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Introduction

As concern surrounding climate change grows, there will be increased

efforts to curb environmentally harmful activity worldwide. In the United

States, there has already been a serious push in this direction. In his 2013

Climate Action Plan, President Obama set forth goals to cut carbon pollution,

lead international efforts to address climate change, and prepare the country

for its impact (White House, Executive Office of the President [2013]). As part

of this plan, Obama called for reductions in methane (CH4) emissions from

the oil and gas industry by 40-45% from their 2012 levels by the year 2025. In

order to track progress towards this goal and similar plans globally, it will be

necessary to advance methods of measurement, monitoring, and reporting of

greenhouse gases.

In this project, we explore MethaneSat as a possible solution to the gap in

currently available methods of monitoring methane emissions. This chapter

discusses the motivation and provides context for the project. First, we

consider the benefits of methane as a target for climate change mitigation.

This discussion will highlight the need for deep understanding and extensive

monitoring of global methane emissions. We then review currently available

methods of detecting methane emissions, identifying their strengths and short-
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comings. Finally, we introduce MethaneSat, our proposed solution to the

identified gap in understanding methane emissions.

1.1 Motivation

Methane is an ideal target for climate change mitigation efforts for

several reasons.

Methane is an extremely important greenhouse gas, second only to carbon

dioxide. The importance of a greenhouse gas is dependent on three factors:

abundance, radiative efficiency, and lifetime. Methane has an abundance of

about 1850 ppb, making it the most abundant long-lived greenhouse gas in the

atmosphere after carbon dioxide (CO2) (Montzka et al. [2011]). The radiative

efficiency of methane is 3.7 e−4 W m−2 ppb−1, even higher than that of carbon

dioxide (1.5 e−5 W m−2 ppb−1) (Intergovernmental Panel on Climate Change

[2007]). The lifetime of methane is just under 10 years (Prinn et al. [1995]).

This is short, relative to carbon dioxide; half of carbon dioxide is short lived,

while the other half has a lifetime of about 10,000 years (Howarth et al. [2011]).

This gives rise to two arguments about methane's relative importance. Some

argue that its short lifetime makes methane less important in the long run, the

timescale on which climate change will occur (Shoemaker and Schrag [2013]).

However, methane already accounts for 25% of anthropogenic radiative forcing;

its short lifetime therefore means that efforts to decrease emissions in the

coming years could not only slow increases in radiative forcing, but reverse

them. Thus, due to its abundance, radiative efficiency, and lifetime, CH4 is an

important greenhouse gas worthy of great attention.
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There is strong evidence that CH4 is becoming more abundant in the

atmosphere (Figure 1). Ice core observations indicate that methane has nearly

tripled in atmospheric concentration since pre-industrial times, implying a

large anthropogenic component (Hausmann et al. [2016]; Schaefer et al. [2016]).

Although the global average methane concentration did plateau after the year

Figure 1: Global monthly CH4 mole fraction (ppb). Atmospheric concentra-
tions of CH4 rose steadily until about 2000, then plateaued, then began to
increase again around 2006. Source: NOAA Trends in Atmospheric Methane,
2017.

2000, there has been a renewed increase in CH4 concentrations since 2006

(Dlugokencky et al. [2009]; Rigby et al. [2008]). There exist several theories

about why and how this increase is occurring, made more complicated by the

fact that methane is produced from both natural and anthropogenic sources.

Many predict that methane emissions will continue to increase from both types

of sources due to climate change and population growth (Montzka et al. [2011]).

There is thus a clear need for mitigation of methane emissions, but also a need

for better understanding of why methane concentrations are rising. Locating
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and characterizing the sources of atmospheric methane will provide important

insight into the causes of its recent increase in concentration, which, in turn,

will allow for targeted mitigation strategies to be formulated.

In particular, the recent boom and projected growth of the shale gas indus-

try has important implications for global methane emissions. Since hydraulic

fracturing and horizontal drilling were proven successful in the Barnett Shale

region in the 1990s, shale gas has grown dramatically as a proportion of

natural gas production in the United States (Figure 2)(Britannica Academic

[2016]; U.S. Energy Information Administration [2017]). For various economic,

Figure 2: U.S. dry natural gas production by source, 1990-2040 (trillion
cubic feet). Shale gas has grown dramatically as a proportion of natural gas
production in the United States over the last decade, and this trend is expected
to continue. Source: U.S. Energy Information Administration [2017].

political, and logistical reasons, shale gas has not yet seen such a boom

elsewhere in the world. However, with predicted shale gas resources in 14

regions outside the US, comprising 32 countries, the industry is likely to grow

on a global scale (Britannica Academic [2016]).

While natural gas is often promoted as a bridge fuel or green energy source
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due to its low CO2 emissions (U.S. Energy Information Administration [1999]),

this ignores the role of CH4, the major component of natural gas (Britannica

Academic [2016]). According to Howarth et al. [2011], significantly more

methane escapes as fugitive emissions from shale gas production than from

conventional gas production. Due to the high global warming potential of

CH4, these emissions could significantly contribute to climate change. For this

reason, it is essential that methane emissions from shale gas plays be closely

monitored in order to track their impact on the global methane budget, and

also to locate leaks, if possible.

In the United States, this is possible through various observing systems,

including in situ networks. However, as the gas industry is expanding on

a global scale, including in regions with less developed scientific programs,

these observing systems are no longer sufficient. A tool capable of monitoring

methane on a global scale and differentiating between sources will be necessary

in order to monitor the impact of the shale gas industry on the global methane

budget.

Critically, CH4 is a realistically feasible target for climate change

mitigation efforts due to support from both the private and public

sectors.

The oil and gas industry is financially motivated to reduce its contribution

to the global methane budget. The EDF estimated that $2 billion worth of

natural gas is lost each year from leaks and intentional releases (Environmental

Defense Fund [2016]). Methane is the largest component of natural gas, so

these leaks are likely a large source of anthropogenic methane. Locating and
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characterizing these leaks would benefit private oil and gas companies as well

as the environment.

There is also growing support in the public sector for methane mitiga-

tion initiatives. Several states have established policies to monitor or reg-

ulate methane emissions (National Conference of State Legislatures [2014]).

Furthermore, the short lifespan of CH4 could encourage political action, as

emission reductions today could impact greenhouse gas concentrations in the

near future. An improved ability to quantify the impact of natural gas on

the global methane budget will provide further support for policy seeking to

reduce methane emissions.

1.2 Existing Observing Systems

Greenhouse gas emissions are estimated through bottom-up or top-down

studies. Bottom-up estimates are based on site-level emissions measurements,

while top-down estimates are based on atmospheric concentration measure-

ments and chemical transport models (Harriss et al. [2015]). Bottom-up

estimates are capable of providing source attribution, and are less likely to

be biased than top-down estimates. However, top-down estimates can be less

labor-intensive and provide greater coverage, and are therefore often used to

acquire greenhouse gas emission estimates on a global scale.

Atmospheric concentration data for greenhouse gases can be obtained through

several methods. Methane is most often observed through long-term surface

observation networks, surface campaigns, flight campaigns, or with satellites,

each method having unique benefits and drawbacks. Factors such as spatial
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resolution, measurement density, and measurement precision affect the result-

ing emissions estimates, and can vary greatly between observing systems.

At continental scales, flask and in-situ networks, as well as the satellites

GOSAT and soon-to-be-launched TROPOMI, can estimate emissions. These

provide high precision and long term observations. While this is valuable,

these systems lack the spatial resolution to discriminate between emission

sources (Brasseur and Jacob [2015]). Because methane has both natural

and anthropogenic sources, this is problematic when attempting to quantify

emissions from oil and gas production sites. Furthermore, flask and in-situ

observations are sparse outside of North America and Europe.

