenna that projects the transmitted wave power in the form of a
concentrated beam toward the distant receiver, or it may be accomplished at the
receiver side by using a similar antenna to intercept a maximum wave power. Thus,
any desired signal improvements may be taken either at the transmitter or at the
receiver or be shared between the two.

One of the common methods of obtaining directive antenna characteristics is an
arrangement of several individual antennas of the same kind so spaced and phased
that their individual contributions add in one preferred direction while they cancel in
others. Such an arrangement is known as an array of discrete antennas. The individual
antennas, called elements, in an array may be arranged in various configurations such
as straight lines, squares, rectangles, circles, ellipses, arcs, or other more innovative
geometries. Years of experience have reduced the number of configurations that are
considered practical to a relatively few.

Improvements in radiation characteristics by arraying may be described in a
variety of ways. Sometimes the result takes the form of a plotted pattern which shows,
at a glance, the relative signal level in various directions. In other cases the result is
measured in terms of directivity or power gain. For purposes of this chapter, directiv-
ities or power gains are generally referenced to some accepted standard such as an
isotropic source or an array element.

One of the practical arrays consists of a number of individual antennas set up
along a straight line known as the linear array. For this particular configuration, the
individual elements may be excited by currents in phase with equal or tapered ampli-
tudes. Under this condition, radiation proceeds both forward and backward in direc-
tions perpendicular to the lines of the array. Such an array is said to be broadside. It
may be made essentially unidirectional by adding a second identical array to the rear
of the first and exciting the second array with appropriate phase difference.

The elements of a linear array may also be driven by currents with phase pro-
gressively varying along the array axis in such a way as to make the radiation sub-
stantially unidirectional. This array is referred to as an end-fire array. Both the broad-
side and the end-fire arrays of different elements are presented in Secs. 3-2 through
3-5. Necessary formulas without detailed derivations are given together with the first-
hand design curves or tables with the number of elements, interelement spacings,
amplitudes, phases, and other array characteristics as the parameters. A special array
of arrays known as the curtain antenna is briefly discussed in Sec. 3-6.

When the general principle of arrays with isotropic elements is presented, no
consideration of the mutual-coupling problem is needed. For the case invoiving simple
practical antennas such as the short Yagi-Uda array (a small number of dipoles) for
which methods of computing the mutual impedances between elements are available,
the mutual impedances will be duly included.

3-2 UNIFORM LINEAR ARRAYS

When the identical elements of a linear array are equally spaced along the array axis
and excited with uniformly progressive phases as shown in Fig. 3-1, the array pattern
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in free space may be considered, assuming that the principle of pattern multiplication
applies,' as a product of the element pattern and an array factor,

E(6,6) = f(6,9)S(6) (3-1)

where E(0,¢) is the far-field pattern expressed in terms of the ordinary spherical coor-
dinates (6,¢), f(8,¢) is the element pattern determined by the particular antenna ele-
ment used in the array, and S(0) is the
array factor for a linear array placed

TO DISTANT POINT along the z axis with § measured from the
array axis.
6 The array factor S(f) may be
0 ST e =T explicitly writter: as
FIG. 3-1 A linear array of n equally _ | N
spaced elements. S(6) = f:i 1, exp (jiu) (3-2)

where ; represents the current amplitude excitation of the ith element and
u = kd(cos § — cos §,) (3-3)
with & being the wave number (27 /X, A being wavelength), d the interelement spacing

in wavelength, 6, the desired direction of the maximum radiation, and n the total
number of elements in the array.

Whenl, = 1,i = ¢, I,...,(n = 1), a uniform linear array results, yielding
n-1 .
.. I — exp (jnu)
S.0) = exp (jiu) = ——12J 3-4
) = 2 exp (jiw) T exp ) (3-4)

where the subscript « should not be confused with the symbol defined in Eq. (3-3).

Broadside Arrays of Isotropic Elements

If, in addition, the elements are isotropic and the desired maximum radiation is in the
broadside direction, we have f6.9) =1, 8, = 7/2, u = kd cos 0, and E@,¢) =
S.(6). The basic characteristics of this array may be summarized as follows.

Beam Maximum It is Clear that S,(6),., = 7 (the total number of elements) when
0==/20oru=0.

Nulls If we express Eq. (3-4) in a different form such as

1 —cos nu _ sin?(nu/2)
2 * o = -
151" = 5.5 1 —cosu  sin?(u/2) (3-5)

it is easy to see that the null positions (S, = 0) are given by

/2 = mx (3-6a)
or

C80m = mA/nd,m = +1, +2, . +M< nd/\ (3-6b)

.Where 0,6,..., B4¢ are the angular null positions on one side of the beam maximum
In the forward directionand 6_, 9_,, . . . » 85 are null positions on the other side of
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the beam maximum, also in the forward direction. Of course, 8, ,, are symmetrically
located with respect to the beam maximum. It is clear from Eq. (3-6a) that u = +x
are always possible null positions when # is even and d = %\. The exact number and
locations of null positions as given by Eq. (3-6b) depend on n and d/\ (or approxi-
mately the overall array length), A designer may have choices of different arrays to
produce a null in a particular direction in order to minimize possible interferences at
this direction. For example, the arrays of four elements with d = 3\ /8 or 3\ /4, of six
elements with d = A\/4,\/2 or 3\/4, etc., may be used to satisfy the purpose of having
anull at 8 = 48.19° (or 41.81° from the main beam). The final choice among these
possibilities should be made from other design or cost considerations.

First-Null Beamwidth One way of showing the directive pattern of a uniform
broadside array is by the first-null beamwidth, which is defined as the angular space
between the first nulls on each side of the main beam,

BW), =0_,—-6,=2 (% - 61> rad (3-7a)

or

(BW), = 2(90° — 6, (3-7b)
where 4, in Eq. (3-74) is in radians while that in Eq. (3-7b) is in degrees.
For very large arrays, we approximately have

/nd in radians (3-8)

(BW), = [360)\/1rnd in degrees

Half-Power Beamwidth Another more commonly used beamwidth is the angular
space between the half-power points on each side of the main beam. The half-power
point u, may be determined by solving

sin? (nu,/2)

ISu)|? = A = )2 (3-9)
which, in turn, yields the corresponding 8, in accordance with
cos 8y = uy/kd (3-10)
The half-power beamwidth then becomes
2 (E - 0,,) in radians
(BW); = { \2 (3-11)

2(90° — 6,) in degrees
Sample results for (BW), are presented in Fig. 3-2.
Sldeiobes Precise locations of the sidelobes of the uniform linear broadside arrays
may be found by setting the derivative of Eq. (3-5) to zero, yielding®
ntan (u/2) = tan (nu/2) (3-12)

It is clear that ¥ = t & are possible sidelobe pasitions when n is odd and d = A/2.
Other solutions of Eq. (3-12) for u in degrees are presented in Table 3-1. The corre-
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FIG. 3-2 Half-power beamwidths for uniform broadside
arrays of isotropic elements.

sponding angular sidelobe positions in terms of ¢ can be determined by 4 = kd cos §
when the element spacing is known.

The level of the ith sidelobe at u; relative to the beam maximum may be com-
puted as |S,(u)]|/S,0) = |S«u)|/n. The sidelobe levels in decibels are also
included in Table 3-1.

Note from Table 3-] that the sidelobe positions approach 4 =%Q2i+ Da/n
rad or £(2i + D180 /n, i=1, 2, 3, . . . (or halfway between nulls) and that the
sidelobe levels approach |S(u)|/n = 2/(2i + D)x for arrays with a very large num-

ber of elements. In particular, the first sidelobe level of large uniform arrays is %r or
—13.46 dB.

Directivity The directive gain of an array in a given direction is defined as the ratio
of the radiation intensity in that direction to the average intensity,

G0) = 2L ri 50,0017/, (3-13)

where W, representing the total power radiated by the array is given by

2x x
Wo=fo fow(a,qs)vsinododqs (3-14)

The directivity of the array is the maximum value of the directive gain,

D = G(o’¢)mx = 47|’|E(0,¢)|3nn/Wo (3'15)
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For the uniform linear broadside array of isotropic elements considered here, we have
f0.0) = 1, | E@.)|* = |S.|% u = kd cos 0, and | E(8,¢) | ux = *. The directivity
becomes

(kd)n?

(nkd) +2 3 2

Dl, (3‘16)

m

sin (mkd)

Note that when kd = prord = pA/2,p = 1,2,..., Dy = n. It implies that under
this condition the directivity is numerically equal to the total number of elements in
the array. For other values of kd, the results are presented in Table 3-2. For a given

TABLE 3-2 Directivities for Uniform Linear Broadside Arrays
of Isotropic Elements

1.28 2.16 3.11 4.00 4.84 5.58 5.29 4.00
1.45 2.70 3.83 5.00 6.12 6.97 7.68 5.00
1.67 3.17 4.63 6.00 7.30 8.54 9.52 6.00

1.93 3.64 5.34 7.00 8.61 10.10 11.22 7.00
2.20 4.16 6.10 8.00 9.84 11.55 12.82 8.00
248 468 6.86 9.00 11.07 12.99 14.42 9.00
2.74 5.17 1.59 10.00 12.41 14.43 16.10 10.00

OV ®WON W h

—

n, the directivity is almost linearly proportional to d/) in the range of %4 < d/\ < ¥%
and then drops to n when d = X\ where the grating lobe at the same level as that of
the main beam appears. For this reason, the element spacing for a fixed-beam broad-
side array is normally kept at less than a full wavelength. For arrays designed with
beam-scanning capabilities, the element spacing is even smaller. However, the element
spacing should not be chosen to be too small for the obvious reasons of obtaining a
respectable directivity and minimizing the mutual coupling among the array elements.
Thus, the actual value for the element spacing is usually a compromise of the above
considerations.

Broadside Arrays with Practical Antennas as Elements

Broadside arrays with practical antennas may be achieved by placing the antenna
clements in such a way that the maximum radiation of the element coincides with the
desired broadside direction of the array. One example is to place the half-wave or short
dipoles collinearly along the array axis as in the case for the well-known Marconi-
Franklin antenna.* There are, of course, many other arrangements that satisfy the
requirement. We consider only the specific example mentioned above.

A.rrays of Half-Wave or Short Dipoles The particular arrangement is shown in
Fig. 3.3, Although the current distribution on two or more antennas in an array envi-
Tonment is not the same as when the elements are isolated because of the influence of
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»z FIG. 3-3 An equally spaced linear array of
fed~ collinear dipoles.

mutual couplings, the mutual impedance of collinear dipoles is, however, relatively
small, and therefore the change in current distribution is not large. This is especially
true when the element dipole length is near or less than A/2.* Under the assumption
of no mutual coupling, the element pattern may be written as>*

cos (kh cos §) — cos kh

f60.9) = — (3-17)
where # is the half length of the individual dipole in wavelength.
For half-wave dipoles, i = /4, kh = 7/2, the element pattern reduces to
cos -g cos 0)
fW9) = (3-18)

sin 0

The maximum radiation of Eq. (3-18) occurs at g = x/2, thus satisfying the require-
ment. The overall array pattern is then given by

”

(3 (5 cos 0)

E@) = ———7— ISl : (3-19)
sin 8

where S, is the array factor given in Eq. (3-4).

The null positions remain the same as those determined by Eq. (3-6) except for
the introduction of additional nulls at§ = Oand = owing to the element pattern. Thus,
the first-null beamwidth also remains unchanged. Locations and levels of the first few
sidelobes do not change much either. The half-power beamwidth becomes naturally
somewhat smaller than that with isotropic elements. The directivity is somewhat
higher because the directivity for a single half-wave dipole is approximately 1.64
rather than 1.00 for the isotropic case.

For very short dipoles, & =< A/ 16, kh < =/8, the element pattern may be shown
approximately to be proportional to

f(8,¢) = siné (3-20)
Thus, the overall array pattern is proportional to
E6,¢) = sin 0 | S,| (3-21)

which, again, is not much different from S,. The directivity in this case can be
expressed as®*

D, = n*| Wa, (3-22)
2n 4 Dn—-m
h =2 ;
where Wos 3 + o +— sin (mkd) (3-23)

4 n—m
—Wz pox cos (mkd)

m=1
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It is clear that the directivities for 4 = A/2 and d = X are no longer equal to each
other. Furthermore, the grating lobe at # = 0 for d = A(kd = 2x) owing to the array
factor S, is now eliminated by the null of the element pattern. The directivity for d
= ) is therefore expected to be higher than that for 4 = A/2 in this case. Represen-
tative results for D, with n = 4, 5, and 6 are presented in Table 3-3.

Note that the directivities for various cases given in Table 3-3 are numbers,
which can be converted into decibels with respect to the isotropic element (dBi) by
taking 10 log D,. The directivity can also be expressed relative to that of a single
element. Since the directivity of a single short dipole is 1.5, the directivity of arrays
with short dipoles relative to a single short dipole in decibels is then given by D,, =
10 log (D,/1.5). Directivities for arrays with a larger number of short dipoles in this
latter unit are given in Fig. 3-4.

TABLE 3-3 Directivities for Uniform Broadside Arrays of
Collinear Short Dipoles

———
: % % Y % 1
5
6

245 3.39 4.29 5.21 6.05 6.84 6.95
2.94 4.05 5.30 6.45 7.55 8.59 8.86
3.4 4.87 6.29 7.81 9.15 10.37 10.77
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FIIG 3-4 Directivities for a broadside array of collinear short dipoles (relative to a single
element).
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Ordinary End-Fire Arrays of Isotropic Elements

When the condition 8, = 0 is imposed upon Eq. (3-3), an ordinary end-fire array
results. The visible range for u = kd (cos 8 — 1) corresponding to 0 < ¢ =< 180" is
then —2kd < u =< 0. The basic characteristics for the uniform (f; = 1) ordinary end-
fire array of isotropic elements {f{f) = 1] are again summarized first and then are
compared with those for the broadside array presented in the subsection “Broadside
Arrays of Isotropic Elements.” Samples of end-fire arrays with properly phased prac-
tical elements or parasitic elements (short Yagi-Uda arrays of small number of
dipoles) are discussed in the following subsection.

Beam Maximum Since the array factor in terms of u remains unchanged, the beam
maximum is still numerically equal to n, which occursat u = Oor § = 0.

Nulls The expression [Eq. (3-6a)] for determining the null positions still applies
provided that m = —1, —2,.... The exact number of nulls depends on n and d/A.
In terms of 9, the null positions are given by

cosfy =1+ m=—1,~2.. (3-24)
nd

First-Null Beamwidth The first-null beamwidth for the ordinary end-fire array is
defined as

(BW); = 20-] =2 COS-] (1 - "‘?2) : (3'25)
For very large arrays, 8_, is small, yielding '
W), =2 \ /2 ja (3-26)
e nd

By comparing Egs. (3-26) and (3-8), we conclude that the first-null beamwidth for
the ordinary end-fire array is always wider than that for the broadside array with the
same n and d/\.

Half-Power Beamwldth Equation (3-9) is still valid for determining the half-
power point uj, (taking the smallest negative solution), which in turn gives

cosfy =1 + 73 (3-27)
The half-power beamwidth thus becomes
(BW), = 26, = 2 cos™! (1 + f‘k;) (3-28)

Sample results for (BW), for the uniform ordinary end-fire array are given in Fig.
3-5.

Comparing Fig. 3-5 with Fig. 3-2 also reveals that when the beam position
changes from the broadside direction (§, = 90°) to the end-fire direction (8, = 0),
the half-power beamwidth becomes broader for an array with the same » and d/A.

AT et e e
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FiG. 3-5 Half-power beamwidths for uniform
ordinary end-fire arrays of isotropic elements,

The degree of beam broadening depends on the array length and 6, (the position of
the beam maximum). For beam-scanning applications in which 6y is being changed
gradually, beam broadening should be ag Important factor to consider in the design.
Changes in half-power beamwidths with respect to §, are presented in Fig. 3-6 for n
= lOGand various element spacings. The limit of scanning is also indicated in the
figure.

Sidelobes Equation (3-12) and the first few sidelobes (positions and levels) given
in Table 3-1 for the uniform broadside array are also good for the end-fire array, with

from u = g (cos & ~ 1). The element spacing 4 is normally kept less than A /2 for
an end-fire array because the grating lobe will appear with thjs particular value of 4.

Dlrectlvlty The directivity for the uniform ordinary end-fire array may be
€xpressed as?

(kd)n?
n—1

nkd + 3" 2 — sin (2mkd)

D, (3-29)

me]
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FIG. 3-8 Half-power beamwidths for a uniform
array of 10 isotropic elements as a function of beam-
maximum position.

Note that the second term in the denominator of Eq. (3-29) vanishes when kd = pw
j2ord = pA4,p=1, 2, ... . Under this condition, D, = n. For other values of kd,
the results of D, can be easily obtained from D, given in Table 3-2. For the same n,
D, for a value of d is equal to D, for 2d. For example, forn = 4, D.(d = \/8) = Ds
(d = \/4), which is 216 in accordance with Table 3-2. This fact is obvious if Egs.
(3-16) and (3-29) are carefully examined.

Ordinary End-Fire Arrays of Practical
Antennas as Elements

End-fire arrays of practical elements may be realized by proper arrangements of the
antenna elements. One example which will be discussed here is to place short dipoles
parallel to the x axis, forming an array

x along the z axis as shown in Fig. 3-7.
Another method is to excite only one
antenna element and leave the other ele-

l:il—f—*z (End fire) ments unexcited (parasitic) with appro-
y d

priate antenna lengths and spacings to
produce approximate phase distributions
among the elements required for end-fire
radiation. This latter arrangement is
known as the Yagi-Uda array.

Since the current amplitudes on the elements of a Yagi-Uda array are no longer
the same (I, # 1), the array cannot, strictly speaking, be considered as a uniform
array. For this reason, characteristics of short Yagi-Uda arrays (with a small number
of dipoles) are presented in a separate section, Long Yagis treated from the viewpoint
of surface-wave antennas are given in Chap. 12.

FIG. 3-7 An equally spaced linear array of
parallel short dipoles.
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For the array of parallel short dipoles as shown in Fig. 3-7, the general element
pattern is given by f(8,¢) = (1 — sin® # cos? ¢)'/2. The element pattern in the xz
plane (¢ = 0) reduces to f(6) = cos 8, which does have the maximum radiation at
the end-fire direction (§ = 0). When the elements are excited with equal amplitude
and progressive phases, an end-fire array results. The overall array pattern then,
neglecting the mutual-coupling effect, becomes

E(@) = cos 8 |S.(u)| (3-30)

where u = kd (cos § — 1).

Clearly, the element pattern produces a null at § = x/2 which may or may not
be a null for S,. Since En.y, = E(0) = n, we obtain, using Eq. (3-15), the directivity
as’?

D, = n*/ Wy, (3-31)

a—1 _
where Wo, = -23£ + %1 Zl n mm (l - m’lild2> sin (2mkd) (3-32)

2 Dn—-m
+ =550 —— cos? (mkd)

Representative results for D, are presented in Table 3-4. Directivities relative to that
of a single element, which are shown in Fig. 3-8, may be compared with those in Fig.
3-4.

TABLE 3-4 Directivities for
Uniform Ordinary End-Fire Arrays of
Parallel Short Dipoles.

d/\

n % Y % ¥%
4 321 521 689 471
5 383 626 833 574
6 431 733 999 6.77

3-3 YAGI-UDA ARRAYS

The typical Yagi-Uda array consists of many parallel dipoles with different lengths
and spacings as shown in Fig. 3-9. Only one of the dipoles is driven. All the other
elements are parasitic and may function respectively as a reflector or as a director.
Arrays of this kind were first described in Japanese by S. Uda’ and subsequently in
English by H. Yagi.? In general, the longest element, of the order A/2 in length, is the
reflector. The director elements are always shorter than the driven element in length.
Although there may, in principle, be many reflectors, experience shows that little is
gained by having more than one reflector. The reflector is usually spaced A/4 to the
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rear of the driven element. Considerable gain can be realized by adding numerous

directors. The simplest Yagi-Uda has only one director, making a three-element array.
Since the element patterns for each dipole are different, the principle of pattern

multiplication certainly does not apply. The element pattern of the ith dipole in the

xz plane is given by®

cos (kh; sin 8) — cos kh;

= 3-33
0 —7 (3-33)
where A is the half length of the ith dipole.
The overall array pattern may be written as
E@) = > L.fi(8) exp (jkd,_; cos 6) (3-34)
i=1

where n is the total number of dipoles in the array, dp = 0, and I, is the maximum
current amplitude of the ith dipole, which may be determined by the available
method.?

The power gain may be computed by G(8,¢) = 60| E(8)|%/ Py, where P, =
%| Iy |2R;q Tepresents the input power. R, is the input resistance, and I, is the base
current of the driven element. As an example, the normalized pattern with n = 3, &
= 0.26A, hy = 0.25), hy = 0.23), d, = 0.25A, d; = 0.45) and dipole radius of 0.001
m is shown in Fig. 3-10 to demonstrate that the Yagi-Uda is indeed designed as an
end-fire array (beam maximum at § = 0). For this example, the normalized base
currents in amperes, with the assumption of a three-term current distribution,’ are

I/ Vs = 0.0038334 exp (j 69.86°)
I12/V, = 0.014546 exp (—j 43.167)
I3/ V2 = 0.009361 exp (j 166.97°)

12

10
We see here that I,; has an approximate
phase lag of 113" relative to I, although
the phase difference should ideally be —
kd; = —90°. Similarly, the phase differ-
ence between I;; and Iy, is approximately
—263° rather than —kd; = —162°.
Nevertheless, it is because of this kind of
phase distribution approximately in the
right direction over the Yagi-Uda ele-
ments that the end-fire pattern is pro-

Normalized Dp, dB

" L { | X D;iven Antenna
118 14 ) 1/2 12 "
Reflactor A 1] |
a7a T z
FIG. 3-8 Directivities for ordinary end-fire d,  Directors
arrays of paraliel short dipoles (relative to a dn-y

single element).

FIG. 3-9 A typical Yagi-Uda array.
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// / W .
\ -

FIG. 3-10 Horizontal pattern for a three-element Yagi-Uda array with h =
0.28\, h, = 0.25), by = 0.23), d, = 0.25), 0, = 0.45), and dipole radius
= 0.001 m.

duced. The input resistance for this example is approximately R, = 50.1 Q, and the
power gain is about G = 5.01 or 7.0 dB;.

As another example, for n = 4, by = 0.26)\, h, = 0.250, by = h, = 0.23), 4,
= 0.25\, d; = 0.52\, d, = 0.88), and dipole radijus = 0.001 m, we obtain Ry =
82.8Q,and G = 5.92 or 7.72 dBi. .

An analytical method, as well as Perturbational procedures, is available for max-
imizing the Yagi-Uda gain by adjusting the dipole lengths and spacings.'®!! A gain
in the order of 10 dBi can be easily designed with only a moderate number of dipoles
in the array. Yagi-Uda arrays with a large number of dipoles are treated in Chap. 12
as surface-wave antennas.

3-4 IMPROVED END-FIRE ARRAYS

The ordinary end-fire array with u = kd (cos § — 1) has been presented in Sec. 3-2.
It has been known that an increase in directivity may be realized by increasing the
progressive phase lag beyond that for an ordinary end fire by a phase quantity § >
0.2 More specifically, it was concluded that a maximum directivity which may be
realized is given approximately by

. 7-28nd

D, = (3-35)

when

therefore subject to the conditions that the number of elements in the array is very

large and that the overall array size, (n ~ 1)d, is much greater than a wavelength.

An exact formulation for determining the required optimum additional phase lag &

:01('1 t‘l;e discrete array was made later to obtain the maximum directivity’ for any n
nd 4,

For the purpose of clarity, we have designated the one considered in the subsec-
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tion “Ordinary End-Fire Arrays of Isotropic Elements” as the ordinary end-fire and
call the case being presented here as the improved end-fire array.

The array factor in terms of u for the improved uniform (I; = 1) end-fire array
remains the same as that in Eq. (3-5). That is,

P
2 _ Sin (nu/2)
fed th 5.l sin? (u/2) (3-37)
provided that
u=rFkd(cosb— 1) —3a (3-38)

which is herein called the improved end-fire condition.
From Eq. (3-38), it can be seen that the location of the beam maximum has been

shifted to u = —§, which corresponds to # = 0. The beam-maximum strength thus
becomes
_ sin (nd/2)
(Su)mu = sin (6/2) (3 39)

which is smaller than n for the ordinary end-fire case. Naturally, for a given n, &
cannot be too large in order to have a respectable (S, )max-

Null and sidelobe positions are similarly shifted. More specifically, the first-null
position is determined by ‘

A )
=cos-!|] — & 4+ %
8, = cos (1 nd+kd> (3-40)
The half-power point 4, can be obtained from
sin? (nuy/2) _ sin’(#3/2)
sin? (up/2) 2 sin(5/2) (3-41)
which, in turn, yields
= cos—! wtd
), = cos (1+ d ) {3-42)

Again the selection of the smallest negative solution from Eq. (3-41) is understood.
Since § > 0, both the first-null and half-power beamwidths, (BW), = 24, and (BW),
= 20,, obtained respectively from Egs. (3-40) and (3-42), should be smaller than
those for the ordinary end fire, where & = 0. Numerical results for (BW), are shown
in Fig. 3-11.

Although the sidelobe levels relative to the main beam are increased slightly, the
overall directivity is always increased because of the improvement in beamwidth. For
the improved uniform end-fire array of isotropic elements, the directivity may be com-
puted as follows:’

sin? (n8/2)
sin? (8/2)
1

—~n—m

(3-43)

D, =
nkd + 2

m=0

sin (mkd) cos (mkd + md)

Sample results for D, with a typical element spacing of d = \/4 are presented in Table
3-5, where the optimum § required to produce the maximum directivity can be easily
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Halt-power beamwidth
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FIG. 3-11 Half-power beamwidths for improved end-
fire arrays with @ = )/4.

TABLE 3-5 Directivities for Uniform Improved End-Fire Arrays
of Isotropic Elements with kd==x/2(5in Degrees)

)
n 0 10 20 30 40 50 60 70

345 3.90 4.29 4.71 4.98 5.03 4.68
492 5.89 6.72 7.04 6.30
6.37 7.72 8.68 8.37 5.57

8.10 10.06 10.56 7.20

observed, For larger numbers of clements, the directivities relative to those for the
ordinary end-fire arrays are given in Fig. 3-12. The corresponding phases satisfied by
the_Hansen-Woodyard condition [Eq. (3-36)] are also indjcated in the figure for com-
parison purposes,

(- K ¥ B N
N wopa W

3-5 LINEAR ARRAYS WITH TAPERED
EXCITATIONS—EQUAL SIDELOBES

T_'he first sidelobe level realized from linear arrays with a constant amplitude excita-
ton approaches 2/(3x) or ~13.46 dB when n is very large, as indicated in Table 3-

f _this sidelobe [eve] is considered too high for specific applications, nonuniform
amplitude or tapered excitations are normally used to reduce the sidelobe to an accept-
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3.0

X: Hansen-Woodyard condition

»
o
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5,°
FIG. 3-12 Normalized directivities (relative to the ordinary end fire) for uniform
improved end-fire arrays of isotropic elements with d = A/4.

able level. One method for achieving this objective is the well-known Dolph-Che-
byshev array,'* in which all the sidelobes are set at the same level. This array is con-
sidered optimum in the sense that the first-null beamwidth is minimum for a specified
sidelobe level or that the sidelobe level is minimum for a specified first-null beam-
width. However, the above statement is true for broadside arrays only with an element
spacing no less than one-half wavelength or for ordinary end-fire arrays in which the
element spacing is no less than one-quarter wavelength.'”” Many others have also
devised methods for optimizing the sidelobe and first-null-beamwidth relationship for
special cases.'®!” All these methods are essentially based on manipulation of Che-
byshev polynomials.

A New Approach for Treating Optimum
Broadside and End-Fire Arrays

An alternative unified approach is to deal with the power pattern in the form of a
polynomial of (n — 1)th degree with real coefficients,*'® where # is the total number
of elements in the array. This approach has advantages that it not only applies to the
array yielding equal sidelobes with a specialized tapered amplitude excitation but also
is valid for other linear arrays including the uniform array considered in Sec. 3-2.
Basically, the pawer pattern for a linear array with n equally spaced isotropic elements
may be expressed as

n-1
P(y) = D Aw" (3-44)
me0
where y=2cosu u= kd(cosf — cos ) (3-45)
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and the coefficients 4,, are real. When, in addition, the array has a symmetrical ampli-
tude excitation, as is the case in practice, the power pattern takes the following prod-
uct forms:

(a=1)/2
Py = I O+ 6% foroddn (3-46)
mel
or
(n=2)/2
Py=(w+2 ] &+6,)* forevenn (3-47)

where all b,,’s are real.

Note that both Po(y) and P,(y) are nonnegative in the visible range —2 < y=
2, as representing the power pattern they should be. In addition, if the mth null is
visible, we require |b,,| < 2. Ifall the nulls do not coincide, b,,’s must also be distinct.
Thus, there are at most (n — 1)/2 independent real nulls for odd # and n/2 indepen-
dent real nulls for even n. Further, if y = 2 or 4 = 0 is the desired beam-maximum
position, the combination of 4,’s cannot be arbitrary.

The required amplitude excitations for the power patterns in Eqgs. (3-46) and (3-
47) may be shown"as the coefficients of the following array polynomials:

(r=1)/2
Soz) = JI (04 bpz+2)  foroddn (3-48)
mel
and
(n=2)/2
S{z2)=(1 +2) H (1 +b,z+2)  forevenn {3-49)
mm}
where
z = exp (ju) (3-50)
For an example, when nn = 7 (odd), we have
Po(y) = (v + b))y + b)Xy + by)? (3-51)
and

(I + biz + 21 + byz + 251 + byz + 2?)

L+ (b + b, + by)z + (3 + bib, + byby + bby) 22

+ 2by + 26y + 26y + bibybs)z® + (3 + byby + boby + biby)z*
+ (b + by + by)2° + 25 (3-52)

So(2)

Thus, the required amplitude excitations for the linear array of seven elements are
respectively
(Zb; + 2b2 + 2b3 + blbzbg), e (3'53)

Note that the excitation coefficients are symmetrical.
As another example, when n = 6 (even), we have

nd P(y) =(y+2)(» + b)¥y + by)? (3-54)
a
Sz) =1+ 21 + bz + (1 + bz + Y {3-55)
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which yields, after expansion, the required amplitude excitations as
L (1+ b+ b),(2+ b + b+ biby), ... (3-56)

Again, the excitations are symmetrical.

With Eqs. (3-46) and (3-47), a variety of arrays may be synthesized. For exam-
ple, one may wish to produce three distinct nulls at desired directions, which essen-
tially specifies b,, b,, and b; for an array of seven elements. From Eq. (3-52) or Eq.
(3-53), the required amplitude excitations can be easily determined. Of course, the
other array characteristics such as the sidelobe locations and levels and the directivity
are also fixed accordingly. As a second example, if a uniform excitation is desired for
an array of six elements, it equivalently requires, in accordance with Eq. (3-56), that
b, + b, = 0 and b,b, = —1. The solutions are simply b, = —1 and b, = 1. This
implies that the first two nulls are givenby y = 2 cosu; = landy = 2 cos u; =
— 1, which yields respectively u; = £ 60° and u; = $120°. From Eq. (3-54), we see
that a third null'is given by y = —2 or u; = 1180°. The corresponding angular null
positions and the other array characteristics can also be computed once the element
spacing d and the beam-maximum position 8, are known or specified. The results of
this example agree, of course, with those presented in Sec. 3-2.

Equations (3-46) and (3-47) can also be used to synthesize arrays with equal
sidelobes. Locations for the sidelobes may be obtained by setting dP(y)/dy = 0. Thus,
dPy(y)/dy = 0 for the odd-n case gives (n — 3)/2 values of y,'s, namely, y,, y5, .. .,
Y(n-32- Note that y; # —b,, m = 1,2,...,(n — 1)/2, which have already been
identified as the nulls. Note further that y = —2 (4 = +180°) is another sidelobe
as evidenced by Eq. (3-12). To ensure that all the sidelobes are at the same level, we
then set

Po(y1) = Py(y2)
Py(y,) = Py(ys) (3-57)

Po(yin-572) = Po(Y(a-3y2)
and
Py(¥(n-3y72) = Po(—2)

or a total of (n — 3)/2 independent equations. If we require that Py(2) be the beam
maximum (which is normally true) and have another condition such as Py(2)/
Py(—2) = K?representing a desired sidelobe level relative to the main beam or, alter-
natively, a value for b, representing a desired first null, we will have enough equations
to solve for the (n — 1)/2 unknowns, namely b,,, m = 1,2,...,(n — 1)/2.

Similarly, for the even-n case dP,(y)/dy = 0 gives (n — 2)/2 values of y's,
namely, y|, ¥, . . . , Yn-2)/2- Again y; # —b,,. Note that y = —2 (u = +180°) isa
null in this case. We then set

Py1) = PAy2)
Py = Py3)
and
P Yn-4y2) = P(¥(a-2)p2) (3-58)
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which consist of a total of (n ~ 4)/2 independent equations to ensure equality of all
the sidelobes. If we also have another condition P(2)/P(y)) = K? or a value for b
as in the odd-n case above, we then can solve for the (n — 2)/2 unknowns, namely,
bym=12,... ,(n— 2)/2.

Since the sidelobes are set to be equal, the null positions (y = —b,,) and the
sidelobe positions (y = y,) are all related. Specifically, we expressed all the parameters
in the following condensed ratio form,

(2 - b])!(z - bz)Z e :(2 - b(,,_])/z)I(z + yl)'(2 + yz): e Z(2 + y(,,_;)/z)

- — T ot [ —3" ). e[tz 27\ [ =\
= cos? (Z(n — 1)>.cos2 (Z(n — 1)). ... :cos? (Z(n — 1)).0032 (n—l)'

cos? n_—ﬂ;l ... :cos? ;r('T—_:i)% for odd n (3-59)

and

(2 - b,).(2 - bz): . :(2 - b(,,_z)/z):(z + yl):(2 + yz)I e :(2 + y(,,_z)/z)

_ T . Ir . . (n— 3 . T\
= oo’ (z(n - 1))'°°Sz (2(»: = 1))' - ioos” (2(n - 1))""’osz (n - 1))'

2 n2_w1 ICOSZ(H) for even n (3-60)

where we have arranged the null and sidelobe positions in the following order:

2> —‘b, >y] > _b2>yz>... >y(,,_3)/2
> _b(,,_”/z > =2 for odd » (3"61)
and
2> —bl >n> —b2>y2> e > —b(,,_z)/z
> Yin-2> —2" forevenn (3-62)

It is convenient to express, for a given n, b, (m = 2) and y, (all §) in terms of b, first.
For the case in which K2 is specified, this reduces the entire problem to only one equa-
tion, Py(2)/ P(~2) = K2 or P(2)/P{y;) = K* representing the desired sidelobe
level, from which b; may be solved numerically. This should not be a difficult task
since y = — by represents the first null. For a very large n, b, is close to —2. On the
other hand, for the case in which a desired first null (b,) is specified, all the other b,'s
and y/s can be easily determined from Eq. (3-59) or Eq. (3-60), and the resultant
sidelobe level can be obtained by computing Py(2)/ Po(—2) or P(2)/P(yy).

It is instructive to demonstrate in Fig. 3-13 how b, varies with X2 and n. In
general, for a given n, b, always increases with X2, For one extreme situation when
the sidelobe level is set to be minus infinity in decibels or equivalently when K2
approaches infinity, b, and, in fact, all the other b,’s will approach 2 as their limits.
Under this condition, the power pattern P(y) will approach (y + 2)"!. The required
amplitude excitations, according to Eq. (348) or Eq. (3-49), will be the expansion
coefficients of (1 + z)"~*, which is the socalled binomial array.'® Thus, the arrays of
€qual sidelobes discussed herein include the binomial array as a special case in which
all the sidelobes are equal to —oo decibels with respect to the beam maximum. Cer-
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FIG. 3~13 First-null positions and sidelobe-level relationships for arrays with
equal sidelobes.

tainly, the accomplishment of a very low sidelobe level is at the expense of wide beam-
width and highly tapered amplitude excitations. The other extreme situation occurs
when the sidelobe level is set at a very high level or when K approaches unity. Under
this condition,the sidelobes are at the same level as that for the main beam. The value
for b, may be determined from Fig. 3-13, and the other 5,’s and y,’s can be obtained
from Eq. (3-59) or Eq. (3-60). The required amplitude excitations computed from Eq.
(3-48) or Eq. (3-49) will vanish except for the first and last elements, exhibiting a so-
called edge distribution.? For the practical case, the sidelobes, beamwidths, and
required amplitude excitations are somewhere between these two extremes.

The first-null position in @ can be determined easily from b, when the element
spacing d and the beam-maximum direction 8, are known. That is,

kd(cos 8; — cos 8p) = cos™! (—b,/2) (3-63)

For the broadside array (8, = 90°) with d = A/2 and the ordinary end-fire array
{8, = 0) with d = \/4, the first-null and sidelobe-level relationship shown in Fig. 3-
13 is known as the optimum in the sense defined by Dolph.'* Of course, the element
spacing cannot be allowed to be too large in order to avoid the appearance of a grating
lobe. For single-frequency operation, the maximum allowable element spacings for the
optimum broadside array (j.e., equal sidelobes) are given in Table 3-6. The maximum
allowable element spacings for the corresponding ordinary end-fire arrays of equal
sidelobes are just one-half of those listed in Table 3-6.

The amplitude excitations required to produce the optimum array characteristics
shown in Fig. 3-13 for n = 3 through 8, with the condition on the element spacing
satisfied, are presented in Table 3-7. The results are valid for either broadside or ordi-
nary end-fire arrays.



TABLE 3-6 Maximum Allowable Element Spacing in Wavelengths for an
Optimum Broadside Array with Equal Sidelobes

10 10? 10° 104
K {—10-dB (—20-dB (—~30-dB (—40dB
n sidelobe sidelobe sidelobe sidelobe
level) level) level) lovel)
3 0.7438 0.6402 0.5796 0.5452
4 0.8179 0.7249 0.6566 0.6081
5 0.8601 0.7813 0.7169 0.6653
8 0.9182 0.8679 0.8216 0.7794
10

0.9365 0.8960 0.8584 0.8227

TABLE 3-7 Amplitude Excitations for Optimum
Arrays with Equal Sidelobes

]
K2
n 1 10 10? 10° 10*
1 1 1 1 1
3 0 1.039 1.636 1.877 1.960
1 1 1 1 1
1 1 1 1 1
4 0 0.879 1.736 2,331 2.669
symmetrical
1 1 1 . 1 1
5 0 0.724 1.609 2413 3.013
0 0.790 1.932 3.140 4.149
symmetrical
1 1 1 1 1
6 0 0.608 1.437 2.312 3.087
0 0.681 1.850 3.383 4.975
symmetrical
1 1 1 1 1
0 0.519 1.277 2.151 3.008
7 0 0.586 1.684 3.306 5.269
0 0.610 1.839 3.784 6.275
symmetrical
1 1 1 1 1
0 0.452 1.139 1.978 2.861
8 0 0.510 1.509 3.097 5.200
0 0.541 1.725 3815 6.848

symmetrical



3-24 Introduction and Fundamentals

The directivity for the array with equal sidelobes may also be computed in accor-
dance with Eq. (3-15). In terms of y, we have

2P(2)

S— = 2kd PQ)/ W (3-64)
L P(y) sin 06 40
»  Py)
h W= —_——=d 3-65
where e \/Z—_—Tz y ( )
and

yp = 2 cos [kd(1 + cos 8,)], y = 2 cos [kd(1 — cos 6)] (3-66)
For the broadside array, fg = 90°,¥a = Vi Egq. (3-65) should be replaced by

T PY)
w=2 —_—d 3-87
v e ly ( )
where y. = 2 cos kd (3-68)

The directivity for the optimum broadside array with various sidelobe levels has been
extensively computed.”® Sample results for d = A/2 are presented in Fig. 3-14, from
which we may conclude (1) that, for a specified sidelobe level, the directivity always
increases with the total number of elements in the array and (2) that, for a given n,
the directivity does not always increase when the sidelobe level is decreased. The
results shown in Fig. 3-14 are, of course, also valid for the ordinary end-fire array with
equal sidelobes and with d = A4

Optimum Broadside Arrays When d < N2

It was noted previously that the §irst-null and sidelobe-level relationship shown in Fig.
3-13 is optimum in Dolph’s sense for the broadside array of equal sidelobes only when

—1 20
40 —
25
e g
15 10 £
10 §
[}
8 &
4
a=3
L | ] | 0
~40 -30 -20 -10 0

Sidelobe level, dB
FIG. 3-14 Directivities for optimum broadside
arrays of equal sidelobes when d = A/2.
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the element spacing is no less than one-half wavelength. When d << \/2, the visible
range of u will be —% < —kd < u < kd < =. Consequently, some of the nulls and
sidelobes will disappear into the invisible region so that the final radiation pattern does
not contain the maximum possible number of nulls and sidelobes. For this reason, the
results shown in Fig. 3-13 and Table 3-7 no longer yield optimum characteristics (first-
null-position and sidelobe-level relationships) for the broadside array. If, however, a
transformation such as

y=A4y+ A, (3-69)
with

A = %1 — cos kd) and Ay =1 + cos kd (3-70)
is applied so that all the possible nulls and sidelobes originally existing under the con-
dition 4 = A/2 remain in the shrunk visible region of u, the array characteristics
obtained after this transformation are still optimum in Dolph’s sense.® The power pat-
tern Py(p) for the odd-n case and the required amplitude excitations Sy(z) will become
respectively

(n=1)/2
2 = I1 7+ B (3-71)
mel
and
(n—1)/2
S = I 0+ Buz+ 2 (3-72)
me=]
where Bu= A — Ayym=1,2,...,(n —1)/2 (3-73)

and b,’s are still related in accordance with Eq. (3-59).
Note that B, since it involves 4, and A4,, is now a function of d, although b,, is

not. ,

The directivity becomes

kd 9v(2)

YT T d (3-74)
ye 'V 4 — y/Z
where yi = 2cos kd (3-75)

Numerical examples are now given to illustrate the point. If the excitation coef-
ficients given in Table 3-7 are still maintained without using the transformation sug-
gested in Eq. (3-69), the directivities for the broadside arrays with equal sidelobes for
m = 5 and 7 are presented as solid curves in Fig. 3-15. Clearly, the directivity
decreases rather fast when the element spacing becomes smaller than one-half wave-
length. The corresponding directivities after the transformation [Eq. (3-69)] is used
are presented as dashed curves. Although the directivity still decreases with d, it does
not now decrease as fast. To achieve this improvement in directivity for small d, the
required new excitation coefficients obtained in accordance with Eq. (3-72) are given
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Directivity
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with excitations givenin Table 3-7
- - -~ with excitations givenin Table 3 -8
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1/8 174 a/8 1/2
d/A
FIG. 3-15 Directivities for broadside arrays of
equal sidelobes.

in Table 3-8 and may be compared with the corresponding cases in Table 3-7. The
prices paid for the improvement :n directivity are, therefore, the possible phase rever-
sal for the even-numbered elements in the array, the requirement of higher accuracies
in computing and maintaining the excitation coefficients, and much lower radiation
intensities in the broadside direction. Thus, the overall radiation efficiency is very low
for this kind of superdirective array.’ Furthermore, the severe mutual couplings
among the elements when they are so closely spaced will make the accurate mainte-
nance of desired excitations more difficult. The practicality of superdirective arrays is
therefore quite limited unless special care is exercised.?! Superdirective arrays for the
even-n case are not possible.’