At the regional scale (less than 1000 km), measurements from field cam-

paigns can be used to estimate methane emissions. Several studies (e.g., Goetz

et al. [2015]; Peischl et al. [2016]; Karion et al. [2015]) have recently been

completed using this strategy. These campaigns constrain emissions from par-

ticular sources at a particular point in time, allowing for some discrimination of

source types. This is extremely valuable for policymakers, and for oil and gas

producers looking to reduce their carbon footprint. However, these campaigns

are extremely labor intensive and require access to sites, which is impossible

in many important regions.

At local scales (less than 200 km), intensive ground and aircraft campaigns

can be used to estimate methane emissions. These measurements are generally

highly accurate and can be taken over long periods of time (Brasseur and

Jacob [2015]). While these campaigns are common in North America and

Europe, they are rare in other regions for which we are interested in quantifying

methane emissions from oil and gas production, such as Russia, Africa, and

7



the Middle East.

GHGSat is a private company that recently launched the CLAIRE satellite

in the summer of 2016. It focuses on measuring greenhouse gas emissions

from individual industrial facilities for customers who order measurements.

CLAIRE has extremely high resolution of 100 m, but a low precision of 1-5%

(Fairley [2016]). This precision on a total column measurement translates into

18-90 ppb, which is equivalent to a large methane plume signal. It will thus be

difficult to rigorously constrain emissions with this instrument for all but the

largest emitters. There is great value in measuring emissions from individual

facilities, but these results cannot be extrapolated to be broadly applicable.

Moreover, the data are not publicly available, and thus not applicable to policy

decisions.

Therefore, there is a major gap in available observing systems' abilities

to quantify methane emissions from oil and gas production sites around the

globe, and to discriminate them from other sources. We hope to address this

gap using a proposed satellite, MethaneSat.

1.3 Our Proposed Solution: MethaneSat

MethaneSat, a proposed satellite for measuring methane emissions, is a

large-scale collaboration by the Wofsy group, the Smithsonian Astrophysical

Observatory, Atmospheric and Environmental Research (AER), and Environ-

mental Defense Fund (EDF). In order to obtain observations with global reach

that are still capable of distinguishing between source types, a satellite is the

most promising tool. MethaneSat will measure the total column dry-air mole
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fraction of methane, exclusively, and will not be tasked with measuring the

concentrations of other gases. It will target regions with sides of 200-300 km

in length, with 1x1 km or 2x2 km spatial resolution – 10-100 times higher than

TROPOMI – with high precision (0.1-0.2% random error).

MethaneSat's mission will most likely take place over a span of 12-18

months, plus six months for emission analysis. In that time, MethaneSat

will sample about 100 target sites around the globe, each of which will be

sampled up to three times. The satellite sensor will initially likely be capable

of imaging up to 10 or more sites per day. This provides the potential for

expansion of the project, increasing the number of target sites to up to 4000

per year.

Part of the strategy of MethaneSat is to minimize costs by using existing

technology such as the Bella Terra, a Google SkyBox satellite. This will min-

imize the amount of custom design required. In the Phase 0 feasibility study,

completed by Steven C. Wofsy, Kelly Chance, and Xiong Xiu in November

2015, it was estimated that the end-to-end cost of the satellite would be about

$30 million on orbit, including a year of data collection.

Phase A, the design stage, is the next step. This stage involves making im-

portant design decisions, predicting cost and scheduling, establishing mission

requirements, and predicting its final performance. The project discussed in

this paper is meant to complement the planned Phase A study for MethaneSat.

By performing observation system simulation experiments (OSSEs), we intend

to quantify the limitations associated with methane emission estimates using

existing observing systems, and the new information that will be provided by

MethaneSat.

9



Methods

We performed observation system simulation experiments (OSSEs) to demon-

strate the new information that MethaneSat will provide. OSSEs test the

ability of an observing system, consisting of an instrument and inverse model,

to constrain emissions, given a reasonable model of error. We performed

these OSSEs for the Barnett Shale region of Texas, and tested the National

Oceanic and Atmospheric Administration (NOAA) surface and aircraft net-

work, Greenhouse Gases Observing Satellite (GOSAT), and MethaneSat. We

hypothesized that the OSSEs would illustrate the advantages of using Methane-

Sat, as compared to available observations, to constrain emissions from oil and

gas production regions.

This section will provide a brief overview of the OSSEs and the experimen-

tal setup. For a more detailed explanation of OSSEs, the reader may consult

the Cooperative Institute for Meteorological Satellite Studies (CIMSS) and the

National Aeronautics and Space Administration (NASA) (The Cooperative

Institute for Meteorological Satellite Studies [1999]; National Aeronautics and

Space Administration [2012]).
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Figure 3: OSSE flow diagram. An OSSE derives a posterior emission estimate
using a prior emission estimate and simulated observations in a Bayesian
inversion model framework.

2.1 Observation System Simulation Experiments

(OSSEs)

OSSEs provide information about how well an observing system can con-

strain emissions. They attempt to retrieve “target” emissions, or “pseudo-

truth,” through a Bayesian inversion framework, using a prior emission esti-

mate and simulated observations of atmospheric mole fractions (in this case, of

CH4) (Figure 3). OSSEs are frequently conducted to evaluate proposed observ-

ing systems and determine their ability to deliver new information (Hunger-

shoefer et al. [2010], Houweling et al. [2016], Brasseur and Jacob [2015]).

The inversion improves upon our prior knowledge of the unknown fluxes

by reconciling the prior estimate with the simulated observations, using an

atmospheric transport model to relate fluxes to atmospheric mole fractions.
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The prior estimate regularizes the inverse model, preventing over-fitting of the

data. The OSSE’s best attempt to recover the target is called the “posterior”

emission estimate. We can compare the posterior estimate with the target to

predict the ability of the observing system to retrieve emissions.

Both the prior estimate and simulated observations are generated using the

target emissions and realistic models of error. However, OSSEs are optimistic

in assuming unbiased error, random sampling of errors, and full knowledge of

error correlations, and will therefore produce better posterior estimates than

can be expected in real life. However, OSSEs are still extremely useful as a tool

for comparing observing systems’ abilities to constrain emissions (Brasseur and

Jacob [2015]).

2.1.1 Our OSSE Setup

We used the Stochastic Time-Integrated Lagrangian Transport (STILT)

model (Lin et al. [2003]) to infer the sensitivities of receptors to upstream

fluxes. This information allows us to relate fluxes and concentrations in a

linear expression,

z = Hs+ b+ ϵ, (1)

where s are the unknown fluxes, z are the known concentrations, H is a

Jacobian matrix containing the receptor sensitivity information from STILT

“footprints”, b are the background concentrations, and ϵ is model-data mis-

match error. While we do not explicitly simulate the estimation of background

concentrations in this study, the expected error is included in the model-data

mismatch error.
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Figure 4: NOAA continuous flask and in-situ receptor sites used in this
experiment. We chose these receptors due to their proximity to the Barnett
Shale region.

The STILT model simulates sending particles backwards in time and space

from a receptor location, guided by a meteorological model. In this experiment,

we used two meteorological models to guide a 500-particle ensemble: WRF

(Weather Research Forecast) for the NOAA network and GOSAT OSSEs,

and GDAS (Global Data Assimilation System) for the MethaneSat OSSEs.