The first-null beamwidths for n = 5 and 7 with and without the transformation
[Eq. (3-69)] are given in Table 3-9 for reference purposes.

Optimum End-Fire Arrays When d Is Less Than the Maximum
Allowable Spacing

The characteristics shown in Fig. 3-13 are also optimum for the ordinary end-fire
array with equal sidelobes, provided that the element spacing is no less than \/4 and
no greater than the maximum allowable element spacing (dp.,) Which is required to
avoid the grating lobe. The d,, values for the ordinary end-fire arrays with various »
and K? are just one-half of those presented in Table 3-6. Under the above conditions,
the sidelobe and first-null relations shown in Fig. 3-13 can be realized by the excita-
tions listed in Table 3-7. Naturally, for single-frequency operation, we should always
use d ., to obtain the narrowest beamwidth for a given sidelobe level. When the actual



TABLE 3-8 Amplitude Excitations for Optimum
Broadside Arrays with Equal Sidelobes when d <

A/2
R
K?
n 10 10? 10°
d =%\ 1 1 1
0.0324 0.7874 1.4734
1.0231 1.6343 2.3130
symmetrical
d =Y\ 1 1 1
5 —1.6378 —1.1956 —0.7937
23350 2.1787 2.0788
symmetrical
d =%\ 1 1 1
—3.3081 —3.1786 —3.0609
4.7072 4.5106 4.3355
symmetrical
d =%\ 1 1 1
—0.4354 0.2151 0.9561
1.2395 1.6635 2.4046
—0.6091 0.3336 1.6577
7 symmetrical
d =¥\ 1 1 1
—2.7403 —~2.3593 —1.9252
4.8773 4.3917 3.9266
—5.6712 —4.8402 ~—3.9165
symmetrical

TABLE 3-9 First-Null Beamwidth in Degrees for Broadside
Arrays with Equal Sidelobes

Without With
transformation transformation
[Eq. (3-69)] [Eq. (3-69)]

K
;\\\ 10 10° 10° 10 102 1¢°

59.1 82.3 107.4 53.6 73.3 92.4
5 95.4 161.5 ... 61.0 82,5 102.5
Ceee e L. 65.2 87.3 107.4

39.1 54.8 7.2 359 499 64.1
7 60.3 87.3 121.7 41.0 56.6 72.5

. e . 44.2 60.8 77.1

AR ann,

5% 553

E
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element spacing is less than dy,, for scanning or other considerations, parts of the
maximum possible number of nulls and sidelobes will be shifted to the invisible region,
yielding a wider beamwidth. Thus, the resultant array characteristics are no longer
optimum in the Dolph sense. A method for optimizing the array characteristics even
when d < dg,, is also available.>?? Basically, a nonordinary end-fire condition such
as

u=kdcosd + a a#* —kd (3-76)

is used together with the transformation [Eq. (3-69)] so that the maximum possible
number of nulls and sidelobes under the condition d = dy;, is still kept. The required
phase o and the transformation coefficients 4, and A, for Eq. (3-69) are given respec-
tively by

tan (a/2) = cot? (kdpa,/2) tan (kd/2) (3-77)
A, = —sin? ("‘ *'2’“’) (3-78)

and
Ay = 21 + A) = 2 cos? ("‘ + ’“’) (3-79)

Thus, given the total number of elements # and a desired sidelobe level repre-
sented by K%, we determine first the maximum allowable element spacing d,.,..} The
actual element spacing d and d,,, so determined are used in Eq. (3-77) to obtain a.
These values of a and d are then used in Egs. (3-78) and (3-79) to compute the
required transformation coefficients 4, and A,. After the above procedures are com-
pleted and Eq. (3-69) is applied, the power pattern given in Eq. (3-46) for the odd-n
case remains in the same form as Eq. (3-71). Therefore, the required excitations can
still be computed by expanding Eq. (3-72). For the even-» case, the power pattern
given in Eq. (3-47) will become

(n—2)/2

2 =2-») Il +B) (3-80)
mmi|
where B,, is also related to b,, by Eq. (3-73) but withm = 1,2, ..., (n — 2)/2. The
required excitations are then obtained by expanding
(r—2)/2
Sy =0 —-2) [] 1 +Buz+2) (3-81)

m=]

Once the transformation [Eq. (3-69)] has been obtained, the computation of directiv-
ity [Eq. (3-15)] for n both odd and even can be achieved. Since the beam maximum
isat@ = 0,oru = kd + a,or y’ = 2cos (kd + «), the directivity may be expressed
as

o = —2kdQ(y2)
» O(y) dy (3-82)
va V4 —y

where y; = 2 cos (kd + «a) corresponds to § = 0 and y} = 2 cos (—kd + a) cor-
responds to § = w and where Q(3”) can be either Qy()’) or Q.()).

Sample results for this newly formulated optimum end-fire array are presented
in Figs. 3-16 through Fig. 3-18. First, the directivities computed for the end-fire array
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with equal sidelobes of —20 dB (K?* = 100) in accordance with Eq. (3-82) are given
in Fig. 3-16 (solid lines). The points marked with x correspond to the cases in which
d=d,,. More specifically, 4, =
0.32014, 0.36254, 0.39064, 0.40991, and
0.42354 respectively for n = 3,4,5,6,and
7. Corresponding resuits for the ordinary
end-fire array where y = kd (cos @ — 1) are
B also included in the figure (dashed lines) for
- comparison purposes,
- Next, the first-null beamwidths for
the optimum and ordinary end-fire arrays
of equal sidelobes with X2 = 100 are
given in Fig. 3-17. Note that the beam-
N, width decreases with d for the optimum
- end-fire array (solid curves) and that it
increases when d is decreased for the
ordinary end fire (dashed curves).

The required phases a obtained
] from Eq. (3-77) are Presented in Fig. 3-
T 18. It can be easily verified that o = —
kd.

40

DIRECTIVITY

The excitations required to produce
these characteristics are givenin Table 3-
10 and are quite different from the cor-
responding excitations in Table 3-7. Once
again, the improvements in directivity
and beamwidth for the small element
spacings are made possible by the
05  requirement of highly tapered amplitude

excitations,

FIG. 3-18 Directivities for end-fire arrays Thus far we have discussed various

with equal sidelobes of —20 dB (K2 = equally spaced linear arrays. Arrays with

100). (After Ref. 3.) nonuniform spacings have also been
designed for the purposes of reducing the

average sidelobe level, eliminating the grating lobe, minimizing the total number of

elements needed in the array, or broadening the frequency bandwidth. However, this

subject is not pursued here.

Details on this method can be found elsewhere  Limited information on this also has been
Presented in Chaps. 2 and 20,

3-6 ARRAY OF ARRAYS

It oftt_:n is‘ desirable in practice to form an array out of a number of identical arrays,
resulting In a two-dimensional array. If the mutual-coupling effect is again neglected
and the Principle of pattern multiplication applies when the same kind of antenna
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TABLE 3-10 Amplitude Excitations for the Optimum End-Fire
Arrays with Equal Sidelobes of —20 dB

d/a
n 0.4 0.35 0.3 0.25 0.2 0.15
1 1 1 1
A 1.6418 1.6923 1.7724 1.8586
symmetrical
1 1 1 1 1
4 L. 1.7430 1.8791 2.1106 2.3726 2.6212
symmetrical
1 1 1 1 1
5 L. 1.7279  2.0686  2.5033 2.9579 3.3756
2.1011 2.6035 3.2867 4.0516 4.8000
symmetrical
1 1 1 1 1 1
6 1.4496 1.7621 2.2938 2.9195 3.5576 4.1379
1.8699 2.3831 3.3460  4.6242 6.0889 7.5623
symmetrical
1 1 1 1 1 1
1.3587 1.8457 2.5513 3.3571 4.1707 4.9077
7 1.8202 2.6974  4.1787 6.1746 8.5194 10.9290
1.9972 3.0395  4.8749 7.4641 10.6410 14.0312
symmetrical

elements are used to form an array in the xy plane, the two-dimensional pattern may
be simply written as

E(0.6) = [(6,6)S:(0,6)S,(0.¢) (3-83)

where f(8,¢) is the element pattern, S(0,¢) is the array factor for the x-directed linear
array, and Sy(6,¢) is the array factor for the y-directed linear array.

When, in addition, all the elements are equally excited and spaced to produce a
beam maximum in the broadside direction (§ = 0), Eq. (3-83) reduces to

sin (Mu,/2) sin (Nu,/2)
sin (u,/2) sin (4,/2)

E(0,9) = f(6:¢) (3-84)

where u, = kd, sin 0 cos ¢ u, = kd, sin 0 sin ¢ (3-85)

d, and d, are respectively the element spacings for the x- and y-directed arrays, and
M and N are respectively the number of elements in x and y directions. Thus, the
total number of elements in the planar array is MN.

Arrays of this kind are sometimes referred to as curtains of antennas. The ele-
ment pattern of various unidirectional types of practical radiating elements such as a
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dipole in front of a reflector or a slot, helix, or log-periodic type may be adequately
approximated by 2J,(c8)/(cf), where c is a parameter and J, is the Bessel function of
the first order. On the basis of this approximation, the directivity has been computed
for a uniform square array (M = N and d, = d, = d) as a function of the element
spacing d.B Sample results are given in Fig. 3-19 to show a designer how to choose
an array aperture to realize a desired level of directivity.

Two-dimensional phased arrays of closely spaced waveguides with thin walls in
which the mutual coupling cannot be neglected are discussed in Chap. 20 and else-
where.? Other two-dimensional arrays taking the form of a circle, concentric circles,
or an ellipse are also possible. Details of these arrays may be found from the

references. > ~7
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4-1 INTRODUCTION

Since the publication of the first edition of this handbook several sections in the original
chapter on linear antennas have become outdated and have been deleted in this edition.
The availability of computer programs! for finding the impedance and other characteris-
tics of antennas, particularly linear antennas, makes parametric tabulation of limited
usage. Only some essential formulas and design data are therefore included in this chapter.

For the entire subject of linear antennas, the book by R. W. P. King? remains
authoritative. Another book? by the same author on the tables of antenna characteristics
contains the most comprehensive data on the characteristics of cylindrical antennas.
Calculations on circular-loop antennas and some simple arrays are also found there.

A section on the effective height of antennas is included in this chapter. The usage of
this parameter in describing the transmitting and receiving characteristics of linear anten-
nas and other simple structures is discussed in detail. In addition, material on the general
formulation of receiving antennas is included so that engineers can apply the formulation
for design purposes or for estimation of the coupling effect between elements made up of
both linear and other types of antennas.

Antennas in lossy media are of great current interest. Unfortunately, the subject
cannot be covered in this chapter because of limited space. The book by King and
Smith* on antennas in matter can be consulted for this subject, particularly for linear
antennas embedded in a lossy medium.

4-2 CYLINDRICAL DIPOLES

Impedance as a Function of Length and Diameter

The impedance characteristics of cylindrical antennas have been investigated by many
writers. Theoretical work has mainly been confined to relatively thin antennas (length-
to-diameter ratio greater than 15), and the effect of the junction connecting the
antenna proper and the transmission line is usually not considered. Among various
theories, the induced-emf method® of computing the impedance of a cylindrical
antenna based upon a sinusoidal distribution is still found to be very useful. The for-
mula derived from this method is extremely simple. It is, however, valid only when the
half length of a center-driven antenna is not much longer than a quarter wavelength.
In practice, this is the most useful range. To eliminate unnecessary computations, the
formula has been reduced to the following form:®

Z, = R(ké) — j [120 (lns -~ 1>cot ke — X(kc')} (4-1)

where Z; = input impedance, Q, of a center-driven cylindrical antenna of total length
2¢ and of radius a
ké = 2m(£/\) = electrical length, corresponding to ¢, measured in radians
The functions R(k¢) and X(k¢) are tabulated in Table 4-1 and plotted in Fig. 4-1 for
the range k¢ < m/2. For calculation purposes, these two functions can be approximated to
within 0.5 Q by the following simple third-order polynomials:

R(ke) = —0.4787 + 7.3246k¢ + 0.3963(ke 2 + 15.6131(ke)?
X(ke) = —0.4456 + 17.0082k¢ — 8.6793(ke )* + 9.603 1(ke)?
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TABLE 4-1 Functions R(ké) and X(ke) Contained in the
Formula of the Input Impedance of a Center-Driven Cylindrical

Antenna

“
K¢ R(k¢) X(k¢) k¢ R(k?) X(k¢)
0 0 0 0.9 18.16 15.01
0.1 0.1506 1.010 1.0 23.07 17.59
0.2 0.7980 2.302 1.1 28.83 20.54
0.3 1.821 3.818 1.2 35.60 23.93
0.4 3.264 5.584 1.3 43.55 27.88
0.5 5.171 7.141 1.4 52.92 32.20
0.6 7.563 8.829 15 64.01 38.00
0.7 10.48 10.68 x/2 73.12 42.46
0.8 13.99 12.73

I’

When the length of the antenna is short compared with a wavelength but still large
compared with its radius, the same formula reduces to

(ZDurs = 20(kt)? — j120(ke)" (mf - 1) (4-2)

For antennas of half length greater than a quarter wavelength, a number of
refined theories provide formulas for the computation of the impedance function,
None of them, however, is simple enough to be included here. As far as numerical
computation is concerned, Schelkunoff’s method’ is relatively simpler than Hallén’s.2
It should be emphasized that all these theories are formulated by using an idealized
model in which the terminal condition is not considered.
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In practice, the antenna is always fed by a transmission line. The complete sys-

tem may have the appearances shown in Fig. 4-2. The effective terminal impedance
of the line (often referred to as the

ANTENNA  pacel | L WIRE antenna impedance) then depends not

GROUND  TRANSMISSION only upon the length and the diameter of

PLANE LINE ‘\ ” the antenna but also upon the terminal

condition. In cases a and b, the imped-

COAXIAL ance would also be a function of the size

' LINE ANTENNA i ” of the ground plane. For a given terminal
condition the variation of the impedance

() te) of a cylindrical antenna as a function of

the length and the diameter of the
ANTENNA 2 . ,

antenna is best shown in the experimental

GROUND PLANE work of Brown and Woodward.® The data

cover a wide range of values of the

length-to-diameter ratio. Two useful sets

‘_-] COAXIAL LINE of curves are reproduced in Figs. 4-3 and

4-4, The impedance refers to a cylindri-

(b cal antenna driven by a coaxial line

FIG. 4-2 Driving an antenna by transmis- through a large circular ground plane

sion lines. placed on the surface of the earth. The

arrangement is similar to the one

sketched in Fig. 4-24. The length and diamreter of the antenna are measured in

degrees; i.e., a length of one wavelength is equivalent to 360°. If the effects due to the

terminal condition and finite-size ground plane are neglected, the impedance would

correspond to one-half of the impedance of a center-driven antenna (Fig. 4-2¢). In

using these data for design purposes, one must take into consideration the actual ter-

minal condition as compared with the condition specified by these two authors. In

particular, the maximum value of the resistance and the resonant length of the

antenna may change considerably if the base capacitance is excessive.

Effect of Terminal Conditions

Many authors have attempted to determine the equivalent-circuit elements corre-
sponding to different terminal conditions, Schelkunoff and Friis® have introduced the
concepts of base capacitance and near-base capacitance to explain the shift of the
impedance curve as the terminal condition is changed. Similar interpretations have
been given by King!” for a cylindrical antenna driven by a two-wire line or by a coaxial
line and by Whinnery'! for a biconical antenna driven by a coaxial line. The impor-
tance of the terminal condition in effecting the input impedance of the antenna is
shown in Figs. 45 and 4-6. They are again reproduced from Brown and Woodward’s
paper. Because of the large variation of the effective terminal impedance of the line
with changes in the geometry of the terminal junction, one must be cautious when
using the theoretical results based upon isolated antennas. For junctions possessing
simple geometry, the static method of Schelkunoff and Friis, King, and Whinnery can
be applied to estimate the shunt capacitance of the junction. The latter then can be
combined with the impedance of the antenna proper to evaluate the resultant imped-
ance. For intricate junctions, accurate information can be obtained only by direct
measurement.

PP
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Equivalent Radius of Noncircular Cross Sections

As far as the impedance characteristics and radjation pattern are concerned, a thin
cylindrical antenna with a noncircular Cross section behaves like a circular cylindrica]
antenna with an equivalent radius. In stating this characteristic, the termina] effect
15, of course, not considered. The equivalent radius of many simply shaped crogs sec-
tions can be found by the method of conformal mapping.'2 For an elliptical cross sec-

tion the following simple relation exists:
aq = %(a + b) (4-3)

Where g = major axis of ellipse
= minor axis of ellipse



4-8 Types and Design Methods

600

500

=
-

400 F

1
200

A

i}
14

300 i

100
™\

L+

N

200 A

———
-—

100

11

-100 AWY/ 479

REACTANCE — OHMS
1

=200

=300 \ I

1

-400

T e

~-500 f

-800

1]
T11

=700

1
1

et
-

-800

1
TI TV

1 1 I
1 1 [ TT1d

{11

25 50 75 100 125
ANTENNA LENGTH

FIG. 4-4 Reactance curves corresponding to the

150 i75 200 225
- DEGREES

resistance curves of Fig. 4-3.




Dipoles and Monopoles 4-9

200
180
160 4 \
140
120 \
100 B
80 P
he N
60 ~ RN
40 B-CIA
20 T >

0 =
°c2g8¢

RESISTANCE ~OHMS
/i

-

50

00 0 0 QOO0 Q00000 O Q
OCRDOOZTAMTOD @ Is]

ANTENNA LENGTH-DEGREES

FIG. 4-5 Resistance as a function of antenna length A. The diameter D is 20.6°.
Curve A: The arrangement shown in Fig. 4-2b. Curve B: The arrangement of Fig.
4-2a with the diameter of the outer conductor equal to 74°. The characteristic
impedance of the transmission line is 77.0 Q. Curve C: The outer-conductor diam-
eter is 49.5°, and the transmission line has a characteristic impedance of 52.5 Q.
Curve D: The diameter of the outer conductor is 33°. The characteristic impedance
is 28.3 Q. Curve E: This curve was obtained by tuning out the base reactance with
an inductive reactance of 65.0 Q.

ANTENNA LENGTH - DEGREES
2999383298828 38328R¢8%8

B

-100
-120
=140
~160
~180

REACTANCE ~OHMS
T

1]/
-220 '[
~240
-260
~280
~300
-320
-340

FIG. 4-8 Reactance curves corresponding to the resistance curves of Fig. 4-5.

i
n
Q
o




4-10 Types and Design Methods

0.6
0.5 — ]
L1
] 0.4 1 '
S1” 0.3 =] -
t
02 — L
§ _—
o! REEEE
EEE

0o
0 0.1 02 03 04 05 06 07 08 09 10
t

]

FIG. 4-7 Equivalent radius 8eq of 8 rectangle as a function of
the ratio of thickness tto width s.

For a rectangular cross section the result is plotted in Fig. 4-7. Tn the case of a strip,
Eq. (4-3) and Fig. 47 give the identical result. When the cross section has the form
of a regular polygon, the result is tabulated in Table 4-2. The equivalent radius of two
paralle! cylinders of radius p; and p2 separated by a distance d between the centers is
given by"
1
inp, = ——winp + Alnp + 2pmInd) (4-4)
(o + 2)

Formulas for the equivalent radius of three cylinders and an angle strip are found in
Ref. 13.

Patterns as a Function of Length and Diameter

In this subsection only the radiation pattern of center-driven cylindrical antennas is
discussed. For base-driven antennas, the patterns depend very much upon the size of
the ground plane. The subject will be discussed in Sec. 4-8.

The radiation pattern of a center-driven cylindrical antenna in general depends
upon its length and thickness. The terminal condition which plays an important role
in determining its impedance has a negligible effect on the pattern. For thin antennas,
the calculated pattern obtained by assuming a sinusoidal current distribution is a good

TABLE 4-2 Equivalent Radius of
a Regular Polygon

n 3 4 5 6

ag/a 0.4214 0.5903 0.7563 0.9200
B s

n = pumber of sides.

a = radius of the outscribed circle.
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approximation of the actual pattern. Thus, with an assumed current distribution of
the form

Kz) = Iysin k(£ — |zl) +ez=z=—¢ (4-5)
the radiation field, expressed in a spherical coordinate system, is given by

Jjnloe™® [ cos (k€ cos 8) — cos k¢ ]
2R sin @
where = (u/e)'/?> = 120x Q

0 = angle measured from axis of dipole, or z axis
The field pattern is obtained by evaluating the magnitude of the term contained in the
brackets of Eq. (4-6). Some of the commonly referred-to patterns are sketched in Fig.
4-3. Comparing those patterns with the actual patterns of a thin cylindrical antenna

BHEtRR

L=.25x L=375x =5 L=625X L=75x L=.875\

Rk

L=LOA L=1125x L=1.375x L=@D
FIG. 4-8 Radiation patterns of center-driven dipoles it sinusoidal cur-
rent distribution is assumed.

(4-6)

E'=

obtained by measurement, one finds that the theoretical patterns based upon a sinus-
oidal current distribution do not contain the following information:

1 The nulls beiween the lobes, except the natural null in the direction of the axis,
are actually not vanishing.

2 The phase of the field varies continuously from lobe to lobe instead of having a
sudden jump of 180° between the adjacent lobes.

3 The actual patterns vary slightly with respect to the diameter of the antenna
instead of being independent of the thickness.

Depending upon the particular applications, some of the fine details may require
special attention. In most cases, the idealized patterns based upon a sinusoidal current
distribution give us sufficient information for desngn purposes.

When the half length £ of the antennas is less than about one-tenth wavelength,
Eq. (4-6) is well approximated by

Jnlo(k€)2e*R

E, = Tsmﬁ (4-7)
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The figure-cight pattern resulting from the plot of the sine function is a characteristic
not only of short cylindrical antennas but also of all small dipole-type antennas. Equa-
tions (4-6) and (4-7) are also commonly used to evaluate the directivity of linear
antennas. The directivity is defined as

maximum raf:lia.tion. inten.sity (4-8)
average radiation intensity
For a short dipole, D is equal to 1.5. The directivity of a half-wave dipole (¢ = A/4)

is equal to 1.64. The half-wave dipole is often used as a reference antenna to describe
the gain of more directive antennas, particularly arrays made of dipoles.

4-3 BICONICAL DIPOLES

impedance as a Function of Length and Cone Angle

When the angles of a symmetrical biconical antenna (Fig. 4-9) are small, the input
impedance of the antenna can be calculated by using Schelkunoff’s formula.” Some

B

FIG. 4-9 A biconical dipole. -

sample curves are shown in Fig. 4-10. While the biconical antenna is an excellent
theoretical model for studying the essential property of a dipole-type antenna, small-
angle biconical antennas are seldom used in practice. Wide-angle biconical antennas
or their derived types such as discones, however, are frequently used as broadband
antennas. The broadband impedance characteristics occur when the angle of the
cones, 0, of Fig. 4-9, lies between 30 and 60°. The exact value of 6, is not critical.
Usually it is chosen so that the characteristic impedance of the biconical dipole
matches as closely as possible the characteristic impedance of the line which feeds the
antenna. The characteristic impedance of a biconical dipole as a function of the angle
is plotted in Fig. 4-11. For a conical monopole driven against an infinitely large ground
plane, the characteristic impedance and the input impedance of the antenna are equal
to half of the corresponding values of a dipole. Several formulas'* are available for
computing the input impedance of wide-angle biconical antennas. Actual computation
has been confined to a very few specific values of #,.1%!” More complete information
is available from the experimental data obtained by Brown and Woodward.!* Two
curves are reproduced in Figs. 4-12 and 4-13. The case corresponding to & = 0° rep-
resents a cylindrical antenna having a diameter of 2.5 electrical degrees at a frequency
of 500 MHz, since the feed point was kept fixed at that diameter.

Patterns of the Biconical Dipole

The radiation patterns of biconical dipoles have been investigated theoretically by
Papas and King.'® Figure 4-14 shows the patterns of a 60°-flare-angle (8, = 30°)
conical dipole for various values of ka, where k = 2x/\ and a = half length of the




Dipoles and Monopoles 4-13

10,000 ! 10,000

1
[ il ]
1 ll: I
RN | ' A
" 1 o \ l’:,"l\
in / I / AT
1000 1 T4 1000 I y } ] 0 |
1 !I’\F{:II A T Al i
| r DNel 1 | W \ )
Il ll ] ll"F“ | ] !
(%] v et
g / I g b
& I & ‘ .' \llfl
100 1\ / 100 ‘,7
= = =
T T
— — Qo { ,'__ °
fl 1 P e ft
i ip— T i
1o 20
I e
0 | mL

0 2 4 6 8 0 2 4 6 8
£ : £
2m (%) 2w (%)
FIG. 4-104 input impedance of small- FIG. 4-10b6 Input impedance of small-
angle biconical antennas (resistance). angle biconical antennas (reactance).

dipole, which is the same as the £ used in Fig. 4-9. Similar curves corresponding to

different values of the flare angle have been obtajned experimentally by Brown and
Woodward, 8

44 FOLDED DIPOLES

Equivaient Clrcuit of a Folded Dipole

A folded dipole is formed by joining two cylindrical dipoles at the ends and driving
them by 5 pair of transmission lines at the center of one arm as shown in Fig. 4-15.
The diameters of the two arms can be either identical or different. A simple analysis,
b:cxsed Upon a quasi-static approach, of the operation of a folded dipole of arbitrary
dimension hag been given by Uda and Mushiake.'? According to their method, the




400

8,
K=120 log, cot (T°)

[%2]
=
3
N
z 200
p'4
N
100 ™
-~
~
o

O 0 20 30 40 50 60 70 80 90
8, IN DEGREES

FIG. 4-11 Characteristic impedance of a biconical dipole.

500 [ \
\
[»
400 \ ’
o.
AN A
[ARAVE
(%)
330 \W
% N
3] AN
Z \
% N N
a 200 N \
& —\eo N o ]
N Y 20 | |
SONINN M B0
D ~N \\\ 40 4
100 40 50 60 o My 53 E :
80 70200 :
TT SHSS o [
i
00 50 100 150 200 250 300

ANTENNA LENGTH —DEGREES
FIG. 4-12 Measured resistance curves of the conical unipole versus length in
electrical degrees for various flare angles.

VB

PR iR 5205 5

4-14



200

A T\ "
\ A
A
N
100 AIvs : -
N
20’0\ }\ |20 [l 0
g [¢) 9%°~ sl ]
/ 7 550 50
? 10/ 8% Rt ©
8 A/ 307 V/
g Wt A
E-'OO /# },/
* o/ [ 17
s /
/ 4
-200 2
h -1
\
T 1 S J’
3005 50 100 150 200 250 300

ANTENNA LENGTH - DEGREES

FIG. 4-13 Measured reactance curves of the conical unipole versus length in
electrical degreas for various flare angles.

o 0. 1O,
(c) (d) (g)

FIG. 4-14 piotg of the absolute values of the far-zone electric field as a function of the
Zenithal angle ¢ for varlous values of ka and with a fiare angle equal to 60° (4, = 30°).

4-18



4-16 Types and Design Methods

==

FIG. 4-15 Folded dipole.

excitation of a folded dipole can be considered as a superposition of two modes as
shown in Fig. 4-16. The impedance of the symmetrical mode, characterized by two
equal driving voltages, can be calculated by making use of the equivalent radius of

.Id_ Vi=(l +a}Vv
I =1+ 1
L 1, ol, Iy I
N N N 1/ _U+av
=
vit VI8V avigy fv et
4 Vi-udn
= + _cosh 57
as veap2-
cos h~! —H ~1
4 2w
RADIUS P P,

W=g/p. V=d/p

FIG. 4-16 Decomposition of the folded dipole into two fundamental
modes.

two conductors as discussed in Sec. 4-2. The equivalence is shown in Fig. 4-17. The
impedance function Z, is therefore the same as the impedance of a cylindrical dipole
with an equivalent radius p, given by

Inp, = Inp; + (w¥lnp + 2ulnv) (4-9)

1
1+ w?
where the various parameters are explained in Fig. 4-16. The impedance of the asym-

metrical mode, characterized by equal and opposite currents on the two arms, is the
same as the shorted section of transmission line of length equal to £; that is,

Z = 9-12:1{—)1 = jZ,tan k£ (4-10)

1 1, 1 1
r\ /Ur r\ ;r ] ” _JZ
v —_ —/
\ 2 ———
togty vi Ze 1+ a1, //

2z,

(l+a):i

FIG. 4-17 The equivalent representation FIG. 4-18 Equivalent circuit of a folded
of the symmetrical mode in computing Z. dipole.
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where Zj is the characteristic impedance of the two-wire line. Expressed in terms of
Z, and Zj, the input impedance of a folded dipole is given by
Vi _(+ av _ 21 + a)*z,z,

Z =-! =
L L+l (+az 42z

(4-11)

An equivalent circuit based upon Eq. (4-11) is shown in Fig. 4-18. For a folded dipole
of length £ equal to A/4, Zyis very large compared with (1 + a)’Z,; hence

Zy = (1 + a)’z, (4-12)

Impedance Transtormation as a Function of
the Ratio of Conductor Sizes

The step-up impedance ratio (1 + a)? as a function of w and » has been calculated by
Mushiake.? The diagram is reproduced in Fig. 4-19 by using the formula for ¢ given
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FI1G. 4-19 Step-up transformation chart for a folded dipole.

in Fig. 4-16. When p1 and p; are small compared with d, the value of g is givento a
£ood approximation by

In (d/p;)
a=—21L 4-13)
In (/) (
This formula was first derived by Guertler.!
Another presentation® of the transformation ratio (1 + a)’ in a logarithmic
scale as a function of p2/p; and d/p, is given in Figs. 4-20 and 4-2].
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4-5 SLEEVE DIPOLES

Equivalent Circuit of a Sleeve Dipole

The geometrical shape of a sleeve antenna, or a sleeve monopole, is sketched in Fig.
4-22a. If the image of the structure is included, then we have a sleeve dipole as shown
in Fig. 4-22b. A sleeve dipole can therefore be considered as a doubly fed antenna in
which the current is a relative maximum at the center of the dipole or at the base of
the monopole. Antiresonances of the antenna impedance function take place when .S
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is approximately equal to an odd multiple of a quarter wavelength or L is a multiple
of a half wave. A special case of interest is that in which L + S is equal to a quarter
Wavelength. Then the current distribution along the structure is approximately cosi-
Nusoidal. At resonance the input resistance of the sleeve monopole or the sleeve dipole
1S approximately given by

2
21rL) (4-14)

Rs =R (cscT
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where R denotes either the input resistance of a resonant quarter-wave monopole or
that of a half-wave dipole. The sleeve in this case plays the role of an impedance
transformer.

Wong and King?® have shown exper-
imentally that open-sleeve dipoles properly
designed exhibit a broadband voltage-

L standing-wave-ratio (VSWR) response

} _*_ and unidirectional radiation patterns over

s nearly an octave bandwidth when placed

_t above a reflector. Figure 4-23 shows the

VSWR response of open-sleeve dipoles for

various dipole and sleeve diameters. Figure

} 4-24 shows the same with sleeve spacing as
(a) (b) the parameter.

Open Folded Sleeve Monopole

The work of Uda and Mushiake® on

folded dipoles can be extended to include a
load at the unexcited arm as shown schematically in Fig. 4-25. The impedance of the
loaded dipole is given by

FIG. 4-22 The sleeve antenna.

2
a
(Z,+ 2Zpz, + (1 T a) Z,Z,

Z = T (4~15)
Z,+ Z, +m2"

where Z, = jZ, tan 2;-—8

Z = Ez;o [cosh"%y- (1 ++* —u» + cosh™ ﬁ(—l + 7+ )]
Z, = input impedance of the folded dipole when it is driven simultaneously by
a common voltage at the base. It is approximately equal to that of a
dipole with an equivalent radius p, given by Eq. (4-4).
The parameter a in Eq. (4-15) and the parameters vy and u in the expression for the
characteristic impedance Z, of a transmission line made of wires of unequal radius
are the same as those defined for Fig. 4-16.
In the special case in which Z, approaches infinity, Eq. (4-15) reduces to

2
a
Z, =25+ (m) Z, (4-16)

The structure then corresponds to an open folded dipole or monopole. Josephson?
studied this structure both theoretically and experimentally. However, his analysis is
correct only if the wires are of the same size. A sleeve version of an open folded mon-
opole was also investigated by Josephson. The two structures are shown in Figs. 4-26
and 4-27.

The open folded monopole with a displaced feed point is equivalent to a folded
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sleeve monopole. The input resistance at resonance of the open folded sleeve monopole
is given approximately by

2 2
R, = R, (sin 5—;'3) / (sin -2%’5) (4-17)

where R, denotes the resonant input resistance of the open folded monopole and R, is
the input resistance of the folded sleeve monopole. The precise value of Ry depends on
the radius of the wires and their separation. A typical value is about 10 Q. The open
folded sleeve monopoles made of arms with different sizes are useful models in design-
ing aircraft trail antennas or fin-type antennas on vehicles as illustrated by Josephson.

4-6 EFFECTIVE HEIGHT OF ANTENNAS

General Formula and Its Role in the Theory of
Transmitting and Receiving Antennas

The radiation field of any antenna can always be written in the form
_ —'jKZol,'e_ij h

E 47 R

(4-18)
where Zy = (uo/e)'/?

k= 2x/\

b = effective height of antenna

I; = input current to antenna
The effective height of an antenna was originally introduced by Sinclair.?® It is related
to the radiation vector defined by Schelkunoff to characterize the radiation field of an
antenna, ie.,

N, =1Ih ' (4-19)

where N, denotes the transversal part of Schelkunoffs radiation vector. The effective
height is a very useful parameter in antenna engineering. For example, the open-cir-
cuit voltage of a receiving antenna can be expressed as

Vop = E, > h (4"20)

where E; denotes the incident electric field. It is also an important parameter involved
in the polarization-matching factor of a receiving antenna. In the theory of receiving
antennas the receiving cross section or the effective aperture is defined by

X).
A= Z-;qu (4-21)

where A = operating wavelength
D = directivity of antenna
= polarization-matching factor
_Ih-E}J?
[h|? |E,|?
q = impedance-matching factor
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ZL'_Zrz

Z, + Z;

Z, = input impedance of antenna

Z; = load impedance

The polarization-matching factor again involves the effective-height function.
The effective-height function of a center-driven short dipole, if a linear current distri-
bution along the dipole is assumed, is given by

h = —¢sin 6 (4-22)

where £ denotes the half length of the dipole which is assumed to be pointed in the
vertical direction and 6 denotes the polar angle measured between the axis of the
dipole and the direction of observation or the direction of radiation. For a linearly
polarized incident field making a skew angle o with the axis of the dipole, the polari-
zation-matching factor is given by

1 —

p = costa (4-23)
The effective-height functions for other simple antenna elements are listed below:
Antenna type Effective height

Short dipole of length 2¢ —2¢ sin 00

A cos (% cos 0)
Half~wave dipole S Tand 0

r’a? -
Small loop of radius @ pointed in the z J ra sin 6¢
direction

n cos (%r cos 0)
Half-wave folded dipole — =}

T sin

4-7 COUPLED ANTENNAS

Circuit Relationships of Radiating Systems

When several antennas are coupled to each other, the input voltage and input currents
to the antennas follow the same relationship as ordinary coupled circuits.”’ For a sys-
tem of n antennas, the relationships are

n
Vi=32Zy, i=L2...,n (4-24)
J=1
where Z; is called the self-impedance of antenna i and Z; or Z is called the mutual
impedance between antenna / and antenna j. In the case of linear radiators, Carter’s
method, or the induced-emf method based upon sinusoidal current distribution, is the
simplest one to use in determining the various Z’s. The method applies only to anten-
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FIG. 4-28 Mutua! impedance between two parallel haif-wave antennas placed side by
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placed side by side, Figure 4-29 shows the mutual impedance of two parallel collinear
half-wave antennas. Mutual impedances of two parallel antennas of unequal sizes
have been investigated by several authors.®~%! The induced-emf method has also been
applied to crossed or skewed antennasi®3? to evaluate their mutual impedance. Refined
calculations based upon Hallén’s integral-equation technique are found in the works
of Taj, Bouwkamp,* and Uda and Mushiake."* The last two authors also evaluated
the self-impedance and mutual impedance of paralle] antennas of unequal sizes, which
ultimately applies to the design of Yagi-Uda arrays.

For dipoles separated by a distance which is large compared with a wavelength,
the mutual impedance between the two dipoles can be calculated by using the asymp-
totic formula

jkZ e JkR

JRLg
7, =
12 4w R

(hl *hy) (4'25)

where £ = 2%/
Zo = (uo/eg)'?
= distance between centers of dipoles
by, b, = effective height of dipoles
e formula is qQuite accurate for half-wave dipoles with a separation barely greater
than one wavelength.
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4-8 MONOPOLE ANTENNAS

Relationship to Balanced Antennas

When a monopole is mounted on an ideally infinite ground plane, its impedance and
radiation characteristics can be deduced from that of a dipole of twice its length in
free space. For a base-driven monopole, its input impedance is equal to one-half that
of the center-driven dipole, and the radiation pattern above the infinite ground plane
is identical with the upper half of the radiation pattern of the corresponding dipole.
When the ground plane is of finite size, the image theorem does not apply.

Several methods have been devised to investigate the characteristics of a mono-
pole mounted on a finite-size ground plane. The first method is due to Bolljahn,* who
considers the problem from the point of view of symmetrical components. The decom-
position is shown in Fig. 4-30a, in which the ground plane is assumed to be of the form

1

AZ
VAR VL LAY

51 EER

ol—

of—

FIG. 4-30a Monopole and finite-size ground plane
and its decomposition into two modes of excitation.
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of an infinitely thin conducting disk. For the symmetrical mode of excitation the pres-
ence of the disk has no effect upon the radiation of the two elements. The problem is
therefore the same as if the two elements were placed in free space. The antisym-
metrical pair of current elements excites equal currents on the top and the bottom
sides of the disk. This mode is responsible for the variation of the input impedance of
the antenna as a function of the disk diameter. It is also responsible for the asymmetry
of the resultant radiation pattern with respect to the ground plane. Bolljahn’s original
work was developed by assuming a short monopole on a disk. The entire analysis is
found in Schelkunoff’s book Advanced Antenna Theory.” His study of the character-
istics of large ground planes was later extended by Storer*’ to monopoles of arbitrary

length.

Effect of Finite-Size Ground Plane on
impedance and Pattern

According to Storer, who used a variational method to formulate the problem, the
change of the input impedance of a base-driven monopole erected upon a large circular
ground plane can be written as

—z-z7=;9 _,,,4' j"@ 1’ -
AZ=2- 2 J%a® k 0I(o)dz (4-26)
where Z, = impedance of monopole referred to an infinite ground plane, @
d = diameter of circular ground plane
k =2x]X )
h = height of monopole
Kz) = current-distribution function of monopole
I(0) = base current or input current
The function j(60, kd)e~’*¢, which is independent of the current distribution, is plotted
in Fig. 4-305. The real and the imaginary parts of the function are respectively equal

k I( Z) 2 ‘ h I( Z) 2
to (R — =22 X—-X)/ 2= dzi -
o ( Ry) k o 10) dz{ and ( o) k o T0) dz| . For a quarter
wave monopole, if we assume 7(z) = I(0) cos kz, then
h I(2) ;
k o 1(0) dz| =1

Thus, with a ground plane of a diameter greater than 10 wavelengths, it is seen from Fig.
.4-30b that the variation of the resistance and of the reactance ofa quarter-wave monopole
islessthan 1 Q.

Radiation Pattern of a Monopoie on a
Circular Ground Plane’

While the effect of a ground plane upon the impedance of a monopole is not very great,
the radiation pattern is affected considerably. The pattern of such a composite antenna

K ‘T!l.e material contained in this subsection is condensed from a communication from Dr. Robert G.
Ouyoumjian exclusively prepared for this handbook. The help of Dr. Kouyoumjian is gratefully
acknowledged,
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FiG. 4-30b Universal curve for the change of antenna impedance as a function of the
diameter of the ground plane.

can be obtained quite accurately from the solution of the uniform geometrical theory
of diffraction (GTD).** For a short monopole of length % positioned at the center of
a circular disk of radius a, as shown in
Fig. 4-31, the current on the monopole is
24 A assumed to be

_ , sin k(h — 2) :
%A I(Z) i Io Sin kh (4-27)
X
If the point of observation is not near the

FIG. 4-31 A monopole on a circular disk.  vertical axis (6 not close to 0 or =), the
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radiation field can then be expressed in the form
E = (Eo+ Ey + En)b (4-28)

where E, is the geometrical optics field given by

i —JjkR —
2jZ;;Iof:’ " [cos (kh cos 6)6 cos kh],osa <7
E, = { 2Rsin sin (4-29)
0,1—2r <0<

and E4 and E,, represent, respectively, the singly and doubly diffracted field. They

are given by
Eo<a, I)a
E; = — —-——-2—-— [F[zka cos? (I + E)] sec |~ + -6->
“ 2V/2rka sin 8 472 I

—JkR
eflka sin o~e/) T o <’Z" - g) e~Jlka sin a—(-/mJ _e; (4-30)

Eo(a I)a

) e~ N2ka—x/4) { [ Tr 8 T 8

Ep=— “ {F|2kacos? (T + 2 iy

« 2V2rkasin6 2\/rka @ cos (4 + 2)} see <4 * 2)

—JjkR

[ka sin o—(x/4)) T T _ 9 ke 0~(x/4)) ﬂ_ -
& +sec<4 z)e } F (4-31)
where F(x) = 2jVx e fv‘ e dy (4-32)

T\ o Sk

E(,(a, 2) P —— (1 — cos kg) (4-33)

In Egs. (4-30) and (4-31), the upper sign associated with the secant functions is for 0
=8 < /2, and the lower sign is for 7/2 < 6 < . Although the uniform GTD is a
high-frequency method, which implies that ka > 1, in practice the result is valid even
for ka as small as 2r. When the argument of the transition function F(x) is greater
than 10 or so, F(x) is approximately equal to 1; then the sum of E, and E,, yields

2 r 0 .
E = — /2 I 4 2 kasin o—(epay -
a + Ep Eyax/2) 2 Thasing {sec (4 + 2> & F

—jl2ka~(r/4)) —~jkR
sec G - g) g~/ika sin 0~(c/4)) [1 + & / j‘ ] 2 (4-34)

2Vrka R

In the axia] region (6 close to 0 or 7), the pattern can be found by means of an equivalent
edge current. %40 The total diffracted field in this case is given by

x e-J(2ka—r/4)

a .
Z)Esecz.l,(kasmﬂ)[] + zM} (4-35)

Efy+Ep = -T-on(a,
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This approximately equals E; and E, given by Eqs. (4-30) and (4-31) at ka sin § =~
5 for § < x/2. Thus, the pattern calculated from Eq. (4-35) joins smoothly with that
calculated by Egs. (4-31) and (4-32) when ka > 5.