The WRF fields were run as part of the NASA Carbon Monitoring System

project, “CarbonTracker Lagrange.” Joshua Benmergui1 derived and ran the

algorithms to integrate GDAS fields, available online, into footprints prior to

1School of Engineering and Applied Sciences, Harvard University

13



this experiment. While it would have been ideal to use the same transport

fields for all three observing systems, both are representative of the information

contained in each system, and the difference should have a minimal impact on

the experiment. The resulting particle densities provided “footprints,” or sen-

sitivities of observations at the receptors to upstream fluxes, given with units

of
ppm

µmol ·m−2 · s−1
. We used footprints for the NOAA sites surrounding the

Barnett Shale region (Figure 4), and for all available GOSAT and MethaneSat

retrievals in our time period of interest.

The “target” emissions map, also called the “pseudo-truth” is the emissions

map that the OSSE seeks to recover through assimilation of a prior estimate

and simulated observations. In this experiment, the target is a modified version

of a CarbonTracker-Lagrange methane posterior for October 2013, developed

by Joshua Benmergui1 and Arlyn Andrews2 (Figure 5). We replaced the emis-

sions in the Barnett Shale region and its immediate surroundings, bounded by

-102◦ to -95◦ longitude and 30◦ to 35◦ latitude, with an inventory for October

2013 based on the results of Lyon et al. [2015], updated by Zavala-Araiza et al.

[2015]. The Lyon et al. [2015] study used a combination of available data,

including bottom-up measurements from the Barnett Coordinated Campaign.

This inventory implies higher emissions from the Barnett Shale region than

other currently available inventories, such as those produced by the EPA,

but has been directly validated by an intensive aircraft campaign (Karion

et al. [2015]). The inventory is resolved with 4km x 4km grid cells, which we

aggregated into 1◦ x 1◦ grid cells. The updated Zavala-Araiza emission files

report total methane emissions in the region to be 0.7483 Tg year−1.

2National Oceanic and Atmospheric Administration

14



Figure 5: Target emissions map used in this experiment, combining a
CarbonTracker-Lagrange methane posterior with the Barnett Shale inventory
developed by Zavala-Araiza et al. [2015].

We created our prior emissions estimate by perturbing these target emis-

sions. The perturbation was a Gaussian random field with mean zero, account-

ing for variance and covariance in time and space. The covariance matrix can

be written as

Q = σ2
Qexp(

Xτ

lτ
)⊗ exp(

Xs

ls
) (2)

where σ2
Q is the variance in time and space, Xτ andXs represent the separation

distances/lags between estimation locations in time and space, respectively,

and lτ and ls are the temporal and spatial correlation range parameters,

respectively (Yadav and Michalak [2013]). We used 36 days as the temporal

correlation parameter, and 100 km as the spatial correlation parameter. We
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Figure 6: A closeup of the target emissions for the Barnett Shale region, taken
from the Zavala-Araiza inventory. The 11 grid cells comprising the Barnett
Shale region are outlined in red. Total emissions for these cells are 0.7483 Tg
year−1.

performed OSSEs for five distinct values of σ2
Q, from 0.005 to 0.00005 µmol

m−2s−1, with step sizes of half an order of magnitude (Table 1).

Table 1: Covariance matrix parameters.

Parameter Value

σ2
Q (µmol m−2s−1)2 0.005 - 0.00005

ls (km) 100

lτ (days) 36

σ2
R (ppm2) 0.01 - 0.0001

We chose these parameters

to reflect a reasonable model

of error in a prior estimate

of emissions, ranging from an

excellent prior that provides a

great deal of information (error

of about 0.007 µmol m−2 s−1),

to a useless prior that provides

no information (error of about 0.07 µmol m−2 s−1). In order to keep the prior

estimate physically meaningful, we truncated the prior at zero, converting all
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negative values to zero. Although it is unlikely that the prior error would

actually be distributed as a Gaussian, it is reasonable to approximate it as

such; the prior estimate for each grid cell is as likely to have positive error

or negative error, thus rendering the prior emissions map unbiased. However,

a limitation is that truncation of the prior estimate at zero means that total

error in the negative direction may be less than total error in the positive

direction, increasing the likelihood that the prior estimate is positively biased.

The risk of positive bias grows with prior error variance.

For this experiment, we created two types of prior estimates. In Method

A, we perturbed just the Barnett Shale region, and left the rest of the domain

perfectly specified by the target. In Method B, we perturbed the entire domain.

In both cases, if the perturbation exceeded the target emission rate in a grid

cell, the value of the prior at that location was truncated at zero. This strategy

leaves room for improvement, as negative values do not necessarily need to

be removed in the context of satellite data. Other potential methods for

generating a prior estimate are considered in the Conclusion.

Method A is a contrived numerical experiment, as it is unrealistic to

assume perfect prior information for the domain outside the Barnett Shale

region. However, we hypothesized that it would provide interesting insights to

complement Method B, isolating the effect of error on a hotspot of emissions.

Method B is a realistic numerical experiment, in which we seek to detect a

hotspot of emissions in a noisy domain. We expected that this would reveal

the difficulties of constraining a small region of interest with sparse data.

We generated the pseudo-data for each observing system by applying the

corresponding STILT footprints to the target emissions map, and adding error
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sampled from the model-data mismatch covariance matrix, R, with diagonal

elements σ2
R. In this experiment, we used five distinct values for the error

variance, σ2
R, from 0.01 ppm2 to 0.0001 ppm2, corresponding to error between

10 ppb and 100 ppb (Table 1). This interval of error is similar to, though

slightly wider than, that used by Miller et al. [2014a].

The posterior estimate, ŝ, is found by minimizing a cost function that

penalizes deviation from both the prior estimate, sp, and pseudo-data, z,

according to the error on each:

Ls =
1

2
(z−Hs)TR−1(z−Hs) +

1

2
(s− sp)

TQ−1(s− sp) (3)

Thus, when the error on the prior estimate, Q, is large and the error on the

pseudo-data, R, is small, the inversion favors a posterior estimate that would

agree well with the pseudo-data. When the error on the prior estimate is

small but the error on the pseudo-data is large, the inversion favors a posterior

estimate close to the prior estimate. The posterior estimate, ŝ, is the solution

to the inverse problem, and is the emissions estimate that minimizes the cost

function:

ŝ = sp + (HQ)T (HQHT +R)−1(z−Hsp) (4)

with error covariance matrix:

Vŝ = Q− (HQ)T (HQHT +R)−1(HQ) (5)

Because the second quantity in Vŝ is positive, the error on ŝ (Vŝ) is strictly

less than the error on sp (Q).
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Michalak [2008], as cited in Miller et al. [2014a], discusses the possibility

that allowing for unrealistic negative emissions in the posterior estimate may

distort the surrounding emissions due to conservation of mass. In order to

investigate this, we also calculated a posterior estimate using a non-negativity

algorithm, developed by Scot Miller3 and Joshua Benmergui. This algorithm

uses an iterative solver (L-BFGS-B) to find the minimum of the cost function

under the constraint of positive emissions. A limitation of this method is that

it may lead to overestimation of emissions due to its strategy of correcting

negative fluxes. For this reason, we performed the OSSEs using both the

regular algorithm and the non-negativity algorithm throughout the study.

2.2 Performing the OSSEs

In order to perform the OSSEs, we used a Python inversion framework

developed by Arlyn Andrews4, Kirk Thoning5, and Joshua Benmergui. We

made several modifications, customizing it for our experimental setup.

The large computational cost of the OSSEs required great consideration.

Each inversion involves computation with an emissions map for the entire

North American region with grid size of 1◦ x 1◦, for up to 91 time steps

and tens of thousands of measurements. We ran the OSSEs on Odyssey,

Harvard’s supercomputer cluster in Holyoke, Massachusetts, to gain access

to sufficient storage capacity and computational power. Even so, efficiency

had to be maximized within the inversion framework. For example, explicit

calculation of HQ was impossible, even on Odyssey. Thus, the framework

3Department of Global Ecology, Carnegie Institution for Science, Stanford University
4National Oceanic and Atmospheric Administration
5National Oceanic and Atmospheric Administration
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created Jacobian “slices,” breaking H into pieces for each time step, and

calculating HQ in blocks, according to the method proposed by Yadav and

Michalak [2013]. Similarly, explicit calculation of a Gaussian random field

to perturb the entire North American region was not possible. In this case,

we created realizations of the perturbation matrix in R, using the package

‘RandomFields’ (Schlather et al. [2015]).

For the NOAA network and GOSAT, we performed inversions for 91 time

steps, between September 1 2012 and November 30 2012. We did this partly

because we wanted a buffer on either side of the Lyon et al. [2015] inventory

time period (October 16 - 30 2013). Unfortunately, however, we had to use

footprints for 2012, as none were available for 2013. For MethaneSat, we

performed inversions for the one time step available, September 19 2013.

However, this single time step provided more pseudo-data than all 91 time

steps of the NOAA network footprints or GOSAT footprints. This reflects a

key aspect of the strategy of MethaneSat relative to satellites like GOSAT.

MethaneSat collects many high precision observations in a single shot, while

GOSAT collects fewer observations over a longer period of time (Table 2).

Ideally, we would have used footprints from the same time period for all three

observing systems, but this was not possible at the time of the study. It is

unlikely, however, that the differences between 2012 and 2013 or September

and October would make a large impact on the OSSEs’ ability to demonstrate

the new information gained from MethaneSat.
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Table 2: Simulated observations for use in the OSSEs.

Observing System Time Period of Footprints Number of Observations

NOAA Network 9/1/2012 - 11/30/2012 552
GOSAT 9/1/2012 - 11/30/2012 2116
MethaneSat 10/19/2013 37975

2.3 Experimental Setup

First, in order to verify that the inversion framework operated as expected,

we performed an OSSE without error on the prior estimate or error on the

pseudo-data. This OSSE was an attempt to recover an emissions map us-

ing that very emissions map and the corresponding modeled concentrations.

Mathematically, it can be determined that the posterior estimate will perfectly

match the target under these circumstances, as z = Hsp.

ŝ = sp + (HQ)T (HQHT +R)−1(z−Hsp)

ŝ = sp + 0

ŝ = sp

which, in this case, means the posterior emissions equal the target emissions,

st, as there was no prior error. Thus,

sp = st + ϵ = st

ŝ = sp = st

This OSSE served as a test for the inversion framework. This type of analysis

would likely reveal a mathematical error or bug in the code.

Next, we considered an OSSE with error on the pseudo-data but no error

on the prior estimate. This translates to perfect prior information, and flawed
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observations. Mathematically, it can again be determined that the posterior

estimate will perfectly match the target under these circumstances, as the

prior error covariance matrix, Q, will be the zero matrix.

ŝ = sp + (HQ)T (HQHT +R)−1(z−Hsp)

ŝ = sp

Besides serving as another check on the inversion system, this type of OSSE

does not offer any new information.

We also considered an OSSE with error on the prior estimate but no error

on the pseudo-data. This would be equivalent to having perfect observations,

but a flawed prior estimate. Unlike the previous two types of OSSEs, this type

does not mathematically reduce to ŝ = sp. We performed these OSSEs with a

near-zero value of σ2
R (using zero would create a singularity in calculation of

the cost function), and prior error as described in Table 1, with all 5 values

of σ2
Q. These OSSEs provide insight about the effect of prior error on the

posterior estimate, and how density of observations can affect an observing

system’s ability to separate signal from noise. We performed 30 trials of this

type of OSSE for each observing system, for each value of σ2
Q, and for both

Method A and Method B.

Finally, we performed full OSSEs with error on both the prior estimate

and the pseudo-data. We performed the OSSEs for each of the 25 categories

of error (every combination of the 5 values of σ2
Q and 5 values of σ2

R). These

are the most realistic simulations for the observing systems. We performed 30

trials of this type of OSSE for each observing system, for each combination of

σ2
Q and σ2

R, and for both Method A and Method B.
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2.4 Analysis

The goal of this study is to demonstrate the new information that could be

gained from MethaneSat. Specifically, we hoped to show the relative strength

of MethaneSat over other observing systems in constraining methane emissions

from oil and gas production regions, such as the Barnett Shale.

One important metric is the ability of the observing systems to constrain

total emissions for the Barnett Shale region, relative to the target total emis-

sions of 0.74 Tg year−1. We are also interested in the total error in our posterior

estimate for the Barnett Shale region. To calculate this, we take the posterior

error covariance matrix, Vŝ (dimension: grid cells x grid cells), extract the

grid cells for the Barnett Shale region, sum the covariance terms, and take the

square root.

It is also useful to investigate the ability of the observing systems to con-

strain the spatial distribution of CH4 emissions, and the sharp gradients seen

in the Barnett Shale region. We can learn about this by plotting the differences

between the average posterior estimates and target emissions. To evaluate how

closely each observing system retrieves the sharp peak in emissions, we measure

the gradient between the highest-emitting grid cell and lowest-emitting grid

cell in the target emissions, and compare to the gradient given in the posterior

estimates.

23



Results

We performed OSSEs to demonstrate the advantages of MethaneSat above

existing observing systems for constraining methane emissions from oil and

gas production regions. Results from the OSSEs support our hypothesis

that MethaneSat is able to retrieve emissions for the Barnett Shale region

more successfully than both the NOAA network and GOSAT. We found that

MethaneSat was able to successfully constrain total emissions in the Barnett

Shale region, their spatial distribution, and their steep gradient.

3.1 Framework test - Perfect prior, perfect

pseudo-data

The results of the framework test were as expected for all observing sys-

tems, given that we introduced no error into the system. The posterior

estimate produced by the inversion framework was identical to the target.

In some cases there was minor truncation error (on the order of e−13). The

result of this test case increased our confidence in the reliability and accuracy

of the inversion framework.
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3.2 Method A: Barnett Shale region perturbed

In Method A, we applied prior error only to a small portion of the domain:

the region bounded by -102◦ to -95◦ longitude and 30◦ to 35◦ latitude, including

the Barnett Shale region. These OSSEs were designed to asses the effect of

optimizing a mis-specified hotspot in emissions on well-specified emissions out-

side the hotspot. We were also interested in assessing the observing systems’

abilites to constrain the hotspot without external interfering noise.

3.2.1 Error on prior, perfect pseudo-data

We first conducted these OSSEs without error on the pseudo-data in order

to isolate the effect of error on the prior estimate.

When we plot the pseudo-data against the prior modeled enhancement and

posterior modeled enhancement, we see that the posterior modeled enhance-

ment perfectly matches the pseudo-data (Figure 7). This was true for all

observing systems, all levels of prior error, and both algorithms. Thus, with

no error on the pseudo-data, but error on the prior estimate, the inversion

completely favors agreement with the pseudo-data.