Figure 4-32 shows a typical pattern based on Eq. (4-28), the solid line, and Eq. (4-35),

i a= 3\
] h=0.224 )\

——

[=]
o
[=3
-]
[=]
w0
(=]
~

o
—_
(]
=]
o

FIG. 4-32 The radiation pattern of a monopole above a circular disk having a radius
of three wavelengths.

the dashed line. For practical purposes the term E, due to the doubly defracted rays is
much smaller compared with E,, except in the region where 8 is close to n/2. By using a
hybrid moment method jointly with GTD, it is possible to determine the input impedance
of a monopole centered on a perfectly conducting circular disk.*!

Monopole Mounted on the Edge of a Sheet

When a monopole is driven against an infinitely large conducting half sheet, the prob-
lem can be formulated conveniently with the aid of the dyadic Green’s function per-
taining to the half sheet.*? By transforming the resultant series into definite integrals,
Sawaya, Ishizone, and Mushiake*® have been able to calculate the impedance of a
monopole mounted on a half sheet in several orientations. Their results are shown in Figs.
4-33 and 4-34.



»
©
o

RESISTANCE (OHMS)

g

RESISTANCE
=20

@

g

300

g

REACTANCE (OHMS)

RESISTANCE (OHMS)

g
T

2

Dipoles and Monopoles

MONOPOLE ANTENNA

T coNDuCTING .

HALF-SHEET

RES1STANCE

11a220

REACTANCE

(127

1122200
100

50

20

4-31

200"

(0)

300

FIG. 4-33 Impedance of a horizontal (a) and of a vertical (b) monopole antenna as a func-
tion of £/A,. (© 71987 IEEE.)

RESISTANCE, Q

H

60 MONOPOLE ANTENNA __
170220 CONDUCTING
20 |- j HALF SHEET |
50 ,
N
0 } 1==0.25\0 —
INFINITE
30 \ GROUND 02
20 \\\ PLANE . ?o
0.15)
10 P 2
0
O Ol 02 03 04 05 06 O7
xo/ho
{a}

REACTANCE, Q

30

20K

|
a
(o]

t
-~
(o]

[}
@®
(o]

=170

-180

10=200 [1=0.250
\ 1
INFINITE
— GROUND
PLANE
0.2\
—-"‘
[
\ Q.15) 0
1

oB]

XQ/XO

(b)

02 03 04 05 06 07

FIG. 4-34 Impedance of vertical monopole antenna on conducting half sheet as function of
Xo/Ao, where x, is the distance from the edge of the half sheet to the base of the monopole. (a)
Resistance. (b) Reactance. (© 7987 IEEE.)

These theoretical data can be used to estimate the impedance of monopoles
mounted on large but finite conducting sheets. These authors also calculated the imped-
ance of a notch antenna cut on a half sheet. The radiation patterns of short dipoles and
small loops mounted on a half sheet are found in Ref. 42. Other work also has been
reported by Pozar and Newman* and by Marin and Catedra** for the impedance and
radiation patterns of monopoles located near the edges of finite half sheets or disks.
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FIG. 4-35--Admittance versus frequency of a6<cm monopole mounted on a cubical con-
ducting box with edge length 10 cm for various locations between the center and comer.
(© 1987 IEEE.)

Monopole Mounted on a Conducting Box

Recent investigations by Bhattacharya et-al.* and Chu et al.*’ have reported the imped-
ance and radiation patterns of a monopole mounted at arbitrary locations ona conducting
box that is comparable in size to a wavelength. Figure 4-35 shows the behavior of the
admittance of a monopole as a function of frequency as the position of the monopole is
moved from the center of the box face to one corner.*
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5-1 INTRODUCTION

The single-turn loop antenna is a metallic conductor bent into the shape of a closed
curve, such as a circle or a square, with a gap in the conductor to form the terminals.
A multiturn loop or coil is a series connection of overlaying turns. The loop is one of
the primary antenna structures; its use as a receiving antenna dates back to the early
experiments of Hertz on the propagation of electromagnetic waves.!

The discussion of loop antennas is conveniently divided according to electrical
size. Electrically small loops, those whose total conductor length is small compared
with the wavelength in free space, are the most frequently encountered in practice.
For example, they are commonly used as receiving antennas with portable radios, as
directional antennas for radio-wave navigation, and as probes with field-strength
meters. Electrically larger loops, particularly those near resonant size (circumference
of loop/wavelength = 1), are used mainly as elements in directional arrays.

The following symbols are used throughout the chapter:

A = wavelength in free space at the frequency f = w/2r, where the complex har-
monic time-dependence exp (jwt) is assumed

B8 = 2w/A = propagation constant in free space

¢ = \/m = wave impedance of free space (= 377 Q)

b = mean radius of a circular loop or mean side length of a square loop

a= ra)dius of loop conductor (All results presented are for thin-wire loops, a/b «
1. ,

A = area of loop

N = number of turns

£. = length of solenocidal coil

§-2 ELECTRICALLY SMALL LOOPS

The axial current distribution in an electrically small loop is assumed to be uniform;
that is, the current has the same value [; at any point along the conductor. For single-
turn loops and multiturn loops that are single-layer solenoidal coils, measurements
suggest that this is a good assumption provided the total length of the conductor (N
X circumference) is small compared with the wavelength in free space, typically
<0.1A, and the length-to-diameter ratio for the solenoidal coil is greater than about
3(€./2b = 3.0).2 With a uniform current assumed, the electrically small loop antenna
is simply analyzed as a radiating inductor.’

Transmitting Loop
The electromagnetic field of an electrically small loop antenna is the same as that of
a magnetic dipole with moment m = I;NA:

_ﬂ'ﬂ( _L) e .
E, = 1 ik sin 6 (5-1)

4zr
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—u32 1 1 .
&=fmgb'$“ﬁﬂf”m” (5-2)
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B = (ﬂr+ﬂzﬁ)e” et (53)

where the plane of the loop is normal to the polar axis of the spherical coordinate
system (r, 0, ¢) centered at the loop, as shown in Fig. 5-1. In the far zone of the loop
(lim Br — o), only the leading terms in Eqgs. (5-1) and (5-2) are significant, and the

—~
i |E¢|,|BQI
|

|
{
- |
X \+, \\ | B
T !
"Ny |

FIG.5-1 Loop antenna and accompanying  FIG. 5-2 Far-zone vertical-plane field pat-
spherical coordinate system. tern of an electrically smali loop.

$2
8

field pattern for both E, and B, in the vertical plane is the simple figure eight shown
in Fig. 5-2.

The driving-point voltage and current are related through the input impedance
of the loop, ¥V = ZI,. For electrically small loops, the impedance is the series combi-
nation of the reactance of the external inductance L* with the radiation resistance R”
and the internal impedance of the conductor 2! = R + jwL*

Z=R+2Z'+ oL = R + R + ju(L* + L) (5-4)

In the equivalent circuit for the small loop, a lumped capacitance C is sometimes
Placed in parallel with Z to account for the distributed capacitance between the sides
of a single turn and between the turns of a solenoid, as shown in Fig. 5-3. This capac-
itance is omitted here, since in practice a variable capacitance is usually placed in
parallel with the loop to tune out its inductance; the capacitance of the loop simply
decreases the value of the parallel capacitance needed. Note that a loop with a truly
uniform current distribution would have

O— no capacitance, since from the equation

of turns;

T{ of continuity there would be no charge
' Les along the cond.uctor of the loop.

Z— ¢k The radiation resistance of the
h small loop is proportional to the square of
! RT+RI the product of the area and the number
{
i

P
FIG. 5-3 Equivalent circuit for input im-
Pedance Z of an electrically small loop.

R=2gvar  (55)
6r
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For single-turn loops and solenoidal coils whose turns are not too closely spaced, the
internal impedance is approximately

Z' = z' X total length of conductor (5-6)

where Z' is the internal impedance per unit length of a straight conductor with the
same cross section as the loop conductor.? If the turns of the coil are closely spaced,
the proximity effect must also be included in determining Z'.°

The external inductance is determined from one of the many formulas available
for the inductance of coils:®

For a single-turn circular loop
L = pob[ln (8b/a) — 2] (5-7)
and for a single-turn square loop

L 2[-l-ob

[In (b/a) — 0.774] (5-8)
The external inductance of a tightly wound single-layer solenoidal coil of length £,
and a radius b is often approximated by Lorenz’s formula for the inductance of a
circumferentially directed current sheet.® Numerical results from this formula can be
put in a form convenient for application:

L = KugN*4/¢€, (5-9)

where the factor K, known as Nagaoka’s constant, is shown as a function of the ratio
£./2b (length of the coil to the diameter) in Fig. 5-4. Note that, for a long coil (¢./
2b > 1), K = 1. The use of Eq. (5-9) assumes that the turns of the coil are so closely
spaced that the winding pitch and insulation on the conductors can be ignored; if
highly accurate calculations of L* are necessary, corrections for these factors are avail-
able in the literature.

Receiving Loop

When the electrically small loop is used as a receiving antenna, the voltage developed
at its open-circuited terminals ¥oc is proportional to the component of the incident
magnetic flux density normal to the plane of the loop Bi:

Voc = joNAB. (5-10)

where the incident field is assumed to be uniform over the area of the loop. This simple
relation between e and B! makes the small loop useful as a probe for measuring the
magnetic flux density. If a relation between the incident electric and magnetic fields
at the center of the loop is known, V¢ can be expressed in terms of the magnitude of
the incident electric field E' and an effective height A,. This is the case for an incident
plane wave with the wave vector k; and the orientation shown in Fig. 5-5:

Voc = jwuNAB cos y;sin 8, = h(y,, 6)E' (5-11)

where h(¥i 0) = Voc/E' = jBNA cos Y, sin b, (5-12)
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FIG. 54 Nagaoka’s constant K for a solenoidal coil as a function of
the coil length to the diameter, £,/2b.
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FIG. 5-5 Plane-wave field incident on re- FIG. 5-8 Thévenin equivalent circuit for
ceiving loop. the receiving loop.

The voltage across an arbitrary load impedance Z, connected to the terminals of the
i?_op with input impedance Z is determined from the Thévenin equivalent circuit in
18. 5-6;

Ve = VocZ (Z + Z)) (5-13)
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Ferrite-Loaded Receiving Loop

The open-circuit voltage at the terminals of the electrically small receiving loop can
be increased by filling the loop with a core of permeable material, usually a ferrite.
The effect of the core is to increase the magnetic flux through the area of the loop, as
illustrated in Fig. 5-7 for a solenoidal coil with a cylindrical core placed in a uniform
axial magnetic field.

The ferrite material is characterized by a complex relative initial permeability
#r = pfpe = w, — ju7 and a relative permittivity €, = €/eo.* The material is usually
selected to have a loss tangent p, = u7/u; which is small at the frequency of opera-
tion, and consequently p7 is ignored in the analysis except when the power dissipated
in the core is being calculated. The dimensions of the core are also assumed to be small
compared with the wavelength in the ferrite A, = A/ Ve, to prevent internal reso-
nances within the core.”

The open-circuit voltage for a single-turn loop at the middle of a ferrite cylinder
of length £, and radius b is increased by the factor u.q over the value for the same
loop in free space:

Voc = jwpgABE (5-14)

COIL IN INCIDENT FIELD

o e
_/”//”'__\\
RN

COIL WITH FERRITE CORE IN INCIDENT FIELD
FIG. 5-7 Effect of a cylindrical ferrite core on the mag-
netic flux through a solenoidal coil.

*The initial permeability is the derivative dB/dH in the limit as A is reduced to zero. Dielectric loss
in the ferrite is ignored here, and the permittivity is assumed to be real.
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Here the radius of the loop conductor a is ignored, and the mean radius of the loop
and the core are assumed to be the same value b. The graph in Fig. 5-8 shows the
apparent permeability s as a function of the length-to-diameter ratio for the rod
£,/2b with the relative initial permeability of the ferrite u’ as a parameter.® Similar
graphs for the apparent permeability of solid and hollow spheroidal cores are in the
literature.®

For a single-layer solenoidal coil of length £, centered on the rod, an averaging
factor F must be included in the open-circuit voltage to account for the decrease in
the flux along the length of the coil from the maximum at the middle:

Voc = jomuFyNAB, (5-15)

The empirical factor Fy, determined from an average of experimental results, is shown
in Fig. 5-9 as a function of the ratio £,./¢, (length of the coil to length of the rod),!o!
For a long rod of moderate permeability (£,/2b > 1, ppq = 7) covered by a coil of

103 y .|
1
y4 10004
lel’-'r“’m]\/ 700
412 ?OIO §
i 300
2 — 1 ennnishanainien /I I
* UV
4———1’ —— %
102 y 4 [ 100 it
8 A ',
Af—— 70
6 4 / Lot 5
5 4 d—
2 Vi 30
1 z
20
2 / ]
///" /T
10 10
8 - }
6 Hr=5
4
A
2
1
2 4 6 8 2 4 6 8
1 10 102
1/2b

FIG. 5-8 The a.pparent permeability u.q at the middle of a
cylindrical rod as a function of the length-to-diameter ratio
£,/ 2b with the initial permeability 4} as a parameter.
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FIG. 5-9 The factors Fy, F., and Fg as functions of the
ratio £,/ ¢, (length of the coil to length of the rod). These
factors were determined from averages of experimental
" data. ' - - o ) ’

equal length (£,/¢, = 1), the openircuit voltage is increased by approximately the -
factor 0.8 u/ over the open-circuit voltage for the same coil without the core.

The equivalent circuit for the impedance of the ferrite-loaded solenoidal coil is
that in Fig. 5-3 with an additional series resistor R™ included to account for the power
dissipated in the core. The elements in the circuit are:

the radiation resistance

R = éﬁ‘(umFyNA)z (5-16)
the resistance due to core loss
R™ = wpira/ 1)) 1t oFRN*A /8. (5-17)
the external inductance of the loaded solenoidal coil
L = uoaFrueN?A/L, (5-18)

The internal impedance of the conductor Z is assumed to be the same as that for the
unloaded loop. The empirical factors Fg and Fy in Eqs. (5-17) and (5-18), like Fy,
were determined from an average of experimental results and are also shown as a
function of the ratio £./¢, in Fig. 5-9.1%" It should be emphasized that the graphs for
the three factors Fy, Fg, and F represent typical measured values and show only the
dependence on the ratio £,./¢,; some dependence on the other parameters describing
the coil and the rod is to be expected.

Equations (5-15) through (5-18) provide a complete description of the electri-
cally small ferrite-loaded receiving loop (single-layer solenoidal coil with a cylindrical
core); other parameters of interest, such as the Q of the antenna, can be determined
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from these results. The permeability of a specific ferrite can be obtained from the
manufacturer or from the extensive tables and charts in Ref. 11. The many parame-
ters that are to be chosen for the ferrite-loaded loop, such as ul, £,, £, N, etc., offer a
great deal of flexibility in its design. There are several discussions in the literature that
determine these parameters to optimize the performance for a particular application.'?

The electromagnetic field of the ferrite-loaded transmitting loop is given by Eqs.
(5-1) to (5-3) with the moment m = u 4 FyJoNA. The ferrite-loaded loop, however, is
seldom used as a transmitting antenna because of the problems associated with the non-
linearity and the dissipation in the ferrite at high magnetic field strengths.!

5-3 ELECTRICALLY LARGE LOOPS

As the electrical size of the loop antenna is increased, the current distribution in the
loop departs from the simple uniform distribution of the electrically small loop. For
single-turn loops, this departure has a significant effect on performance when the cir-
cumference is greater than about 0.1A. For example, the radiation resistance of an
electrically small circular loop with a uniform current, as predicted by Eq. (5-5), is
about 86 percent of the actual resistance when 86 = 2xb/\ = 0.1 and only about 26
percent of the actual resistance when 86 = 0.3.

Of the possible shapes for an electrically large loop antenna, the single-turn thin-
wire circular loop has received the most attention, both theoretical and experimental.

The popularity of the circular loop is due in part to its straightforward analysis by

exparision of the current in the loop as a Fourier series:

I(¢) = Io+2)_ I cos np (5-19)

n=1

where the angle ¢ is defined in Fig. 5-1.1 Measurements on electrically large loops
with other shapes, such as the square loop, show that their electrical performance is
qualitatively similar to that of the circular loop; therefore, only the circular loop will
be discussed here.!

Circutar-Loop Antenna

The theoretical model for the circular-loop antenna generally assumes a point-source
generator of voltage V at the position ¢ = 0, making the input impedance of the loop
Z=R+jX=V/K¢ =0). In practical applications, the full-loop antenna is usually
driven from a balanced source, such as a parallel-wire transmission line, and the half-loop
antenna, the analog of the electric monopole, is driven from a coaxial line, as in Fig. 5-10.
The point-source generator of the theoretical model contains no details of the geometry of
the feed point, and it is not strictly equivalent to either of these methods of excitation.
However, theoretical current distributions, input impedances, and field patterns com-
puted with the point-source generator and 20 terms in the Fourier series [Eq. (5-19)] are
generally in good agreement with measured values.* Thus, the theory serves as a useful
design tool.

_ *The theoretical results in Figs. 5-11, 5-12, 5-14 to 5-18, and 5-20 were computed by the author by
using 20 terms in this series.
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FIG. 5-10 Methods of driving the circular-loop antenna. (a) FullHoop antenna
driven from paraliel-wire transmission line. { b) Half-Joop antenna driven from coaxial
transmission line.
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For the half-loop antenna (Fig. 5-105), an accurate analysis, based on the Fourier
series, is available that includes the details of the feeding coaxial line. !¢ Results from this
analysis are in excellent agreement with measurements and show such things as the
change in the input impedance of the half-loop antenna with a change in the characteristic
impedance of the feeding coaxial line.

In Figs. 5-11 and 5-12, the input impedance of a loop constructed from a perfect
conductor is shown as a function of the electrical size of the loop 84 = 2wxb/X (cir-
cumference/wavelength) for various values of the radius of the conductor, indicated
by the thickness parameter @ = 2 In (2w b/a). These impedances are for full-loop
antennas; for half-loop antennas with the same radius and conductor size, impedances
are approximately one-half of these values. The reactance X is seen to be zero at points
near 8b = % %, %, ... (antiresonant points) and 86 = 1, 2, 3, ... (resonant points).
The resistance obtains relative maxima near the points of antiresonance and relative
minima near the points of resonance. Impedances computed from Egs. (5-5) and (5-
7)' which apply to electrically small loops, are also shown in Figs. 5-11 and 5-12; the
Inaccuracy of these formulas with increasing 8b is evident.
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FIG. 5-13 Schematic of current distribution in resonant loop (8)
and in the approximately equivalent pair of dipoles (b).
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FIG. 5-14 Far-zone electric field for loop with 8b = 1 0,Q=
10. (a) Horizontal-plane field pattern |Ry|, 0 =x/2.(b) Ver-
tical-plane field pattemn ||, ¢ = =/2, 3x/2. (¢) Vertical-
plane field pattern {B(, ¢ = O, 7.
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When the electrical size of the loop is near that for resonance (86 = 1,2,3,...),
the dominant term in the Fourier series for the current [Eq. (5-19)] is the one with »
= integer (8b). For example, near the first resonance 8b = 1, the current in the loop
is approximately I{(¢) = 2I, cos ¢, and the loop is commonly referred to as a resonant
loop. The resonant loop (8b = 1) is the most frequently used electrically large loop.
It has a reasonable input resistance, R = 100 , for matching to a transmission line,
particularly when compared with the resistance of the antiresonant loop (85 =~ 0.5),
which may be larger than 10 kQ.

Resonant Circular Loop

The current in the resonant loop has maxima at the generator, ¢ = 0, and at the
diametrically opposite point, ¢ = =, with nodes at ¢ = x/2 and 3x/2. On examination
of Fig. 5-13, the current is seen to be roughly equivalent to that in a pair of parallel
dipole antennas driven in phase and with a spacing approximately equal to the diam-
eter of the loop.

The far-zone field patterns for the resonant loop shown in Fig. 5-14a-c are also
similar to those for the pair of dipoles; they have little resemblance to the figure-eight
pattern of the electrically small loop, Fig. 5-2. There are two components to the elec-
tric field, E, and E,; E, is zero in the horizontal plane § = /2 and in the vertical
plane ¢ = 0, =, while E, is small in the vertical plane ¢ = x/2, 3x/2. The amplitude
patterns are symmetrical about the planes # = 7/2 and ¢ = 0, » owing to the geo-
metrical symmetry of the loop, and they are nearly symmetrical about the plane ¢ =

FiG. 5-15 Far-zone electric field patterns in upper hemisphere.
(a) Electrically small loop, 8b « 1. (b) Resonant loop, 8b = 1.0,
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/2, 372 owing to the dominance of the term 2J; cos ¢ in the current distribution.
At the maxima (8 = 0, =) of the bidirectional pattern, the electric field is linearly
polarized in the direction §.

To help us visualize the electric field, three-dimensional amplitude patterns for
the electrically small loop and the resonant loop are presented in Fig. 5-15. Each draw-
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FIG. 5-16 Directivity of circular-loop antenna for § = 0,
x versus electrical size (circumference/wavelength).
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FIG. 5-17 Directlvity of circular-loop antenna, 8b = 1.0, for 8
= O versus distance from reflector d/\. Theoretical curve is for
infinite planar reflector; measured points are for square reflector.
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ing is a series of patterns on planes of constant angle ¢; only the patterns in the upper
hemisphere (0 =< 6 =< =/2) are shown, since those in the lower hemisphere are
identical.

The directivity of the circular loop in the direction 6 = O or w is shown as a
function of the electrical size 85 in Fig. 5-16; it is about 3.4 dB for b = 1.0 and has
a maximum of about 4.5 dB for 8b = 1.4. The directivity is fairly independent of the
parameter Q for 8b < 1.4.

The resonant loop antenna is attractive for practical applications because of its
moderate input resistance and symmetrical field pattern with reasonable directivity.
The bidirectional nature of its pattern, however, is usually not desired, and a reflector
or an array of loops is used to make the pattern unidirectional.

Circular Loop with Planar Reflector

The pattern of the resonant loop is made unidirectional and the directivity in the direc-
tion # = O is increased by placing the loop over a planar reflector. The theoretical
results for an infinite perfectly conducting reflector (Fig. 5-17) show that the directiv-
ity is greater than 9 dB for spacings between the loop and the reflector in the range
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FIG. 5-18 Input impedance of circular-ioop antenna, 8b = 1.0 ver-
sus distance from refiector d/\. Theoretical curves are for infinite
planar reflector; measured points are for square reflector.
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0.05 = dfA < 0.2.'7 Over this same range of spacings, the input impedance Z= R + jX
(Fig. 5-18) has values which are easily matched: the resistance is reasonable (R =< 135 Q),
and the reactance is small (JX] = 20 Q).

The theoretical results for an infinite reflector are in good agreement with mea-
sured data for finite square reflectors of side length s. The directivities measured by
Adachi and Mushiake!® (Fig. 5-17) for a reflector with s/A=1.2 and d/A=<0.26
are slightly higher than those for an infinite plane, while the input impedances mea-
sured by Rojarayanont and Sekiguchi!® (Fig. 5-18) show variations with reflector size,
0.48 < 5/A =< 0.95, but general agreement with the results for an infinite plane.

Electric field patterns measured by Rojarayanont and Sekiguchi'? for resonant loops
one-quarter wavelength, d/A=0.25, in front of square reflectors are shown in
Fig. 5-19. The shaded area in each figure shows the variation in the pattern that is a
result of changing the size of the square reflector from s/x = 0.64 to s/A = 0.95.

¢=m/2,37/2 ¢:=0,7
(a) (b)

FIG. 5-19 Measured far-zone electric field
patterns for loop with 86 = 1.0 over square
reflector, d/\ = 0.25. Inner curve s/\ = 0.95;
outer curve s/A = 0.64. (a) Vertical-plane
fleld pattern |B|, ¢ = =/2, 3x/2. (b) Verti-
cal-plane fleld pattern |B,|, ¢ = O, ». (Mea-
sured data from Rojarayanont and Sekiguchl. )

Coaxlal Arrays of Clrcular Loops

Loop antennas, like linear antennas, can be combined in an array to improve perfor-
mance. The most common array of circular loops is the coaxial array in which all the
loops are parallel and have their centers on a common axis; an example of a coaxial
array is shown later in the inset of Fig. 5-21. The Fourier-series analysis for the single
loop is easily extended to the coaxial array when all the driven loops are fed at a
common angle, e.g., = 0 in Fig. 5-1. The current distribution in each loop is
expressed as a series of trigonometric terms like that in Eq. (5-19). The simplicity of
the analysis results from the orthogonality of the trigonometric terms which makes
the coupling between loops occur only for terms of the same order n. Thus, if all the
driven loops in the array are near resonant size, 3b = 1, the term n = 1 is the dom-
inant one in the current distributions for all loops; i.e., the current is approximately
proportional to cos ¢ in all loops.
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FIG. 5-20 Far-zone electric field patterns |M,| in plane ¢ = O, = for driven loop with
single parasite, 8b, = 1.0, d/A = 0.1, Q, = Q, = 20.

When all the elements in the loop array are driven, the same procedures that are used
with arrays of linear elements can be applied to select the driving-point voltages to opti-
mize certain parameters, such as directivity.?? The feed arrangement needed to
obtain the prescribed driving-point voltages, however, is very complex for more than
a few elements in the array. As a result, a simpler and more economical arrangement,
an array containing only one driven element and several parasitic loops, is often used
(a parasitic loop is a continuous wire with no terminals).

When a single closely spaced parasite is used with a driven loop, the parasite
may act as a director or as a reflector. This is illustrated in Fig. 5-20, in which electric
field patterns are shown for a driven loop (85, = 1.0) and a parasitic loop with the
spacing d/\ = 0.1. For loops of the same electrical size (3b, = 85, = 1.0), the max-
ima in the pattern at # = 0, w are nearly equal. The parasitic loop that is slightly
smaller than the driven loop (85, = 0.95) acts as a director, producing a maximum
in the pattern at § = , while the parasitic loop that is slightly larger than the driven
loop (8b; = 1.05) acts as a reflector, producing a maximum in the pattern at § = 0.
This behavior is very similar to that observed for a resonant linear antenna with a
closely spaced parasite.

The driven loop of electrical size fb, =12 (Q,=11, a, = a,) with a single
parasite was studied in detail by Ito et al.?! In that study, the optimum director was
determined to be a loop with 85, = 0.95 and spacing d/\ = 0.10; this produced a
directivity of about 7 dB at # = #. The optimum reflector was a loop with 8, = 1.08
and a spacing d/\ = 0.15; this produced a directivity of about 8 dB at § = 0. Note
that, for this case, the optimum director and the optimum reflector are both smaller
than the driven loop.

A Yagi-Uda array of loops with a single reflector (element 1), an exciter (the
driven element 2), and several directors of equal size 8b and equal spacing d/\ is
shown in the inset of Fig. 5-21.* As in its counterpart with linear elements, in the

*In the literature of amateur radio the Yagi-Uda array of loops, usually square loops, is referred to as
2 quad antenna,
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FIG. 5-21 Directivity of Yagi-Uda array of circular-loop antennas for § = O versus
number of directors, director spacing d/A = 0.2.

Yagi-Uda array of loops the reflector-exciter combination acts as a feed for a slow
wave that propagates along the array of directors.?? The lowest-order propagating
wave (mode) exists for directors less than about resonant size (8b =< 1.0) with spac-
ings less than about a half wavelength (d/4 = 0.5).2* An array supporting this mode
has an end-fire pattern with a linearly polarized electric field at the maximum, 6
= 0.

The procedure for designing a Yagi-Uda array of loops is the same as for an
array with linear elements.?* The isolated reflector-exciter combination is usually cho-
sen to have maximum directivity in the direction § = 0. For example, the optimized
two-element array described above might be used. The number, size, and spacing of
the directors are then adjusted to obtain the desired performance, such as a specified
end-fire directivity. The maximum end-fire directivity is determined by the electrical
length of the array L/ (L is the distance from the exciter to the last director). The
larger the number of directors within the length L, the smaller the electrical size of
the directors will be for maximum directivity, typically 0.8 < 8b < 1.0.

As an example, the directivity of a Yagi-Uda array of loops with the director
spacing d/\ = 0.2 is shown as a function of the number of directors or the length of
the array L/A in Fig. 5-21. Two theoretical curves and two sets of measured data are
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shown. All the results agree to within about 1 dB, even though they are for different
reflector-exciter combinations and slightly different director sizes.*

5-4 SHIELDED-LOOP ANTENNA

For certain applications, it is desirable to position the terminals of the loop antenna
precisely so as to produce geometrical symmetry for the loop and its connections about
a plane perpendicular to the loop. This can often be accomplished by using the so-

*The parameters used by the different investigators are: Appel-Hansen, 86, = 8b; = 1.10, di2/X opti-
mized for the isolated reflector-exciter, and 85 optimized for each length L/A; Takata and Sekiguchi, 84, =
1.05, 852 = 1.20, dy2/\ = 0.15, and 8b optimiged for cach length L/X\; Shoamanesh and Shafai (1979), 8%
= 1.05, 86, = 1.10, dyz/\ = 0.1, and 86 = 0.9 for all lengths L/A.
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FIG. 5-22 Shielded-loop antenna (&) with equivalent antenna ( b) and
equivalent transmission line (¢).



5-20 Types and Design Methods

called shielded loop; Fig. 5-22a is an example of a shielded receiving loop whose external
surface is symmetrical about the yz plane.?

With reference to Fig. 5-22a, the thickness of the metal forming the shield is
chosen to be several skin depths; this prevents any direct interaction between the cur-
rents on the internal and the external surfaces of the shield. The effective terminals of
the loop antenna are at the ends of the small gap 4B. The inner conductor and the
shield form a coaxial transmission line of length kA + b connecting the gap with the
load impedance Zs. Thus, the effective load impedance Z, at the gap is Zg trans-
formed by the length of transmission line A + b.

The receiving antenna in Fig. 5-22a is easily analyzed by considering the loop,
Fig. 5-22b, and the transmission line, Fig. 5-22c, separately. The incident field pro-
duces a current on the external surface of the shield; the current passes through the
effective impedance Z;, producing the voltage ¥, which for an electrically small loop
can be determined from Egs. (5-11) and (5-13). This voltage is transmitted over the
coaxial line to become ¥ at the load impedance Zs.

Other examples of the shielded loop are shown in Fig. 5-23. A balanced version
of the loop in Fig. 5-22a is in Fig. 5-23a, and a method for feeding a loop in front of
a planar reflector is in Fig. 5-23b.

REFLECTOR
COAXIAL
LINE

SOLID
COAXIAL CONDUCTOR ————|
LINES

(a) (b)
FIG. 5-23 (a) Balanced shielded-loop antenna and (b) method of feeding loop
antenna in front of planar reflector.

To illustrate a typical use of the shielded loop, consider the electrically small
receiving loop placed in an incident electromagnetic plane wave with the wave vector
k,, as in Fig. 5-24. This is the same geometry as in Fig. 5-5, except that the terminals
of the loop are at the angle ¢ = ¢, instead of ¢ = 0, and ¢, = =, ¢, = 0. The loop
in this example might be an antenna in a direction finder with the direction of the
incident wave to be determined by placing a null of the field pattern in the direction
of kl.

The voltage at the open-circuited terminals of the electrically small loop, deter-
mined from the Fourier-series analysis, is approximately
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Voc = jwAB'(sin 8, — 2jBb cos ¢;) (5-20)

For many applications, the second term in Eq. (5-20) is negligible, since 8 « 1 for
an electrically small loop; in this event, Eq. (5-20) reduces to Eq. (5-11) with N = 1,
¥; = 0. In other applications, however, this term may represent a significant contri-

y

AT
gl

FIG. 5-24 Receiving loop in plane-wave incident
field.

bution to the response. For example, the sensitivity of the antenna in the direction
finder is decreased by this term because it fills in the nulls of the sin 4, field pattern
(for 86 = 0.1, ¢, = 0, the minima in the pattern are only 14 dB below the maxima).

The second term in Eq. (5-20) can be made insignificant by reducing the elec-
trical size of the loop 8b; however, this will also decrease the sensitivity, since the area
of the loop is decreased. An alternative is to make this term zero by placing the ter-
minals of the loop precisely at ¢,/= +7/2 (cos ¢; = 0); this can be accomplished by
using a shielded loop as in Fig.”5-22a or Fig. 5-23a.

5-5 ADDITIONAL TOPICS

The brevity of this review requires omission of many interesting topics concerning loop
antennas. In recent years, there has been considerable study of loop antennas in close
proximity to or embedded in material media such as the ocean, the earth, or a plasma.
The electrical characteristics of loops in these instances can be quite different from
those of loops in unbounded free space, as described in this review. The major appli-
cations of this work are in the areas of subsurface communication and detection (geo-
physical prospecting).

The loop antenna near a planar interface separating two semi-infinite material
regions, such as the air and the earth, has been investigated extensively. When the
loop is electrically small, it can be approximated by an elementary magnetic dipole,
and the electromagnetic field away from the loop can be determined from the classical
analysis of Sommerfeld.26 If the field near the electrically small loop is required, the
approximation by a magnetic dipole may no longer be adequate, and a loop with a
finite radius and a uniform current must be considered.?” For the electrically large
loop near a planar interface, an analysis that allows a nonuniform current in the loop,
such as the Fourier-series analysis for the circular loop,?® must be used.
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The performance of a loop embedded in a material can be altered significantly

by placing the loop in a dielectric cavity, such as a sphere, to form an insulated loop.
The electrical size and shape of the insulating cavity and the location of the loop in
the cavity can be used to control the electromagnetic field and input impedance of the
antenna.?®
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6-1 WHAT IS A SMALL ANTENNA?

A small antenna is here defined as an antenna occupying a small fraction of one
radiansphere in space. Typically its greatest dimension is less than one-quarter wave-
length (including any image in a ground plane). Some of its properties and its avail-
able performance are limited by its size and by the laws of nature. An appreciation of
these limitations has proved helpful in arriving at practical designs. This chapter is a
revision of the author’s 1975 paper summarizing the subject.!

The radiansphere is the spherical volume having a radius of %= wavelength.? It
is a logical reference here because, around a small antenna, it is the space occupied
mainly by the stored energy of its electric or magnetic field. A small antenna is essen-
tially an electric dipole C or a magnetic dipole L, or possibly a combination of both.>*

Some limitations are peculiar to a passive network, in which the concepts of effi-
ciency, impedance matching, and frequency bandwidth are essential and may be the
controlling factors in performance evaluation. This discussion is directed mainly to
these limitations in relation to small size. It centers in the term radiation power factor
and its proportionality to volume.’

Figure 6-1 shows the principles of a small antenna exemplified by an electric
dipole C. Its impedance over a bandwidth can be represented by a dummy antenna of
constant parameters as follows:

The principal reactance is X, = 1/wC.
The (much smaller) radiation resistance is R, o w? (not indicated).
The radiation resistance is simulated by an inductive reactance (wL < X,) having
in parallel a much greater constant resistance (R > wL). They are proportioned
so that the radiation is represented by their effective series resistance, R, =
(WL)/R o 2
o The resulting (small) radiation power factor becomes:
Pe = R,/X, = &*CL}/R <« 1 (6-1)

These relations refer to the limiting case of a small antenna. In practice, they
are taken to represent the behavior at the lowest frequency (w;) of an operating band-
width. They may be relaxed at the highest frequency (w, > w)) in the case of wide-
band operation with fixed tuning.

Figure 6-1 shows also the double tuning of the small antenna in a manner that
is common and will receive further attention. It may be used to obtain a useful degree

LONG DOUBLE DUMMY
LINE TUNING ANTENNA
L R
3.2
TRANSFORMER pe= W CL°/R

FIG. 6-1 A small antenna of C type with double tuning.
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of matching of the antenna with a long line (simulated by Rg) connecting it with a
transmitter and/or a receiver.
The design considerations will be presented, after which a variety of small anten-

nas that are useful for some purposes will be described.

6-2 THE RADIATION POWER FACTOR

The term radiation power factor (PF) is a natural one introduced by the author in
19472 It is descriptive of the radiation of real power from a small antenna taking a
much larger value of reactive power. The term is applicable to either kind of reactor,
and its (small) value is limited by some measure of the size in either kind.

Here PF is equal to 1/Q, in the common parlance of networks. The term PF is
preferred for describing radiation and losses because it is additive. Furthermore, the
radiation PF is a positive description of what is desired (the opposite of Q).

The operating efficiency of a small antenna is limited by its radiation PF, which
is proportional to its size. The nature of this limitation depends on the relative band-
width of operation as compared with the radiation PF.

Radiation efficiency in the utilization of an antenna is relevant to transmission
or reception and is defined as follows:

e In transmission, it is the fraction of available power from a generator that is
radiated into space.

e In reception, it is the fraction of available power from space that is deliveredto a
load representing the receiver. It is a measure of the ability of a received signal to
overcome the noise level in the circuits.

The generator or load is taken to have pure resistance (R,), which may be the wave
resistance of a transmission line connecting with the antenna. In either case, the great-
est efficiency of power transfer requires the familiar impedance matching suited to
any situation.

Figure 6-2 shows the circuit properties of the two types of small antenna, which
are identified as the electric dipole C and the magnetic dipole L. The former behaves
as a capacitor and the latter as an inductor. Either is to be resonated by a reactor of
the opposite kind.

CONDUCTANCE rwv- RADIATION FVV\— RESISTANCE
G Rm

L]
G. Rl"l
Pe * oo POWER FACTOR Z=v,
SUSCEPTANCE |-}  REACTION % REACTANCE

c ANTENNA TYPE L

O V O EXCITATION 6 1 i)
FIG. 8-2 The radiation power factor of a small antenna.
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Representation of the radiation is shown in a manner consistent with circuit
duality. (This is not the usual manner for C.) The radiation parameter is G, or R,
either one o «*. Then the (small) radiation PF o . As will be described, the power
factor is proportional to the volume and may be evaluated in terms of effective volume.

Some amount of radiation PF (and hence size) may be required to achieve some
measure of performance, such as radiation efficiency in transmission or its equivalent
in reception. The following two situations are indicative of the two extremes:

e In narrowband operation, the relative bandwidth of operation is taken to be less
than the radiation PF. Then efficiency is limited by dissipation or heat losses (loss
PF) in the antenna and associated tuning reactors.

e In wideband operation, the relative bandwidth is taken to be much greater than
the radiation PF. Then efficiency is limited by the ability of a passive network of
fixed reactors to match the antenna to a fixed resistance.

Each of these situations will be developed by evaluating the efficiency of a model and
by stating the radiation PF required for achieving this efficiency. Then a design pro-
cedure which can be adapted to an antenna of any type will be presented.

6-3 EFFICIENCY OVER LOSSES

With reference to Fig. 6-2, either type of antenna may be tuned to one frequency with
an opposite reactor. Because the radiation PF is small, the efficiency may be reduced
substantially by a small loss PF in the antenna and the tuning reactor.’ From the
transmitter viewpoint, it is assumed that the available power can be delivered to the
tuned circuit including the antenna. Then the efficiency is simply stated:

radiation PF

radiation PF + loss PF (6-2)

Radiation efficiency =

In general, greater size yields greater efficiency because it increases the radiation PF
and decreases the loss PF. Conversely, a specified efficiency imposes a requirement of
some size.

This situation is relevant to an antenna which has fixed or adjustable tuning to
a narrowband signal. A transmitter of this type will realize this efficiency.

A simple case of this situation is the proximity fuse, in which the tuned antenna
is integrated in an oscillator serving as both transmitter and receiver. The radiation
efficiency becomes a measure of the reaction of a nearby object on the oscillator
amplitude.

A simple case in a receiver is the tuned ferrite-core inductor used as a built-in
antenna. Although the radiation efficiency is very small, it may be adequate for a
purpose. In very-low-frequency (VLF) reception, the radio noise temperature is so
great that the very small efficiency may be all that is useful.
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6-4 EFFICIENCY OVER BANDWIDTH

A small antenna may be required to operate over a relative bandwidth (BW) much
greater than its radiation PF. Matching with a line cannot be efficient over the entire
BW. This is the subject of Ref. 5; it will be described here only briefly.

Over any BW (w; to w,) the radiation PF at the low cutoff (p, at w,) is the most
significant property of a small antenna for impedance matching. The matching effi-
ciency e at any frequency is the fraction of available power that is delivered from
generator to load through the matching network. For double tuning, as exemplified in
Fig. 6-1, the matching efficiency may vary with frequency in the manner shown in
Fig. 6-3. -

The objective here is taken to be the highest-level floor of e over the BW. This
may be termed the maximin of efficiency, as indicated. It is realized by minimizing

us

MAXIMIN

—
Alw

W) w2
FIG. 8-3 The wideband matching efficiency.

the “useless” excess within the BW and outside. The maximin obtainable with double
tuning is found to be

12[71
= —K1
T T /e’
A slightly higher level is obtainable by a higher order of tuning, but the theoretical

upper bound (UB) is only = /2 times this level. For a required efficiency and BW, the
second form gives the required radiation PF and hence the size.

P =13 [1 = @i/ (6-3)

6-5 THE EFFECTIVE VOLUME

For any shape of small antenna of either kind (C or L), the radiation PF at one fre-
quency is proportional to the volume. Moreover, it is nearly equal for the two kinds if
they occupy nearly equal volume. This statement needs explanation, because their
configuration differs in accordance with the properties of different materials.

. Figure 6-4 shows examples of the two kinds configured to occupy the space
Wlt'hin cylinders of equal dimensions."* From familiar formulas for C, L, and radiation
resistance, they have equal values of radiation PF except for two factors (k,, k;) which
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FIG. 6-4 The radiation power factor in terms of volume.

are somewhat greater than unity. Either of these factors multiplies the volume (V =

ADb) to give the effective volume as here defined (V).
In Fig. 6-4, the effective volume is compared with the radian cube (A/2x).* It
is more logical to compare it with the volume of the radiansphere:'

ac (A Y
V,=—|— 64
i =3 (21) (6-4)
Within this sphere, the stored energy or reactive power is predominant. Outside this
sphere, the radiated power is predominant.
In terms of the effective volume (V' = k,4b or kp4b in Fig. 6-4), the radiation
becomes

p=%V/V, (6-5)

(The coefficient % reflects some properties of the near field of either antenna.) The
effective volume may be stated as a sphere of radius a:

3 13
Jar o _afme A
=3 @ ‘9<x> ‘f’zw(zp) (6-6)

It is noted that a certain shape of self-resonant coil radiates equally from both C and
L, so the total radiation is double that of either one.* This is known as the helix radia-
tor of circular polarization in the normal mode.

There is one theoretical case of a small antenna which has the greatest radiation
PF obtainable within a spherical volume. Figure 6-5 shows such an antenna and its
relation to the radiansphere (¥,).!" It is a spherical coil with a perfect magnetic core.
The effective volume of an empty spherical coil has a shape factor %. Filling with a
perfect magnetic core (k, = ©0) multiplies the effective volume by 3.

3
_20)@/2V _V _(2xa R

This is indicated by the shaded sphere a.
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FIG. 8-5 The spherical coil with a magnetic core.

This idealized case depicts the physical meaning of the radiation PF that cannot
be exceeded. Outside the sphere occupied by the antenna, there is stored energy or
reactive power that conceptually fills the radiansphere, but there is none inside the
antenna sphere.® The reactive power density, which is dominant in the radiation within
the radiansphere, is related to the real power density, which is dominant in the radia-
tion outside.

In a rigorous description of the electromagnetic field from a small dipole of either
kind, the radiation of power in the far field is accompanied by stored energy which is
located mostly in the near field (within the radiansphere).? The small spherical induc-
tor in Fig. 6-5 is conceptually filled with perfect magnetic material, so there is no
stored energy inside the sphere. This removes the avoidable stored energy, leaving only
the unavoidable amount outside the inductor but mostly inside the radiansphere. This
unavoidable stored energy is what imposes a fundamental limitation on the obtainable
radiation PF. '

For any actual antenna, the effective volume and its spherical radjus are

1/
9 A (9
V=spV, a-= . (2 p) (6-8)

This volume includes any image in an adjoining ground plane regarded as integral
with the antenna. It is convenient to show any antenna configuration with its sphere
of effective volume drawn to scale, as a rating of its radiation PF.

6-6 THE RADIATION SHIELD

It is difficult to measure the smail radiation PF, and it is especially difficult to separate
it from the loss PF of the antenna and its tuning reactor. The radiation shield was
devised to separate the two.®

Figure 6-6 shows the concept of the radiation shield. Its purpose is to preserve
the near field in the radiansphere while avoiding radiation farther out. Ideally, it is a
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FIG. 8-8 The radiation shield for use in measuring the radiation power
factor.

spherical box (of high conductivity) whose radius is A/2x. Its dissipation is negligible
as compared with free-space radiation.

The PF of the tuned antenna is measured with and without the shield, to give
the ratio

Loss PF only
Loss PF + radiation PF (6-9)

From this ratio, the radiation PF can be evaluated as a fraction of the measured total.
[See Eq. (6-2).]

The radiation shield is not critical as to size or shape. An open-ended circular or
square cylinder is usually convenient. It should be large enough to avoid much distur-
bance of the field near the antenna and small enough to avoid cavity resonance, espe-
cially in any mode excited by the antenna. If open-ended, it should be long enough to
attenuate radiation outside. A small shift of antenna resonance frequency is tolerable.

6-7 DESIGN PROCEDURE

In the design of a small antenna for operation over a frequency band (w, to w;) a
typical objective is one of these two:

e From a specified antenna, obtain the greatest efficiency by a practical circuit or
less (as by economies) if sufficient for the purpose.

e To obtain specified efficiency, determine a practical circuit and antenna configu-
ration that will require the smallest size.

For either objective, a design procedure will be outlined. Here we ignore the dissipa-
tion in the reactors of the antenna and matching network.

The properties of a specified antenna are evaluated by computation and/or mea-
surement. The principal properties are the essential C or L and the radiation PF. The
reactance is the dominant factor in designing a lossless matching network such as the
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double tuning in Fig. 6-1. The result to be expected is the double-peak graph in Fig.
-3 and the matching efficiency from Eq. (6-3).

The other objective is essentially the reverse. The required efficiency is specified,
and perhaps also a tolerance of the voltage standing-wave ratio (VSWR). The network
configuration is specified as a practical constraint on complication. Figure 6-1 is taken
as an example.

From the specified efficiency and BW, the required radiation PF can be com-
puted by Eq. (6-3). The required effective volume is then given by Eq. (6-8), also its
spherical radius . These are stated in terms of the radiansphere and radianlength at
the lowest frequency (w,).

For any kind and shape of antenna, size is related to the effective volume or
spherical radius. The latter will be shown to scale for some typical configurations.

6-8 TYPICAL SMALL ANTENNAS

A number of typical small antennas are here compared with the effective volume by
diagrams showing to scaie the sphere of this radius:

A9\
=;<5p> (6-10)

It is drawn as a dashed circle.

Figure 6-7 shows some examples of an electric dipole with a linear axis of sym-
metry. A thin wire (2) and a thick conical conductor (4) differ greatly in occupied
volume but much less in effective volume. The latter is influenced most by length and
less by the smaller transverse dimensions.

Figure 6-7¢ shows a pair of separated disks like the basic electric dipole in Fig,
6-4. Their simple rating can be preserved by the use of a tuning inductor in the form
of a coil distributed between the ends as shown.

— 3~
s < ™
I~ AN \
/ / / N\ \
/ | \ / \ SPHERE OF
‘ v | / | EFFECTIVE |
\\ l /

VOLUME
\ / koAb I
\ / \ /
~_f //
/
~ ._.,//
(a)  WIRE. (b) CONE. (c) DIsKs.

FIG. 8-7 The effective volume of an axial electric dipole.
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With reference to Fig. 6-4 for a pair of disks, the area factor and the effective
volume are (within S percent)

ko=1+4 %b/a V = k,xa’h = xa*h + 4ab® > 2\azdb® (6-11)

Converting the last expression to the lower bound (LB) of effective radius (within 2
percent) yields

LBa = 1.19 Vab (6-12)

This simple formula, being noncritical as to shape, is useful for estimating purposes.
For the shape shown in Fig. 6-7¢, the sphere diameter is slightly greater than the
length.

The thin disks shown in Figs. 6-4 and 6-7¢ do not make the fullest use of the
occupied cylindrical space. The fullest use would be made by adding to each disk a
skirt going about halfway to the neutral plane of symmetry. The decrease of effective
length would be more than compensated by the increase of C, to give greater effective
volume.

Figure 6-8 shows some examples of a loop inductor on a square frame. A thin
wire (a) and a wide strip (b) differ rather little in effective volume, because this is
influenced most by the size of the square. A multiturn loop (¢) has nearly the same
effective volume as one turn occupying the same space. This is one of the principal
conclusions presented in the writer’s first paper.}

It happens that a cubic coil has a simple length factor (k, = %). The diameter
of the sphere of effective volume is nearly equal to the diagonal of one face. Likewise,
a spherical coil has an effective volume % times its enclosed volume.

The effective volume of a square or circular coil may be stated by comparing the
sphere radius with the coil radius (g = radius of circle or half side of square):

Circle: LB @ = 1.12 a(b/a)"/¢ (6-13)
Square; LB o = 1.25 a(b/a)"/¢ (6-14)
As might be expected, the radiation PF is determined mainly by the radius.

7 l\ - éFKF <
>4 /K\ AN
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(a) WIRE. (b) STRIP. (¢) TURNS,

FiG. 8-8 The effective volume of a square loop.
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FIG. 6-9 A one-turn loop of wide strip.

Figure 6-9 shows a particularly effective small antenna with integral tuning. It
is a one-turn loop of a wide strip which has remarkably small loss PF. In an extremely
small size, its radiation efficiency was found to be about 50 percent.

One-half of any of these configurations can be imaged in a ground plane. The
result is an equal effective volume, which may be represented as a hemisphere on the
plane.

6-9 FLUSH ANTENNAS

A useful family of small antennas comprises those that are recessed in a shield surface
such as a ground plane or the skin of an aircraft. Some may embody inherently flush
designs, while others may be suited for operation adjacent to a shield surface, whether
recessed or not. The antenna may be of the C or the L type, either radiating in a
polarization compatible with the shield surface. :

Figure 6-10 shows a flush disk capacitor (sometimes termed an annular slot).
This capacitor in the flush mounting may be compared with a like capacitor just above
the surface. The recessing somewhat reduces the radiation PF. The remaining effec-

A/4

e S g
/ o HEMISPHERE
/ // ~ \ RADIAN

i [ ok |HEMISPHERE
| S ————— e ——

Pe® 0.03

FIG. 8-10 A flush disk capacitor.
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tive volume is that of a hemisphere indicated by the dashed semicircle. Its size is com-
parable with that of the disk. The cylindrical walls may be regarded as a short length
of waveguide beyond cutoff, operating in the lowest transverse magnetic (TM) mode
(circular TM-01, as shown, or rectangular TM-11). The capacitor may be resonated
by an integral inductor as shown. In any cavity, there is a size and shape of disk that
can yield the greatest radiation PF. The primary factor is the size of the cavity.

The evaluation of a flush antenna includes the shield surface. It is necessary first
to evaluate the radiation PF by some method of computation. Then the radiation PF
can be stated in terms of a volume ratio. Here we consider the half space of radiation
and show the hemisphere of %¥7, which may then be compared with the half radian-
sphere, %V,. The radii are retained (@’ and A/2x). An antenna located on the surface
(not recessed) could be considered with its image to yield the complete sphere of V’
to be compared with the radiansphere ¥,. Then one-half of each may be shown above
the shield plane, as for the flush antenna.

The disk capacitor radiates in the same mode as a small vertical electric dipole,
by virtue of vertical electric flux from the disk. This is vertical polarization on the
plane of the shield, with omnidirective radiation. The other examples of a flush
antenna, to be shown here, radiate as a small horizontal magnetic dipole by virtue of
magnetic flux leaving the cavity on one side and returning on the other side. This is
vertical polarization but directive in a figure-eight pattern. Omnidirective radiation
can be provided by quadrature excitation of two crossed modes in the same cavity.
The radiation PF of either kind is reduced by recessing, but the magnetic dipole suffers
less reduction.

Figure 6-11 shows an idealized cavity resonator which radiates as an inductor.
The cavity is covered by a thin window of high-k dielectric, which serves two purposes.
It completes the current loop indicated by the arrows I, and it also provides, in effect,
series capacitance which resonates the current loop. The cylindrical walls and the
aperture excitation may be regarded as the lowest (cutoff) transverse electric (TE)
mode (circular TE-11 or rectangular TE-10 to TE-01, as shown). Each of these modes
has two crossed orientations, of which one is indicated by the current loop. The con-

— 1 A/4
TE~10
AN THIN HIGH-K
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FIG. 6-11 A flush cavity inductor with a dielec-
tric window.
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FIG. 6-12 A flush strip inductor.

tinuous dielectric sheet on a square or circular cavity resonates the two crossed modes.
Because each resonance is in the lowest mode, it involves the smallest amount of stored
energy relative to radiated power and therefore the greatest value of radiation PF.

Figure 6-12 shows some practical designs which yield nearly the same perfor-
mance by the use of conductive strips on ordinary (low-k) dielectric windows (high-k
dielectricis not required). Here the radiating inductor (strip) and the resonating series
capacitor (gap) are apparent. The two alternatives, one mode and a pair of crossed
modes, are shown. Practical designs about A/4 square have been made with radiation
PF about 0.04. This is about the largest size that follows the rules of a small antenna.

The required coupling with any of the resonant antennas in Figs. 6-10 to 6-12
may be provided by another (smaller) resonator located within the cavity. This enables
the bandwidth of matching expected from double tuning. Each of these antennas is
suited for self-resonance and requires some depth of cavity to hold down the extra
" amount of energy storage in this nonradiating space.

Figure 6-13 shows a flush inductor made of crossed coils on a thin magnetic disk.
At medium or low frequencies (MF, LF, VLF) the available ferrite materials can
provide 2 magnetic core that forms a return path nearly free of extra energy storage
even in the thin disk. It also adds very little dissipation. The required depth of cavity
is then only sufficient to take the disk thickness with some margin. The antenna is too
small relative to the wavelength at the lower frequencies to enable high efficiency even
at its frequency of resonance, so it is useful only for reception. A rotary coil or crossed
coils can be used for a direction finder or omnidirectional reception. The principal
application is on the skin of an aircraft.

Figure 6-14 shows the ferrite-rod inductor, the antenna most commonly used in
a small broadcast receiver (MF, around 1 MHz). The ferrite rod greatly increases the
effective volume of a thin coil, as indicated. The effective volume is then determined
primarily by the length rather than the diameter of the coil. Like the ferrite disk, this
antenna can be used close (parallel) to a shield surface or be recessed in the surface.
_ Here we may note that a long coil, with its small shape factor (k;, — 1), can have
1ts effective volume greatly increased by a ferrite core. On the other hand, a parallel-
plate capacitor, with its small shape factor (k, — 1), can only have its effective volume
decreased by a dielectric core. This is one respect in which the inductor offers greater
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FIG. 6-13 A flush inductor on a thin ferrite disk.
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FIG. 6-14 A long coil on a ferrite rod.

opportunity in design. In another respect, the number of turns can be used to set the
impedance level, a freedom that may be desired but is unavailable in a simple
capacitor.

If a long coil 2s a magnetic dipole were filled with perfect magnetic material, its
effective volume would be comparable with that of an equally long conductor as an
electric dipole.

6-10 ANTENNAS FOR VLF

The greater the wavelength, the more relevant may be the concept of a small antenna.
Current activities go as low as 10 kHz with a wavelength of 30 km. Even the largest
of the transmitter antennas is small in terms of this wavelength, or its radianlength of
S km.

For reception, however, a much smaller antenna is adequate for one of two
reasons:

® Above the surface (ground or sea) the radio noise level is so high that it still
becomes the limiting factor in a small antenna with very low efficiency of radiation.
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e Below the surface, in salt water like the ocean, the radianlength (equal to the skip
depth) is only a few meters, 5o a small antenna may occupy a substantial fraction
of the radiansphere.

For the former purpose, the magnetic antennas in Figs. 6-13 and 6-14 are suited for
VLF. For the latter purpose, different factors become relevant.

The principles of the smallest effective underwater receiving antenna will be for-
mulated with reference to Fig. 6-15. It is similar to a retractable antenna used on g
submarine, which may be submerged to a small depth. This is an inductor in a hollow
cavity (radome). It has greater radiation efficiency than a capacitor because it is sub-
ject to smaller near-field losses caused by the conductivity of the water, Also, it avoids
the need for conductive contact with water.

Figure 6-15 shows an idealized small antenna in a submarine cavity.87 It js a
spherical coil with a magnetic core, as shown in Fig. 6-5. In the water, the radij-
anlength is equal to the skin depth (3). At 15 kHz, this is about 2 m. The size of the
cavity is much less and that of the coil still less, so it is a small antenna in this envi-
ronment. The radiation PF includes two quantities, the desired coupling to the
medium and the undesired dissipation in the medium. The former is proportional to
the coil volume and is increased by the magnetic core. The latter is decreased by
increasing the cavity radius. The coil is in the vertical plane for vertical polarization.
Crossed coils may be used for omnidirective reception and direction finding.

For a transmitter antenna, the capacitor is usually chosen for vertically polarized
radiation in all directions on the horizon,

For efficient transmission at lower frequencies, one of the early simple types is
that shown in Figure 6-16.% It is a flattop grid of wires forming a capacitor with ground
as the lower conductor. The effective height % determines the radiation resistance. The
capacitance enables the statement of an effective area (k.A) as noted. The effective
volume (k,4#k) in half space is compared with one-half radiansphere to determine the
radiation PF. It is notable that the grid of many wires may provide an effective area
greater than that of the grid despite the much smaller area of the conductor,

A large transmitting antenna for radiating high power presents different prob-
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FIG. 8-15 An inductor in a radome submerged in seawater.
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FIG. 6-16 A large flattop capacitor which is still small
relative 1o the wavelength.

lems relating to power, current, and voltage. The compromise solutions of these prob-
lems require size as measured in these three ways:

e Effective volume for radiation PF to operate over a bandwidth and to compete with
any loss PF
e Effective height squared for radiation of power proportional to current squared

e Effective area for radiation of power proportional to voltage squared

The first is the principal topic of this chapter. The second and third have been pre-
sented in Ref, 8 and are stated here as design requirements.

ho= ﬁ—lm kA = 1(5";>2 (%,) V40P (6-15)

For example, the last relation states the effective area required if the voltage is limited
by supporting insulators. If, in addition, the average voltage gradient on the wires is
restricted by corona discharge to a value E, (rms volts/meter), the required surface
area of the wires (4,) is proportional to the current (or VP):

2
A 3
.= 7|=—| = V40OP -1
A 1(21') WE. V (6-16)

Large VLF antennas are the principal topic of Chap. 24. Some are described in
Refs. 1 and 9. The largest are the Navy stations at Cutler, Maine (NAA), and North
West Cape, Australia (NWC). These qualify as small antennas by a large margin at
their lowest frequencies of operation.

6-11 SYMBOLS

p = 1/Q = radiation power factor (PF)
X = reactance
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C = capacitance of a small electric dipole antenna
L = inductance of a small magnetic dipole antenna
R = series resistance

G = parallel conductance

w = 2xf = radian frequency
A/2x = radianlength

A = wavelength

e = 1 — p? = matching efficiency

A = area of cylinder

a = radius of cylinder or sphere

a = effective radius of sphere of effective volume
b = axial length of cylinder

V. = (4x/3)(A/27)’ = volume of radiansphere

V = effective volume of Cor L

k, = shape factor for effective area of a cylindrical capacitor

k, = shape factor for effective axial length of a cylindrical or spherical inductor

k,, = magnetic constant (relative permeability)
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7-1 INTRODUCTION

Microstrip-antenna elements radiate efficiently as devices on microstrip printed-cir-
cuit boards. Microstrip-antenna arrays consist of microstrip-antenna elements, feed
and phasing networks, and any other microstrip devices. Both microstrip-antenna ele-
ments and microstrip arrays are discussed in this chapter.

7-2 MICROSTRIP-ANTENNA-ELEMENT DESIGN
PARAMETERS

This section can be used as a guide in selecting and designing microstrip elements
which can be used alone as single radiators or as elements of microstrip phased arrays,
which are discussed in Sec. 7-3.

The most commonly used microstrip element consists of a rectangular element
that is photoetched from one side of a printed-circuit board (Fig. 7-1). The element
is fed with a coaxial feed. The length L is the most critical dimension and is slightly
less than a half wavelength in the dielectric substrate material.!

Ao

L =049\ = 049 —
‘ Ve,

where L = length of element
¢, = relative dielectric constant of printed-circuit substrate (The exact value is
critical and is usually specified and measured by the manufacturer.)
Ay = free-space wavelength
The variation in dielectric constant and feed inductance makes it hard to predict exact
dimensions, so usually a test element is built to determine the exact length.

The thickness ¢ is usually much less than a wavelength (usually on the order of
0.01);). The selected value of ¢ is based on the bandwidth over which the antenna
must operate; it is discussed in greater detail later. The exact value of ¢ is determined
by commercially available board thicknesses, such as 0.005 in (0.127 mm), 0.010 in
(2.54 mm), %« in (0.397 mm), %: in (1.588 mm), % in (1.191 mm), ¥ in (3.175 mm),
etc. Teflon-fiberglass boards are commercially available from Rogers Corporation,
ARLON, and Oak Industries.

The width W must be less than a wavelength in the dielectric substrate material

MICROSTRIP ELEMENT

DIELECTRIC (AW
SUBSTRATE
N

FEED-/ \-METAL GROUND PLANE

FIG. 7-1 Rectangular microstrip-antenna element.

it

7-2
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so that higher-order modes will not be excited. An exception to this constraint, in
which multiple feeds are used to eliminate higher-order modes, is discussed later.
Most microstrip elements are fed by a coaxial connector which is soldered to the
back of the ground plane; the feed pin is soldered to the microstrip element as shown
in Fig. 7-2. A direct-contact feed (rather
than a probe, as in waveguide feeds) is
always used. It is important that the feed L
pin be securely soldered to the microstrip _
element since most failures of microstrip

antennas occur at this point. /}lﬂ{_
A second microstrip-antenna ele- SOLDER INPUT

ment commonly used is the quarter-wave CONNECTOR
microstrip-antenna element (Fig. 7-3). It FIG. 7-2 Side view of microstrip element
consists of a photoetched element in with coaxial-feed connection.

which the length L is about a quarter

wavelength in the substrate material. Such an element is used for its broader E-plane
beamwidth. A third microstrip-antenna element is a full-wavelength element, which
is similar to that in Fig. 7-1 except that the feed is at the center and the length Lis a
full wavelength in the substrate material. Its radiation pattern is similar to that of a
monopole. This element can also be round and of equal area to the equivalent square

element.
SHORT CIRCUITS
/\ i
"

SOLDER

1

FIG. 7-3 Quarter-wave microstrip element.

Microstrip-Antenna impedance

The surprising feature of a microstrip antenna is its efficient radiation despite its low
profile. As the thickness of a microstrip antenna is reduced, its radiation resistance
approaches a constant value. The source of radiation for the rectangular microstrip
radiator shown in Fig. 7-1 is the electric field (Fig. 7-4) that is excited between the
edges'? of the microstrip element and the ground plane (excitation of a nearly infini-
tesimal slot with uniform E field). The fields are excited 180° out of phase between
the opposite edges. -

The input impedance of the microstrip element can be calculated from the equiv-
alent circuit in Fig. 7-5; Ry (the radiation resistance of each slot) can be calculated
for a uniformly excited slot as a function of width by

Since the microstrip element consists of two slots that combine in parallel, the input
Impedance is given as

Ry, = 600/ W

The Susceptance of the slots is shown' to combine at resonance to cause a shortening
’
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FIG. 7-4 Side view of rectangular micro- FIG. 7-5 Equivalent circuit for determining
strip electric fields. input impedance of rectangular microstrip
element.

of the microstrip element to values typically less than a half wavelength, suchas L =
0.49\;

The input impedance can be matched to 50 & by using one of two techniques.
For an element that is to be employed individually, a coaxial input connector is used.
The 50-Q-impedance point may be obtained by varying the distance from the edge of
the element to the feed location £, as shown in Fig. 7-6. Note that the impedance of the
element goes essentially to zero at the center of the element. Sometimes it is necessary to
ground a microstrip element; the use of arivetora plated-through hole at the center of the
element results in negligible effects on patterns and a small change in resonant frequency.
Likewise, for air-loaded microstrip elements a metal support is used at the center of the
element. When an element is to be used in a microstrip array, itis fed at the edge, and a

140

120 \\
100 \ /

80 \ /
TN 7
20 \\

O 20 40 60 80 100 120 140 160 180
BLe

Rin

i
LT

t=1/16 -in (1.6 mm) TEFLON FIBERGLASS
W= Aosz
fo=1500 MHz
FIG. 7-6 Input-impedance variation as a function of feed loca-
tion for a rectangular microstrip element (side view).
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quarter-wave transformer is used to convert the input impedance to any desired level
(Fig. 7-7).

The quarter-wave microstrip element has an impedance twice that of the rectan-
gular microstrip element. The input impedance can be calculated from the equivalent

) SHORT
z SRa CIRCUIT

%
FIG. 7-7 Matching a rectangular micro- FIG. 7-8 Equivalent circuit for a quarter-

strip element by using a monolithic quarter-  wave microstrip element.
wave transformer (top view).

circuit shown in Fig. 7-8. At resonance (when the distance from the short circuit to
the radiating slot is a quarter wavelength) the short circuit transforms a quarter wave-
length to become an open circuit. The open circuit combines in parallel with Ry, the
radiation resistance of the single slot. The resulting input impedance is given by Z;,
= Rp = 1200/ W.

For a quarter-wavelength element that is a half wavelength wide the radiation
resistance and input impedance are 240 Q. This is very high, and a 5:1 voltage stand-
ing-wave ratio (YSWR) would occur if a 50-Q coaxial connector were directly con-
nected to the edge of the element. Therefore, the feed point is inset a distance ¢ from
the edge or slot as shown in Fig. 7-9. The input impedance of a quarter-wave element
may also be matched by using a quarter-wave transformer as discussed for the rec-
tangular microstrip element. Sometimes the line widths of a quarter-wave transformer
become too narrow, so an inset monolithic feed is used as shown in Fig. 7-10. The
distance € given in Fig. 7-9 is used as a starting point, but exact dimensions are usually
determined experimentally.

Microstrip-Element Antenna Patterns

Microstrip antennas have radiation patterns that can be accurately calculated. The
key to accurate calculation is the fact that the source of radiation is the electric field
across a small gap formed by the edge of the microstrip element and the ground plane
directly below. Since its dimension ¢t < Ag4/4, the individual slots cannot exhibit any
directionality. Each slot therefore radiates an omnidirectional pattern into the half
Space above the ground plane. Figure 7-11 shows a side view of a rectangular micro-
strip element and its associated source and radiating E fields.

The opposing slots are excited out of phase, but their radiation adds in-phase
normal to the element. This occurs because the slots are inverted. The radiation of
two slots excited in phase with equal amplitude is given by
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FIG. 7-9 Measured input impedance as a function of £ (¢ is
the distance to which the feed is inset into a Ay/4 element).
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FIG. 7-10 Monolithic feed for a quarter-
wave microstrip.
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P
FIG. 7-11 Side view of a rectangular micro-
strip element and associated radiation.
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xL
E=K — + €O
COS(M s¢)

Since the microstrip element is resonant at a half wavelength in the dielectric under
the element,

T
E, = K cos © €OS
¢ (2\/5, ¢)

This formula is valid for 0° < ¢ < 180° (above the ground plane). The formula is
not exact near the ground plane. Edge radiation from the end of the ground plane
usually reduces theoretical radiation by 6 dB at ¢ = 0° and 180°. Some radiation
also will occur in the aft hemisphere 180° < ¢ < 360°. The exact amount of aft-
hemisphere radiation diminishes rapidly as the ground plane becomes large in wave-
lengths. The theoretical E-plane patterns for two commonly used rectangular micro-
strip elements are shown in Fig. 7-12a and b.

The quarter-wavelength microstrip element radiates from a single slot; thus its
E-plane radiation is uniform (E, = K) for 0° < ¢ < 180" for an infinite perfect
conducting ground plane. The measured pattern for a quarter-wavelength element
centered on a 6)¢ ground plane is shown in Fig. 7-13. Note that the radiation is
reduced by about 6 dB at ¢ = 0° and 180°. The backlobes and ripple in the radiation
pattern would be reduced as the ground plane got larger.

The H-plane patterns of the rectangular and quarter-wavelength microstrip ele-
ments are given by the formula for a uniformly excited radiator:

w
Ey = K tan 0 sin (T—)‘-o- - cos 0)

where # = angle above ground plane in the H plane.
The full-wavelength element has a radiation pattern similar to that of a mono-
pole. The pattern of this element is given by

k3

E,=Ksin(\/€_r-cos¢)

The pattern of a center-fed, air-loaded, ¢, = 1.0 element is shown in Fig. 7-14. The
radiation pattern of a round full-wavelength microstrip element fed at the center is
given by

E=KJ,(2—>‘:-a-sin0>

where J, = Bessel function of first kind

= radius of element
The round full-wavelength microstrip element has essentially the same pattern as the
Square full-wavelength microstrip element of equivalent area and identical dielectric-
constant substrate.

Microstrip-Antenna Bandwidth :

The bandwidth of microstrip antennas is proportional to the thickness of the substrate
used. Since most substrates are very thin in terms of wavelengths (¢ < Ag/4), the
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FIG. 7-12a Theoretical E-plane pattern of a rectangular microstrip element fore, = 1.0.

bandwidth is usually narrow. A useful formula for determining expected microstrip-
element bandwidth is given by

t
BW = 4725 =)
where BW = bandwidth, MHz, for a VSWR less than 2:1
S = operating frequency, GHz
¢ = thickness, in [Most board thicknesses are available in steps of %: in
(0.794 mm).}

Since the feed networks used to feed most microstrip arrays are low-Q, the band-
widths of most arrays are given by the preceding formula. Exceptions are large series-
fed microstrip arrays and microstrip phased arrays. With these two types of arrays,
the pattern often degrades before the VSWR increases. ‘

Broadbanding techniques discussed in Chap. 43 have been applied to microstrip
elements. In most cases, the bandwidth has been doubled, but it is very difficult to
increase the bandwidth beyond this point. It is much easier to increase the thickness
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FIG. 7-12b Theoretical E-plane pattern of a rectangular microstrip element for ¢, = 2.45.

of the microstrip element. It seems certain that the bandwidth of a microstrip element
is related directly to its volume.

Microstrip-Antenna Mutual Coupling

When microstrip elements are used in arrays, ultimate performance is attained for
each design if mutual coupling is minimized. Three methods of coupling exist:

1 Coupling between microstrip elements (Figs. 7-15 and 7-16)

Coupling between microstrip transmission lines and microstrip elements (Figs. 7-
17 and 7-18)

3 Coupling between microstrip transmission lines (Table 7-1)

The coupling between microstrip elements in Figs. 7-15 and 7-16 affects the pattern
shape of the elements, radiated power and phase, and input VSWR. The coupling
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FIG. 7-13 Measured E-plane pattem of a quarter-wavelength element on a 6)\, ground
piane. .

between feed lines and microstrip elements affects the radiation patterns, radiation
phase and amplitude, antenna impedance, and microstrip transmission-line match.
The coupling between transmission lines affects the transmission-line match.

If the separations are maintained so that coupling is less than 20 dB (usually
three substrate thicknesses t), the gain and VSWR of the antenna are not degraded.
For a low-sidelobe antenna, isolations of 30 dB or more are required.

Microstrip-Antenna Efficiency

For a microstrip element, efficiency is defined as the power radiated divided by the
power received by the input to the element. Factors that reduce efficiency are the
dielectric loss, the conductor loss, the reflected power (VSWR), the cross-polarized
loss, and the power dissipated in any loads involved in the elements. Most microstrip
elements are between 80 and 99 percent efficient. For very thin elements the Q of the
microstrip cavity becomes so high that the current losses become excessive, and the
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FIG. 7-14 Theoretical radiation pattem of the full-wavelength element for ¢, = 1.0.

thickness ¢ becomes so small that the conductance across the cavity yields excessive
dielectric losses. This usually occurs when the thickness is reduced to about Aq/1000.
At this thickness, the resonance VSWR can be matched to 50 Q, but the very narrow
bandwidth leads to temperature instabilities; i.e., a slight change in temperature
causes the VSWR to rise rapidly, and reflection losses reduce efficiency.

Dielectric losses are eliminated by using air as a substrate. Since most of these
elements have a large separation between the element and ground plane ¢, the Q is
also reduced and so are conductor and VSWR losses. Most of these elements have an
efficiency of 95 to 99 percent. Air-loaded elements are usually built as separate entities
and are not photoetched in large arrays. A single metal part, rivet, or bolt is used at
the center of the element for support. To build a photoetched array by using a nearly
air substrate, a honeycomb core is employed to separate the microstrip elements and
feed network from the ground plane. A 35-ft by 8-ft (10.7-m by 2.4-m) array was
built on a honeycomb core for the Seasat satellite program (1978) with an aperture
efficiency of 60 percent. (This included all feed-network losses.)

Microstrip elements are not efficient if solid epoxy fiberglass is used as a sub-



TABLE 7-1 Isolation (dB) of Parallel Microstrip Transmission Lines
Board
Board spacing Frequency
thickness, | (number of
in thicknesses) | 2.0 GHz | 2.7 GHz | 3.4 GHz | 4.0 GHz
K 1 8.0 12.5 8.0 3.0
2 11.0 13.0 12.5 5.0
3 17.5 18.0 17.5 10.0
4 25.0 25.0 26.0 11.5
Yor 1 10.0 12.0 10.0 2.5
2 12.5 15.0 13.5 5.0
3 17.5 17.5 15.0 9.5
4 25.0 25.0 27.5 16.5
Yoa 1 10.0 10.0 11.5 2.5
2 10.0 12.5 12.0 5.0
3 17.5 16.0 225 10.0
4 25.0 24.0 22.5 17.5
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FIG. 7-15 Isolation of two half-wave microstrip patch
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radiators as a function of their H-plane separation.
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strate. Repeated attempts to circumvent the use of expensive Teflon-fiberglass sub-
strates have resulted in antenna elements with efficiencies of 10 percent.

The efficiency of microstrip phased arrays depends upon microstrip-element effi-
ciency, feed-network losses, and phase and amplitude distribution. These efficiencies
are discussed later.

Circularly Polarized Microstrip Elements

Microstrip elements are probably the simplest and thinnest devices for producing circular
polarization. Three methods for producing circular polarization have been developed. A
microstrip element (Fig. 7-19) that is square with L and W equal to 4,/2 will have two
modes of radiation, vertical and horizontal. If these two modes are excited 90° out of
phase with a monolithic hybrid, the square microstrip element will radiate vertical and
horizontal polarization 90° out of phase. One input to the 90° hybrid power divider will
result in right-hand circular polarization, while the other port of the 90° hybrid will have
left-hand circular polarization. If the right-hand circular input is driven and the left-hand
circular port is terminated in a 50-Q load, the input VSWR will remain low for a band-
width that extends beyond the bandwidth of the element. The reflected power is absorbed
by the load. A spinning linear pattern of a circular polarized element is shown in Fig. 7-20.
Note that the axial ratio remains low out to wide angles.
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FIG. 7-19 Circularly polarized square
microstrip element with 90° hybrid feed.

! 10°
10 0 20
200
30"
30° 1 11
Tt
40°
40 T &
S % o
50 td
60"
80 TS
2
2! X\ 70°
7
80"
80"
90 SEESEa, S HEEH o0
—pH =1 15 20; 25 30! 25; S 101 O
B = z «E‘E o
o 4 3
7%
20
X
i
15|
10
H 3
id 11 8
Zi Branpa inkis)
h FhsH
1 L ]
t Bhest

:IG. 7-20 Spinning dipole radiation pattern of a square microstrip element fed with a
ybrid,

7-15



7-16 Types and Design Methods
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INPUT
45=—-l L— INPUT

FIG. 7-21 Circularly polarized microstrip FIG. 7-22 Circularly polarized microstrip
element with 45° offset feed. element with conjugate impedance matching
and a single feed.

Another method for exciting: circular polarization is shown in Fig. 7-21. This
square element is fed in two orthogonal modes (vertical and horizontal) with a micro-
strip line. The phase of excitation of the microstrip-element modes is offset by 90° by
offsetting the microstrip feed by 45°; i.e., a 90° lag is induced in the feed network.
This design has a narrow circularly polarized bandwidth, and the VSWR bandwidth
is about twice as wide as the element bandwidth.

A third method for exciting circular polarization is the microstrip element shown
in Fig. 7-22. This element is adjusted slightly off resonance by + A in the vertical plane

and —A in the horizontal plane. If the
vertical dimension is 1 percent longer
TRIM TAB than A,4/2, the horizontal dimension is
adjusted to be | percent shorter than A,/
2. This resuits in an increase in mode sus-

/ ceptance. The admittance in the vertical
and horizontal planes respectively is
° given by

FIG. 7-23 Circularly polarized microstrip . X
element with trim tab added. Yy=G+ jB and Yy = G— jB

When B = G, the feed applies a uniform
voltage to conjugate impedances. The two resulting modes of radiation are excited
with equal power and are 90° out of phase. Exact dimensions for a design are deter-
mined empirically by trimming a square element or an element as shown in Fig. 7-23.

The tab is added for ease of trimming to achieve circular polarization.

Duai-Frequency, Duai-Poiarization Microstrip-Antenna Element

Dual-frequency microstrip elements may be stacked microstrip elements fed in series
as shown in Fig. 7-24a. The most important feature to note in Fig. 7-244, b, and ¢ is
that off resonance the microstrip element looks like a short circuit. This allows the
resonant microstrip element to work independently of the nonresonant element since
the nonresonant element’s impedance adds in series with the resonant element as a
short circuit (see Fig. 7-25). Microstrip elements cannot be stacked as dval-frequency
elements if their resonant frequencies are separated by less than 10 percent (except
for very-high-Q elements) or if their resonant frequencies are harmonically related.
‘Multiple elements can be stacked and fed in series to get a 3, 4, or N multi-
resonant microstrip array. It is important that each element be centered so that it is



Microstrip Antennas 7-17

-
r
1]

SHORT
SHORT CIRCUIT
CIRCUIT

(b)

SHORT
CIRCUIT SHORT

CIRCUIT

(c)

FIG. 7-24 Dual-frequency microstrip element ( side view). (&)
Fed in series. (b) Impedance model at /,. (¢) Impedance model
at fo.

fed at its 50-Q-input point. Quarter-wavelength elements as well as full-wavelength
clements can also be fed in series.

The exact dimension of a series-fed element and its feed-point location must be

defined experimentally by an iterative process. This process usually consists of build-
ing an element to the dimensions defined by the design equations given for a rectan-

gular microstrip element. The resonant
frequency and impedance are measured;
usually they differ slightly from predic-
tion because of a variety of effects:

1 Mutual coupling
Feed-probe inductance

3 Slight effect owing to short-circuit
approximation for impedance of non-
resonant element

4 Dielectric-constant variation

Zyr= SHORT CIRCUIT

o VWA
60
Zl.'l %ZR__-—W ]

[o

FIG. 7-25 Equivalent circuit of a stacked
dual-frequency rectangular microstrip ele-
ment. Zyg = impedance of nonresonant rec-
tangular microstrip element. Z; = imped-
ance of resonant rectangular microstrip
element.

A linear adjustment of microstrip-element size and feed-point location is made to cor-
rect the resonant frequency and feed impedance. Multiple iterations may be required,

but usually only one or two are necessary.

Dual-frequency circularly polarized microstrip elements can be built by feeding
stacked circularly polarized microstrip elements along the diagonal of each element

as shown in Fig. 7-26.
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FIG. 7-27 Rectangular dual-polarization microstrip element.
( a) Horizontal at f,, vertical at f, (same input). (b) Horizon-
tal at f,, vertical at f; ( separate feeds).

Dual-polarized microstrip elements are rectangular microstrip elements in which

the two dimensions are picked as resonant dimensions. As shown in Fig. 7-274,

the

two dimensions are picked so that L, equals a half wavelength in the dielectric at the

FIG. 7-28 Dual-polarized square micro-
strip element.

first resonant frequency and L, equals a
half wavelength in the dielectric at the
second resonant frequency. The element
can also be fed with two independent
feeds at the midpoint of each side as
shown in Fig. 7-27b. In both cases, f; will
radiate horizontal polarization and f; will
radiate vertical polarization.

A square microstrip element can be
excited in two orthogonal modes as shown
in Fig. 7-28. It is important that the two
feeds be located at the midpoint of the

edge of the element, for this is the low-impedance point for the orthogonal mode in
each case. Coupling of 25 dB between ports is typical for square ¢lements fed in this

manner.
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7-3 MICROSTRIP-ARRAY DESIGN PRINCIPLES

Section 7-2 dealt with microstrip elements, which can be used individually or in micro-
strip arrays. A microstrip array is the integration of microstrip elements with a micro-
strip feed network consisting of power dividers, transmission lines, phase lines, and
active components, etc. The active components are devices such as phase shifters,
amplifiers, oscillators, receivers, mixers, etc. It is important to note that microstrip
feed lines are connected directly to a microstrip radiating element, affecting neither
the radiation pattern nor the impedance of the radiator.>** The feed line, being near
the ground plane, is perpendicular to the electric field emanating from the microstrip
radiator. Therefore, the feed line is a septum of equipotential, and radiating fields
cannot excite currents in the feed lines.

The real advantages of microstrip antennas appear when all the elements of the
array along with feed network are monolithically etched from one side of a printed-
circuit board. At least four distinct advantages can be identified:

1 The process of photoetching hundreds or even thousands of microwave compo-
nents in one process results in a low-cost antenna array.

2 The resulting printed-circuit board is very thin. Since the array is designed to
operate from the ground plane on the back of the printed board, its performance
is unaffected by mounting to a metallic surface such as an aircraft or a missile.
The resulting design is doubly conformal. It is conformal to the underlying struc-
ture to which it can be bolted or laminated, and it is externally conformal aero-
dynamically because of minimum protrusion.

3 Microstrip arrays have high performance because an infinite variety and quantity
of antenna elements, power dividers, matching sections, phasing sections, etc., can
be added to the printed-circuit board without any cost impact (except the cost per
square foot of the board). This gives the design engineer many components (for
instance, 110-Q quarter-wave transformers or unequal power dividers) that are
not commercially available in separate packages.

4 The microstrip array is very reliable since the entire array is one continuous piece
of copper. Other types of antennas most commonly have failed at interconnections
within the antennas and at their input connectors.

Omnidirectional Microstrip Arrays

Microstrip arrays were first used as omnidirectional arrays on missiles.> Two types of
antennas are used:

® A continuous radiator for linear axial polarization (Fig. 7-29).

. Aq array of discrete radiators for omnidirectional circular polarization (Fig. 7-30).
(Eight of the circularly polarized arrays in Fig. 7-30 fit end to end and are fed in
phase to provide a large circularly polarized omnidirectional array.)

The antenna shown in Fig. 7-29 was designed to give omnidirectional linear (axial)
polarization coverage. The printed antenna is shown wrapped around the 8-in (203-



FIG. 7-29 Continuous-radiator microstrip antenna for linear
polarization.

mm) cylinder. Note that a %zin- (0.794-mm-) deep lathe cut has been made in the 8-
in cylinder so that the antenna presents a flush surface when wrapped around and
attached to the cylinder.

The design procedure for the 8-in wraparound operating at 2270 MHz (Fig. 7-

31) is calculated as follows:

1

2

W

The resonant length of the radiator is L = )\0/2\/:, = 5.2/(2V2.45) = 1.66 in
(42.16 mm).

The width of the radiator is W = #D = w8 = 25.1 in (637.54 mm).

The number of feeds required N is at least 1 per wavelength in the dielectric,
and a binary number 2, 4, 8, 16 ... is used to accommodate a corporate-feed
network. The width of the element in terms of wavelengths in the dielectric is
given by

W,y = W/h/Ve = 1.5

Since the width in wavelengths does not exceed 8, the number of feeds required
Nris 8 (at least | feed per A\y).