Plotting the total average posterior emissions for the 11-grid cell Barnett

Shale region (refer to Figure 6) reveals differences between the observing

systems’ abilities to constrain emissions (Figure 8). As expected, MethaneSat

constrained emissions best, while the NOAA continuous and in situ network

performed the worst. The difference was most noticeable when the error on

the prior estimate was high. Furthermore, the difference was most drastic for

the estimate produced using the non-negativity algorithm (Figure 8a).

25



Importantly, MethaneSat produced average total emissions that were very

close to the target emissions for all values of prior error variance used in these

OSSEs, and using both algorithms. However, using the regular algorithm,

GOSAT constrained total emissions almost as well as MethaneSat.

The error bars in Figures 8a and 8b denote the interquartile range (IQR)

for the results of the 30 iterations. The IQR is a robust statistic for the

variability of the result, which does not make distributional assumptions. In

every case, the NOAA network has the widest IQR, followed by GOSAT, and

finally MethaneSat. The difference is most drastic when the error on the prior

estimate was high. However, at every level of prior error variance, the IQR for

MethaneSat is so narrow that the error bars are barely visible, indicating low

variability across the 30 iterations. In contrast, even when GOSAT constrained

total emissions well on average, its IQR was quite wide (Figure 8b).

Plotting the difference between the average posterior emissions and target

Figure 7: Pseudo-Data v. Prior Modeled Enhancement, Posterior Modeled
Enhancement for the NOAA Network, with perfect pseudo-data and high
error on the prior (σ2

Q = 0.005). The inversion has corrected all error in the
prior modeled enhancement, and the posterior modeled enhancement perfectly
match the pseudo-data.
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emissions demonstrates the observing systems’ abilities to constrain the spatial

distribution of emissions (Figures 9, 10). With only the Barnett Shale region

perturbed and no error on the pseudo-data, MethaneSat was able to almost

(a) Using the non-negativity algorithm, there is a marked
difference in MethaneSat’s ability to constrain emissions
relative to the other observing systems.

(b) Using the regular algorithm, MethaneSat constrains
emissions much better than the NOAA network. GOSAT
is able to constrain emissions almost as well as MethaneSat,
but not as consistently (note the wide IQR).

Figure 8: The averaged total emissions for the 11-grid cell Barnett Shale region,
with error on the prior but no error on the pseudo-data. The purple lines show
the target flux of 0.7483 Tg year−1. MethaneSat was able to closely constrain
emissions for all levels of prior error. The error bars denote the IQR.
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perfectly constrain emissions in the Barnett Shale region. The NOAA network

and GOSAT were not able to do so, underestimating the peak in emissions

and overestimating emissions in the surrounding gridcells. This was the case

using both algorithms, though the differences were most drastic using the non-

negativity algorithm.

The results of these OSSEs also show differences in how the observing

systems distinguish between signal and noise. Although we only added error

to the Barnett Shale region, the posterior estimates from the NOAA network

and GOSAT included corrections to the prior estimate outside of the Barnett

Shale region. MethaneSat showed almost no correction to the prior estimate

outside of the Barnett Shale region, except for a small region to the south. This

was the case for both the regular algorithm and the non-negativity algorithm,

and can be seen when we plot mean prior error (average prior emissions minus

true emissions) and mean correction to the prior (average posterior emissions

minus average prior emissions) (Figure 11). In the plots of mean correction

to the prior estimate, the NOAA network and GOSAT show color variation

throughout the domain, while MethaneSat’s domain beyond the Barnett Shale

region is completely flat (except for the small region to the south).

3.2.2 Error on prior, error on pseudo-data

The OSSEs with prior error in the Barnett Shale region and error on the

pseudo-data are a more realistic test for the observing systems. This isolates

the effect of a mis-specified hostpot with realistic error. When we plot the

difference between average posterior emissions and target emissions, we see an

interesting difference in the observing systems’ abilities to constrain the spatial
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distribution of emissions (Figures 12-14). While all observing systems show

some error with a poor prior estimate and poor pseudo-data, MethaneSat is

the only observing system that shows improvement with decreasing error on

the pseudo-data. With a poor prior but excellent pseudo-data, MethaneSat

is able to constrain emissions in the grid cells corresponding to the Barnett

Shale region, almost perfectly capturing the steep gradient, despite some error

in the surrounding cells. The other observing systems smoothed the peak into

the surrounding low-emission cells, even with excellent pseudo-data.
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Figure 9: The average posterior error (calculated as average posterior emissions
- true emissions), with the middle level of error on the prior but no error on
the pseudo-data, using the non-negativity algorithm. MethaneSat was able
to closely constrain emissions, capturing the high peak in the middle of the
region.
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Figure 10: The average posterior error (calculated as average posterior
emissions - true emissions), with the middle level of error on the prior but
no error on the pseudo-data, using the regular algorithm. MethaneSat was
able to closely constrain emissions, capturing the high peak in the middle of
the region.
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Figure 11: Mean prior error and mean correction to the prior with perfect
pseudo-data, using the non-negativity algorithm. The NOAA network and
GOSAT show extensive correction to the prior outside of the Barnett Shale
region, even though the rest of the domain was left perfectly specified.
MethaneSat only corrects the prior in the Barnett Shale region, and a small
region to the south.
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Figure 12: NOAA: difference between average posterior emissions and target
emissions, using the regular algorithm. The NOAA network fails to retrieve
the peak in emissions with high error on the prior estimate.
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Figure 13: GOSAT: difference between average posterior emissions and target
emissions, using the regular algorithm. GOSAT network fails to retrieve the
peak in emissions with high error on the prior estimate.
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Figure 14: MethaneSat: difference between average posterior emissions and
target emissions, using the regular algorithm. CH4Sat successfully retrieves
the peak in emissions with high error on the prior estimate, particularly when
error on the pseudo-data is low.
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3.3 Method B: Entire domain perturbed

Perturbing the entire domain is our most realistic test of the observing sys-

tems’ ability to retrieve emissions. We hypothesized that the NOAA network

and GOSAT would not be capable of constraining emissions in the Barnett

Shale region, but that MethaneSat would be able to do so. We found that,

under conditions of perfect pseudo-data, MethaneSat was, far more capable

of constraining total emissions and their spatial distribution than the other

observing systems. When error was added to the pseudo-data, MethaneSat

demonstrated a superior ability to capture the high peak in emissions for large

values of prior error variance. MethaneSat was also able to retrieve the steep

gradient in the Barnett Shale region at nearly every level of error, while the

NOAA network and GOSAT could only do so in cases of low prior error.

3.3.1 Error on prior, perfect pseudo-data

Without error on the pseudo-data, these OSSEs isolate the effect of error

on the prior estimate. We saw similar results here as with Method A: Methane-

Sat was able to constrain total emissions for the Barnett Shale region much

more effectively than the other observing systems (Figure 15). MethaneSat

performed the best, constraining average emissions almost perfectly in every

case, while the NOAA continuous and in situ network performed the worst.

The difference was most noticeable when the error on the prior estimate was

high. Furthermore, the difference was most drastic for the posterior estimate

produced using the non-negativity algorithm.

Importantly, MethaneSat produced total emissions that were very close to
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(a)

(b)

Figure 15: Total posterior emissions in the 11-grid cell Barnett Shale region,
averaged over the 30 trials. All observing systems are able to predict posterior
emissions that closely match the true emissions, using both algorithms.
However, the error bars, indicating the IQR for the 30 trials, are much larger
for the NOAA network and GOSAT than for MethaneSat.
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the target emisions for all values of prior error variance used in these OSSEs,

and using both algorithms. However, using the regular algorithm, GOSAT

constrained total emissions almost as well as MethaneSat (Figure 15b). The

results were comparable for the Barnett Shale region plus the cells immediately

surrounding it (Figure 16).