The input impedance R;, of the antenna at each feed point is the total impedance
of the radiator times the number of feeds:
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Ry = Np- 60 - N/ W = 99Q

5 The feed network is used to match the antenna while dividing the power. A quar-
ter transformer is used next to the element to match the antenna impedance R,
to 100 £

Z, quarter-wave transformer = VR, - 100 = 99.5Q

At the first junction a the two 100 impedances combine to give 50 Q. A quarter-
wavelength (Z; = 70 Q) transformer is used to transform the 50-Q impedance to
100 Q. This impedance is transferred
down a 100-Q line to junction &,
where the process at junction a is
repeated. At junction ¢ the two 100-
1 impedances combine to provide a
50-Q2 input for a coaxial input
attached to the back of the printed-
circuit board.

Microstrip-Antenna Pattern Cover-
age for Omniappiications The pat-
tern coverage for the omniantenna shown
in Figs. 7-29 and 7-31 depends on the
diameter of the missile. The limiting fac-
tor in omnidirectional pattern coverage is
a singular hole at the tip and tail of the
missile (Fig. 7-32) which gets narrower
as the diameter of the missile increases.
For instance, a 15-in-diameter antenna
produces a null along the missile axis of
radius 1° at the —8-dB-gain level. The
fractional area with gain below —8 dB is
0.0002. Conversely, the fraction of the
area with gain above —8 dB is 0.9998, or
99.98 percent. The percent coverage
increases without limit for larger diame- ;
ters until a nearly perfect coverage is FIG. 7-30 One-eighth of a circularly polar-
attained for a single linear polarization.  jzed omnidirectional array.

The percent coverageis only a function of

diameter and wavelength and is independent of antenna thickness. The theoretical and
experimental pattern coverages, at S band, for microstrip antennas on a smooth cyl-
inder are given in Fig. 7-33 for gain levels greater than —8 dB.

The roll-pattern variation for a circularly polarized wraparound microstrip
antenna is a function of center-ta-center element separation as shown in Fig. 7-34. For
4 uniform roll-plane pattern, the separation between elements should not exceed
0.7%. For separations approaching 0.35%, the mutual coupling between elements
makes it difficult to obtain circular polarization with a tolerable axial ratio. The input
impedance of an element is measured, and a corporate-feed network is designed, by
using the procedure discussed earlier.
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ing. (Courtesy of Cliff Garvin, Ball Aerospace Systems
Division. )

Fixed-Beam Microstrip Arrays

High-gain directional fixed-beam antennas can be photoetched from one side of a
Printed-circuit board (Fig. 7-35). Most arrays of this type have a single beam perpen-
dicular to the plane of the array. The microstrip elements are spaced slightly less than
a free-space wavelength to prevent grating lobes. Spacings of less than a half free-
SPace wavelength are generally not used because of feed-line crowding.

The example shown in Fig. 7-35 consists of four rectangular microstrip elements



r———""
1 |
| |
| |
I |
| I |
Zy= VR 100

a

INPUT IMPEDANCE =50 Q.
FIG. 7-35 Directional fixed-beam microstrip antenna.

in a two-by-two array. Each element is matched with a quarter-wavelength trans-
former to match its input impedance R;, to 100 Q. Each pair of 100-Q inputs is com-
bined to give SO Q at point a. The 50-Q impedance is transformed to 100 @ by a 70-Q
quarter-wavelength transformer. The two 100-Q-impedance transmission lines main-
tain the 100-Q impedance until they are combined in paraliel to provide 50 Q at the
input.

A fixed-beam microstrip array can be expanded to any 2*-by-2™ array. The cor-
porate-feed network is expanded to provide equal power and phase split; the symmet-
rical line length from the input to the microstrip elements forces all the elements to
be fed in phase. Variations of frequency or dielectric constant do not cause a differ-
ential phase taper over the array when a corporate-feed network is used.

The maximum gain of a fixed-beam microstrip phased array is given by

G = 10 log (%4) —a- (D, + Dy/2

where A = D, - D,

D, = effective width of the uniformly spaced array [It is defined as the sum of
the distance between the centers of the edge elements plus one interele-
ment spacing; (n + 1) X horizontal spacing.}

D, = height of array defined in the same manner as D; {(m + 1) X vertical
spacing].

a = attenuation, dB per unit length, of a 50-Q transmission line being used in

the monolithic feed [A typical value of a is 0.4 dB/ft for a 50-Q microstrip
line on %=in (0.794-mm) Teflon fiberglass at 2.2 GHz.]
Unegqual line lengths can be used to produce phase tapers which yield fixed beams that
are scanned away from broadside. Phase tapers are also used to compensate for cur-
vature of microstrip arrays that conform to the cylindrical surface of aircraft or
missiles.
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Microstrip Phased Arrays

A C-band microstrip phased array is shown in Fig. 7-36. This array is similar to the
fixed-beam microstrip arrays discussed above except that a phase shifter has been
added to the input of each microstrip element. The microstrip phase shifters, micro-
strip radio-frequency chokes, and direct-current bias lines are all photoetched on the
same piece of copper as the radiators and the corporate-feed network.

Quarter-wavelength microstrip elements are used as radiators for two reasons.
First, they require less area than the other types of microstrip radiating elements.
Second, they have a uniform radiation pattern in the £ plane and therefore do not
contribute to loss of gain as a function of scan angle because of the element factor
roll-off.

The array shown in Fig. 7-36 has a 3-bit phase shifter at the corporate-feed input
to each element. Each 3-bit phase shifter consists of a 90° and an 180° switched-line
phase shifter and a 45° loaded-line phase shifter. The phase shifters (Fig. 7-37) are
pin-diode phase shifters. Forward bias short-circuits the upper two diodes and causes
the signal to travel down the upper-path length L + ¢, and reverse bias short-circuits
the lower two diodes and causes the signal to travel the shorter path L. The differentiaj
length is ¢ the desired phase shift. The 45° loaded-line phase shifter (Fig. 7-37b) is

N R R A I 1 T "1’[';:'“'&*]';4»-' [HHE Y
A H i

wrooRr ogl ofn 06] 0g [s1:] oS o o o« (11 e

FIG. 7-38 Monolithic 5-GHz phased array. (Courtesy of Frank
Cipolla, Ball Aerospace Systems Division, )
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FIG. 7-37 Microstrip phased-array phase shifters. (a) Switched-line
phase shifter. (b) Loaded-line phase shifter. (¢) 80° hybrid phase shifter.

used for 45° or less induced phase shifts. These phase shifters are used because of
their compact size and the fact that only two diodes are required. Each inductive stub
produces half of the total loaded-line phase shift. The quarter-wavelength spacing
between the stubs minimizes the reflection coefficient, and an impedance match is
maintained. For more information on switched-line and loaded-line phase shifters, a
more extensive reference on phase-shifter design should be consulted before attempt-
ing a design.”® The 90° hybrid phase shifter (Fig. 7-37¢) is not useful in monolithic
microstrip phased arrays because of its large size.

The gain of a microstrip phased array of the type shown in Fig. 7-36 is given by

G = 10log (4—;‘3> - g(D, + D) — 1dB  — 10log(cos B - cos? ¢p)
0
e — | -
aperture gain feed-line 3-bit phase- scanning loss

losses shifter loss

where Dy, D,;, a, and A = dimensions as defined in preceding subsection

0r = scan angle in the E plane

¢ = scan angle in the H plane
Although the array shown in Fig. 7-36 had measured gain® that agreed with the pre-
ceding formula, larger arrays should consider additional mutual-coupling VSWR
losses.

Serles-Fed Microstrip Arrays

Two types of series-fed microstrip arrays are feasible: the resonant, or broadside,
series-fed microstrip array and the nonresonant, or traveling-wave, series-fed micro-
strip phased array.

A resonant series-fed microstrip array is shown in Fig. 7-38a. The array is fed
at its input with a 90° offset near the center so that radiation of both halves of the
array will be in phase. The elements of the array are separated by a wavelength in the
effective dielectric of the transmission line; the line consists of the radiating elements
and the series-connected microstrip lines. For Teflon-fiberglass boards, the effective
wavelength will be approximately Ao/ Ve, in the elements and 1.2A/ Ve, in the mi-
crostrip transmission line. This will result in an effective separation S, of Ay =
L.1xo/ Ve, Exact values are usually measured experimentally by constructing a test
array and varying the frequency until the beam is centered at broadside. The conduc-
tance of each element is a function of its width. For a perfectly lossless feed, the power
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FIG. 7-38 Series-fed microstrip phased array. (&) Resonant series-ted microstrip
array. (b) Traveling-wave series-fed microstrip array.

radiated by each element will be its conductance divided by the total sum of the con-
ductance of all elements.

The sidelobe level and the beamwidth at resonance can be used to deduce the
amplitude taper existing over the array. Near-field probe techniques can also be used
to measure the amplitude taper. At resonance, the array has a beam at broadside with
sidelobes of —20 to —30 dB. OF resonance, the main beam splits into two identical
beams that scan away from broadside as a function of frequency.

FIG.7-39 A 17.5-GHz, 16-microstrip-slement monolithic array,
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A traveling-wave series-fed microstrip array is shown in Fig. 7-384. The array is
fed at one end, and varying widths of elements are used to control the radiation. The
radiation from each element is proportional to the width of the element. The elements
are separated by a dimension not equal to the effective dielectric constant of the trav-
eling-wave array. For a separation S, less than an effective wavelength, the beam will
be scanned backfire (toward the feed from broadside). For a separation greater than
a wavelength, the array will produce an end-fire beam (scanning away from broadside
as the frequency is increased). A grating lobe will appear for the end-fire beam.

Traveling-wave arrays have very good input impedance since the reflection coef-
ficient due to each element cancels in the reverse direction. The dimensions of a series-
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FIG. 7-40 A 44-GHz active (distributed power amplifiers) 16-microstrip-element phased
array.



Microstrip Antennas 7-29

fed array are predicted by the following authors: Derneryd,'® Metzler,'"* Bahl,'?
Campi,”* Huebner,' and Sanford.'®

Monolithic Phased Arrays

At millimeter frequencies, it is possible to combine multiple radiators, phase shifters,
power dividers, driver circuitry, and amplifiers on one side of a gallium arsenide or silicon
chip. The semiconductor junction (phase shifter and amplifiers) is first formed on the top
surface of the chip. Next, the metal circuitry required for radiators, phase shifters, amplifi-
ers, power dividers, and driver circuitry is deposited on the chip. This architecture results
in a significant cost and thickness reduction. Working models of two monolithic phased
arrays are shown in Figs. 7-39 and 7-40.

In Fig. 7-39, each microstrip radiator has a 3-bit (45°, 90°, and 180°) phase shifter
between the 16-way power divider and the radiator. The phase shifters used pin diodes
formed on a high-resistivity silcon substrate. In Fig. 7-40, each element has a 3-bit phase
shifter and a two-stage power amplifier between the two 8-way power dividers and the
microstrip radiators. The phase shifters and power amplifiers are fabricated monolithi-
cally using GaAs MESFET devices. The metal circuitry is added to the GaAs chip after the
semiconductor junctions have been fabricated.
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8-1 INTRODUCTION

This chapter deals with the radiation characteristics of slot antennas and includes the
effects of finite and curved surfaces, dielectric coatings, cavity backing, and singie slots fed
by waveguides. The simplest example of such an antenna consists of a rectangular slot cut
in an extended thin flat sheet of metal with the slot free to radiate on both sides of this
sheet, as shown in Fig. 8-1. The slot is excited by a voltage source such as a balanced
parallel transmission line connected to the opposite edges of the slot or a coaxial transmis-
sion line.

The electric field distribution in the slot can be obtained from the relationship
between the slot antennas and complementary wire antennas, as established by Booker.! It
has been shown that the electric field distribution (magnetic current) in the slot is identical
with the electric current distribution on the
complementary wire. In the illustrated
z 6 rectangular slot, the electric field is per-
i pendicular to the long dimension, and its
amplitude vanishes at the ends of the slot.

The electric field is everywhere nor-
mal to the surface of the slot antenna
except in the region of the slot itself. The
theoretical analysis of this configuration
shows that the radiation of the currents
in the sheet can be deduced directly from
the distribution of the electric field in
the slot. Consequently, the radiated field of
an elementary magnetic moment within
the slot boundaries should include the contributions of the electric current flowing
on a metal surface.

A slot-antenna design will often require that the slot be cut in something other than
an extended flat sheet surface. Whatever the surface is, the electric field will be everywhere
normal to it except in the region of the slot. The field due to the electric currents on this
metal surface can be deduced from the exciting magnetic currents? in the slot, just asin the
case of the flat metal sheet. This field can be combined with the exciting field so that the
result is the total field due to a magnetic current on the given boundary surface. Thus the
field of a thin rectangular slot cut in a circular cylinder differs from that of a slot cutin a flat
metal sheet because the distribution of electric currents is different for the two cases.

In general, the slot antenna is not free to radiate on both sides of the surface on which
it is cut because one side is either completely enclosed, e.g., the slotted cylinder antenna, or
it is desired that the radiation on one side be minimized. In these cases, the influence of the
enclosed cavity region on the excitation and impedance of the slot antenna is significant to
the antenna design.

FIG. 8-1 Rectangular slot.

8-2 SLOTTED-WAVEGUIDE ANTENNAS

Slotted-waveguide antennas have significant applications in the areas of missile, space-
craft, and airborne radar. Broad-wall slotted-waveguide antennas have been studied ex-
tensively. Oliner,? following research by Stevenson,* has derived equivalent circuit repre-
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sentations for this type of antenna. These circuits allow accurate computation of the
normalized conductance, susceptance, resistance, reactance, and resonant frequency of
broad-wall slots. The types of slots and the equivalent networks are given in Chap. 9.
Accurate analysis for edge-wall slots is not available; therefore, their parameters must be
determined experimentally.

Dielectric-covered broad-wall slots also have been characterized thoroughly, Bailey$
has summarized significant findings. The general problem discussed by Bailey extends
Oliner’s work to include the effects on broad-wall slots radiating into a multilayer dielec-
tric medium (Fig. 8-2). The basic effect that occurs by adding a dielectric layer over slotsin
a waveguide is to produce a downward shift in resonant frequency. For dielectric layers
whose thickness is greater than 0.24, where 1 = Ao\/E, the approximate resonant shift is
given in Fig. 8-3, where 4 is the wavelength in the dielectric, 4o is the wavelength in free
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FIG. 8-2  Narrow slotin the broad face of a rectangular waveguide with multilayered
Inhomogeneous external medium. (After Bailey, Ref. 5.)
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FIG. 8-3 Resonant length of a dielectric-covered shunt slot in WR-80 (RG 52/U) waveguide
(b* = 0.0625 in, t = 0.050 in, a = 0.900 in, b = 0.400 in). (After Bailey, Ref. 5.)

space, and € is the dielectric constant. Further analysis, and comparison with experimental
data, is also available, as shown in Fig. 8-4.

The typical polarization of most slotted-waveguide antennas is linear. However,
several slotted-waveguide elements have been designated that produce circular polariza-
tion.”®

8-3 TAPERED AND FLARED SLOT ANTENNAS

Tapered slot antennas (TSAs) were first introduced in the late 1950s. It was then that
Eberle et al.? produced a waveguide-fed flared slot antenna for use in aircraft skins where
conventional antennas could not be easily integrated. Gibson'® then developed the
stripline-fed exponentially tapered slot antenna, which he called the Vivaldi aerial. His
design was the first recognized TSA that showed symmetric E- and H-plane beamwidths,
low sidelobes, and moderate gain.

Since then, with the increased interest in MIC (microwave integrated circuit) anten-
nas for applications ranging from satellite communications to remote sensing, tapered slot
antennas have been studied extensively, both empirically and theoretically. In general, the
performance one can expect to achieve from a typical TSA includes

1 Broadband operation
2 Moderate gain
3 Low sidelobes

These radiation characteristics make TSAs suitable elements for reflector feeds or as
stand-alone antennas.
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FIG.8-4 Resonant conductance (a) and resonant length (b) versus layer
thickness, e, = 3.31. (After Katehi, Ref. 6.)

The current form of a typical TSA is planar in nature, etched on a thin, low-
dielectric-constant microwave substrate, and fed by a strip-line, fin-line, or slot-line con-
figuration, as shown in Fig. 8-5. As a result of the typical substrates used in TSA designs, it
is important to consider the possibility of the feedline itself radiating or coupling with the
antenna element. Work at Harris Corporation has addressed this problem and resulted in
a bilateral stripline feed as one solution (Fig. 8-6).

TSAs are a type of traveling-wave antenna. Their operation is based on a traveling
wave propagating along the surface of the antenna taper with a phase velocity less than the
speed of light. Under this condition, endfire radiation results. Zucker reviews properties of
traveling-wave antennas in Chap. 12.

Yngvesson et al.!*12 empirically investigated three groups of TSAs: the linear tapered
slot antenna, the constant-width slot antenna, and the Vivaldi or exponentially tapered
slot antenna. Their work included assessment of the effect of dielectric constant, effective
dl}?lectric thickness, and taper shape on beamwidth, sidelobe level, and pattern band-
width. They compared their results with Zucker’s predictions for standard traveling-wave
antennas and found that for certain conditions (i.e., thin substrates with low dielectric
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FIG. 8-5 Three different types of endfire tapered slot antennas along
with a dielectric-rod antenna shown for comparison. (After Yngvesson
et al., Ref. 11.)

constants), TSAs were well-behaved traveling-wave antennas. They determined that in
order to remain as well-behaved TWAs, the effective dielectric thickness ¢.¢, given by

tae /R0 = (Ve — 1Xt/20)

was the most important design parameter and should be on the order of 0.005 to 0.03
wavelengths for 4 to 104, antennas. Antennas outside of these dimensions quickly diverge
from traveling-wave antenna characteristics. From this work, Yngvesson et al. arrived at
an empirical set of rules for designing these type of antennas (Table 8-1).

In 1987, Janaswamy and Schaubert'? took TSAs one step further by introducing a
theoretical model for predicting radiation characteristics of smooth-tapered TSAs. Their
analysis predicts what previously was only obtainable through empirical studies of TSA

TOP LAYER BOTTOM LAYER
s R
R ACE
~— 'NoTE1] — l'_ (NOTE 1]
0.25 LAMBDA [NOTE 2]__ 0;2_5_L"AMBDA [NOTE 2] oy
i 0.5 LAMBDA
FREE SPACE
SLOTLINE OPEN] 0.4 LAMBDA 0.4 LAMBDA i
CLOSE AS FREE SPACE {NOTE 3] FREE SPACE [NOTE 3)
POSSIBLE Sc
TO STRIPLINE SLOTLINE OPEN
CROSSOVER CLOSE AS POSSIBLE TO
STRIPLINE CROSSOVER
MIDDLE LAYER
STRIPLINE SHORT
CLOSE AS
POSSIBLE TO
SLOTLINE
CROSSOVER. MAY | —"H=--
BEREALIZED T~ 7| 7
USING PLATED N
THROUGH HOLE OR AN
SMALL-DIAMETER
WIRE. ST?"EFE'E')NE

FIG. 8-6 Stripline designs of the bilateral slotline-fed antenna. Note 1: Length of taper is
proportional to gain; maximum gain approximately 10 dB. Note 2: Quarter wave calculated
using dielectric constant of material. Note 3: May be narrower than 0.4 to obtain desired slotline
impedance. Taper rate: y = a[exp(kx)], where a = 0.5 slotiine width, k = constant, x = length
of flair.
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TABLE 8-1 Txpical Properties of Endfire Traveling-Wave Antennas'
Low sidelobes/

Optimum broad
(max. gain) bandwidth

Directivity (dB) 10 log ( 10 li) 10log (4 Ai)
0 0
Beamwidth (degrees) 55NL/A, 1INL/A,
Optimum velocity ratio (Hansen-Woodyard) =1+ TN
0

Note: L = physical length of antenna.

performance. The theory is developed by first determining the aperture distribution of the
tapered slot through a stepped approximation of the taper. This is accomplished by
dividing the antenna into numerous sections of uniform width and determining the
aperture distribution of each individual section by solving an eigenvalue problem for each
section. Then the individual section boundary discontinuities are determined at each
section junction. Necessary slot parameters are obtained through the Galerkin method in
the spectral domain. Finally, radiated far fields are determined using half-plane Green’s
functions. Doing this, they arrive at the following expressions for field patterns in the £
and H planes:

= J=2 L e | F* (14) — F* (1)
E}(0) = Ei (kyW ! cos 6) Sine{e”‘""'[ — ]
+ FelboL [ F@)-F (Te‘,)]}
Vei + sin 9

e Jkoc!L

Efy(¢$)=EL(0) (LT_'-_?;E {sin OLF (p}) e — F (p)) &)

(8-1)

+ sin % V2(cF = 1) [F* (¢f) — F* (Q‘i)]})
(8-2)

koc!L

~TE,0 (?e——cos'a {sin $IF (p)) €4 — F (p) &)

—sin %5 2+ ) [F(G)—F @)]})

Definitions of the terms in Egs. (8-1) and (8-2) are given in Ref, 13.

8-4 CAVITY-BACKED RECTANGULAR SLOT ANTENNAS

The electric field on the coaxially fed, cavity-backed rectangular slot (Fig. 8-7a) is neither
sinusoidal nor complementary to a ribbon dipole antenna. This antenna is a cavity
Tesonator, energized by the coaxial transducer, which radiates from the slot aperture. The
field distribution in the slot, therefore, is dependent on the excitation of higher cavity
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FIG. 8-7 Cavity-backed rectangular slot. (a) Pictorial representation. (b) Equivalent circuit.

modes as well as the principal mode (TE,,). The equivalent circuit of a cavity-backed slot
antenna is shown in Fig. 8-75; the shunt conductance is the radiation conductance of the
slot. The conductance of the cavity-backed resonant half-wave slot is half the open slot,
free to radiate on both sides. That is, the shunt resistance is at least 800 rather than 400
.14-16 The parallel susceptance shown in the equivalent circuit is the sum of the shunt
susceptance of the slot radiator and the TE-mode susceptances of the cavity. The series-
resonant circuit is the result of the energy stored in the TM modes in the cavity and feed
structure.

To obtain the maximum radiation conductance, a sinusoidal distribution of electric
field (magnetic current) must be generated. This distribution will be achieved when the
energy stored in the cavity in the vicinity of the slot is primarily in the TE,, mode, i.c., by
making the cavity dimensions big enough so that the dominant mode is above cutoff. For
small cavities, edge loading as in a highly capacitive slot will improve the field distribution.

An important design parameter is the antenna @, which is minimum when the
stored energy is only in the dominant mode. The Q limits the inverse voltage-standing-
wave-ratio (VSWR) bandwidth product; for a small cavity, it is:

0> =(7) (89

where ¥V is the volume of the cavity expressed in cubic free-space wavelengths. This
minimum Q is realized when the series reactance is eliminated through efficient feed and
cavity design. For the simple capacitive slot-loaded cavity shown in Fig. 8-74, higher TE
and TM modes will be generated with attendant high Q.

A broadband cavity-backed antenna can be realized by using a T-bar feed'” as shown
in Fig. 8-8. A flat T bar instead of the illustrated circular cross section will generate the
same impedance if its width is equal to the diameter D.

The nominal input impedance to the T bar is 125 Q (approximate). To achieve the
available bandwidth, a broadband impedance transformer is needed between the 50-C2
coaxial transmission line and the T-bar junction.

The dimensions for a broadband flat T bar covering the frequency range 0.5 to 1.2
GHz are shown in the diagram of Fig. 8-8. The VSWR does not exceed 3:1 in the
frequency band and is less than 2:1 over 90 percent of the band.

The resonant frequency can be lowered by the use of dielectric or ferrite loading in
the cavity.'® The reduction in cavity volume and aperture size results in increased O,
smaller bandwidth, and lower efficiency.
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FIG.8-8 Cavity-backed T-bar-fed siot antenna. Typical dimensions in
inches (millimeters) for a frequency range of 0.5 to 1.2 GHz: a, 12.00
(304.8); b, 4.00 (101.6); x, 3.25 (82.55); w, 6.75 (171.45); D, 2.25
(57.15); £, 0.75 (19.05); F, 0.63(16.00); G, 0.19 (5.826); H, 0.25 (6.35).

A shallow ridged-cavity crossed-slot antennal® has been developed for wide-angle
coverage in the ultrahigh-frequency range. The VSWR is dependent on the slot width, slot
length, and cavity depth at the low end of the band. The ridge parameters tune the antenna
in the midband and high-band frequencies. The VSWR is less than 2.7:1 from 240 to 279
MHz and under 2.1:1 from 290 to 400 MHz for cavity dimensions of 33 by 33 by 4 in.

An experimental square cavity-slot antenna (half scale) with crossed slots cut along
the diagonal dimensions of the cavity is shown in Fig. 8-9. The cavity configuration,
ridges, and crossed-slot arrangement are illustrated. The slots are excited by four symmet-
rically located feed probes near the center of the cavity. Each opposite pair is connected to
a wideband 180° hybrid. For circular polarization, the input ports of the two 180° hybrids
are connected to a wideband 90° hybrid. The 3-dB beamwidth varies from 120° at the low
end of the band to about 40° at the high end.

An earlier narrowband cross-slot antenna was developed with a cavity depth of 2
in.® A stripline version of the cavity-backed slot antenna has been designed.?! This design
was used for many years as a low-profile antenna for rocket payloads.

8-5 WAVEGUIDE-FED SLOT ANTENNAS

The waveguide opening onto a ground plane is commonly used in phased arrays and asa
single element on curved as well as flat ground planes. An early analysis and experiment2?
has been used extensively for checking various analytical methods. This early work has
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FIG. 8-9 Cavity-slot configuration with circular polarization of a ridged-cavity
crossed-siot antenna. Typical dimensions in inches (millimeters) for a frequency
range of 480 to 800 MHz: a, 16.00(406.4), d, 2.00(50.8); b, 1.25(31.75); W, , 2.50
(73.5); W,, 0.65 (16.51); h,, 1.50 (38.1); h,, 1.75 (44.45); L, 22 (558.8).

been extended to include a dielectric medium outside the slot,?* as shown in Fig. 8-10.
Also given in Fig. 8-10 are calculationsand measurements that agree with those in Ref. 22.
Itis noted in Ref, 23 that substantial energy is coupled into the dielectric slab in the form of
surface waves. Another extension of this work includes dielectric plugs flush mounted to
the ground plane just inside the waveguide.?* Dielectric plugs are very useful, but one must
be careful of certain dielectric constants and plug thicknesses that can generate very
significant higher-order aperture modes.

Similar analysis has been performed for circular waveguides.? The basic admittance
of a typical TE,,-mode excited slotisgiven in Fig. 8-1 1. This TE,, excitation mode tendsto
couple less energy into the dielectric slab in the form of surface-wave modes. Hence the
circular waveguide antenna was used in many early rocket reentry payload designs em-
ploying dielectric ablation materials.
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FIG. 8-10 (a) Rectangular waveguide in a ground plane covered by a dielectric siab. (b) Effect
of ground-plane size on the free-space admittance. (After Croswell et al., Ref. 23.)

The TEM mode coaxial line with fairly large dimensions is also a very useful
waveguide-fed slot antenna, The radiation characteristics of any annular slot (cut in an
infinite ground screen) are identical with those of a complementary wire loop with electric
and magnetic fields interchanged. In the case of the small slot, the radiation diagram is
close to that of a small electric stub in the ground screen.

Consider a thin annular slot as shown in Fig. 8-12. The polar axis of a spherical
coordinate system being normal to the plane of the slot, the magnetic component of the
radiated field is

aVe—jkr 2x
¢ 12074 o

where a = radius of slot
V = voltage across slot

cos (¢ — @) e/karinbone =) 4 (8-4)

k=2n/A
For small values of a, that is, a < A/2x,
Ve 4
H""’To?‘ﬁs‘“o A/m (8-5)

where 4 = 742 is the included area of the annular slot. Equation (8-5) is valid for small
slots of arbitrary shape.
The integral in Eq. (8-4) can be evaluated exactly as

.ave ik .
Hy=j o J \(ka sin 6) (8-6)
Where J; is the Bessel function of the first kind and the first order.

The radiation characteristics on a large but finite ground screen are closely approxi-
mated by Egs. (8-5) and (8-6). There are slight perturbations because of edge effects that

result in energy radiated into the shadow region plus modulation of the main radiation
pattern,
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FIG. 8-13 Admittance of a coaxial-fed annular slot in infinite ground plane.
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The optimum excitation of an annular slot, i.e., least stored energy and lowest Q,
results when the magnetic current distribution is uniform around the slot. One method for
obtaining this result is to feed the annular slot by a coaxial transmission-line structure
which has the same inner and outer diameters as the annular structure. Figure 8-13
consists of graphs of the conductance and susceptance in the plane of the aperture relative
to the characteristic admittance of the feed line as a function of the radian length kq of the
inner radius 4. It is seen that the slot is at all times nonresonant and has a capacitive
susceptance.

8-6 SLOT ANTENNAS ON FINITE AND CURVED
GROUND PLANES

The annular siot is commonly used on aircraft as a UHF antenna because it produces a
pattern similar to a short vertical dipole. Early research on annular slot antennas for the
space shuttle has been conducted and reported.?6 This analysis is an extension of the
moment method to semi-infinite strips in an integral equation formulation. It was deter-
mined that for many cross sections through the body shape, the ¢ plane pattern was
similar for either a two- or three-dimensional complex shape, as shown in Fig. 8-14.

Additional extensive research has been performed for slot antennas on finite and
curved ground planes. The early work done by Jones and Richmond?® using integral
equation solutions to determine the E-field distribution has been extended to apply to
patches of surface instead of strips. This type of EM analysis, commonly referred to as the
method of moments (MOM), however, is limited to small surface volumes due to limita-
tions in computers. An asymptotic method, the geometrical theory of diffraction (GTD),
has been developed which is not limited by the ground-plane size in wavelengths,

The GTD is an extension of geometrical optics (GO), which is demonstrated in Fig.
8-15. If we consider GO only, there are no fields in region III past the shadow boundary.

~
0,= 100
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— = — EXPERIMENT (CYLINDRICAL MODEL)

F = 311.4-MHz TRUE FREQUENCY

1 = 10.900-GHz SCALE-MODEL FREQUENCY

FIG.8-14 Roli-piane pattern of annular-slot antenna mounted on a model of the space shuttie.
(After Jones and Richmond, Ref. 26.)
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Actually the diffracted fields do exist and can be computed by GTD.?” A simple example
of the use of GTD is depicted in Fig. 8-16. Following Balanis,?’ the total fields in all regions
can be summarized as

E,=E,(r,6)+ E{ (6) + E4 ()

where (8-7)
sin (E sin 0) _
2 e Jkr T
Ey (r,0)=E, %a ; 05053
——sin @
2
E,sin (%) o Jkr
E{(0)=————L V5 (d, f=0+7/2,2) erdwas (8-8)
2
E,sin (7) oIk
Ef(6)= % Vid,pB,2)erdsnd (8-9)
2
~in2—6 0=0=gn/2
where B= {57:/2 -6 w2=6=n

and V' § are the wedge diffraction coefficients. A typical result for a slot on a finite ground
plane is given in Fig. 8-17.

This work has been extended to slots opening to both square and elliptical cylin-
ders,?® as shown in Fig. 8-18. Note that the patterns are qualitatively similar except for the
ripple caused by diffractions at the edges of the rectangular cylinder. Further applications
of GTD to three-dimensional surfaces for slot-antenna pattern calculations have been
extensively pursued. Some work is described in Chap. 37.

8-7 SLOT ANTENNAS ON CYLINDERS, CONES, AND
SPHERES

A common design problem for spacecraft, aircraft, and rocket antennas is to determine
the pattern and impedance of such antennas when located on curved dielectric-coated
surfaces where the conformal dielectric is a radome, a reentry ablator, and/or an absorber.
In order to obtain first-order results, it has been found useful to consider the radiation
characteristics of slot antennas on cylinders, cones, and spheres.

The best early summary for slots on cylinders is a book by Wait.2? Accurate calcula-
tions of the patterns of a slot on an uncoated cylinder have been published by Knop and
Battista,*® a few of which are given in Fig. 8-19; note that ¢ = ka. If a coating is applied to
the cylinder surface, a series of azimuthal surface waves can be excited that can produce
major ripples in the pattern depending on dielectric constant and thickness. An estimate
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FIG. 8-17 Principal E-plane amplitude pattemns of an aperture antenna mounted on a finite-
size ground plane. (After Balanis, Ref. 27.)

of such modes can be made using equations in Ref. 23, Measured patterns of a coated
azimuthal slot on a cylinder are available 3! Similar effects were noted for axial slots on

dielectric-coated cylinders (unpublished notes).
The admittance of aslot on a coated cylinder also has been computed.? The admit-

tance is about the same as that on a flat coated ground plane with

ka=%a3to4
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FIG. 8-18 Radiation patterns of a thin efliptical cylinder and finite
ground plane (TEM mode).

An interesting fact is that about 2kq terms are required to compute a convergent value of
conductance. However, the susceptance requires about 75 to 100 terms regardless of ka.
The susceptance in this formulation represents the near field of the slot.

A major problem on early satellites was to design an antenna having a quasi-
isotropic radiation pattern on spherical-shaped surfaces with large values of ka. Early data
were available for small spheres, but patterns for larger spheres excited by a parallel-plate
waveguide were first considered by Bugnolo,*? who took great care to make precise mea-
surements. More practical forms of the large spherical antenna excited by a slotted wave-
guide and a modified parallel-plate waveguide have been repeated.?!*

Another slot antenna of great interest for missiles and aircraft is the slotted cone.
This problem is dominated by the tip diffraction.?® Additional results for a slot on a
cylinder fed by a cavity are given in Ref. 36. Antennas similar to this were mounted on
sphere-tipped cones and used for telemetry antennas on reentry payloads.
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9-1 INTRODUCTION

Geometric simplicity, efficiency, reliability, and light weight make slot-antenna arrays
attractive for many radar and communication applications. Either resonant or traveling-
wave slot-antenna arrays allow accurate control of aperture excitation amplitude and
phase. The demands of lower sidelobe levels and greater efficiency in recent slotted-array
applications require more accurate knowledge of slot characteristics, improved modeling
of array effects, and greater manufacturing accuracies. A resonant slot-antenna array can
produce a pencil beam with sidelobe levels less than —28 dB over a 4 percent frequency
bandwidth using today’s design and fabrication techniques. The traveling-wave slotted
arrays usually outperform the resonant arrays with lower sidelobe levels, but at the ex-
pense of lower efficiency and a scanning beam with frequency.

This chapter focuses on rectangular waveguide-fed slot arrays. Alternative slot-an-
tenna array configurations employ circular-waveguide-fed, ridge-waveguide-fed,' or
strip-transmission-line-fed (triplate or microstrip) slots.!=>* Single-plane, wide-angle
scanned phased arrays take advantage of the small waveguide spacing allowed with ridge-
waveguide-fed slots. However, the higher fabrication cost limits the use of ridge-wave-
guide-fed slots in single-plane scanned phased arrays. The advantages of strip-transmis-
sion-line-fed slots are manufacturing simplicity, low cost, and low profile. Excessive
transmission-line loss, low power handling, and performance dependence on dielectric-
material variations limit the use of strip-line-fed slots to low-performance applications.

Both resonant and nonresonant (traveling-wave ) waveguide-fed slot-antenna arrays
can be configurated into either linear or planar arrays. Many recent airborne radar anten-
nas have used planar resonant-siot arrays. Kaminow and Stegen** reported the design of
linear traveling-wave slot arrays with uniform element spacing. Nonuniformly spaced
array designs have received little attention and will be discussed here in greater detail.

The following sections begin by introducing various slot radiators with basic operat-
ing theories and mathematical representations. Subsequent discussions include analytical
methods for slot characterization and the design of resonant-waveguide slotted arrays and
traveling-wave slotted arrays with uniformly or nonuniformly spaced slots. We emphasize
practical design methods which include mutual coupling effects and use of typical charac-
teristics for slots cut in a standard X-band RG52/U waveguide with a 1.5875-mm
(0.0625-in) slot width and a frequency of 9.375 GHz. The practical aspects of power-han-
dling capacity, tolerance effects, and fabrication techniques are included. Finally, we
review the recent developments in the method-of-moments (MOM) solution for slotted
arrays and ridge-waveguide-fed slots.

9-2 SLOT RADIATORS

The slot is a commonly used radiator in antenna systems. An attractive feature is that
slots can be integrated into the array feed system, such as a waveguide or stripline
system, without requiring a special matching network. Low-profile high-gain antennas
can be casily configured by using slot radiators, although their inherent narrow-fre-
quency bandwidth can limit antenna performance in some applications.

A slot cut into the waveguide wall which interrupts the flow of currents will cou-
ple power from the waveguide modal field into free space. Depicted in Fig. 9-1 are the
surface currents flowing along the rectangular-waveguide inner wall when only the
TE,, mode is excited in the waveguide. A singly moded waveguide is required for a

9-2
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FIG. 9-1 Surtace-current distribution for rectangular waveguide propagating TE,,
mode. (&) Cross-sectional view. (b) Longitudinal view. (¢) Surtace view.

slotted-waveguide array design to control the aperture illumination. Commonly used
slot types are shown in Fig. 9-2. Slots cut in the rectangular waveguide as shown in
Fig. 9-3 are nonradiating because they are parallel to the surface-current vector.
Slots are conveniently classified by shapes, locations in the rectangular wave-
guide, and equivalent-network representations. Edge-wall slots (slots b and ¢ in Fig.

”

-

a

FIG. 9-2 Radiating slots cut in the walls of a rectangular waveguide.
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FIG. 9-3 Nonradiating slots cut in the walls of a rectangular
waveguide.

9-2) are cut into the narrow wall and wrapped around the broad wall of the rectan-
gular waveguide, where the resonant slot length is determined by the depth of the
cutting. In designing a planar array using edge slots, the wrap around the broad wall
contributes to both design and fabrication difficulties. In this circumstance, folded
edge-wall slots such as C and 1 slots (see Fig. 9-4) can be used to replace the simple
edge slot.

A longitudinal shunt slot (slot a in Fig. 9-2) and an inclined series slot (slot 4 in
Fig. 9-2) are cut on the rectangular-waveguide broad walls; they are distinguished by
their equivalent-impedance representations. A rectangular slot shape is convenient for
analytical investigation, but in most applications the shape is chosen to simplify the

FIG. 9-4 Configurations of C and ! slots.
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fabrication process. Many arrays of broad-wall slots employ a rectangular shape with

round ends formed by the milling process.
To design a slotted-waveguide antenna array, the basic characteristics for a given

slot geometry, such as the radiated-field amplitude and phase plus mutual-coupling
effects between slots and within the feed network, are needed. From the standpoint of
array design and simple analysis, equivalent impedance is the most convenient slot
characteristic. However, the scattering-matrix representation is required in the anal-
ysis and design of certain large slotted-waveguide arrays in which complicated feed
networks and the slots are coupled.

Equivalent-impedance Representation

The design of large slotted-waveguide arrays frequently uses the simple single-element
equivalent circuit representation. This single-element impedance representation is valid
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FIG. 9-5 Equivaient-network representations of slot radiators.
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FIG. 9-8 Typical waveguide section with series slots.

only for slot widths that are small compared with slot lengths and slot lengths less than one
waveguide wavelength; otherwise, the more complicated equivalent T or pi network is
required.® Large-offset longitudinal slots in waveguides with heights less than one-quarter
wavelength require special attention.®

Narrow slots such as slots @, b, and ¢ in Fig. 9-2 interrupt only the transverse
currents and are represented by a simple two-terminal shunt admittance; therefore,
they are identified as shunt slots. Similarly, slots d and e interrupt only the longitu-
dinal currents and are represented by a simple series impedance; they are referred to
as series slots. Slot fis coupled to both longitudinal and transverse currents, and a T-
or pi-network representation is necessary even for a narrow slot width. The equivalent
circuits for three frequently used slots are shown in Fig. 9-5.

Scattering-Matrix Representation

Waveguide-fed slots can also be represented by scattering matrices. A scattering-
matrix representation is convenient for analyzing slot-antenna performance by taking
into account the coupling of slots to other slots or to the feed network. An example is
a resonant waveguide section with several series slots cut on the broad wall fed by an
E-plane T junction as shown in Fig. 9-6. The characterization of the series feed with
a series slot directly above the T junction requires a scattering-matrix representation.
Let the waveguide-fed slot be represented by a stub guide branching out from the
main guide. If the slot is facing a T junction on the opposite side of the guide, a four-
port scattering matrix representing the T junction and the stub guide can be derived
by solving the physical problem. Combining this scattering matrix with other slot scat-
tering matrices, the power coupled out from each slot can be computed by taking into
account the coupling between the slot and the feed junction.

9-3 COMPUTATION METHODS FOR
SLOT CHARACTERIZATION

Many authors have reported extensive analytical and experimental studies of waveguide-
fed slot characteristics. Applying impedance-measurement techniques’ to slot character-
ization depends on equipment development and will not be included in the following
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discussion. On the other hand, many recent investigations exploited theoretical computa-
tion methods for slot characteristics, This section will focus on the theoretical analysis
techniques.

Stevenson’s Solution

Stevenson® pioneered the computation of slot characteristics by using the following
assumptions: (1) a perfectly conducting thin wall, (2) a narrow slot, (3) a slot length
nearly equal to half free-space wavelength, and (4) a perfectly conducting ground
plane of infinite extent. Using transmission-line theory and the waveguide modal
Green functions, Stevenson derived the values of the resonant resistance and conduc-
tance, normalized to the waveguide impedance, for various slots cut in a rectangular

waveguide.

1 Conductance of the longitudinal shunt slot in the broad face (slot a in Fig. 9-5):
g = g sin? (Dr/a) (9-1)
& = (2.09a\,/b)) cos? (/20 (9-2)

where X is the free-space wavelength, A, is the guide wavelength, D is the slot
displacement from the guide centerline, and a and b are the waveguide width and
height.

2 Resistance of the centered inclined series slot on the broad face (slot b of Fig. 9-
5): :

r = 0.1310/abA)[K(9) sin ¢ + (Ag/2a)J(g) cos ¢]? (9-3)
K@) | _ cos (®E/2) _ cos (n{/2)

J(¢)J— 1—-g * - (9-4)

f_] =>‘A’cos¢i%sin¢ (9-5)

where ¢ is the slot inclination angle with the guide centerline.
3  Conductance of edge slot on the narrow face (slot ¢ of Fig. 9-5):

300, [ sin ¢ cos (A sin ¢/2,\,)J’ (9-6)
" T3xab| 1 - (Asin B/\)?