The error bars in Figures 15 and 16 denote the interquartile range (IQR)

for the results of the 30 iterations. In every case, the NOAA network has the

widest IQR, followed by GOSAT, and finally MethaneSat — the same trend

as with Method A. Though GOSAT is sometimes able to closely constrain

emissions on average, its IQR is much wider than that of MethaneSat for

every value of prior error variance, indicating greater variability.

These differences between observing systems can likely be attributed to the

low sampling density of the NOAA network and GOSAT, diminishing their

ability to constrain emissions. In other words, the observations do not correct

the prior estimate as well as with MethaneSat. The low sampling density

results in more reliance on the prior estimate, which translates to greater

variability in the posterior estimate and wide IQRs for the NOAA network

and GOSAT. This high variability is particularly concerning considering that

the perturbations to the truth that produced the prior estimate had a mean of

zero — therefore, even totally unconstrained priors would have correct total

emissions over a large number of trials.

Interestingly, the NOAA network and GOSAT were unsuccessful at con-

straining the low-emitting grid cells surrounding the Barnett Shale region

when using the non-negativity algorithm (note the differences between Figure

15a and Figure 16a). This is likely due to the non-negativity algorithm’s
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strategy for dealing with negative values in the posterior estimate, which may

cause overestimation of total emissions. This topic is discussed further in the

Discussion.

The results also indicate a clear advantage in MethaneSat’s ability to

constrain the spatial distribution of emissions in the Barnett Shale region.

Figures 17 and 18 show the results of the OSSEs performed using σ2
Q =

5e−4, the median level of prior error used in this study. We plotted the

difference between average posterior emissions and target emissions. Using

both algorithms, MethaneSat was able to constrain the spatial distribution of

emissions in the Barnett Shale region almost perfectly, as well as the large

region to the north-west of the Barnett Shale region. Neither the NOAA

network nor GOSAT was able to retrieve the peak in emissions in the center

of the region, smoothing it into the surrounding grid cells instead. The results

were comparable for higher and lower levels of prior error.

Finally, MethaneSat showed extremely low posterior error (calculated using

Vŝ, from Equation 5) for all values of prior error variance (Figure 19). It was

far below that of the NOAA network or GOSAT, with the NOAA network

having the highest posterior error.

3.3.2 Error on prior, error on pseudo-data

The OSSEs with error on the prior and the pseudo-data are the most

realistic tests for the observing systems. As expected, total posterior error

for the Barnett Shale region (calculated using Vŝ) decreased as error on the

prior estimate and error on the pseudo-data decreased. When we plot this in

a heat map, we see a smooth gradient across both error axes for all observing
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Table 3: Method B, Full OSSE: Posterior error for the Barnett Shale region,
given in Tg year−1.

Observing System Max Posterior Error Min Posterior Error

NOAA Network 3.235 0.323
GOSAT 3.414 0.341
CH4Sat 3.127 0.313

systems (Figure 20). However, posterior error decreases most dramatically

with decreasing error on the prior. Thus, at least for the values of error tested

in these OSSEs, error on the prior has a larger impact on posterior error than

does error on the pseudo-data.

Interestingly, there was not a large difference in the calculated posterior

error between observing systems. For a given level of error on the prior and

error on the pseudo-data, the errors for the three observing systems were

comparable, although MethaneSat generally had slightly lower error than both

the NOAA network and GOSAT, as well as lower maximum and minimum

errors.

The trend in average total emissions for the 11-grid cell Barnett Shale

region was as expected - as error decreased in either direction, the poste-

rior estimate typically grew closer to the target total emissions (Figure 21).

Overall, MethaneSat’s posterior estimates were closer to the target emissions

than those of the other observing systems. In particular, using the regular

algorithm, MethaneSat retrieved total emissions almost perfectly at all levels of

prior error variance and pseudo-data error variance. The improvement over the

other observing systems is most drastic for the two highest levels of prior error,

for which the NOAA network severely underestimated emissions. GOSAT was

closer to the target total, but often overestimated emissions.
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Again, considering the IQRs of the 30 iterations makes this comparison

even more meaningful. MethaneSat had much narrower IQRs than both the

NOAA network and GOSAT at every level of error variance, indicating more

consistent results (Figure 22). While the other observing systems constrained

emissions at some levels of error, they demonstrated much more variability,

likely indicating more reliance on the prior estimate. MethaneSat was therefore

able to constrain total emissions in the region most successfully and most

consistently, regardless of the prior estimate.

We plotted the difference between average posterior emissions and target

emissions to investigate the ability of the observing systems to constrain the

spatial distribution of emissions in the region (Figures 23-25). We found that

with high error on the prior and low error on the pseudo-data, MethaneSat was

able to retrieve the large peak in the region far better than both the NOAA

network and GOSAT (as demonstrated by the dark blue squares in the NOAA

network and GOSAT plots), although there was slightly more error in the

surrounding regions for MethaneSat. With low prior error, all three observing

systems were able to constrain the spatial distribution well. Interestingly, upon

investigation of the results of individual iterations, it was found that the high

average error in the surrounding regions for MethaneSat was driven by a few

iterations with extremely high prior emission estimates in that region, but that

individual inversions were generally able to retrieve the entire Barnett Shale

region and its surroundings almost perfectly. These results were consistent

between the regular algorithm and non-negativity algorithm.

It is also useful to consider how well the observing systems can capture

the emission gradients from the Barnett Shale region. The steepest gradient
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in the region is 0.30765 µmol m−2 s−1/m. We hypothesized that, due to its

high sampling density, MethaneSat would best retrieve this gradient. This was

indeed the case — the NOAA network and GOSAT both smoothed the gradi-

ent, except at very low levels of prior error variance (Figure 26). MethaneSat

captured the gradient successfully for nearly every combination of prior error

variance and pseudo-data error variance, and captured it nearly perfectly when

pseudo-data error variance was low. In contrast, the NOAA network and

GOSAT gradients did not improve much with decreasing pseudo-data error

variance, and actually worsened with decreasing pseudo-data error variance

when using the non-negativity algorithm. Interestingly, and unsurprisingly,

the non-negativity algorithm caused more smoothing of the sharp gradient

than the regular algorithm, for all observing systems and all levels of error.

Focusing on the gradient retrieved by MethaneSat, we see in Figure 26

that it was able to closely retrieve the steep gradient for all levels of error —

decreasing the error on the pseudo-data did not drastically affect the result.

However, considering the width of the IQR across all 30 iterations, we see that

there was much less variability when error on the pseudo-data was low. This

was particularly true for high values of prior error variance. At lower levels

of prior error variance, decreasing the error on the pseudo-data had less of

an impact (although at all levels of prior error variance, the lowest level of

pseudo-data error variance gives extremely narrow IQRs).
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(a) Using the non-negativity algorithm, there is a marked difference in
MethaneSat’s ability to constrain emissions relative to the other observing
systems.

(b) Using the regular algorithm, MethaneSat constrains emissions much
better than the NOAA network. GOSAT is able to constrain emissions
almost as well as MethaneSat, but not as consistently (note the wide IQR).