These equations yield quite accurate results. However, they are valid only for a
single-slot radiator and give no information about the reactive component. In partic-
ular, significant errors will result when these equations are applied to most two-dimen-
sional arrays in which mutual-coupling effects cannot be neglected. Equations (9-1)
through (9-6) are useful only when mutual-coupling effects are negligible.

Variationaj Technique

Application of the variational method to siot equivalent-circuit computation was first
formulated by Oliner.” This method can account for mutual coupling and also reveal
the reactive component of the slot impedance. Accurate impedance solutions can be
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obtained with the variational technique by using a slot-aperture field close to the
actual slot field.

Consider the example of a longitudinal shunt slot in the broad face of a rectan-
gular waveguide radiating into free space. By extending Oliner’s variational formu-
lation, an explicit impedance expression can be derived in terms of the slot-aperture
admittance Y, = G, + jB."°

Let the length and the width of the rectangular slot be @ and ¥ respectively.
The propagation constant and the characteristic admittance of the dominant mode in
the waveguide are given by x = (K> — (x/ a))'/? and Y, = «/wp, Where k = 27/,
w is the angular frequency, and p is the permeability. The rectangular slot on the thick
waveguide wall is regarded as a stub guide with propagation constant x and charac-
teristic admittance Y. The input admittance at the stub-guide junction can be deter-
mined by

Y,+_]Yo tan x’t (9_7)

Y, =Yy
= 20y + jY, tan k't

where ¢ is the thickness of the guide wall. From the standpoint of the feed waveguide,
the equivalent circuit of 2 displaced longitudinal shunt slot can be represented by a
shunt network as depicted in Fig. 9-7. Z, is the impedance due to the radiating aper-
ture, while X; is related to the stored power in the feed waveguide. Near resonance,

these quantities can be approximated by the variational result'®
R+jX=Z,[+jX!=£Z(Y,[+jB!) (9-8)
2
_ 222 [ sin (x D/a) cos (xa’/Z)]
N: = (2/ab) [ /@ = @ (9-9)

where D is the displacement of the slot from the center of the waveguide. The junction
susceptance By is given by

Yo
Y, B; Ng “<1 Y, o«
!
. K

T—

O—
FIG. 9-7 Equivalent network of a longitudinal shunt slot.



Slot-Antenna Arrays 9-9

2
45 mr  mwD)\ | mwd’
B, = wual; MZ-; [cos (—2- + p )smc( ™ )] Im(W)/(emer) (9-10)
n=0
where sinc (x) = sin x/x, W = j[Qy(m,n) + Q;(m,n))
Qimm) = x?/ [(1r/a()2 —/K;-;] (/B9 1 ( )
_ s (mm/a)” + (nw + exp (—ja'Kmn
) =GO = e
kma = [K* — (mw/a)’ — (nw/b)']'/?
€ =2
¢ =1ifn>0
Im indicates the imaginary part. This solution can account for mutual-coupling effects
if the slot-aperture admittance Y,; is computed under the mutual-coupling
environment.

Resonance can be defined as the condition in which slot admittance is a real
quantity. To compute the slot resonant length, several slot admittances corresponding
to several values of @’ nearly equal to one-half wavelength are computed first. The slot
resonant length can then be determined by interpolating the length which yields zero
imaginary part for the admittance.

Note that the above solution is applicable to rectangular slots only. For round-
ended slots, the resonant length can be approximated by

L=a+ CV(1 — x/4) (9-11)

where &’ is the resonant length of the equivalent rectangular slot and C is the correc-
tion factor.!’

A similar variational formulation has been applied to compute the impedance of
an inclined series slot in the rectangular-waveguide broad face. The slot inclination
angle replaces the variable of slot displacement from the waveguide centerline in the
derivation. However, the slow convergent series in the resultant reactance expression
requires special treatment in the numerical computation.

Because of the complicated slot shape and the unknown field distribution in the
slot aperture, variational solutions for edge slots and folded slots have not been
derived.

Scattering Modal Analysis

Using an approach similar to Frank and Chu’s formulation of the E-plane T solu-
tion,"* 2 Montgomery derived the slot-characterization scattering matrices and hence
the shunt-slot admittance and series-slot impedance.’? This scattering modal analysis
technique requires a greater computation effort than Stevenson’s and the variational
solutions,

Basically, the slot is assumed to be a stub guide branched out from the main
guide. The slot field is conventionally expressed by a series of stub-guide modal func-
tions. The main-guide field is represented by a series of modal Fourier integrals in
which the wave number corresponding to the guide axis is the integration variable. By
matching the two tangential field expressions on both sides of the slot aperture, two
Integra] equations are obtained. The expansion coefficients and the scattering param-
eters can be determined by solving these two integral equations by using the Ritz-
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Galerkin method. After the expansion coefficients have been computed, the junction
scattering matrix of the slot in the waveguide can be calculated easily. By combining
the junction scattering matrix with the slot-radiating-aperture reflection coefficient,
the slot equivalent circuit can be determined.

This method has been applied to the computation of individual slot characteris-
tics and to the analysis of coupling effects between two slots or between a slot and a
waveguide junction. Numerical results of longitudinal-slot parameters computed by
the variational method and the scattering modal analysis compare favorably.

Moment Method

The method of moments has been applied to characterize a narrow slot in the broad
wall of a rectangular waveguide!#!® and can be extended to obtain the solution of
folded slots in the edge wall with additional effort. The moment method requires
greater computational effort than any of the three other methods discussed here.

Vu Khac and Carson'® formulate the slot characterization by using the field-
equivalent principle to replace the slot aperture by short circuits and magnetic cur-
rents. The appropriate magnetic Green’s functions in the feed guide, inside the slot
cavity (taking into account the finite wall thickness), and in free space are employed
to derive the basic integral equations. The slot field is expressed as a series of discrete
impulse functions. By matching the tangential components at the slot aperture and
using the Ritz-Galerkin method, a matrix equation is derived. Then the expansion
coefficients can be determined by matrix inversion. The computational effort can be
greatly reduced by using the sinusoidal basis functions as shown by Lyon and Sangs-
ter.!S The computed results obtained by using the moment method closely match the
variational solution and experimental results.

When the moment method is applied to characterize the inclined series slots, a
slowly convergent series is encountered in the same manner as with the variational
formulation and the scattering modal analysis. All the matrix elements used in the
moment method involve one or two slowly convergent series compared with only one
slowly convergent series in the variational technique; therefore, the moment method
requires much more computation time.

9-4 DESIGN PARAMETERS

Many slotted-waveguide arrays have been fabricated since the 1940s. Early slot-
antenna array designs depended primarily on measured slot characteristics. Accu-
rately measured design data require a major effort to design and fabricate many pre-
cision test pieces. Analytical methods for characterizing broad-wall slots have since
been developed into useful tools for practical slotted-waveguide array design. It requires
only a few hours of computer time to obtain design parameters which would have required
several months of experimentation. A planar slotted-waveguide array with more than
1000 longitudinal shunt slots has been fabricated successfully by using analytical data.

The measured and computed slot characteristics presented in this chapter, except
that shown later in Fig. 9-13, are given for a standard X-band RG52/U waveguide
with a 0,0625-in (1.5875-mm) slot width and a frequency of 9.375 GHz. This slot will
subsequently be referred to as the baseline slot. A planar slotted-waveguide array can
be designed at 9.375 GHz by using data presented in this section.
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Longitudinal Shunt Siots

Watson'® and Stegen® performed extensive experimental studies of isolated longitu-
dinal shunt slots radiating into free space. From the measured data, Stegen found that
the ratio of conductance to resonant conductance G/G,, and the ratio of susceptance
to resonant conductance B/G,, versus the ratio of slot length to resonant length are
independent of the slot displacement off the waveguide centerline. These universal
curves of the baseline-slot admittance normalized by the resonant conductance versus
slot length normalized by the resonant length are plotted in Fig. 9-8. The measured
ratio of slot resonant length to wavelength and the measured ratio of slot resonant
conductance to waveguide wave admittance versus the slot displacement off the wave-
guide centerline are shown in Figs. 9-9 and 9-10 respectively.

By using the variational result of Eqgs. (9-7) through (9-10), the computed slot
admittance normalized by the resonant conductance is also shown in Fig. 9-8. The
aperture admittance of a slot radiating into the half space is approximated by the
solution given by Kurss and presented in Ref. 9. Observe that the computed results
agree very well with the measured data. However, the computed results show that the
ratios G/G,, and B/G,, versus the normalized slot length L/L, are not exactly indepen-
dent of the slot displacement off the guide centerline. »

By using the same technique, the computed slot resonant length and resonant
conductance are shown in Figs. 9-9 and 9-10 respectively for comparison with the
measured results. Note that the round-ended-slot resonant length L, is approximated
by Eq. (9-11). Choosing C equal to 0.64 and comparing the computed and measured
results show that the computation method is sufficiently accurate for practical apph-
cations.

In airborne radar applications, large arrays of uniformly spaced slots are com-
monly used. The longitudinal-shunt-slot admittance of a slot in the central region of
a uniform large array can be computed by the variational technique.'® If the element
spacing of a square grid is assumed to be equal to 0.71 wavelength, the slot-aperture
admittance can be determined by an infinite array of open-ended rectangular wave-
guides.!” The computed normalized admittance of the baseline slot in the array is
compared with the measured results of the isolated slot in Fig. 9-11. The comparison
shows that the mutual-coupling effects reduce the slot bandwidth performance.

By using the same dimensions, the resonant conductance and resonant length for
a slot in a large array are shown in Figs. 9-9 and 9-10. Observe that the mutual-
coupling effects also affect the slot resonant length as well as the slot resonant
conductance. The small change in the slot resonant length in this case may not sig-
nificantly affect antenna performance. However, an increase of the slot resonant con-
ductance by a factor of 2 usually causes a 2:1 voltage standing-wave ratio (VSWR)
at the center frequency. This has been observed in slot-antenna arrays designed by
using measured single-longitudinal-slot conductances.

Edge-Wall Siots

The narrow-wall slots used for common linear slot-antenna arrays are cut into the
narrow wall and wrapped around the broad wall of the rectangular waveguide (edge
slots). Folded slots such as C and 1 slots are more convenient for planar arrays using
edge-wall slots,!8!813> Recently, several authors derived analytical solutions for narrow-
wall slot characteristics. These solutions include the inclined-edge slot, C-slot, and I-slot.
All these narrow-wall slots radiate relatively high cross-polarized fields as compared with
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the broad-wall longitudinal slots. Experimental results must be used to characterize these
slots. Fortunately, the strong mutual-coupling effects can be measured by a waveguide
section with a sufficient number of identical edge-wall slots. Watson'é has defined the
incremental conductance caused by the mutual-coupling effects as the increase in the
conductance of a group of resonant half-wave-spaced identical edge-wall slots.

For both the edge slot and the C slot, the resonant conductance may be approx-
imated by

G = Gysin’ ¢ o] < 15° (9-12)

where ¢ is the slot inclination angle. The slot resonant conductance is insensitive to
the variation in the slot resonant length. Hence, if the incremental conductance is
obtained by experiment for one value of angle, Eq. (9-12) can be used to obtain the
resonant conductance for other slot inclination angles with reasonable accuracy.

Plotted in Fig. 9-12 are the single-slot resonant conductance and the incremental
conductance for edge slots cut on the standard RG52/U rectangular waveguide mea-

_sured by Guptill and Watson.'® The incremental conductance data are sufficiently
accurate for slots in a linear array far removed from the ends. The conductance of the
slots near the ends of the array lies between that of the single-slot data and that of
the incremental conductance.

The edge-slot admittance variation as a function of the depth of cut into the
rectangular-waveguide broad faces was investigated by Watson.'® Measurements were
performed on a slot cut in the standard RG48/U waveguide. Depicted in Fig. 9-13
are the measured results for a single 15° slot with slot width equal to 0.25 in (6.35
mm) at 2.8 GHz. These results can be translated to the frequency performance of the
edge slot with the conclusion that the frequency bandwidth of edge slots is greater
than that of longitudinal shunt slots.
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Series Slots

Centered inclined series slots in the rectangular-waveguide broad face radiating into
free space can be used as radiating elements for slot-antenna arrays. The series-slot-
radiation primary polarization is the same as that of the longitudinal shunt slot, but
the series-slot cross-polarization radiation is much higher than that of the shunt slot.
Hence the inclined series slot is not often used as a radiating element in practical
designs. However, this slot is very useful for coupling radio-frequency power from one
waveguide to another in a planar slot-array design such as that shown in Fig. 9-6.
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FIG. 9-14 Normalized resonant resistance versus rotation angle of a
baseline inclined series slot.
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FIG. 9-15 Normalized resonant length versus rotation
angle of a baseline inclined series slot.

The series-slot impedance can be computed by the variational formulation,’ the
scattering modal analysis technique,'® or the moment method!* as described above. By
using either the variaticnal formulation or the scattering modal analysis, the slot is
first considered as a branched waveguide radiating into the main waveguide. The aper-
ture impedance of the branched waveguide can be determined by assuming a cosine
distribution across the slot aperture. The slot-aperture impedance facing the other
waveguide can be computed in the same manner except that the slot inclination angle
is the complementary angle. Properly combining these two solutions yields the series-
slot impedance and hence the slot resonant resistance and resonant length. When
round-ended series slots are used in the design, the slot resonant length can be deter-
mined by setting C = 1 in Eq. (9-11).

By using the scattering modal analysis solution, the computed resonant resis-
tance and round-ended resonant length versus the inclination angle for the baseline
slot are plotted in Figs. 9-14 and 9-15. The input and output waveguides are assumed
to be perpendicular to each other for these computed data.

9-5 BASIC SLOTTED-WAVEGUIDE
ARRAY DESIGN METHODS

After obtaining the required slot characteristics, the slotted-waveguide array design must
specify the slot locations and resonant conductances and/or resistances. Determination of
the resonant conductances and/or resistances is an important part of antenna input
matching and aperture illumination design.
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Antenna requirements are usually specified in terms of desired gain, sidelobe
level, beamwidth, bandwidth, polarization, input VSWR, cross-polarization level,
power-handling capability, etc. All these requirements impact the slotted-waveguide
array design. Aperture distribution is determined by aperture synthesis techniques, -2
taking the gain, sidelobe level, and beamwidth into consideration, and is assumed to
be known for the following discussion.

The slot locations are governed by the relationship between the element spacing
and the appearance of grating lobes. Adjacent slots are spaced apart by less than 1
free-space wavelength to avoid the appearance of grating lobes. For a resonant slotted-
waveguide array, the desired aperture illumination is in phase across the aperture. To
satisfy the grating-lobe restriction and the in-phase radiation requirement, the inter-
element spacing for slots on the same waveguide of a resonant array is therefore equal
to one-half waveguide wavelength along the waveguide centerline. The interelement
spacing of a nonresonant slotted-waveguide array is slightly larger or smaller than the
spacing of resonant array elements, as will be detailed later.

Resonant conductances and/or resistances are determined by the given aperture
illumination. To optimize bandwidth performance, the slots are designed to be reso-
nant at midband for either resonant or nonresonant arrays. Basically, slot-radiated
power is proportional to slot conductance or resistance. If P is the required fraction of
slot-radiated power, normalized shunt-slot conductance and series-slot resistance are
given by

g=2P/V* r=2P/|P (9-13)

where ¥V and 7 are respectively the voltage and current across the slot. The transmis-
sion-line or scattering-matrix theories can be used to determine ¥ and I and, therefore,
gand r.

After slot locations and resonant conductances or resistances have been deter-
mined, the slot-array design can be completed by using the known slot characteristics
or design curves to specify the slot geometry in the waveguide. If single-slot resulits,
such as Eq. (9-1) with slot length equal to half wavelength, or the design curves
depicted in Figs. 9-9, 9-10, and 9-13 for a single shunt slot radiating into free space
are used to determine the slot geometry, the array aperture illumination will not be
the desired distribution and the input VSWR will be higher than the requirement
because of neglect of the mutual-coupling effects. There are four known approximate
techniques to overcome this difficulty. Three of these methods take advantage of the
known dipole array solution?? and Babinet's principle, which relates slot-aperture
admittance to the complementary dipole radiation impedance by

Y, = 4b'Z/(n}a’) (9-14)

where Z is the dipole impedance and 7, is the free-space intrinsic impedance. Another
method is the empirical technique originated by Watson.'® The first two methods to
be described apply only to longitudinal-shunt-slot arrays, while the last two methods
are valid for all cases.

Active Slot Admittance

Elli.ott”'24 derives two expressions for slot-array active admittances in terms of slot
excitation voltages, slot parameters, and the complementary dipole array active
Impedances. By combining these two expressions with the corresponding dipole array
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solution, a small-array slot geometry can be specified by using the iterative procedure
as described by Elliott.?® The single-slot admittances of a single-slot radiator are used
to model the slot admittance characteristics to reduce computational effort. This tech-
nique is quite accurate for small-array design as demonstrated by Elliott.”* The
required computation effort makes this technique unattractive for large-array
applications.

Equivalent Self-Admittance

Slot equivalent self-admittances can be computed by Eqgs. (9-7) through (9-10) by
neglecting the edge effects, the small alternating displacements from the guide cen-
terline, the slowly varying illumination, and the small slot-length variation. The aper-
ture admittance is determined by either (1) the equivalent infinite waveguide array
aperture admittance'” or (2) the substitution of the complementary dipole array self-
impedance?! into Eq. (9-14). By using the computed admittance values corresponding
to several slot lengths, the resonant conductance and resonant length versus slot dis-
placement similar to that shown in Figs. 9-9 and 9-10 can be determined. By combin-
ing these design curves with the predetermined slot locations and resonant conduc-
tances, the slot-array antenna design is completed.

Note that these computed slot admittances take mutual-coupling effects into
account but neglect edge effects, slot displacements from the guide centerline, non-
uniform aperture illumination, and slot-length variation. For large arrays in general,
displacements are small, illumination is slowly varying, and edge effects can be
neglected. This technique is much more efficient than the active slot admittance
method. For a small array, edge effects can be taken into account by several sets of
resonant-conductance and resonant-length curves by using the corresponding small-
dipole-array solutions. Dipole arrays corresponding to several uniformly alternating
displacements can be used to compute the design curves for central elements and edge
elements. For practical applications, neglecting alternating displacements in the
equivalent dipole array computation results in negligible conductance error and in less
than .2 percent resonant-length error.

A dielectric cover on the outer waveguide surface is frequently used to protect
the antenna from the environment. In general, dielectric loading has little effect on
the resonant conductance or resistance of a slot. However, the resonant length is
greatly reduced by a dielectric cover and depends on the dielectric constant and thick-
ness. Dielectric-loading effects can be taken into account by using the infinite wave-
guide array solution.'”

Incrementai Conductance

The two methods described above are applicable only to arrays of longitudinal shunt
slots. Analytical solutions have not been well developed for edge-wall slots, and there-
fore the designs rely on experimentation.

Many waveguide test sections are required to characterize the slots, including
mutual-coupling effects. Each of the test arrays has a sufficiently large number of
identical conductance resonant slots so that the edge effects can be neglected. The
moving lossy short technique has been successfully applied to the slot-characteristic
measurements.”?* Design curves such as resonant conductance and resonant length
versus inclination angle for edge slots can be determined as shown in Fig. 9-12.
Observe that this technique is adequate for large linear-array designs but that inac-
curate aperture illumination will be expected when it is applied to small-array designs.
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Semiempirical Admittance

The three methods discussed above are not applicable to small arrays or unequally
spaced slotted arrays of edge-wall shunt slots; hence the semiempirical admittance
technique can be used. Basically, the dipole array solution is combined with the fol-
lowing equations to obtain the semiempirical slot characteristics. This technique is
also applicable to design arrays of longitudinal shunt slots. By deduction from Egs.
(9-8) and (9-14), the slot resonant conductance can be expressed by

g=U/F (9-15)

where 7 is the complementary dipole active resistance normalized by the waveguide
characteristic impedance and

sa2 ’
U = Uab.d,b) [33“2 (rD/a’) (9-16)
sin“ ¢

The upper and lower expressions apply to the longitudinal shunt slot and the edge-
wall shunt slots respectively. In general, the change in slot resonant length due to
mutual coupling is small, and U is a slowly varying function of @’. Thus, U can be
determined approximately by experimentation. By combining the approximate value
of U, the complementary dipole array solution, the resonant slot conductance, and the
slot-location design procedure to be described later, the slot geometry can be deter-
mined in the following steps:

Step 1 Measure the single-slot characteristics.

Step 2 By substituting the complementary single-dipole resistance (zero-order
approximate value of r) and the measured single-slot resonant conductance into Egs.
(9-15) and (9-16), the values of U for a given slot length and width are determined.

Step 3 By combining the single-slot solution with the equations for specifying
the slot locations and resonant conductances such as Egs. (9-18), (9-19), and (9-32),
the first-order design of the slot locations and displacements (or inclination angles)
can be determined.

Step4 The driving-point impedance of the complementary dipole array can be
computed by the technique of Carter,?' using the computed slot locations and displace-
ments (or inclination angles) obtained from Step 3 or Step 5 for the lower-order
approximation.

Step 5 By substituting the dipole array results from Step 4 into Egs. (9-15)
and (9-16) and combining with slot-location and conductance equations, the next-
higher-order approximate solutions for slot locations and displacement (or inclination
angles) can be obtained.

Step 6 Repeat Steps 4 and 5 until a satisfactory convergence solution is
achieved.

Note that this design procedure yields no information on the resonant lengths of
the slots in the array. Fortunately, the slot admittance phase variation introduced by
mutual coupling is, in general, small compared with . Suppose that the single-dipole
driving-point impedance is represented by Z,/ = R/ + jX/ and the final solution is
Z; = R; + jX,; then if the guide-wall thickness is negligibly small, the phase differ-
ence between the single-slot admittance and the admittance of the slot in the array ¢
can be approximated by

tan ¢ = 2(X; — X;)/(R; + Ry) (9-17)

The phase correction can be determined by experimentation or computation of the
complementary dipole array by using the ratio of the incremental phase to the incre-
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mental slot length near the first resonance. This quantity is almost a constant and
depends only on the slot and waveguide geometry.

The above iterative procedure has been found to converge rapidly when applied
to a planar array of nonuniformly spaced C slots.

9-6 RESONANT SLOTTED-WAVEGUIDE
ARRAY DESIGN

Both linear and planar resonant slotted-waveguide arrays have been designed for prac-
tical applications. The planar resonant array of longitudinal shunt slots is the most
common antenna used in modern airborne radar. The resonant array can be used to
produce a broadside pencil beam, with options to obtain two- or four-lobe monopulse.
The basic characteristics common to all resonant slotted-waveguide arrays are sum-
marized as follows:

1 All slots are resonant in the array; i.e., the susceptances or the reactances of the
slot equivalent circuits vanish at the center frequency.

2 Waveguide standing-wave voltage maxima appear at the shunt slots and minima
at the series slots.

3 All slots are spaced one-half waveguide wavelength away from adjacent slots in
the same waveguide.

4 The main beam is normal to the array aperture (broadside).

In order to make two slots one-half waveguide wavelength apart radiate in phase,
the adjacent longitudinal shunt slots are placed on opposite sides of the waveguide
centerline; similarly, the adjacent edge-wall slots are inclined on opposite sides of the
vertical centerline. When the rotational series-slot array is used to feed a group of
linear arrays, the adjacent slots are rotated in the opposite direction across the longi-
tudinal waveguide axis.

Since the planar array can be considered a composition of linear arrays, the
design of a planar array is quite similar to the linear-array design. The mutual-cou-
pling environment of these two types of antenna arrays differ; hence they are discussed
separately.

Linear Array

To date the majority of linear slotted arrays have used either longitudinal shunt slots
or edge-wall shunt slots as radiating elements. Longitudinal shunt slots are used to
produce the radiation polarized perpendicular to the array axis, while edge-wall shunt
slots are used to obtain the radiation polarized parallel to the array axis. The inclined
series slot is not popular because of its high cross-polarization level compared with the
longitudinal shunt slot.

There may be either one waveguide section or several waveguide sections in a
linear-array design, depending on the required aperture length and frequency band-
width. Conventionally, each waveguide section can be fed from one end or at the cen-
ter as shown in Fig. 9-16. The number of slots in one waveguide section limits the
frequency bandwidth in terms of input VSWR? and radiation pattern.
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FIG. 9-18 Linear resonant slotted-waveguide arrays. ( a) End feed. ( b) Center feed.

To ensure that the input is perfectly matched at the center frequency and the
aperture excitation is the desired illumination, the following are required:

1 The sum of all the normalized slot resonant conductances is equal to ! for end
feed but equal to 2 for center feed.

2 The slot resonant conductance is proportional to the radiating power required for
a given slot location.
Mathematically, for an array of V slots we have
N

Sgu=W (9-18)

nej
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g. = KA¥n) n=12...N (9-19)

where g, is the normalized resonant conductance of the nth slot, A(n) is the given
aperture voltage distribution at the nth-slot location, X is the normalization constant,
and W equals 1 for end-fed arrays or 2 for center-fed arrays. Equations (9-18) and
{9-19) can be solved for g, and the design is completed by using either one of the
design methods discussed previously to relate g, with the physical slot geometry.

Planar Array

Physically, a planar array is constructed by placing several linear arrays side by side
as shown in Fig. 9-17. A large planar array may consist of several subarrays, and each
subarray may consist of several linear arrays. The element spacing d along the direc-
tion perpendicular to the waveguide axes is limited by the physical geometry and the
radiation performance. In practical applications the element spacing for a longitudi-
nal-shunt-slot array is defined by

att=<d=<\ (9-20)

where A is the free-space wavelength and a and ¢ are the waveguide width and wall
thickness respectively. Choosing 4 << A avoids the appearance of grating lobes in vis-
ible space. For an edge-wall slot array, a in Eq. (9-20) is replaced by the waveguide
height b.

The resonant planar slot-array design procedure is similar to that for a resonant
linear slot array except that an additional feed system is required to feed the radiation
shunt-slot waveguide. Two types of slot-array antennas commonly used in planar
array design are the longitudinal-shunt-slot array and the edge-shunt-slot array.

Longitudinal-Shunt-Slot Array This is the most popular slot-array antenna used
in modern airborne radars. Two methods, (1) waveguide end feed and (2) series-slot
central feed, have been used to feed the shunt-slot waveguides. In general, the series-
slot center-feed system is a simpler and more compact design than the waveguide end
feed for the same antenna size. Thus, the waveguide end feed is usually reserved for
special-purpose applications such as one-dimensional electronic scan.

FIG. 9-17 Schematic diagram of an electronic steerable planar siot-antenna array.
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Waveguide end feed ~Assume that the required aperture distribution A(m,n) is
given, where m and n indicate the mth row and nth column in the array respectively.
The aperture distribution along the direction perpendicular to the waveguide axes is
achieved by the waveguide manifold design. The longitudinal-shunt-slot planar-array
design is similar to the linear array except that g, and A(n) in Eqgs. (9-18) and (9-19)
are replaced by g, and A(m,n) and computation of mutual-coupling effects is per-
formed for a planar array. By using any one of the four methods described above, the
desired radiation performance can be realized if the planar-array mutual-coupling
effects are taken into account correctly. However, for a large array the active slot
admittance technique requires excessive computing efforts, and the incremental con-
ductance technique demands intensive experimentation to complete the design. The
most convenient technique for designing a large array of longitudinal shunt slots is the
equivalent self-admittance method, which will be detailed in the series-slot center-feed
discussion.

Series-slot center feed Each shunt waveguide cavity or resonant linear array is
fed by a rotational series slot. A slotted-waveguide array using the series-slot center
feed is illustrated in Fig. 9-18. For a large planar array which consists of several subar-
rays, a waveguide manifold is required to feed the subarrays. A suitable comparator
design such as that shown in Fig. 9-19 can accommodate the four-lobe monopulse
radiation requirement. Details of the manifold design will not be discussed here. .

Again, it is assumed that the aper-
ture distribution A(m,n) is given. The
longitudinal-shunt-slot resonant-conduc-
tance design can be obtained by Egs. (9-
18) and (9-19). To achieve an accurate
geometry design for a small array, the
active slot admittance technique can be
used.

The equivalent self-admittance
method is more convenient for designing
a large array of longitudinal shunt slots.
For simplicity, by considering the slots as
stub waveguides located on the shunt
waveguide axes, the infinite-array solu-
tion of open-ended waveguides can be
used to compute the slot-aperture admit-
tance. This computation yields the slot-
aperture admittance by taking into
account approximate mutual-coupling
effects (the alternating displacement of
slots along the waveguide axes is
neglected). By substituting the computed
slot-aperture admittances for several slot
lengths into Eqgs. (9-7) through (9-10) and using the simple interpolation technique,
the resonant conductance and resonant length versus displacement design curves such
as those shown in Figs. 9-9 and 9-10 can be easily computed. Note that this solution
is valid for slots located in the array central region, and the edge effects in a large
array may be neglected. Thus, by using these design curves and Eqgs. (9-19) and (9-
20), an array of longitudinal slots can be designed.

FIG. 9-18 Typical flat-plate antenna.
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FIG. 9-19 Schematic diagram of a four-obe mono-
pulse comparator.

The next step in the planar-array design using the series-slot center feed is to
design the series slots which feed the shunt waveguides. Before doing this, the system
for feeding the waveguides which excite the series slots must be defined. Again, two
feed techniques, the waveguide end feed and the E-plane T center feed, have been
used by antenna designers. The E-plane T center feed yields a compact feed system
with a shorter series waveguide run, but coupling between the junction and the directly
coupled series slot is a problem. The waveguide end feed does not exhibit the distortion
caused by coupling between the junction and the adjacent series slot.

After the series-slot feed has been chosen, the design is quite similar to the shunt-
slot design. By using the slot equivalent circuit and assuming that all the slots are at
resonance, the series-slot resonant resistances in each series waveguide are determined
by

M
S rm=W (9-21)
m=]

K'B*(m) m=12...M (9-22)

where r,, is the normalized resonant resistance of the mth slot, B is the required series-
slot excitation function, K’ is the excitation normalization constant, and W = 1 for

~
3
I
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end feed or W = 2 for center feed. B(m) is given in terms of aperture illumination
A(m,n) by

Nm
BY{(m) = Z_Az( m,n) (9-23)
n=1

where N,, is the number of shunt slots fed by the mth-series slot. Now, complete the
series-slot design by solving Egs. (9-21) through (9-23) for the resonant resistances
and using the design curves of the slot resonant resistance and resonant length versus
the inclination angle given in Figs. 9-14 and 9-15.

Edge-Wall Shunt-Slot Array The edge slot is cut into the narrow wall and
wrapped around the broad walls of the rectangular waveguide. The slot length is deter-
mined by the depth cut into the broad wall. If a planar-array design using the edge
slot is needed, the slot wrapped around into the broad wall can be a design and fab-
rication problem. Thus, planar slot-antenna arrays often use alternative approaches
such as C or I slots to allow resonant slots on a planar surface.

There usually is no advantage for a planar slot-antenna array using edge-wall
shunt slots. One of the few practical applications in a planar array is to achieve elec-
tronic scan in one direction when the required element spacing is too small for the
longitudinal-shunt-slot design.

The edge-wall slotted waveguide fed from the center is not practical for the fol-
lowing reasons: (1) The shunt slot on the waveguide wall opposite the radiating shunt
slot will introduce strong coupling effects and degrade antenna performance. (2) Ana-
lytical tools are not available for designing the coupling slot in this complicated geom-
etry. Thus, the practical design uses the waveguide manifold to end-feed the slotted
waveguides.

Since the analytical solution is not available for edge-wall shunt slots, the meth-
ods of active slot admittance and equivalent self-admittance used for the longitudinal
slot are not applicable to design the slot geometry, and the incremental conductance -
method is used. Fortunately, the incremental conductance technique can be easily
applied to this case since the strong mutual-coupling effects can be measured by a
linear array of edge-wall slots. Also, the semiempirical admittance method can be
applied in the same manner as in the case of linear-array antennas and is more effi-
cient than the incremental conductance technique.

9-7 TRAVELING-WAVE SLOT-ARRAY DESIGN

The traveling-wave slot array differs from the resonant waveguide slot array in two
ways: first, the resonant slots of the traveling-wave array are spaced by either more or
less than one-half waveguide wavelength; and, second, the slotted waveguide is ter-
minated by a matched load. As in the case of resonant waveguide slot arrays, resonant
slots are used in traveling-wave arrays to maximize frequency-bandwidth
performance.

Because slot spacing is close to one-half waveguide wavelength, adjacent longi-
tudinal shunt slots are on opposite sides of the guide centerline, and adjacent edge-
wall shunt slots are inclined to opposite sides of the vertical centerline. The alternating
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displacement or inclination with respect to the waveguide axis of successive slots may
produce second-order beams.?™? If the main beam of the traveling-wave slotted array
is pointing far away from broadside, the second-order beams may exceed the desired
sidelobe level. The second-order beams can be effectively suppressed by choosing suit-
able element spacing.?”-? The restrictions on element spacing given in these references
can be relaxed when the element pattern is included in the computation.

The following are the basic characteristics common to all traveling-wave slot-
waveguide-antenna arrays:

1 All slots in the array are resonant at the center frequency.

2 All slots in the same waveguide are spaced by either more or less than one-half
waveguide wavelength from adjacent slots.

3 The beam pointing is off broadside and is frequency-dependent.
Matched loads are required to terminate the waveguides.
5 Array efficiency is less than unity.

F Y

The reflected wave from a termination with a VSWR greater than unity will
produce a spurious beam scanned to the opposite side of the array normal from the
main beam. Therefore, the reflected power from the termination must be kept suffi-
ciently small so that the spurious beam is below the required sidelobe level.?

Two types of traveling-wave slot-antenna arrays have been successfully designed:
(1) a uniformly spaced array is used to produce a low-sidelobe pencil beam, and (2)
a nonuniformly spaced array is applied to shaped-beam designs. Longitudinal shunt
slots, edge-wall shunt slots, and rotational series slots can be used in both traveling-
wave types.

Again, the complex aperture illumination of a traveling-wave slot-antenna array
is assumed to be predetermined by aperture synthesis techniques. Consider first the
design of a traveling-wave array of shunt slots. With reference to Fig. 9-20, the ith-
slot normalized conductance related to its radiated power as derived by Stegen® is

& = g P/Pf (9-24)
where P, = Pi le?i+ 2|0 1% sin Qo€ )/(1 —{Tu, 1)) (9-25)
—e v YT—-; Y§_|_—> YN-1 —» YN —s YN —»
W | 1 A "
—pr7 ] Pt —e PR=1 — | PNo1 —» PN —» PN —

FIG. 9-20 Equivalent-network representation of a shunt-slot array.
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The superscripts * and ~ indicate the quantity at the outgoing and incoming sides of
the slot, ¥ = a + j is the complex propagation constant of the waveguide, ¢; is the
interelement spacing, and T'; is the reflection coefficient at the ith element. By using
the known aperture illumination, the design curves, Egs. (9-24) and (9-25), and the
transmission-line equation which relates the normalized admittances and element
spacing,

s e o Vi1 €08 hyé; + sinh v¢;
& o cos hv¢; + yiiy sinh v¢,

where =ty I = 11— ¥}/ + w) (9-27)

the slot conductances of a traveling-wave-antenna array of shunt slots can be specified.

When the need for a traveling-wave array of series slots arises, Eqs. (9-24)
through (9-27) are applicable, provided that the normalized admittance y is replaced
by the normalized impedance z = r + jx. Other design procedures are similar to the
ones used for the shunt-slot array design.

If the array aperture is sufficiently large so that each slot radiates only a small
fraction of the incident power, a simplified method due to Dion? can be used to specify
slot conductances or resistances. In this approximate method, both the waveguide
losses and reflections from slots are neglected in the computation. Under this
assumption

(9-26)

yi

Pf,= P, + P

This equation can be used to replace Egs. (9-25) through (9-27) to design a traveling-
wave array with a large number of slots.

Uniformly Spaced Traveling-Wave Slot-Array Design

A uniformly spaced traveling-wave slot array can be designed to produce a low-side-
lobe pencil beam with larger bandwidth than that of the resonant waveguide slot array
in terms of the array radiation pattern and input VSWR. If the reflections between
elements are negligible, a constant phase difference between elements results in a pro-
gressive phase shift along the array aperture. The resulting phase front is inclined at
an angle 0 given by

sinf = /A, — A/2¢ (9-28)

where £ is the interelement spacing. In most traveling-wave slot-array designs, 27 is
chosen greater than A, and the beam moves in angle toward the load end as frequency
is increased. For special situations such as limited aperture space, the array interele-
ment spacing is chosen so that 2¢£ is less than A, and the beam moves in angle toward
the feed end as the frequency is increased. Hence, the beam peak position of a trav-
eling-wave array is frequency-dependent.

The nonresonant array achieves its large impedance bandwidth by virtue of the
phase differences between the reflections from the various slots. The phase differences
which arise from nonresonant spacing cause the resultant sum of all the reflected
waves to be quite small. When the slot spacing is approaching one-half waveguide
wavelength and the beam peak is very close to the broadside position, the input VSWR
will increase rapidly as the slot admittances add in phase so that the input-impedance
magnitude is much larger than unity. The matched load termination will absorb a
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fraction of the input power. The amount of absorption is a function of the frequency
and slot conductances and is usually chosen to be about 5 to 10 percent of the input
power at midband.

The design procedure for determining the slot conductances and locations of a
general uniformly spaced traveling-wave array using resonant shunt slots is summa-
rized as follows:

1 Determine the proper interelement spacing by Eq. (9-28) and the beam-scanning
range and set y§ = y. = 1.

2 Choose the appropriate percentage of power delivered to the load; that is, set Py
(usually equal to 0.05).

3 By substituting these values and the predetermined percentage of power radiated
by the Nth slot into Eq. (9-24), the resonant conductance of the slot closest to the
load can be determined.

4 By using Eqs. (9-25) and (9-26), the incident power P%_; and the admittance
termination of the second slot from the load y#._, are computed.

5 Repeat Steps 3 and 4 by replacing the subscript NV by / until the resonant con-
ductance of the slot nearest the feed is computed.

This design procedure is applicable to a general uniformly spaced series-slot array
provided that the conductance and admittance are replaced by the resistance and
impedance.

For a long array with many slots and negligible waveguide losses, the approxi-
mate method of Dion is applicable and the design is much simpler. In this approximate
method, the ath-slot resonant conductance is given by

&= p,/(1 —EP,,) (9-29)

LY

where P, = 1 — P;. Note that this approximate design is valid only if the largest
slot resonant conductance g, satisfies the following relationship:

| gme CsC £€| < 0.447 (9-30)

Through the proper choice of Py the resultant slot conductances can usually be made
to satisfy the criterion of Eq. (9-30), although undesirably high power may be dissi-
pated at the termination.

In general, there are many slots in a traveling-wave array. Therefore, the active
admittance technique is not very efficient for determining the slot-array configuration,
and the equivalent self-admittance and the semiempirical techniques discussed pre-
viously are more attractive. The incremental conductance technique using the design
curve shown in Fig. 9-12 is applicable with reasonable accuracy. By using a traveling-
wave array of series slots to feed a resonant planar array of longitudinal shunt slots,
the slot configuration can be completed by the design curves shown in Figs. 9-14 and
9-15. The longitudinal-shunt-geometry design is the same as in the resonant slot-array
design, provided that the progressive phase shift is taken into account in computing
the mutual-coupling effects.
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Nonuniform Traveling-Wave Slot-Array Design

Antenna arrays that produce shaped beams are desired for some special applications.
The aperture illumination of a shaped beam requires, in general, both amplitude and
phase variation across the aperture. Again, this complex aperture distribution is
assumed to be determined by some aperture synthesis technique.? A slot-array
antenna which produces a shaped beam can be easily designed by using a properly
fabricated manifold to feed a group of linear slot arrays. These linear slot arrays can
be designed by the methods discussed in connection with the planar slot-array design
provided that the phase variation is included in the computation. The manifold is
designed to account for the required aperture amplitude and phase variations.

There are some special applications, such as in air traffic control, for which the
shaped beam is required to scan over a required sector. Also, occasionally a linear
array producing a shaped beam is desired. In these situations, it is desirable to know
whether and how a linear slot array can produce a desired shaped beam.

As seen from the above discussion, the aperture illumination amplitude can be
controlled by the slot conductances. However, phase variation could be introduced
either by varying slot reactance or by slot spacing. Variation in slot admittance gives
only limited phase control and results in a narrow frequency bandwidth. A better
method for varying the phase is the use of resonant slots and nonuniform interelement
spacing. The resonant slot conductance or resistance controls the aperture illumination
amplitude, while the nonuniform element spacing provides the required phase distri-
bution across the aperture.

Assume that a complex aperture illumination of a nonuniformly spaced slotted-
waveguide array is given by

A@W) = A(v) exp [¥(v)] (9-31)

where A4 and ¥ are the complex aperture illumination amplitude and phase and v is
the spatial coordinate along the waveguide axis. To simplify the presentation, wave-
guide losses and reflection from the slots are assumed to be negligible. Under these
assumptions, the illumination phase distribution can be achieved by recognizing that

V() = 7[20./Ag  (n = N)] (9-32)

where n signifies the nth slot and the choice of a + or a — sign depends on the phase
taper reference. In general, a closed form for the slot locations cannot be derived from
Eq. (9-32) for a general illumination phase function. Iterative techniques such as the
design procedure listed below are required to determine the slot locations for a non-
uniformly spaced slotted array.

Based on Eq. (9-32) and an iteration technique, a procedure for computing the
slot locations of a nonuniformly spaced slotted array is practical:

1 Normalize the given illumination phase function so that the phase at the slot near-
est the load is zero. Using this normalization and Eq. (9-32) yields the coordinate
reference vy = 0.

2  Set the nominal interelement spacing £, = A/2 for all i to compute the zero-order
approximate values of slot locations.

3 By substituting the previously determined slot locations into the right-hand side
of Eq. (9-32), the slot radiation phases are calculated.
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4 Comparing these slot radiation phases with the desired illumination phase at these
locations yields the incremental phase errors Ay,

5 The next-higher-order approximated slot locations can be obtained by
v = oi*D + AyA,/(2m) (9-33)

where the superscripts indicate the order of approximation.
6 Repeat Steps 3 through 5 until convergent slot locations are obtained.

The rate of convergence is quite rapid for the iterative procedure if the desired
illumination phase function is a slowly varying function such as the phase function
used in a cosecant-squared-beam synthesis. After the slot locations have been deter-
mined, the slot resonant conductances can be computed by Eq. (9-29) in the same
manner as for the uniform traveling-wave array.