Figure 16: Total posterior emissions in the Barnett Shale region and sur-
rounding gridcells, averaged over the 30 trials. MethaneSat predicts posterior
emissions that closely match the true emissions for all levels of prior error
variance using both algorithms.
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Figure 17: The difference between average posterior emissions and true
emissions, with σ2

Q = 5e−4 but no error on the pseudo-data, using the non-
negativity algorithm. MethaneSat was able to closely constrain emissions,
capturing the high peak in the middle of the region.
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Figure 18: The difference between average posterior emissions and true
emissions, with σ2

Q = 5e−4 but no error on the pseudo-data, using the regular
algorithm. MethaneSat was able to closely constrain emissions, capturing the
high peak in the middle of the region.
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Figure 19: Posterior error in the 11-grid cell Barnett Shale region (calculated
using Vŝ) for Method B with no error on the pseudo-data. The calculated
posterior error for MethaneSat is minuscule relative to that of the other
systems, for all values of prior error variance.
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Figure 20: Posterior error, calculated using Vŝ. As expected, posterior error
decreases along both error axes, but more drastically along the axis of prior
error variance. Posterior error is comparable for all observing systems. Darker
color indicates higher posterior error.
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Figure 21: Average total posterior emissions for the 11-grid cell Barnett
Shale region. The white-colored squares denote estimates close to the target.
Green-colored squares are overestimated, while purple are underestimated.
MethaneSat shows the greatest number of white squares, and overall less
extreme color than the other two observing systems, particularly for high prior
error variance. Overall, the estimates using the regular algorithm are closer to
the target than those using the non-negativity algorithm.
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Figure 22: The widths of the IQRs for the total posterior emission estimates
for the 11-grid cell Barnett Shale region, where darker color indicates a wider
IQR. MethaneSat has much narrower IQRs than the other observing systems
for every level of error.
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Figure 23: NOAA network: Average posterior emissions minus target
emissions, using the non-negativity algorithm. The NOAA network fails to
retrieve the peak in emissions in the middle of the Barnett Shale region.
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Figure 24: GOSAT: Average posterior emissions minus target emissions, using
the non-negativity algorithm. GOSAT fails to retrieve the peak in emissions
in the middle of the Barnett Shale region.

51



Figure 25: MethaneSat: Average posterior emissions minus target emissions,
using the non-negativity algorithm. MethaneSat retrieves the peak in
emissions in the middle of the Barnett Shale region, particularly with excellent
pseudo-data, despite some error in the surrounding regions.

52



Figure 26: Average posterior emission gradients. White indicates closeness
to the true emission gradient of 0.3077 µ mol m−2 s−1/m, purple squares are
underestimated, and green are overestimated. MethaneSat captured the steep
gradient in the Barnett Shale region, while the other systems failed to do so,
except for with low prior error variance. The non-negativity algorithm caused
more smoothing of the gradient than did the regular algorithm.
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Figure 27: IQR widths for the average posterior emission gradients from
MethaneSat. For high values of prior error variance, decreasing pseudo-data
error variance dramatically narrows the IQR. Values given in µmol m−2 s−1/m.
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Discussion

The results of the OSSEs provide insights about the information that can

be gained from the proposed MethaneSat. Comparison against the NOAA

surface and aircraft network and GOSAT allowed us to evaluate the advan-

tage of MethansSat over existing observing systems for constraining methane

emissions. We performed OSSEs for the Barnett Shale region of Texas, which

is an example of the type of oil and gas production region that MethaneSat

will target.

The results of the study can be broadly divided into two main categories:

support for MethaneSat as a tool for constraining total emissions, their spatial

distribution, and sharp gradients; and insights about the role of the prior

estimate in constraining emissions.

In every type of OSSE performed in this study, MethaneSat was

able to provide information not captured by the NOAA network

and GOSAT.

In the idealized scenarios with no error on the pseudo-data, MethaneSat

was able to constrain total emissions and their spatial distributions, as well as

distinguish signal from noise. MethaneSat captured the total emissions nearly

perfectly at every level of prior error, and had extremely narrow interquartile
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ranges (IQRs) in each case. This was true for both Method A and Method

B. Even when the other observing systems captured the total emissions on

average (as GOSAT often was able to), the IQR was quite wide, indicating

great variability between iterations. MethaneSat was also able to retrieve the

spatial distribution in the Barnett Shale region almost perfectly, while both

the NOAA network and GOSAT failed to do so, instead smoothing out the

emissions profile. Finally, MethaneSat was better able to distinguish between

signal and noise; when prior error was added only to the Barnett Shale region

in Method A, the NOAA network and GOSAT posterior estimates included

extensive corrections to the prior estimate in regions without prior error.

MethaneSat’s high density of observations allowed it to distinguish between

the perfectly specified emissions outside the Barnett Shale region and the

perturbed emissions within the Barnett Shale region.

In the OSSEs with error applied to the pseudo-data, MethaneSat again

provided information not provided by the NOAA network and GOSAT. For

low levels of prior error, all three observing systems were able to constrain

total emissions and their distributions quite well. However, for high levels of

prior error, MethaneSat was the only observing system capable of constraining

total emissions and capturing the peak in the center of the region. The NOAA

network and GOSAT greatly underestimated the high-emitting grid cells, al-

though they were able to constrain the low-emitting grid cells. Furthermore,

MethaneSat was the only observing system capable of retrieving the steep

emission gradient of 0.3076 µmol m−2 s−1/m at every level of error. For all

but the lowest two values of prior error variance, the NOAA network and

GOSAT smoothed the steep gradient. MethaneSat was able to retrieve the
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gradient within a reasonable margin of error even with the two highest levels

of prior error variance, particularly when error on the pseudo-data was low.

This contrast between the abilities of the observing systems to constrain

emissions is likely a function of the interior sampling density. The high

sampling density of MethaneSat allows it to capture more information about

the emissions profile in the region, translating to tighter constraint of total

emissions, their distribution, and the size of their gradients. The NOAA

network and GOSAT rely on much sparser pseudo-data, and are therefore

less capable of correcting a poor prior estimate.

The results of this study also provide interesting insights into the

role of the prior emission estimate in this type of inversion.

In these OSSEs, changing the level of uncertainty on the prior generally

impacted the posterior estimate more than did changing the level of uncer-

tainty on the pseudo-data. In both Method A and Method B, decreasing the

prior error variance allowed all observing systems to successfully retrieve total

emissions and their spatial distribution. However, decreasing the pseudo-data

error variance did not have the same effect, barely improving the posterior

estimate for the NOAA network and GOSAT. Furthermore, posterior error

(calculated using Vŝ from Equation 5) fell faster with decreasing error on the

prior than with decreasing error on the pseudo-data, for all three observing

systems.

These results seem to indicate that the uncertainty on the prior estimate

exerts more influence on the posterior estimate than does uncertainty on the

pseudo-data. Indeed, the levels of both types of error variance chosen for this
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study reflect realistic levels of uncertainty. However, the prior uncertainty

levels that we tested range from providing a nearly perfect prior estimate to

an almost completely uninformative prior estimate. This range is important

in these OSSEs in order to acquire a full picture of the information provided

by MethaneSat. In the real world, however, the error variance on a prior

estimate for a given region would likely be a smaller subset of the range tested

here. Thus, the posterior estimate is not necessarily more sensitive to the prior

uncertainty – rather, the range we tested is effectively wider than the range

tested for pseudo-data uncertainty.