If the waveguide losses or the reflections from the slots are not negligible, Eq.
(9-32) does not yield the correct radiation phase. In this circumstance, the transmis-
sion-line models of radiation phases and Eqs. (9-24) through (9-27) are required. The
simple solutions obtained by neglecting the reflection from the slots and waveguide
losses are employed as the first-order approximation in the iteration procedure. This
iteration procedure is similar to the one based on Eq. (9-32), except that Eq. (9-32)
is replaced by the transmission-line theory to compute the phases and Eq. (9-29) is
replaced by Egs. (9-24) through (9-27) to compute the slot resonant conductances.
This general iteration procedure can be summarized as follows:

1 By substituting the previously determined slot locations and resonant conduc-
tances into transmission-line equations, the slot radiation phases can be computed.

2 By comparing these radiation phases with the desired illumination phases at these
locations, the incremental phase errors Ay, are determined.

3 By substituting these incremental phase errors into Eq. (9-33), the approximate
slot locations are calculated.

4 Compute the slot resonant conductances by Eqs. (9-24) through (9-27) by using
the approximate slot locations, and repeat Steps 1 and 2 to obtain the new incre-
mental phase errors.

5 By applying the linear interpolation or extrapolation to the two successive slot
locations and incremental phase errors, the next-higher-order approximation of
the slot locations is computed, and hence the slot resonant conductances.

6 Repeat Steps 1 through 5 until convergent results are obtained.

The slot geometry can be realized by the semiempirical method discussed above
after the slot locations and resonant conductances have been determined. A compat-
ible nonuniformly spaced dipole array solution, together with Egs. (9-14) through (9-
17), can be used to determine the slot configurations.

In general, if the nominal value of the unequal element spacing is larger than
one-half free-space wavelength, higher sidelobes will appear in the region far off
broadside. Therefore, it is recommended that nominal interelement spacing be less
than one-half waveguide wavelength for the nonuniformly spaced slotted array.
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9-8 POWER-HANDLING CAPABILITIES OF
SLOTTED-WAVEGUIDE ARRAYS

Slotted-waveguide arrays are required to operate at high-power levels in many appli-
cations. In some cases the slot-antenna arrays can handle the high power without
undue difficulty at sea-level atmospheric pressure, but they may fail to withstand the
power at high altitudes where atmospheric pressure is much lower. When high-power
capacity is required for an airborne antenna, the power-handling capability at the
desired high altitude must be used in the designs.

The power-handling capacity of a slotted-waveguide array depends on both
waveguide manifold design and slot design. Following the procedure established by
Gould,* the waveguide manifold power-handling capability can be estimated with
reasonable accuracy. As as example, consider a standard X-band RG52/U waveguide
operating at a frequency of 9.375 GHz. On the basis of Gould’s data, the continuous-
wave power and the power of a 1-us rectangular pulse versus the altitude are shown
in Fig. 9-21. Observe that the maximum power level which can be handied by the
waveguide decreases rapidly when the altitude increases and the waveguide pressure
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FIG. 9-21 Power-handling capacity of an RG562/U waveguide at
9.375 GHz.
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follows the altitude pressure. Also note that these results apply to room temperature
for a perfectly matched waveguide section. If this is not the case, the pressure at other
temperature p is required for computing the maximum power level where

p = po(293/T) (9-34)

T is the absolute temperature (degrees Kelvin), and p, is the pressure at room
temperature.

The electric field strength E across the slot aperture for a given slot-radiated
power P is needed to compute the slot power-handling capacity. By using Eq. (9-14),
the electric field strength across the slot aperture is approximated by

E = (n/¥)VP[2R (9-35)

where R is the complementary dipole driving-point resistance. The baseline slot at
9.375 GHz is used to illustrate the slot power-handling capability. By combining
Gould’s results® with Eq. (9-35), the maximum continuous-wave and peak power ver-
sus the altitude for the baseline slot is computed and shown in Fig. 9-22. Equation (9-
34) should be used for a temperature other than room temperature.
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FIG. 8-22 Power-handling capacity of the baseline slot in the planar
array.
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Techniques which can be used to increase power-handling capability are as
follows:

1 Avoid capacitive windows and sharp corners in the waveguide manifold.
2 Increase the slot width.
3 Cool and pressurize the antenna system.

The most effective technique for increasing power-handling capability is pres-
surization.’! If a slot-antenna array is wholly encapsulated in a pressurized housing,
the increase in power-handling capability is proportional to the achievable pressure.
Occasionally, freon is used for pressurization, further increasing power-handling capa-
bility through the higher dielectric strength of this substance. This technique adds to
the complexity of the mechanical design and fabrication of the antenna.

Alternatively, instead of using a fully pressurized housing, the antenna can be
partially pressurized in only those areas where power levels are highest. This can be
achieved by using pressure windows in the waveguides or dielectric covers on the slots.
Dielectric covers, when used, must be taken into account in slot design. For a large
array of longitudinal shunt slots, a dielectric cover can easily be included in the com-
putation of the slot-aperture admittance by the infinite array of rectangular
waveguides.

9-9 TOLERANCE AND FABRICATION TECHNIQUES

In practice, an antenna will include errors introduced by inaccuracies in the manu-
facturing process since high precision in manufacturing generally increases antenna
costs. Thus, a systematic allocation of dimensional tolerances is usually a worthwhile
part of a design.

The tolerance for waveguide width can be established easily by computing the
incremental phase per unit change in the manifold and feed waveguide width. To
determine the required dimensional tolerance for slots, the incremental conductance
(or impedance) per unit change in the slot length from the resonant length is needed.
These incremental values per unit change of slot parameters can be determined from
given slot parameters discussed in preceding sections. Listed in Table 9-1 are the
incremental phases of baseline shunt and series slots and the S-band edge slot due to
the decrease of 1 percent slot length from resonant lengths. Note that the tolerance
requirement for edge-slot arrays is less critical than for other slot arrays.

TABLE 9-1 Slot Incremental Phase Change with 1 Percent
Change in Slot Length from Resonant Length

L A
Longitudinal shunt slot Edge siot
Rotational —_—
Single Coupled series slot Coupled
8.1 19.3°° 17.1° 27°
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The difference in the incremental phase change indicates that the mutual-cou-
pling effects reduce the longitudinal shunt-slot frequency-bandwidth performance and
increase tolerance requirements. Sidelobe performance can be greatly degraded by a
1 percent variation in the slot length in a planar array of longitudinal shunt slots.

Fabrication of the commonly used edge-slot array is quite different from that of
other slot arrays. Since the edge slot is cut into the narrow wall and wrapped around
the broad faces of a rectangular waveguide, an edge-slot array can be easily fabricated
by cutting (sawing) the slots at the proper angle and depth. The results are, in general,
quite good. To generate a planar edge-slot array, slotted-waveguide sections are man-
ifolded and assembled side by side to form a planar aperture.

To fabricate a planar array of longitudinal shunt slots or edge-wall folded shunt
slots, a milling machine may be used to cut the slot on a thin, flat plate (face plate)
such as shown in Fig. 9-18. The back plate is milled out of a thick metal plate. Two
narrow walls of the shunt and series waveguides are fabricated on the opposite sides
of the metal plate, and the series slots are cut on the common walls of the shunt and
series guides. The shunt waveguides are formed by assembling the back plate to the
face plate, and the series waveguides by securing the feed covers on the back plate.

Basically, there are three techniques for assembling the face plate to the back
plate array of broad-wall slots:

1 Welding Both laser welding and electron-beam welding can be used to join the
face plate to the back plate. Electron-beam welding has been successfully applied
to manufacture antennas made of magnesium. Because of the inherent properties
of aluminum, applying the electron-beam welding technique to this metal in
assembling the flat-plate antenna requires additional investigative effort. Laser
welding of the face plate to the back plate is possible, but the process is better
suited to welding very thin metal cross sections and has limited application to flat-~
plate antennas.

2 Brazing Dip brazing has been widely used to secure two aluminum objects

*  together. Many aluminum slotted-waveguide arrays are assembled by using dip
brazing. The disadvantages of this technique are that the residue deposits left in
the waveguides and on the slots and the overall material shrinkage must be
accounted for. The fluxless-brazing technique for joining the aluminum face and
back plates together in a retort with inert atmosphere has been investigated with
successful results.®

3 Bonding There are three commonly used bonding techniques: (@) thin-film
bonding, (b) conductive-epoxy bonding, and (c) diffusion bonding. Thin-film
bonding and conductive-epoxy bonding are quite popular in flat-plate-antenna
applications.

Other miscellaneous techniques such as screw fasteners and twist tabs have been
employed to join the face and back plates together. These two methods are either
limited as to application or less accurate, adversely affecting antenna performance
when compared with the above three assembling techniques.

The linear array is subjected to fewer tolerance and assembly problems than the
planar array. To fabricate and assemble a planar array such as the flat-plate antenna,
both before and after the process of joining the face and back plates together, attention
must be paid to keep the antenna aperture flat and the plates aligned accurately. A 1
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percent free-space wavelength warpage of an antenna can significantly degrade side-
lobe performance, and an 0.7 percent misalignment of the free-space wavelength of
the front and back plates will produce a grating-lobe level higher than —20 dB. Slot-
length tolerance depends on the desired radiation performance.

Although a slot-antenna array can be designed and fabricated by using the
design information given in this chapter, antenna performance may be less than
expected. Some of the second-order effects, such as the slot alternating displacements,
alternating inclined angles, edge effects, nonuniform aperture illumination, slot-length
errors, and internal coupling through higher-order waveguide modes have not been
addressed. The combined effects of neglecting second-order effects, manufacturing
tolerances, and inaccurate manifold design usually significantly degrade practical slot-
ted-array performance. For instance, a — 35-dB-sidelobe-level array design may have
only —28-dB sidelobes in practice. Thus, a thorough error analysis is recommended
to define dimensional tolerances and to determine aperture illumination errors. Nor-
mally, overdesign is used to allow for design and manufacturing deficiencies, the
degree of overdesign usually being determined by experience. Note that some of the
degradation factors will be more noticeable for a —30-dB-sidelobe-level array design
than for a —20-dB design.

9-10 RECENT DEVELOPMENTS

Method-of-moments (MOM) analysis of slotted-waveguide antennas progressed rapidly
during the past decade. Applications include the characterization of broad-wall longitu-
dinal slots, edge-wall inclined slots, I-slots, '8 and ridge-waveguide-fed slots,! Single slot
characterizations are easily extended to finite-array solutions.

Broad-Wall Longitudinal Slots

Stern and Elliott% investigated the resonant characteristics of broad-wall longitudinal
slots using the MOM formulation. They found that the single-shunt lump-circuit repre-
sentation for a longitudinal slot is valid only if the slot offset is not too large and the
waveguide height is greater than one-tenth of a wavelength.

Based on the sinusoidal representation of the slot aperture field near the first reso~
nance, Elliott* improved the small-array design technique to include dielectric-filled
slots. An array of magnetic currents derived from the sinusoidal-slot aperture fields re-
places the dipole-array solution in the original formulation to account for the external
mutual-coupling effects. The internal field formulation is modified accordingly.

The global basis functions in the MOM formulation of a finite array of longitudinal
slots yields accurate results in comparison with measured data. The single lumped admit-
tance representation of the slots in the MOM solution verifies that the infinite-array
solutions shown in Figs. 9-9 through 9-11 are accurate for a finite array as small as 25
elements. Figure 9-23 shows the comparison of longitudinal-slot resonant conductances
and resonant lengths computed by infinite-array approximation and the finite-array
MOM results. The nominal array element spacing is 0.71 wavelength in a square lattice,
The finite-array results apply to uniform square arrays of N by N elements. Thus infinite-
array equivalent admittances yield practical large slotted-waveguide arrays designs.
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Narrow-Wall Slots

To account for the external field in the inclined-slot analysis, Jan et al.*® modified the 90°
wedge Green’s function to approximate the thick-edge-wall Green’s function. They used
the point-matching technique in the MOM formulation of the inclined narrow-wall slots.
The point-matching-technique formulation for the waveguide field usually results in a
divergent series for inclined slots. Nevertheless, their computed results of single slots agree
with the experimental data shown in Figs. 9-12 and 9-13 and follow the same trend as
computed by Eq. (9-12).

Employing the Galerkin’s method in the MOM formulation, Yee and Stellitano!s®
obtained an MOM solution for symmetric edge-wall I-slots on an infinite ground plane.
They analyze each I-slot as three rectilinear slots tied together and use sinusoidal basis
functions in each rectilinear slot. In contrast to adding a set of junction basis functions, it
takes advantage of the natural solution to determine the field in the overlapped regions.
The computed and measured results show that (1) the I-slot can be approximately repre-
sented by a shunt admittance with an additional shunt capacitive load, (2) the cross-polar-
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FIG.9-23 Slot admittances computed by finite array of N X N elements normalized
by infinite array results. (a) Admittance amplitude. (b) Admittance phase.
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ization of an I-slot is about the same as other edge-wall slots (inclined slot, C-slot, etc.),and
(3) the I-slot produces a sufficiently large dynamic range of radiated power for practical
array design through changing the cross-branch offset.

Ridge-Waveguide-Fed Longitudinal Slots

Single-plane wide-angle scanned phased arrays often employ ridge-waveguide-fed slots
because of the small ridge-waveguide spacing. Before Falk! formulated the MOM solution
for a ridge-guide slot, the design of these arrays relied entirely on empirical method. A
preferred approach for the design of these arrays utilizes the semiempirical technique as
discussed in Sec. 9-5. Replacing the factor Uin Eq. (9-16) by the computed characteristics
of the isolated slot, one follows the procedure described previously to determine the
slot-array configuration including the mutual-coupling effects. A similar technique also
allows the performance analysis of this array. Without the analytical tools, a patient
designer can use experimental techniques to design a planar array of ridge-waveguide-fed
slots such as shown by Green et al.3*
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10-1 INTRODUCTION

General Principles

A leaky-wave antenna is basically a waveguiding structure that possesses a mechanism
that permits it to leak power all along its length. The earliest example of such an antenna is
a rectangular waveguide with a continuous slit cut along its side,'? as shown in Fig. 10-1.
Since leakage occurs over the length of the slit in the waveguiding structure, the whole
length constitutes the antenna’s effective aperture unless the leakage rate is so great that
the power has effectively leaked away before reaching the end of the slit. Because of the
leakage, the leaky waveguide has a complex propagation wave number, with a phase
constant #and a leakage constant a; & is large or small depending on whether the leakage
per unit length is large or small. A large o implies that the large leakage rate produces a
short effective aperture, so that the radiated beam has a large beamwidth. Conversely, a
low value of a results in a long effective aperture and a narrow beam, provided the physical
aperture is sufficiently long.

FIG. 10-1 The earliest example of a leaky-wave antenna: a rectangular
waveguide with a continuous slit cut along one of its sides.
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When the antenna aperture is finite and fixed beforehand and the leakage rate « is
small, the beamwidth is determined primarily by the fixed aperture, and the value of a
influences the beamwidth only secondarily. What is affected strongly by the value of a
under those conditions is the efficiency of radiation. One tries to design a leaky-wave
antenna so that its value of o allows about 90 percent of the power in the guide to be leaked
away (radiated) by the time the wave reaches the end of the antenna aperture. The
remaining power is absorbed by a matched load placed at the end of the waveguide. A
typical leaky-wave antenna might be about 20 wavelengths long, so that the beamwidth of
the radiation would be about 4° or so if the beam direction is about 45° from the leaky
waveguide axis.

Because the phase constant f§ changes with frequency, the beam direction also
changes with frequency, and the leaky-wave antenna can be scanned by varying the
frequency. The precise ways in which changes in frequency affect the various properties of
leaky-wave antennas are considered in detail later.

Since power is radiated continuously along the length, the aperture field of a leaky-
wave antenna with strictly uniform geometry has an exponential decay (usually slow), so
that the sidelobe behavior is poor. The practice is then to vary the value of a slowly along
the length in a specified way while maintaining £ constant, so as to adjust the amplitude of
the aperture distribution to yield the desired sidelobe performance. This tapering proce-
dure is well known and is discussed later.

An individual leaky-wave antenna is clearly a line-source antenna; the design pro-
duces the desired beam behavior (usually a narrow beam) in the scan plane, but the
radiation pattern in the cross-plane is just a fan beam whose detailed beam shape depends
on the cross-sectional dimensions of the leaky-wave antenna. Techniques are available for
narrowing the beam in the cross-plane, such as the use of a horn or placing the line-source
antenna in an array. Examples are given later.

As indicated above, the radiated beam of the leaky-wave antenna may be frequency
scanned, producing a fan beam narrow in the scan plane. Recent studies have employed a
linear array of such leaky-wave line sources to produce a pencil beam and to permit
independent scanning in two dimensions. The scanning in the cross-plane requires some
mechanism other than a change in frequency, however, and phase scanning seems best.
Examples of antennas that scan in two dimensions are presented at the end of this chapter.

Leaky-wave antennas have been known and used for more than 30 years. Almost all
the early antennas were based on closed waveguides which were made leaky by introduc-
ing a cut along the side of the waveguide (or something similar to that) to permit the power
to leak away along the length of the waveguide. The newer millimeter-wave waveguides
are actually already open, often in order to reduce the attenuation constants of such
waveguides due to metal or dielectric losses. Examples are various kinds of dielectric
waveguide, groove guide, NRD guide, microstrip line, etc.; of course, some of these guides
are less lossy than others. The dominant modes on these open waveguides are generally
purely bound, but a physical cut will not make them leak; instead, some new techniques
are necessary, such as the introduction of asymmetry or some other modification of the
geometry. Several examples are presented later.

The last remarks in this subsection relate to some confusion in the literature regard-
ing the physics of leaky waves. The limited space available here will permit only a few
words of explanation, but an examination of the wave numbers shows that the amplitude
of a forward leaky wave increases transversely away from guiding structure so that the
wave violates the boundary condition at infinity in the transverse direction. Leaky waves
have therefore been called “improper” or *nonspectral.”” Although all this is true, these
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features of leaky waves do not complicate the design of leaky-wave antennas; the design
principles, which are presented below, are actually quite simple and straightforward.
Some simple considerations show that the leaky wave is actually defined only in a sector of
space near the leaky-wave antenna and never reaches infinity in the transverse direction
because the antenna itselfis finite. The leaky-wave concept serves to provide the details of
the aperture distribution and some of the main properties of the beam, but the radiation
field itselfis found in the usual fashion as the Fourier transform of the aperture field. There
are some sophisticated mathematical aspects regarding the improper (nonspectral) nature
of leaky waves,?-* but some of the considerations referred to above can be explained in
simple geometric terms.2

Two Types of Leaky-Wave Antennas: Uniform and Periodic

There are two different basic types of leaky-wave antennas, depending on whether the
geometry of the guiding structure is uniform or is periodically modulated along its length.
These two types are actually similar in principle to each other, but their performance
properties differ in several ways and they face somewhat different problems in their
designs. The two types are therefore treated separately in the discussions that follow.

The first type, the uniform leaky-wave antenna, is uniform along the length of the
guiding structure, as opposed to possessing some periodic modulation. (As mentioned
above, we recognize that the uniform leaky-wave antenna has a small taper along its length
in order to improve and control the sidelobe level.)

All leaky-wave line sources of the uniform type radiate into the forward quadrant
and can scan in principle from broadside to end fire, with the beam nearer to end fire at the
higher frequencies. In practice, however, one cannot get too close to end fire or to broad-
side, but how near those limits can be approached depends on the specific structure. For
example, suppose the cross section of the guiding structure contains dielectric material in
part and air in part, and has a slow-wave range (§ > k,) and a fast-wave range (8 < k;),
where k,is the free-space wave number in air. Then, the transition between the two ranges
is usually a rapid one, occurring at end fire (when # = k;), and the beam can be scanned
very close to end fire. An additional virtue of this structure is that a wide scan-angle range
can usually be covered with only a relatively small frequency range. An example is given
later. When the structure is filled with air only, on the other hand, one must stay about 10
or 15° away from both broadside and end fire, and the frequency sensitivity is more
sluggish, particularly near end fire. An important virtue possessed by such single-medium
leaky-wave antennas, however, is that the beamwidth remains exactly constant as the
beam is scanned with frequency.

In the second type of leaky-wave antenna, the periodic type, some periodic modula-
tion of the guiding structure is introduced, and it is this periodicity that produces the
leakage. The periodic modulation itself is uniform along the structure’s length, again
except for the small taper of the periodic properties along the length to control the-
sidelobes. Again, a complex propagation wave number results, with #and ¢; large or small
values of a are related to the beamwidth and the radiation efficiency in the same manner
as that found for uniform leaky-wave antennas. A typical example of a periodic leaky-
wave antenna is a dielectric rectangular rod on which a periodic array of metal strips is
placed, as seen in Fig. 10-2.

An important difference between uniform and periodic leaky-wave antennas is that
the dominant mode on the former is a fast wave that therefore radiates whenever the
structure is open. On the other hand, the dominant mode on a periodic leaky-wave
antenna is a slow wave that does not radiate even though the structure is open. Introduc-
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FIG. 10-2 A typical and important example of a peri-
odic leaky-wave antenna: a rectangular dielectric rod
(which may or may not be situated on a metal plane)on
which is placed a periodic array of metal strips. This
antenna can radiate into either the forward or back-
ward quadrants.

tion of the periodic array produces an infinity of space harmonics, some of which may be
fast while the rest are slow; the fast space harmonics would radiate. Since one desires an
antenna that radiates only a single beam, the structure is designed so that only the first
space harmonic (n = — 1) is fast. The relevant design considerations are presented in Sec,
10-3. It is also shown there that the scan range for this class of antennas is from backward
end fire through broadside into part of the forward quadrant, except for a narrow region
around broadside, where an “open stop band” occurs.

In general terms, therefore, we see that the scan range is completely different from
that for the uniform leaky-wave antennas, There the beam scans in the forward quadrant
only; also, it cannot approach broadside too closely, and sometimes it cannot be used too
near to end fire. For the periodic leaky-wave antenna, one can scan over almost all the
backward quadrant and into some of the forward quadrant as well,

Relation to Surface-Wave Antennas and Slot Arrays

Surface-wave antennas, leaky-wave antennas, and slot arrays are all members of the
family of traveling-wave antennas, yet they are treated in this Handbook in separate
chapters (Chaps. 12, 10, and 9, respectively). They are similar to each other in some
evident respects (e. 8., the basic structure in each case isa waveguide of some sort), but they
all differ from each other in important ways that lead to different design procedures and to
different performance expectations.

Surface-wave antennas are purely end-fire antennas, whereas leaky-wave antennas
andslot arrays do not radiate well in the end-fire direction and, in fact, are designed either
to radiate in some other direction Or to scan over a range of angles. The basic guiding
Structure for surface-wave antennas is an open waveguide (such as a dielectric rod) whose
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dominant mode (the surface wave) is purely bound, so that the surface wave will radiate
only at discontinuities, such as the very end of the waveguide. It does not radiate along the
length of the guide because the surface wave is a slow wave (except for some small leakage
into the almost-end-fire direction if the surface-wave antenna is tapered), whereas a
uniform leaky-wave antenna, which supports a fast wave, leaks power all along the length
of the waveguide.

Periodic leaky-wave antennas, however, are often based on surface waveguides.
There the basic waveguide can be an open structure whose dominant mode is a surface
wave that is a slow wave, and the radiation is produced by placing a periodic array of
discontinuities on the guide in such a way that the first space harmonic becomes fast. The
resulting leaky wave may therefore be viewed as arising from a surface-wave-excited array.
There is thus a strong kinship between the basic structures employed for surface-wave
antennas and those for periodic leaky-wave (or surface-wave-excited) arrays, and, for this
reason, periodic leaky-wave antennas were, in the first two editions of this Handbook,
included within the same chapter as surface-wave antennas. On the other hand, since the
performance properties of periodic leaky-wave antennas, and the design procedures to
achieve those properties, are very different from those for surface-wave antennas but very
similar to those for uniform leaky-wave antennas, the leaky-wave antennas of both types
are currently incorporated into the present chapter.

The differences between periodic leaky-wave antennas and slot arrays are more
subtie but still very significant. A visually evident difference is that most slot arrays are fed
from air-filled rectangular waveguides whose dominant mode is fast; in order to suppress
the radiation from this fast dominant (n = 0) space harmonic while retaining that from the
n = — | space harmonic, it is necessary to place successive slots on alternate sides of the
guide centerline or to alternately tilt the slots to produce phase reversals. Periodic leaky-
wave antennas do not need such phase reversals because the (slow) n = 0 space harmonic
does not radiate. However, this distinction is not fundamental, as may be noted when the
slot-array rectangular waveguide is dielectric-filled and the alternation of slots is no longer
needed. The structures then resemble each other in principle.

The basic distinction between periodic leaky-wave antennas and slot arrays lies in
the nature of the individual discontinuities, and, therefore, in the basic design approaches.
The intention in the leaky-wave antennas is to produce a slow leakage per unit length; thus
each discontinuity element in the periodic array of elements produces a small loading on
the basic waveguide mode. The individual elements are intentionally made nonresonant.
Asaresult, the design procedure views the leaky-wave antenna as an equivalent “‘smooth”
structure with a complex propagation wave number, where the array of discontinuity
elements is considered as a whole in the analysis.

In contrast, the slots in a slot array are considered individually, and then mutual
coupling effects are taken into account when the array itself is formed. Furthermore, the
individual slots are usually resonant. Variations in the loading on the basic waveguide
mode are achieved by rotating the slots or by moving them closer to the guide centerline.
The design approach thus becomes quite different from that for leaky-wave antennas,
thereby warranting inclusion in a separate chapter.

The resonant loading in slot arrays, as opposed to the nonresonant loading in peri-
odic leaky-wave antennas, also influences performance. For example, slot arrays are more
frequency-dependent, which can be good if one wishes to scan more rapidly with fre-
quency, but the tradeoff is that the scan range is narrowed. Most slot arrays are not
intended for a large scan range, however. On the other hand, if slot arrays are built with
nonresonant slots, their behavior would be very similar to that of periodic leaky-wave
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antennas. The question then would be whether the customary slot-array design or the
leaky-wave design would be more suitable. One last observation relates to the fact that the
treatment in Chap. 9 is restricted to slot arrays fed by rectangular waveguide. The design
approach described for such arrays could be applied equally well to arrays of other reso-
nant elements, ¢.g., the two-wire line with proximity-coupled dipoles.

10-2 DESIGN PRINCIPLES FOR UNIFORM
LEAKY-WAVE ANTENNAS

The physical structure of a leaky-wave antenna consists of a leaky waveguide with a length
L along which the leakage occurs. The propagation characteristics of the leaky modein the
longitudinal (z) direction are given by phase constant Band leakage constant &, where avis
ameasure of the power leaked (and therefore radiated) per unit length. The length L then
forms the aperture of the line-source antenna, and the amplitude and phase of the travel-
ing wave along the aperture are determined by the values of B and a as a function of z,
When the leaky waveguide is completely uniform along its length, # and a do not change
with z, and the aperture distribution has an exponential amplitude variation and a con-
stant phase. Such an aperture distribution resultsin a high sidelobe level, so that the design
ofa practical leaky-wave antenna will include a variation of with zin order to control the
sidelobes in some specified fashion. More is said about this later in this section,

The values of #and & will depend on the precise cross-sectional geometry of theleaky
waveguide, and the determination of #and a, whether theoretically or experimentally, is
in most cases the most difficult part of the design. Their knowledge, however, is essential to
any systematic design procedure.

Once fand a are known as a function of frequency and cross-sectional geometry, the
principal behavioral features of a leaky-wave antenna follow very quickly. Such features
include the beam direction, the beamwidth, the radiation efficiency, the variation of the
scan angle with frequency, and the taper in o required to control the sidelobes.

Beam Direction, Beamwidth, and Radiation Efficiency

These major behavioral features follow directly once the values of B and aare known, and
they are given to a good approximation by a set of very simple relations. We first consider
the beam direction and the beamwidth:

sine,,,zk% (10-1)

1
(L/A,) cos 8,

Here 6, is the angle of the maximum of the beam, measured from the broadside
direction (perpendicular to the leaky waveguide axis), L is the length of the leaky-wave
antenna, Af is the beamwidth, and k, is the free-space wave number (= 2n/%,). Both 4,
and A@ are in radians in Eqgs. (10-1) and (10-2), The beamwidth A8 is determined primar-
ily by the antenna length L, but it is also influenced by the aperture field amplitude
distribution. It is narrowest for a constant aperture field and wider for sharply peaked
distributions. Equation (10-2) is a middle-of-the-range result. For a constant aperture
distribution, the unity factor in the numerator should be replaced by 0.88; for a leaky-

A8 (10-2)
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wave structure that is maintained uniform along its length, consistent with 90 percent
radiation, the factor should be 0.91; for a tapered distribution that is sharply peaked, the
factor could be 1.25 or more (see Table 2-1 for examples).

The antenna length L is usually selected, for a given value of a, so that 90 percent (or
at most 95 percent) of the power is radiated, with the remaining 10 percent or so absorbed
by a matched load. Attempting to radiate more than 90 percent or so creates two prob-
lems: First, the antenna must be made longer, and second, the variation in &fz) required to
control the sidelobes becomes extreme. For 90 percent of the power radiated, we find

L 0.18 ,
T ok, (10-9)
This simple but useful relation follows from writing
% = exp (—2al) = exp [—4n(a/ko)(L{Ay)] (10-4)

where P(L) is the power remaining in the leaky mode at z = L and P(0) is the power input
atz=0.

If both L and « are specified independently, the percentage of power radiated can
deviate significantly from the desired 90 percent. In fact, v is a function of frequency, so
that the radiation efficiency will change somewhat as the beam is frequency scanned. The
90 percent figure is usually applied to the middle of the scan range. Using Eq. (10-4),
however, one can easily obtain an expression for the percentage of power radiated:

Percentage of power radiated = 100[1 — P(L)/P(0)] (10-5)
= 100(1 — exp [—4n(a/ko)(L/Ao)]}

Equation (10-5) assumes an exponentially decaying aperture distribution. If the aperture
distribution has been changed in order to control sidelobes, as is customary, Eq. (10-5) is
still useful as a good approximation.

Scan-Angle Behavior

There are two different types of uniform leaky-wave antennas that are similar in principle
but that differ somewhat in their scan-angle behavior. The guiding structures for these two
types differ in that they are air-filled for one type and partially dielectric-filled for the
other.

Typical air-filled guiding structures would include open rectangular waveguide and
groove guide, for which the dominant modes are fast relative to the free-space velocity.
Guiding structures that are partially dielectric-filled include nonradiative dielectric
(NRD) guide and open dielectric-loaded rectangular waveguide. Depending on the fre-
quency and the geometry, the dominant modes on these guiding structures can be fast or
slow, but when they are used as leaky-wave antennas, it is necessary to operate them in the
fast-wave range (f/k, < 1), of course.

There are advantages and disadvantages in performance when the guiding structures
are air-filled or when they are partially loaded with dielectric. With respect to the variation
of beamwidth with scan angle, the air-filled structures are superior. Because the transverse
wave number is then a constant, independent of frequency, the beamwidth of the radia-
tion remains exactly constant as the beam is scanned by varying the frequency. With
partial dielectric loading, on the other hand, the beamwidth changes with scan angle. With
respect to frequency sensitivity, i.e., how quickly the beam angle scans as the frequency is
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FIG. 10-3 The variations of the normalized wave number S/k, with fre-
quency for uniform leaky-wave antennas that are air-filled or are partly filled
with dielectric matenial. These variations explain their different scan-angle
behaviors.

varied, the partly dielectric-loaded structure can scan over a larger range of angles for the
same frequency change and is therefore preferred.

The reason for these differences in behavior between the air-filled and partly
dielectric-loaded cases is shown in Fig. 10-3. Let us first recall a few features. We begin
with Eq. (10-1), where 8, is the angle of the maximum of the beam, measured from
broadside. Then we note that the line §/k, =1 corresponds to end fire, and f/k, =0
corresponds to broadside. The f/k, variation near to cutoff (near to broadside) is seen to be
much the same whatever the filling factor of the guiding structure. The big difference
occurs near end fire. The variation with frequency for the air-filled case is seen to be quite
slow near the f/k, = 1 line because the curve asymptotically approaches that line as the
frequency becomes large. For the partly dielectric-filled case, on the other hand, the curve
goes quite rapidly to the §/k, = 1 line and above it. As a result, the variation of scan angle
with frequency is more rapid overall for the partly dielectric-filled case, and one can
approach end fire rather closely in the scan-angle range. In contrast, one cannot approach
end fire closely when the guiding structure is air-filied.

It was indicated above that for air-filled guiding structures the beamwidth A8 re-
mains constant as the beam is scanned by varying the frequency. This statement is easily
proved once we recall that for such air-filled structures the transverse wave number k, is a
constant (k.) independent of frequency. Using Eq. (10-1), we find

cos? 6,,=1—sin? ,, = | — (B/k,)?
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Then, since
K=+ K
for air-filled guiding structures, we may write
1= (Blko) =1 —{1 — (k /o1 = (k./ko ¥

so that
cos 8, =k, /k, (10-6)
Substituting Eq. (10-6) into Eq. (10-2) yields
2n _ A, , _
Af = A in radians (10-7)

which is independent of frequency. When the guiding structure is partly filled with dielec-
tric, the transverse wave number %, is a function of frequency, so that Ag changes as the
beam is frequency scanned.

Radiation Pattern

As usual, the radiation pattern can be found by taking the Fourier transform of the
aperture distribution. When the geometry of the leaky-wave antenna is maintained con-
stant along the antenna length, the aperture field distribution consists of a traveling wave
with a constant § and «, meaning that the amplitude distribution is exponentially decay-
ing. If the antenna length is infinite, one finds that the radiation pattern R(6) is given by

cos? 6

RO~ ko + (Blky — sin OF (10-8)
which does not exhibit any sidelobes. If the antenna length is finite, the expression for R(6)
becomes more involved, and the pattern possesses sidelobes that modify the basic shape
for infinite length.

The preceding comments are illustrated well in a paper on dielectric-grating leaky-
wave antennas by Schwering and Peng.” They present several examples of such patterns,
two of which are shown in Fig. 10-4a and b. The length of the antenna in Fig. 1044, which
clearly exhibits sidelobes, is 104,. As the antenna length increases, the amplitude of the
sidelobe variations decreases. For the radiation pattern in Fig. 10-4), which shows a
smooth pattern only, the antenna length is 1504, which is evidently effectively infinite.
Although the leaky-wave antenna for which these calculations were made is periodic
rather than uniform, the basic features are identical. Reference 7 contains an extended
discussion of radiation-pattern considerations, including equations and other figures.

The radiation pattern in Fig. 10-4a is seen to possess first sidelobes that are only
about 13 dB down, which is generally undesirable. In order to greatly reduce the sidelobe
level and to contro] the pattern in other ways, it is customary to appropriately taper the
amplitude of the aperture distribution, as is discussed next.

Control of Aperture Distribution to Reduce Sidelobes

The procedure to design the leaky-wave antenna so that it produces a final desired radia-
tion pattern is straightforward, though somewhat complicated, involving the following
steps. First, the final desired radiation pattern is specified, and then the corresponding
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FIG. 10-4 Radiation patterns of dielectric grating leaky-wave antennas, showing the
changes in the sidelobe behavior with antenna length. These antennas are not tapered to
control the sidelobes. (a) Antenna length L = 104, (sidelobes clearly present). (b) An-
tenna length L = 1504, (no sidelobes). (After Schwering and Peng,” © 1983 IEEE.)

aperture amplitude distribution is determined by standard antenna techniques. Next, by
using the expression derived below, the values of a/k, are computed as a function of
position along the antenna length in accordance with the aperture amplitude distribution
that was just determined. At the same time, f/k, must be maintained constant along the
length so that the radiation from all parts of the aperture point in the same direction.
Finally, from the theory that relates ¢ and fto the geometry of the structure, we compute
the tapered geometry as a function of position along the antenna length,

When we change the local cross-sectional geometry of the guiding structure to



10-12  Types and Design Methods

modify the value of o at some point z, however, it is likely that the value of #at that point is
also modified slightly. However, since § must not be changed, the geometry must be
further altered to restore the value of g, thereby changing a somewhat as well. In practice,
this difficulty requires a two-step process for most leaky-wave antennas, which is not bad.
Because of this added complexity, one seeks leaky-wave structures for which one can vary
geometric parameters that change # and « essentially independently.

The first design step mentioned above, i.e., determining the required aperture am-
plitude distribution for the selected desired radiation pattern, is a standard antenna proce-
dure not specifically related to leaky-wave antennas. The second step, calculating the
values of a(z) corresponding to the aperture amplitude distribution found from the first
step, is directly pertinent to leaky-wave antennas, and we therefore present now a deriva-
tion of the expression needed for this second step.

The power distribution along the antenna can be expressed in the form

= PO)ero -2 [ oy at] (10-9)
0
where P(0) is the power at the input point, z = 0, and {is the integration variable. Upon
differentiation of Eq. (10-9), we obtain

~ 28 — 20(z)P() (10-10)

Suppose now that the desired aperture distribution (which would achieve the specified
radiation pattern) is 4(z) exp (—jfz). We may then write

~LD _ a2 (10-11)

where ¢ is a constant of proportionality. Comparison of Egs. (10-10) and (10-11) yields

202) = c';g;" (10-12)

Upon integration of Eq. (10-11), we obtain, corresponding to two sets of limits of integra-
tion, the following:

¢ f * [A()? 4 = P(0) — P(L) (10-13)
o :

¢ f AP d = PO) — P(2) (10-14)
0

We next use Eq. (10-14) to substitute for P(z) in Eq. (10-12), and then we employ Eq.
(10-13) to eliminate the proportionality constant ¢. In a straightforward fashion, we then
obtain the desired resuit:

20(z) = ] — (10-15)

P(0) L ar— f 2
RO —F@ J, O &= | 14QP &

The units of a(z) in Eq. (10-15) are nepers per unit length. To obtain ofz) in decibels per
unit length, one multiplies by 8.68. If P(L), the power remaining at the end of the aperture,
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isallowed to approach zero, we note from Eq. (10-15) that o(z) then becomes very large for
points near to the end of the aperture, i.¢, for z approaching L. This is the main reason why
it is common for P(L)/P(0) to be equal to 0.1 or so, but not much smaller, with the
remaining power being absorbed in a matched load to avoid the presence of any backlobe.

10-3 DESIGN PRINCIPLES FOR PERIODIC
LEAKY-WAVE ANTENNAS

As discussed in Sec. 10-1, periodic leaky-wave antennas differ from uniform ones in that
the waveguiding structure is modulated periodically along its length instead of being
completely uniform (again, except for the small taper for both types to control the side-
lobes). The dominant mode on uniform antennas is fast relative to free-space velocity,
whereas the one on periodic antennas is slow, so that the dominant mode itself does not
radiate and it needs the periodic modulation to produce the radiation. Since the physical
processes that produce the radiation are different, these two antenna types have different
scan ranges. On the other hand, most of the design principles for the uniform leaky-wave
antennas discussed in Sec. 10-2 also apply to the periodic ones. The treatment below
indicates in what ways changes in design are necessary. First, however, we summarize how
the periodicity produces the leakage and, in that context, why the scan ranges are different
for the two types.

Effect of Periodicity on Scan Behavior

In order to explain the source of the leakage and to understand the scan behavior as a
function of frequency, we invoke the concept of space harmonics, Suppose we first take a
uniform dielectric waveguide, and then we place an array of metal strips periodically along
its length (as in Fig. 10-2). Before the metal strips are added, we choose the guide dimen-
sions and frequency so that only the dominant mode is above cutoff ; furthermore, 8 > k;
for this mode, so it is purely bound. When the periodic array of strips is added, the
periodicity introduces an infinity of space harmonics, each characterized by phase con-
stant 8, and related to each other by

B.d=pfod+ 2nm (10-16)

where d is the period and £, the fundamentat space harmonic, is simply the original § of
the dominant mode of the uniform dielectric waveguide, but perturbed somewhat in value
because of the addition of the strips. As seen from Eq.(10-16), 8, can take on a large variety
of values, so that these space harmonics can be forward or backward in nature, and be slow
or fast. Since the structure is open, a space harmonic that is fast will radiate. To say it in
another way, since the space harmonics are all tied together, and all of them together
comprise the dominant mode of the loaded structure, the whole mode becomes leaky if
one or more of the space harmonics becomes fast.

We recall that for a space harmonic to be fast, we need §, /k, < 1; we also know that
Bo/ko> 1. If we rewrite Eq. (10-16) in the form

by _by  2nm_f | niy -
PR i (10-17)
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we see that|B, /k,| can readily be less than unity if n is negative and 4,/d is suitably chosen.
For a practical antenna, we want only a single radiated beam, so we choose n=—1.

If we follow this line of thinking further (the details will not be given here), we will
find that when the frequency is low, all the space harmonics are slow and there are no
radiated beams. When the frequency reaches the critical value for which the n = — 1 space
harmonic first becomes fast, the radiating beam just emerges from backward end fire. As
the frequency is increased, the beam swings up from backward end fire but is still radiating
into the backward quadrant. Further increases in the frequency will swing the beam
toward broadside, then through broadside, and then into the forward quadrant. The
amount by which the forward quadrant is penetrated depends on other properties of the
antenna, in this case primarily on the dielectric constant. On the other hand, the antenna
is useful only if a single, controllable beam is radiated, and the range in the forward
quadrant is usually limited by the emergence of the n = — 2 beam from backward end fire,
or by the next waveguide mode coming above cutoff.

A special problem is present for the periodic structures near broadside. A narrow
region around broadside corresponds to an “open stop band” region, where the value of a
becomes large and then zero for a structure of infinite length. In a practical antenna, this
means that within this narrow angular region the amount of radiation drops substantially,
and a large VSWR is encountered (power is reflected back to the source rather than being
radiated). This effect is well known, and it also occurs when slot arrays are scanned
through broadside. There are techniques, not widely used, that permit these arrays to scan
through broadside, however. One of them?? uses pairs of strips rather than single strips,
where the spacing between the elements of each pair is A4 /4 at the broadside frequency, so
that the wave reflected at broadside by the first element of each pair will be canceled, or
nearly so, by the wave reflected by the second element.

Beam Direction, Beamwidth, and Radiation Efficiency

The discussion in Sec. 10-2 under this heading shows that these major behavioral features
are given to a good approximation by a set of very simple relations. All the considerations
presented there for uniform leaky-wave antennas apply as well to periodic leaky-wave
antennas provided that we make one simple change, which takes into account the main
difference between the two antenna types. That main difference relates to the fact that
radiation from periodic leaky-wave antennas is due to the n = — 1 space harmonic. In Eq.
(10-1), therefore, 8§ must be replaced by A_,, to yield

sin emz% (10-18)

where
B1=py—2r/d (10-19)
consistent with Eq. (10-16). When we substitute Eq. (10-19) into Eq. (10-18), we obtain
sing, ~Do 22 _ Ao ko (10-20)

Thus, depending on how 1,/d, where d is the period, compares with 4o/A (or 4/k; ), the
beam can point in the backward quadrant or in the forward quadrant, in accordance with
the discussion in the preceding subsection. .
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Equations (10-2) through (10-6), and the discussions relating to them, also apply to
periodic leaky-wave antennas when the distinction relating to _, is kept in mind.

The considerations in Sec. 10-2 relating to the radiation pattern, as well as to the
steps required to control the aperture distribution, are also valid here.

Feed Considerations

When the antenna aperture is tapered appropriately in accordance with the design steps
outlined in Sec. 10-2 in the subsection “Control of Aperture Distribution to Reduce
Sidelobes,” very beautiful radiation patterns, with very low sidelobes, can be achieved on
paper. These fine results can also be obtained in practice when proper attention is also paid
to the way the leaky-wave antennas are fed.

For uniform leaky-wave antennas that are formed by opening up initially closed
waveguides, concerns relating to the feed are usually negligible or nonexistent. The reason
for this lies in the taper process for controlling the sidelobes. The taper is such that the
aperture radiates very little at its ends, and therefore the discontinuity between the closed
feed waveguide and the antenna aperture when it first begins is extremely small in most
cases. There is therefore negligible spurious radiation from that feed junction. There isalso
no appreciable impedance mismatch at that feed junction, of course.

When the feeding structure is an open waveguide, we must examine the situation
more carefully. This is particularly true for those periodic leaky-wave antennas that are
basically surface-wave-excited. The problem then lies with the way the basic surface wave
is produced, rather than with the transition to the periodic modulation, which again
begins very slowly due to the taper. Surface waves are often formed by a tapered transition
from a closed waveguide, with resultant spurious radiation associated with the transition.
Such problems are well known with respect to surface-wave antennas. When such transi-
tions form part of the overall feed system, their contributions to the radiation pattern may
be significant and may spoil the initial careful paper design.

In many cases, spurious feed radiation is not a problem with leaky-wave antennas,
and this is one of their important virtues, but the feed mechanism must be looked at
carefully in the design to make sure that it does not introduce its own contribution to the
radiation pattern.

10-4 SPECIFIC STRUCTURES: OVERVIEW

Leaky-wave antennas are formed by perturbing an initially bound mode on a waveguiding
structure in a way that produces leakage all along the length of the guiding structure. As
might be expected, all the very early leaky-wave antennas were based on closed wave-
guides, and the leakage was achieved by physically cutting into a wall of the waveguide, in
the form of a longitudinal slit or a series of closely spaced holes. The first known leaky-
wave antenna, shown in Fig. 10-1 and invented by W. W, Hansen! in 1940, was in fact a
long slot in a rectangular waveguide.

The next section presents several of the more important leaky-wave antennas based
on closed waveguides. These structures are usually very simple in cross section, so that it
was possible to obtain accurate expressions for the complex wave number (8 — ja) in
terms of the frequency and the geometry of the cross section. Since very little spurious
radiation occurs because of the feed junction, the theoretically derived radiation patterns,
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based on designs that yielded low sidelobes, agreed extremely well with the measured
radiation patterns. A dramatic example of excellent agreement is given in Sec. 10-5. Many
of the early theoretical expressions and the designs based on them are still of practical
value today, and are indeed so good that the initial designs were often the final ones,
without the need for any empirical adjustments.

The data relating the wave-number behavior to the geometric parameters are usually
plotted as B/k, or A4/4,, where A, is the guide wavelength in the propagation direction (z),
and as a/k, or ad,, where e is the leakage constant. In previous editions of this Handbook,
plots were presented in the form of 4/, and a4, where a,, 4, and A, are written instead of
a, Ag, and A,. Where the discussion and graphical plots in the present chapter employ
material taken from the previous edition, the previous notation is carried over. It is
essential that such information be available for any specific antenna structure because the
correct taper for low sidelobes cannot be designed without it. A last general remark to be
made in connection with leaky-wave structures based on closed waveguides is that some of
the structures employ a series of round holes or small (nonresonant) slots. These holes or
slots, however, are closely spaced, so that the structures should be viewed as quasi-uniform
rather than periodic, even though these holes are periodically spaced. The radiation
produced by them radiates the n = 0 space harmonic and not the # = — | space harmonic.

The next stage in the development of specific leaky-wave antennas involved those
based on open waveguides. Some of these antennas are uniform structures that employ
open waveguides on which the dominant mode is initially purely bound, and others are
periodic structures that are excited by surface waves and radiate via the n =—1 space
harmonic. These two categories are considered separately in Secs. 10-7 and 10-6, respec-
tively.

The best-known examples of surface-wave-excited periodic leaky-wave antennas are
dielectric rectangular rods (or slabs), with or without ground planes, that have on their
tops or on one of their sides a periodic array of grooves or a periodic array of metal strips.
Another large group is based on microstrip line. These antennas have been studied rather
extensively, both experimentally and, more recently, theoretically. Together with other,
similar structures, they are discussed in Sec. 10-6. An important problem for this class of
structures is the incorporation of a feed mechanism that does not contribute spurious
radiation.

Uniform leaky-wave antennas based on open waveguides offer a special challenge.
Since the guide is already open, it cannot be cut to induce radiation, and other approaches
are needed. The most common one is the appropriate introduction of asymmetry, but
other mechanisms, such as the use of a leaky higher mode or some modification in the
geometry, also have been found useful. The first, and only early, example of such a
leaky-wave antenna based on an open waveguide was invented by W. Rotman in the late
1950s. This pioneering study %! involved several versions of a form of trough waveguide
whose dominant mode is purely bound but was made leaky by introducing asymmetry.
The design procedure for this antenna was successful and practical, but the approach was
not pursued further until about 20 years later, in the context of a new need that emerged in
connection with millimeter waves.

As interest in millimeter waves revived during the 1970s, it was recognized that new
forms of leaky-wave antennas were needed because of the smaller wavelengths involved
and because the usual waveguides had higher loss at those higher frequencies. Since these
smaller wavelengths caused fabrication problems due to smaller dimensions, simpler
structures were sought; in fact, the latest structures are designed to permit the complicated
portion of the structure, including the taper for sidelobe control, to be deposited photo-
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lithographically, in printed-circuit form, by using a mask. Because of the loss considera-
tions, the new antennas are often based on new lower-loss waveguides designed for
millimeter-wave applications.

These include nonradiative dielectric (NRD) guide, groove guide, and rectangular
dielectric rods, sometimes used in conjunction with microstrip in novel ways. Unfortu-
nately, these last-mentioned structures were difficult to analyze theoretically, so their
designs were empirical only; as a result, the experimental radiation patterns showed poor
sidelobe performance, leading some people to conclude unfairly that poor sidelobe behav-
ior was a necessary consequence of this class of antennas. However, many other leaky-
wave antennas in this class were analyzed accurately, primarily by Oliner and his col-
leagues, and their results agreed very well with measurements. Some of the more
promising of these new millimeter-wave antennas are described in Sec. 10-7.

The most recent development relating to leaky-wave antennas is their incorporation
into arrays that permit scanning in two dimensions. The arrays are essentially a linear
phased array of leaky-wave line-source antennas, where the scanning in elevation is
obtained in leaky-wave fashion by varying the frequency, and the scanning in azimuth is
achieved by varying the phase difference between the successive parallel leaky-wave line
sources. The architecture underlying this approach is described in Sec. 10-8, and several
examples are given of specific antenna structures in this category. A partial motivation for
this approach is to achieve a lower-cost substitute for phased-array antennas in some
applications,

10-5 SPECIFIC STRUCTURES BASED ON CLOSED
WAVEGUIDES

The earliest example of a leaky-wave antenna was the one dueto W. W. Hansen, for which
he was granted a patent.! He had proposed during the late 1930s that an antenna could be
created by cutting a rectangular waveguide longitudinally, as shown in Fig. 10-1, thereby
producing a long slit in the side of the initially closed guide, out of which power could leak
away. His concept was not pursued at that time because of the success of slot arrays, but
the simplicity of the structure remained attractive, and it was reexamined about a decade
later. The 1950s, in fact, represented a very active period during which many leaky-wave
antennas based on closed waveguides were proposed, analyzed, measured, and utilized.
Several excellent references exist which summarize in detail the state of the art in this class
of antennas as of the middle 1960s, including a comprehensive book!2 by C. H. Walter, a
chapter by F. J. Zucker*? in the First Edition of this Handbook, a chapter by T. Tamir!4in
Part 1I of the book Antenna Theory, edited by R. E. Collin and F. J. Zucker, and a
summary by A. A. Oliner and R. G. Malech!® in Volume I of the book Microwave
Scanning Antennas, edited by R. C. Hansen.

All these specific structures based on closed waveguides are “uniform” leaky-wave
antennas, so the principles for their design are those discussed above in Sec. 10-2. The
remaining information required in order to complete the design involves the expressions
for B/kq (=4/A,) and a/k, (or a,4) as a function of the frequency and geometric parame-
ters of the specific structure. Since the period before the middle 1960s predates the
Computer era, theoretical expressions had to be simple to be considered practical. Fortu-
nately, the structures themselves were simple, leading automatically to relatively simple
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expressions that were accurate, but, in addition, many of the expressions were further
simplified by the use of perturbation relations.

In some cases, these values of a and § were measured rather than calculated, and
then employed in the design. Two experimental methods are outlined in Walter’s book.'¢

Long Slits in Rectangular Waveguide

Radiation from long slits in rectangular waveguide can be accomplished in several ways,
where the leakage rate can be adjusted by changing the slit width, and the polarization of
the radiated beam can be selected by changing the waveguide mode. Some examples are
illustrated in Fig. 10-5.

The best-known example in this well-known category is the narrow slit in the side
wall of rectangular waveguide shown in Fig. 10-1, or the same structure with a ground
plane seen in Fig. 10-54. The antenna shown in Fig. 10-5a also differs from the structure in
Fig. 10-1 in that it is rotated by 90° and the slit is shown tapered (in exaggerated fashion) to
remind us that in the design the slit width is varied to control the sidelobes in the radiation
pattern. (The rectangular waveguide dimensions /# and w correspond, of course, to the
usual g and b, respectively.)

For this antenna, with the ground plane present but with the slit uniform, simple
theoretical expressions are available for the relations between A/4, and a,A and the fre-
quency and the geometry. These expressions were derived by Goldstone and Oliner!?
using a transverse resonance approach together with a simple perturbation procedure. The
results agreed very well with measurements. The expressions (with the notation differing
somewhat from that in Ref. 17 to be consistent with Fig. 10-54) are

A_A(,_ 3% p )
i, E(l 2rhw 1 +p2) (10-21)
=My | -
and A= s (10-22)
] h
where p= -72; [ln (csc ;—w) +In (1.526 -5)] (10-23)
and A, is the guide wavelength, that is,
A= AN1—(/2h)Y (10-24)

in the unperturbed waveguide (8 = 0). Zero ground-plane thickness is assumed. Although
M4, and a,4 are not strictly separable, A/4, is controlled primarily by variations in A
(through 4,4), and a,A by variations in 4. For operation at frequencies near cutoff, one
should use the exact solution (also in Ref, 17) instead of the perturbation form given
above. When the rectangular waveguide is dielectric-filled, Eqgs. (10-21) to (10-24) must be
modified appropriately; such expressions are given in Ref. 12, on pages 189 and 190.

Although expressions corresponding to Egs. (10-21) through (10-24) are also avail-
able in Ref. 17 for the structures in Fig. 10-5b and 4, and in Ref. 12 for that in Fig. 10-5c,
results for these structures are displayed graphically in Fig. 10-5 to illustrate how the
numerical values for normalized § and « vary with frequency. Theoretical expressions for.
these long slit structures have also been derived by Rumsey !° and by Hines, Rumsey, and
Walter'® using a variational approach. Modifications of the theoretical expressions given
in Ref. 17 for these structures when dielectric loading is present are contained in Chap. 5 of
Ref. 12.
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FIG. 10-5 Several examples of leaky-wave antennas based on long slits in rectan-
gular waveguide. (a) Narrow slitin the narrow wall, shown with an exaggerated taper.
The remaining figures show the relative guide wavelength /1, and the relative
leakage constant a, A for (b) the channel-guide antenna, (c) the dielectric-filled chan-
nel, for ¢, = 2.56, and (d) a narrow slit in square guide. The dominant mode excites
the slit in the first three cases, while the TM,, mode excites the slit in the last case.
{After Goldstone and Oliner'” and Hines, Rumsey, and Walter.®)
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It should be recognized that the slit fields in the structures in Fig. 10-54, b, and chave
E,= 0, and that the transverse electric field in the aperture is equivalent to a longitudinal
(z-directed) magnetic current. The resulting radiation pattern is horizontally polarized. In
contrast, the slit in the structure in Fig. 10-5d has H, =0 and primarily constitutes a
longitudinal electric current, so that the antenna radiates with vertical polarization.

The configurations in Fig. 10-5b and ¢, for which the slit has been opened up to the
full guide width (w), are generally referred to as channel-guide antennas.?*! Because the
slit is so wide, however, the leakage constant can become large rather easily. Even in the
structure in Fig. 10-5a, however, the slit cuts directly across the electric field lines, corre-
sponding to the logarithmic dependence seen in Eq. (10-23), so that the leakage rate will
never be very small. If a leaky-wave antenna with a very narrow beam is required, there-
fore, one needs to go to a structure like that containing the series of closely spaced holes
described later in this section.

Measurements have been taken on all these structures, and the agreement with
theory has been excellent. However, most of these measurements have been on untapered
slits. Measurements on tapered-slit antennas have been reported, e.g., in Refs. 18 and 21.
For the antenna in Fig. 10-5a, good control over the sidelobes has been achieved,!® a
typical result being that a gaussian amplitude distribution produces low sidelobes over an
almost 2: 1 frequency range in which the beam swings from 38 to 18° off end fire.

Recently, a modified long-slot structure has been proposed and analyzed?? that is
claimed to provide radiation patterns with very low sidelobes within a relatively short
length and with high efficiency. The long slot is located on the top wall of rectangular
waveguide, and it moves from the centerline of the top wall out to near the side wall and
back to the centerline in a very strong, but specified, curved fashion. The designers call this
variation their meander contour. There is no experimental verification at this time.

Long Slits in Circular Waveguide

The radiation properties of leaky-wave antennas based on long slits in circular waveguide
are qualitatively similar to those for long slits in rectangular waveguide, as discussed
above. Three independent theoretical analyses appear to be available. The first two, due to
Harrington?® and to Rumsey,'® employ a variational approach, and the authors present
accurate results that agree very well with their independently obtained measurements.
The third analysis, by Goldstone and Oliner,?* uses a transverse resonance approach in the
radial direction and develops expressions for the slit using radial transmission-line theory.
The authors obtain explicit expressions for the phase and leakage constantsin a relatively
simple, explicit form, in contrast to the other two theories, and these expressions are also
much simpler to compute from. The results also agreed well with Harrington’s measure-
ments,?

Numerical results for air-filled circular waveguides supporting the TE,, mode and
the TM,, mode, to furnish opposite types of polarization, are presented in Fig. 10-6ag and
b, respectively. Explicit expressions for air-filled guides are given in Ref. 24, and the
modifications in those expressions for the dielectric-filled case are included in Chap. 5 of
Ref. 12.

Closely Spaced Holes or Slots in Rectangular Waveguide

A problem relating to the structures in Fig. 10-54 to ¢ is that the opening directly disrupts
the current lines, so one cannot, with such a geometry, obtain a very narrow radiated
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FIG. 10-6 lLong slits in circular waveguide. (a) TE,, mode excitation. (b)
TM,, mode excitation. (After Harrington® and Goldstone and Oliner.24)

beam. A way to surmount this difficulty is to replace the long slit (or the channel-guide
geometry) with a series of closely spaced small holes, as shown in Fig. 10-74. Then the
current lines are simply pushed aside by the holes, and they can go around them. Since the
holes perturb the initially closed guide much less than the long slit does, the resulting value
of o is much smaller. Finally, since the holes are closely spaced together, the structure is
quasi-uniform and the design principles in Sec. 10-2 apply.

The antenna employing a series of closely spaced round holes was proposed and
measured at the Ohio State University,? and it became known as the OSU “holey guide.”
By varying the diameter d of the holes and, to a lesser extent, the hole spacing s and the
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FIG. 10-7 Closely spaced apertures in rectangular waveguide to permit narrow ra-
diated beams. (a) Closely spaced round holes in the harrow wall (“holey guide"). (After
Hines and Upson.?) (b) Closely spaced slots in the broad wall. (After Hyneman, )
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guide width w, a very large range in the values of a4, was found experimentally. This
structure was also analyzed by Goldstone and Oliner,!” by employing small aperture
procedures for the series of holes, together with a transverse resonance approach. Using a
perturbation form for the result, they obtained the following simple expressions [using the
notation in Egs. (10-21) and (10-22)]:

A_A Aoy -

T s [1 + 4nh2X] (10-25)
— 'u'zOR' -

and a A= VIR (10-26)
( J— B’ l o ___—__.G’ -

where X = GE+EF R CY+ B (10-27)

G’ = nw/2h (10-28)

B’ = 6hws/nd? (10-29)

A= AN1— (/2R (10-30)

Calculations from these expressions agreed very well with measurements made both at the
Ohio State University (Ref. 12, Chap. 5) and the Polytechnic Institute of Brooklyn.!”
When the frequency of operation is near to cutoff, these perturbation expressions become
inaccurate, and one should instead solve the transverse resonance relation!? exactly.

A second structure in this general category employs a series of closely spaced slots26
located in the broad wall of rectangular waveguide, as shown in Fig, 10-75. This antenna
produces vertically polarized radiation, in contrast with the horizontally polarized radia-
tion obtained from the series of round holes in the narrow wall (Fig. 10-7a). Again, A/A,
can be controlled by changing the guide width w, and the value of a4 can be changed by
varying the slot width 4 primarily. A third example in this category is the “serrated”
waveguide, 28 which looks like the structure in Fig. 10-7) but has a thick top wall, whose
thickness is varied to control ;4. Both theory and measurements are available, but this
antenna has not found application because closely spaced thick slots are difficult to
manufacture.

Array of Closely Spaced Wide Transverse Strips

This array of transverse strips, sometimes called an inductive-grid antenna and due to
R. C. Honey,? is shown in Fig. 10-8a. The antenna consists of a parallel-plate waveguide
operated in its first higher (TE, ) mode, with its upper plate composed of an array of closely
spaced transverse strips, and fed from a reflector arrangement so as to fill the space with the
field having the polarization shown in Fig. 10-8a. The upper plate can be photoetched on a
thin laminate and then be supported by polyfoam, or it can consist of a grid of transverse
round wires.

The structure was analyzed® by using the transverse resonance method, which
yielded simple and accurate expressions for the A/, and «,4 values. From these expres-
sions one can compute the design curves presented in Fig. 10-85 and ¢. The design
procedure is to first select the desired A/A, and a,4 and then to read from the curves in Fig.
10-85 the corresponding abscissa value. The curves in Fig. 10-8¢ then yield the value of d
for the design wavelength corresponding to the abscissa value obtained from Fig. 10-85.
Now, in a design for low sidelobes in some specified fashion (see Sec. 10-2), a4 must vary
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FIG.10-8 Inductive-grid antenna comprised of a paralieHpiate guide fed in its first higher TE
mode and with its upper plate consisting of a series of closety spaced wide transverse strips.
(a) Structure. (b) Relative leakage constant with the relative guide wavelength as a parameter.
(c) A plot to aid in the design procedure (see text). Quantity ¢, which appears in the abscissas
of parts (b) and (c), Is defined as ¢ = 2rd/p In {csc (nt/2p)]. (After Honey.?®)

from point to point in a tapered fashion along the longitudinal direction, while A/A, must
remain the same at each point. The plot in Fig, 10-8b then tells us how ¢ can be varied, by
changing the strip width ¢, to obtain the desired different values of a,A while trying to
maintain 4/4, constant. However, /A, will change somewhat as ? is varied, since it is not
independent of , and the plot in Fig. 10-8¢ then indicates how d can be modified in order
to change 4/4, back to the desired constant value.

In his final design, Honey® found that it was necessary to flex the bottom plate
slightly along the longitudinal direction, and he built his structure accordingly. He was
also meticulous with respect to both the accuracy of his theory and the details of the
structure to be measured. As a result, the correspondence between his theoretical and
measured radiation patterns was remarkably good, down to almost —40 dB, as may be
observed in Fig. 10-9.
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FIG. 10-9 Theoretical (a) and measured (b) radiation pattems for the inductive-grid an-
tenna shown in Fig. 10-8a. The accurate theoretical design and the carefully fabricated
experimental structure both took into account the taper for low sidelobes. The agreement
between the two patterns is seen to be remarkable. [After Honey,?® © 1959 IRE (now
IEEE).]

Planar Structures

The array of transverse strips discussed above is an example of a planar structure, but it
was treated separately because of its systematic and careful design procedure and its
careful comparison between measurement and theory. Results are available for several
other planar structures, however.

We comment first on a planar array of longitudinal strips, or slits, also exammed by
Honey.* This structure is essentially an array of rectangular waveguides placed next to
each other, with a longitudinal slit in the narrow wall of each guide. This structure also was
analyzed in Ref. 17, and simple explicit formulas for its performance are given there.

Planar structures that look like, but are not, two-dimensional versions of the “holey”
waveguide described earlier also have been built.*! One version consists of a parallel-plate
waveguide in which the top plate has a two-dimensional array of small round holes and
which is operated in the TEM mode. Another version is the Babinet dual of the top plate,
in which the holes are replaced by round disks; this second version has been called a
mushroom antenna because the disks can be supported by metal stems. These antenna
structures have their problems and are not recommended.

A third planar structure is comprised of a series of thick transverse slots that go all the
way across the top walls of an array of parallel rectangular waveguides.?? These transverse
slots constitute a strong perturbation on the individual waveguides because they cut all the
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way across the current lines on the top guide walls. The slot spacings on the original
structure varied over a large range, so that the performance behavior was not always clear.
Furthermore, the analysis assigned each slot a conductance value, so that the approach
used resembled that for a slot array more than that for a leaky-wave antenna. Nevertheless,
if the slots are spaced sufficiently closely to be viewed as quasi-uniform, this structure can
furnish an interesting, but limited, leaky-wave antenna.

The reason lies in the function of the slot thickness. If the slot is a quarter-wave thick
electrically, then the normalized impedance value at the waveguide interface becomes its
inverse at the air interface above. Furthermore, since these slots, when their thickness is
zero, are known to heavily load the waveguides (because they cut across the current lines),
it is difficult for them to furnish narrow beams. When the slots are electrically a quarter-
wavelength thick, however, the effective loading on the waveguides becomes small so that
low values of &, 4, and therefore narrow beams, can be readily achieved.

10-6 SPECIFIC STRUCTURES BASED ON PERIODIC
OPEN WAVEGUIDES

The design principles for leaky-wave antennas based on periodic open waveguides are
presented in Sec. 10-3. The important points to recall are that the basic open waveguide
supports a slow wave, which does not radiate, and that the period of the structural
modulation is selected relative to the wavelength so that the n = — 1 space harmonic, and
only that one, radiates the power. In contrast, the periodic structures discussed in Sec.
10-5, such as the closely spaced series of round holes in rectangular waveguide, are based
on a fast wave and are quasi-uniform so that only the #n = 0 space harmonic radiates.
Furthermore, the beam radiated from the periodically modulated slow-wave structures
may be scanned throughout most of the backward quadrant and into part of the forward
quadrant, whereas the beam radiated from the umform or quasi-uniform structures is
restricted to the forward quadrant only.

The two most common open waveguides that support dominant modes and which
serve as the basis for periodic leaky-wave antennas are rectangular dielectric rods, with or
without ground plane, and microstrip line. The class of dielectric rodsincludes a variety of
known waveguides, such as dielectric image guide, insular guide, inset guide, and so on.
Since the leaky wave is fast and the basic surface wave (or microstrip dominant mode) is
slow, one must be careful about the feed arrangement to make sure that little spurious
radiation is introduced.

Many of these periodic leaky-wave antennas have been known (measured and used)
for some years, but accurate theories for # and a, suitable for careful design purposes, have
become available only recently.

Early Structures

A few pioneering examples in this class were proposed and studied as far back as the late
1950s, but the ideas behind them were not pursued then. When they did reemerge, a
decade or two later and in a somewhat different form, most people did not recognize the
relationship with the past. Two examples of this early novel thinking are presented here.

The first structure is based on the original dielectricimage guide, due to D. D. King,*
which consists of the top half of a round dielectric rod placed on a ground plane. The fields
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of the dominant mode on the rod (the TE,, mode) extended substantially into the air
region transversely, as did the current lines on the ground plane. In the leaky-wave
antenna configuration based on this guide, a two-dimensional array of slots was cut into
the ground plane on each side of the rod. In this way, the (loosely bound) surface wave
guided by the rod excites each row of slots in phase, with an illumination corresponding to
the transverse decay rate of the field, and each column of slots in accordance with the
propagation wave number 8. Depending on the type, orientation, and spacing of the slots,
a variety of radiation patterns can be obtained. A summary of the possibilities, together
with sketches of some slot configurations, appear on pages 16-33 and 16-34 of Ref. 13.
This antenna was proposed for application to millimeter waves, but its concept was not
reintroduced until interest in millimeter waves was revived some 15 years or so later.

The second antenna structure was called the sandwich-wire antenna, and its config-
uration was an outgrowth of stripline. There are two versions. In the first configuration,*
the top and bottom plates and the center strip of stripline are each reduced to wires, and
the center wire is then snaked along its length in periodic fashion. The periodicity is
selected so that the » = — 1 space harmonic can radiate. A second configuration® looks
more like a suspended microstrip line that is cavity-backed, with a strip mounted on a
cavity-backed thin dielectric layer, to support the strip, and with the strip undulating
sinusoidally back and forth along the dielectric layer. Again, the 7 = — | space harmonic
radiates, and measurements were made to determine the performance properties. Dia-
grams of the structures and curves for some measurements may be found on pages 16-36
and 16-38 of Ref. 13. A limitation on the usefulness of this antenna approach is that
dimensional changes that affect g affect « as well. For example, a good approximation for
the relative phase velocity is obtained by assuming that the wave velocity along the
undulating strip is that of light. Thus, if the amplitude of the undulation is increased, the
value of # will be increased. However, the value of @ is changed most easily by varying that
same amplitude.

Periodic Dielectric Waveguides

Periodic dielectric waveguides are uniform dielectric waveguides with a periodic surface
perturbation. Several types of uniform dielectric waveguides are shown in cross section in
Fig. 10-10a through e. Rectangular shapes are preferred for antennas of this class. The type
in Fig. 10-10a is a simple rectangular rod of rectangular shape, the type in Fig. 10-10bis a
rectangular form of dielectric image guide, and the type in Fig. 10-10c, the insular guide,
has an extra dielectric layer on the ground plane so as to reduce the ground-plane losses.
The types in Fig. 10-10d and e, the trapped image guide’ and the inset guide,® respec-
tively, lend themselves to a flush-mounted arrangement and reduce radiation losses from
bends. The two most common dielectric waveguides are the types in Fig. 10-10a
and b.

The most common periodic modulation methods are a grating of grooves, a grating
of metal strips, and, to a lesser extent, a series of metal disks. These perturbations are
ordinarily placed on the top surface (the wide dimension) of these guides, but they also
may be placed on the sides, when accessible. Dielectric image-guide antennas with a
grating of grooves and with a grating of metal strips appear in Fig. 10-114 and b, respec-
tively. These gratings are shown as uniform; in practice, the gratings would be tapered so
that the groove depths and the metal strip widths would be very small at the beginning and
the end in each case,

The antennas in Fig, 10-11a and b were first proposed around 1960, but systematic
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(a) (b) (c)

(d) (e)

FIG.10-10 Cross sections of several types of uniform dielectric
waveguides. (a) Rectangular rod of rectangular shape. (b) Rec-
tangular form of dielectric image guide. (c) The insular guide, with
an extra dielectric layer of lower € on the ground plane. (d)
Trapped image guide. (e) Inset guide.

investigations of their behavior, both experimental and theoretical, were not carried out
until the late 1970s. Most of the early studies were conducted by the army at Ft. Mon-
mouth, on grooved antennas**-4! and on antennas with metal strips.4?-*¢ Experimental
studies on the metal-strip antennas were also performed at the University of Ilinois45-47
during this period on dielectric image guide, and by Itoh and Adelseck“® on trapped image
guide. One important conclusion from the Ft. Monmouth studies was that in practice
there is an upper limit to the value of leakage constant obtainable with grooved gratings;

FIG. 10-11 Dielectric image guide with (a) a
grating of grooves and (b) a grating of metal
strips.
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antennas employing grooved gratings were therefore limited to narrow radiated beams. It
was found that the metal-strip gratings were more versatile, permitting both wide and
narrow beams.

Studies also were concerned with how these antennas could be fed without causing
spurious radiation at the feed. % Reference 49 utilizes slots cut into the ground plane
under the dielectric rectangular rod to effect a smooth transfer of power from the feed line.

The radiation pattern in the cross-
plane depends on the width of the dielectric
structure. The waveguide is excited in its
dominant mode, and its width is usually
chosen to be comparatively small so as to
avoid excitation of higher modes. Alterna-
tively, if one wishes to narrow the beam in
the cross-plane, the dielectric width may be
made large, but then single-mode excita-
tion must be ensured by an appropriate
feed arrangement. Another technique*’ is

Metal flare

Dielectric
Leaky-Wave
Antenna

shown in Fig. 10-12. The grating structure
is embedded in a rectangular metal trough,
which is then attached to a flared-horn

FIG. 10-12 The use of a flared hom in con-
junction with the structure in Fig. 10-11b in
order to narrow the beamwidth in the cross-
plane. (After Trinh, Mittra, and Paleta,’’ ©
1981 IEEE.)

configuration; design details are included
in Ref. 47.

Design Theory for Wide Periodic Dielectric Antennas

It is only within the last decade that accurate theoretical analyses became available that
permit the systematic design of this class of leaky-wave antennas. For antennas employing
a grating of grooves, thorough and detailed studies were performed by Schwering and
Peng,”3940 based in part on earlier analytical work by Peng and Tamir.3>*! The two best
sources for systematic design information are Refs. 7 and 52, Corresponding, but less
thorough, design information on metal-strip-grating antennas comes mostly from work
by Guglielmi and Oliner,*? based on earlier analyses by them34-% of scattering by metal-
strip gratings on a dielectric substrate. Another accurate method of analysis for these
antennas was presented by Encinar.’” Many of the general conclusions appropriate to
grooved antennas, however, apply as well to those with metal-strip gratings. The detailed
expressions for f/k, and a/k, are different, of course.

The theoretical design information referred to above is applicable directly to dielec-
tric image guides, i.e., structures for which a ground plane is present under the rectangular
dielectric layer. The procedure is readily extendable to structures without a ground plane,
however, by some suitable, basically straightforward modifications. The numerical values
presented in Refs. 7 and 52 assume that the dielectric material hasane, = 12, correspond-
ing to Si or GaAs, so that the antenna performance can be controlled, if desired, by
semiconductor devices.

For the antenna employing a grating of grooves, the groove depth must be chosen to
lie within a certain range if we wish to optimize the leakage constant o, The reason for this
can be understood physically in a simple way. Consider the structure shown in the inset in
Fig. 10-13, where the height of the uniform dielectric region is 4 and the groove depth isz.
Suppose that we maintain the sum of /4 + ¢ constant and we increase the groove depth .



Leaky-Wave Antennas 10-28

ANTENNA HEIGHT (h/\)—WAVELENGTHS

0.25 0.20 0.15 0.10
0.20
L-90
TM MODE
0.15 ‘
/ L
o / "
: / 2
/ -4
= 60 ©
g / Z
& i
P -
E _ A 3
% 0.10 g >
4 -1 4
8 I R g
g [ d | 2
< d <
X .L 1 4
g 5
p=i t =
/ 0 =
A =12 2
0.05 / 7/ =
|
h+t=0.25
d=0.25) 8
d,=0.80d
0 / ' 0
] 0.05 0.10 0.15

GROOVE DEPTH (t/A\))— WAVELENGTHS

FIG.10-13  Calculations for the relative leakage constant and the radiation angle as a function
of groove depth for the dielectric image guide with a grating of grooves shown in Fig. 10-11a.
(After Schwering and Peng,” © 1983 IEEE.)

Although the total antenna height is fixed, the effective dielectric constant €. of the
structure is decreased as ¢ is increased, because the groove region is now partly air-filled.
This value of €4, combined with the height / + ¢, may be viewed as an “effective height,”
and is an important design parameter. When the effective height is small, most of the
guided energy travels in the air region above the antenna, and the grooves would cause
little radiation. When the effective height is large, on the other hand, the energy is confined
Primarily to the interior of the antenna, and again the grooves will have little effect. An
intermediate effective height thus exists for which the energy density in the grooved region
reaches a peak value. We would therefore expect that a can be maximized by an optimal
Combination of groove depth and effective height. The curve of ad, versus /4 shown in
Fig. 10-13 illustrates precisely such behavior for the structure treated there. Similar quali-
tative reasoning applies to other periodically modulated open dielectric structures.
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Design Theory for Narrow Periodic Dielectric Antennas

The theoretical resuits referred to in this subsection make the assumption that the dielec-
tric structures have infinite width w. It has been found, however, that they apply quite
accurately to “wide” structures, for which w > A¢/Ve g— 1. If € 7= 2, for example, these
results are applicable to antennas for which w > 4. For € 4= 6, on the other hand, wneed
satisfy only w > 0.451,. Thus the theory for “infinite” width can actually be applied with
good accuracy to structures that are fairly narrow. When the antennas are narrower than
the criterion above will allow, a correction scheme is available that yields accurate results
for them as well.

For antennas of narrow width (w < A¢/Vez— 1), the value of § can be derived in a
simple way with good accuracy by using the EDC (equivalent dielectric constant) proce-
dure, but & can no longer be approximated by that of an infinitely wide antenna with the
same dielectric constant as the finite antenna. As w decreases, the phase velocity of the
leaky mode increases, so that an increasing portion of the guided energy now travels in the
air regions on both sides in the neighborhood of the perturbing mechanism, whether
grooves or metal strips. As a result, the leakage constant « of the narrower antenna
becomes smaller.

A simple procedure has been developed®® that employs the EDC method to replace
the antenna of finite width by an equivalent antenna of infinite width, but with a lower
effective dielectric constant. As a result, a lower value of o is obtained. This procedure has
produced numerical values for o and f that have agreed very well with measured results
for a quite narrow antenna, with €, = 16 and w = 1.3 mm, in the frequency range from 30
to 36 GHz.* Some details regarding this procedure may also be found in Ref. 52, pages
17-64 to 17-68.

Periodic Leaky-Wave Antennas Based on Microstrip Line

A wide variety of possible traveling-wave periodic array antennas can be achieved em-
ploying microstrip line. As examples, one can employ a series of resonant patch antennas
connected by the microstrip line, as seen in Fig. 10-144, or a series of array elements
coupled by proximity to the microstrip line, as shown in Fig. 10-14b. Top views of the
structures are presented. Another wide class of possibilities is illustrated in Fig. 10-15a
through ¢, and these involve periodic meanderings of the microstrip line strip itseif. These
last structures are reminiscent of the sandwich-wire antenna333¢ described above in the
subsection “Early Structures.” These and other traveling-wave arrays based on microstrip
line are discussed in detail in the two comprehensive books**% on microstrip antennas by
James, Hall, and Wood and by James and Hall, respectively. The original references for
the antennas in Fig, 10-14a and b are Refs. 61 and 62, respectively.

No theory is available for most of these antennas. For the few structures, such as the
one shown in Fig. 10- 144, for which some theory is available, the theory is of the type used
to describe the behavior of slot arrays. All the thinking, in fact, parallels that employed for
slot arrays. For example, the array elements are usually assumed to be individually reso-
nant, aithough there is no reason why they need to be. The theory then treats each element
as loading the line individually, instead of viewing the structure in leaky-wave fashion.
(Sec the discussion in Sec. 10-1 on the relation between leaky-wave antennas and slot
arrays.) Furthermore, in many cases the arrays are designed to be resonant (standing wave
rather than traveling wave). The array in Fig. 10-14a is specified as a resonant one, butan
interesting traveling-wave modification, that contains additional phase shift between
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FIG. 10-14 Top views of traveling-wave peri-
odic arvay antennas based on microstrip fine. (g)
Series of resonant patch antennas connected by
microstrip line. (b) Series of elementary radiators,
resonant or not, coupled by proximity to the mi-
crostrip line. (From James, Hall, and Wood.)
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FIG. 10-15 Examples of periodic leaky-wave an-

tennas based on microstrip fine where the micro-

strip fine itself is meandered periodically. (&) Sinu-

soidal, (b) trapezoidal, (c) Zig-zag. (After James,

Hall, and Wood.%)
successive elements to reduce the frequency change needed to covera given range of scan
-angle, has been reported.s?

These same structures can be transformed into standard leaky-wave antennas by

simply making the individual radiating elements nonresonant (so each loads the line less
Strongly) and changing the spacing between elements to produce a traveling-wave rather
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than a standing-wave array. Then the structure would lend itself to a leaky-wave analysis,
although such an analysis has not yet appeared anywhere.

Periodic Arrays of Microstrip Patches or Dielectric Resonators Fed by
Open Dielectric Waveguides

Since microstrip line becomes increasingly lossy as the frequency is raised, several investi-
gators have built and measured antennas designed for use at millimeter wavelengths in
which the microstrip line is replaced by a dielectric waveguide as the transmission line that
feeds the periodic radiating elements. The point of view is that the feed line can be
considered separately from the radiating elements, so that a less lossy feed line can be
employed at the higher frequencies. The resulting antennas are indeed less lossy, but they
sometimes become hybrid in character.

Anexample of such antennas is shown in Fig. 10-16. The radiating elements here are
microstrip patch resonators, and they are fed by a low-loss open dielectric waveguide in
the form of insular guide. The fringing fields of the dielectric guide excite the microwave
patches. It is interesting that this mechanism is the same as the one used many years ago>
with dielectric image line, discussed above in the subsection “Early Structures.” In addi-
tion to low loss, this antenna has the advantage of simplicity. In an experimental de-
sign,5463 the distance between the metal patches and the dielectric guide is varied along the
length to produce a taper to control the sidelobe level, as seen in Fig. 10-165. Nevertheless,
the design was purely empirical, since no theory was available, and the resulting radiation-
pattern performance was only mediocre.

At about the same time, another study® replaced the microstrip patches by dielectric
resonators, which may take the form of small rectangular or cylindrical dielectric blocks.
The same type of open dielectric waveguide served as the feed transmission line. Again,
however, the design was only empirical, and the pattern performance was therefore only
passable.

MICROSTRIP MICROSTRIP DIELECTRIC
PATCH ANTENNAS PATCH ANTENNAS WAVEGUIDE

(@ : (b)
FIG. 10-18 A hybrid form of periodic leaky-wave antenna in which microstrip patch resonator
arrays are fed by a dielectric image guide. (a) Basic configuration. (b) Configuration including a
taper to control the sidelobes. (After James and Henderson.®)
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10-7 SPECIFIC STRUCTURES BASED ON UNIFORM
OPEN WAVEGUIDES

As indicated in Sec. 10-5, almost all the early uniform leaky-wave antennas were based on
initially closed waveguides. Those antennas were conceptually simple, and they worked
very well. It was only much later, in response to requirements at millimeter wavelengths,
that thought was given to leaky-wave antennas based on uniform open waveguides. There
exists one notable exception, and that case is discussed below in the subsection *“Early
Structure: Asymmetrical Trough Waveguide Antenna.”

There were two reasons why new types of leaky-wave antennas were sought for the
millimeter-wave region. The first relates to the small wavelengths in this region; to mini-
mize fabrication difficulties, the new antennas had to be simple in configuration, and
uniform guiding structures satisfied this condition. The second reason was that the usual
waveguides had higher /oss at these higher frequencies; as a result, the new antennas were
generally based on new lower-loss waveguides that had been studied specifically for appli-
cation to the millimeter-wave region. These waveguides were open so that part of the field
extended into the air region outside, thereby reducing the energy density and the loss. The
principal waveguides in this category were nonradiative dielectric (NRD) guide and
groove guide.

Because of the open nature of these waveguides, new mechanisms had to be found to
produce the leakage. A physical cut is not meaningful because the structure is already
open. Three main mechanisms were employed: (1) introducing asymmetry in the struc-
ture so that a radiating component of field is created, (2) foreshortening some dimension
in the cross section, and (3) using a higher mode that is leaky in itself, rather than the
bound dominant mode. The mechanism most commonly employed then and today is
asymmetry.

Many geometric arrangements can be devised that satisfy the preceding require-
ments and make use of one of the leakage mechanisms listed, but we must remember that
the resulting structures ailso must be analyzable so that the antennas can be designed
systematically and not simply on an empirical basis, as is true for some of the more novel
periodic open leaky-wave antennas discussed in the preceding subsection. All the uniform
open antennas described in this section have been analyzed accurately, and theoretical
expressions for their design are available in the literature. Most of the antennas discussed
here are due to Oliner, as part of a systematic cooperative investigation with principal
colleagues Lampariello of Italy and Shigesawa of Japan. Summaries of their contributions
appear in two books3>%” and in a review article®®; detailsare contained in individual papers
referenced later and in a comprehensive two-volume report.

Early Structure: Asymmetrical Trough Waveguide Antenna

The first open waveguide that was made leaky by introducing asymmetry in the cross
section was the trough waveguide. The antenna structure, shown in Fig. 10-17 in full view
and in cross section, was invented and measured by Rotman’ and analyzed by Oliner”
about 30 years ago. It was a practical antenna, widely used, and it is still useful today. It
appears to be the only early example of the class of uniform leaky-wave antennas based on
open waveguides.

The trough waveguide itself, when operated as a nonradiating transmission struc-
ture, is symmetrical about the center fin and is derived from symmetrical strip transmis-
sion line by placing a short-circuiting plate at its midplane. The dominant mode in the
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FIG. 10-17 The uniformly asymmetrical trough
waveguide antenna. (a) Full view. (b) Cross section for
zero-thickness center fin showing the electric field ort-
entations. [After Rotman and Oliner,”" © 1959 IRE
(now IEEE).]

trough waveguide is therefore identical with the first higher mode in strip line. Trough
waveguide therefore combines the mechanical simplicity of a strip line with the frequency
characteristics of a waveguide, and its bandwidth for single-mode propagation is greater
than that for rectangular waveguide by about 50 percent. It also can be coupled smoothly
to a coaxial line, a feature that makes it convenient for use at lower frequencies.

Despite the fact that trough waveguide is open on one side, it is nopradiating when
the structure is symmetrical. The introduction of asymmetry, however, will produce
radiatio