Another interesting result is the wide variability in the posterior total

emission estimates produced with the NOAA network and GOSAT. Even

when there was no error applied to the pseudo-data, meaning that the only

difference between iterations was the prior estimate, both systems gave a wide

IQR – much wider than that of MethaneSat. This indicates that the NOAA

network and GOSAT rely a great deal on the prior emission estimate. In

contrast, MethaneSat’s high sampling density was able to constrain emissions

regardless of the prior estimate. This could present problems in using the

NOAA network or GOSAT to constrain emissions in regions where we have

little prior knowledge. Although MethaneSat did not always provide perfect

results at high levels of prior error variance, it performed well in constraining

total emissions, their distribution, and steep gradients in the region of interest,

at all levels of error tested.
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Other Findings

Another interesting result of this study is the performance of the non-

negativity algorithm. Overall, the non-negativity algorithm produced worse

results than the regular algorithm. Emissions were overestimated, and the

sharp gradient was smoothed. The effect was more severe with high levels

of prior error variance. These results are not unsurprising, considering the

strategy of the non-negativity algorithm. When there is a sharp peak in

emissions, the optimal estimate (ŝ, from Equation 4) will sometimes include

negative values in some grid cells. The non-negativity algorithm recalculates

these values, and therefore does not necessarily conserve the total emissions

or the gradients in the same way that the regular algorithm does. Overall,

the non-negativity algorithm resulted in more error when constraining total

emissions, their distribution, and sharp gradients. These results should be

considered when using this algorithm in future studies.

A final interesting result was that, while MethaneSat performed better than

the NOAA network and GOSAT in constraining the total mean, spatial dis-

tribution, and gradient of emissions, posterior error (calculated from Vŝ) was

comparable for all three systems for the full OSSEs. This is possibly a result

of error in the transport model. However, despite the similar pixel-to-pixel

posterior error across all three observing systems, MethaneSat’s high spatial

resolution was able to overcome this limitation for aggregated properties, such

as total mean emissions and their spatial gradient. This is a promising result,

given the importance of these aggregated properties in real-world applications.

59



Conclusion

There is currently a gap in available observing systems’ abilities to quantify

methane emissions from oil and gas production regions around the world,

and discriminate them from other sources. We performed observation system

simulation experiments (OSSEs) to demonstrate the new information that

would be provided by MethaneSat, a satellite that has been proposed to fill

this gap.

Our results were informative and encouraging. The OSSEs demonstrated

the ability of MethaneSat to constrain total emissions in the Barnett Shale

region, as well as their spatial distribution and sharp gradients. The high

variability of the results for the NOAA network and GOSAT indicate heavy

reliance on the prior estimate, and the insufficiency of those observations for

correcting a poor prior estimate. Even with high uncertainty on the prior

estimate, MethaneSat was able to closely constrain methane emissions in the

Barnett Shale region, likely due to its high sampling density. This is support

for the great value that MethaneSat would add in constraining emissions from

regions for which we have little information, or from regions in which we

suspect the presence of steep emission gradients.

The results from this experiment invite further investigation. Another
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valuable topic to address would be how well the various observing systems

distinguish between source types, such as oil and gas production sites, cattle

farms, and landfills. The Barnett Shale region itself includes more methane

sources than just oil and gas, so this could be a potential extension of the

present study. Another extension would be to potentially increase the res-

olution of the inversion, given the high proposed resolution of MethaneSat.

This would allow us to investigate the question of at how high a resolution

MethaneSat can retrieve emissions.

Another topic to consider is the generation of the prior emission estimate.

We generated the prior estimate by perturbing the true emission field with a

Gaussian random field. Another option could be to generate the perturbations

from a Gamma distribution, which is positive but can have zero bias around

a positive mean. A third possibility would be to generate a prior estimate

based on another existing emissions inventory, such as the one produced by

the Emissions Database for Global Atmospheric Research (EDGAR), scaled

to be unbiased with respect to our target emissions inventory. In either case, it

might also be useful to use the same prior estimates across observing systems,

in order to eliminate the effect of these differences on the results.
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Appendix

The total posterior emissions for the Barnett Shale region, not including

any surrounding cells, can be found in Tables 4-9. The units for pseudo-data er-

ror variance are ppm2, and the units for prior error variance are (µmol m−2 s−1)2.

Table 4: Total posterior emissions (Tg/year) in the Barnett Shale region from
the NOAA network, using the non-negativity algorithm.

NOAA Network (No-Neg Algorithm) - Barnett Exclusively

Prior Error Pseudo-Data Error Variance
Variance 0.01 0.0056 0.0025 0.0009 0.0001

0.005 1.458 1.355 1.249 1.146 1.039
0.001 1.033 1.001 0.959 0.915 0.889
0.0005 0.880 0.882 0.882 0.871 0.877
0.0001 0.899 0.873 0.836 0.788 0.756
0.00005 0.858 0.851 0.839 0.819 0.771
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Table 5: Total posterior emissions (Tg/year) in the Barnett Shale region from
GOSAT, using the non-negativity algorithm.

GOSAT (No-Neg Algorithm) - Barnett Exclusively

Prior Error Pseudo-Data Error Variance
Variance 0.01 0.0056 0.0025 0.0009 0.0001

0.005 1.328 1.191 0.997 0.821 0.672
0.001 0.963 0.928 0.879 0.822 0.773
0.0005 0.992 0.963 0.915 0.847 0.773
0.0001 0.874 0.869 0.860 0.845 0.800
0.00005 0.746 0.747 0.748 0.752 0.759

Table 6: Total posterior emissions (Tg/year) in the Barnett Shale region from
MethaneSat, using the non-negativity algorithm.

CH4Sat (No-Neg Algorithm) - Barnett Exclusively

Prior Error Pseudo-Data Error Variance
Variance 0.01 0.0056 0.0025 0.0009 0.0001

0.005 1.156 1.129 1.043 0.923 0.874
0.001 0.874 0.885 0.873 0.859 0.798
0.0005 0.865 0.863 0.880 0.869 0.819
0.0001 0.744 0.754 0.765 0.785 0.800
0.00005 0.754 0.757 0.763 0.774 0.794

Table 7: Total posterior emissions (Tg/year) in the Barnett Shale region from
the NOAA network, using the regular algorithm.

NOAA Network - Barnett Exclusively

Prior Error Pseudo-Data Error Variance
Variance 0.01 0.0056 0.0025 0.0009 0.0001

0.005 0.291 0.325 0.407 0.678 0.543
0.001 0.710 0.684 0.690 0.714 0.734
0.0005 0.745 0.727 0.740 0.766 0.769
0.0001 0.847 0.802 0.730 0.663 0.670
0.00005 0.845 0.829 0.803 0.762 0.724
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Table 8: Total posterior emissions (Tg/year) in the Barnett Shale region from
GOSAT, using the regular algorithm.

GOSAT - Barnett Exclusively

Prior Error Pseudo-Data Error Variance
Variance 0.01 0.0056 0.0025 0.0009 0.0001

0.005 0.864 0.811 0.768 0.729 0.709
0.001 0.810 0.784 0.775 0.797 0.786
0.0005 0.849 0.789 0.731 0.710 0.725
0.0001 0.859 0.845 0.816 0.779 0.753
0.00005 0.741 0.738 0.730 0.719 0.722

Table 9: Total posterior emissions (Tg/year) in the Barnett Shale region from
MethaneSat, using the regular algorithm.

CH4Sat - Barnett Exclusively

Prior Error Pseudo-Data Error Variance
Variance 0.01 0.0056 0.0025 0.0009 0.0001

0.005 0.691 0.724 0.751 0.774 0.821
0.001 0.742 0.735 0.736 0.756 0.772
0.0005 0.797 0.792 0.790 0.795 0.796
0.0001 0.738 0.744 0.753 0.770 0.790
0.00005 0.752 0.753 0.757 0.765 0.782
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