

DEFINITION

OSHA defines combustible dust as: "A solid material composed of distinct particles or pieces, regardless of size, shape, or chemical somposition," which presents a fire or deflagration hazard when suspended in air or some other oxidizing medium over a range of concentrations."

COMMON TYPES OF COMBUSTIBLE DUST

COMMON TYPES OF COMBUSTIBLE DUST 2. Metals: A. Aluminum B. Titanium Image: Second Second

Agricultural Products Egg white Milk, powdered Milk, powdered Milk, nornt, strate Starch, orn Starch,	Cottonsed Garlic powder Gluten Gluten Gluten Hops funalted Lemon peel dust Lemon peel dust Lemon puel Locast bean gum Malt Locast bean gum Malt Locast bean gum Malt Locast bean gum Malt Locast bean gum Malt Dong raintets Onion powder Paraley (dohydrated) Paraley (dohydrated) Potato flour Potato flour Potato flour Rice stour Rice starch Semolina	Soyboan dust Spice dust Spice dust Spice powder Sugar (100 Burger) Sugar (100 Burger) Sugar (100 Burger) Sugar (100 Wahat dust Wahat dust Wahat granch Wahat granch Wahat granch Wahat granch Cast bhuminous Cast bhumin	Chemical Dusts Adipic acid Anthraquinone Actoritic acid Calcium stearate Calcium stearate Calcium stearate Daxtin Lusd stearate Methy-colluiose Daxtin Methy-colluiose Sodium ascotoale Sodium as	Epoxy resin Melamine resin Melamine, molded (phenol: cellulose) (phenol: cellulose) (phenol: cellulose) (minerafilite) (phenol: residue) (phy) Methyla servjate, emulsion polymer (poly) Methyla servjate, emulsion polymer (poly) Methyla settatal (phy) Vinyl settatal (phy) Settatal (phy) Settatal (phy) Settatal (phy) Settatal
---	--	--	--	---

Code Requirements

MERICAN SOCIETY OF SAFETY PR

3

APPLICABLE CODES

- 2015 International Fire Code (IFC)
 - Chapter 22 Combustible Dust-Producing Operations
- National Fire Protection Association
 - NFPA 652 Standard on Fundamentals of Combustible Dust
 NFPA 654 Standard for the Prevention of Fire and Dust Explosions from the
 - Manufacturing, Processing, and Handling of Combustible Particulate Solids
 - NFPA 61 Standard for the Prevention of Fires and Dust Explosions in Agricultural and Food Processing Facilities

NFPA

- NFPA 484 Standard for Combustible Metals
- NFPA 655 Standard for the Prevention of Sulfur Fire and Explosions
- NFPA 664 Standard for the Prevention of Fires and Explosions in Wood Processing and Woodworking Facilities

EPTEMBER 30, 2019

NFPA 652

- NFPA 652 *Standard on the Fundamentals of Combustible Dust* • Section 1.1 – Scope:
 - "This standard shall provide the basic principles of and requirements for identifying and managing the fire and explosion hazards of combustible dusts and particulate solids."

• Section 5.2.1

- Determination of combustibility or explosibility shall I be based upon either:
 - Historical facility data or published data deemed represen materials and conditions.
 - Analysis of representative samples.

NFPA 652

- NFPA 652 Standard on the Fundamentals of Combustible Dust
- Dust Hazards Analysis (DHA) Requirements
- Section 7.1.1.1:
 - "A DHA shall be completed for all new processes and facility compartments."
- Section 7.1.1.2:
 - "For existing processes and facility compartments, a DHA shall be completed by <u>September 7, 2020</u>."
- Section 7.1.1.3:
 - "The owner/operator shall demonstrate reasonable progress each year in completing DHAs prior to the deadline set in 7.1.1.2."

SEPTEMBER 30, 2019

NFPA 652

• Section 7.1.2:

- "The **owner/operator** of a facility where materials determined to be combustible or explosible in accordance with Chapter 5 are present in an enclosure **shall be responsible** to ensure a DHA is completed in accordance with the requirements of this chapter."
- Section 7.1.3:
 - "The absence of previous incidents shall not be used as the basis for not performing a DHA."
- Section 7.1.4:

ABER 30, 2019

• "The DHA shall be reviewed and updated at least every 5 years."

Properties of Dust

MERICAN SOCIETY OF SAFETY PRO

DUST TESTS

- Maximum Pressure Developed by the Deflagration (P_{max})
- Maximum Rate of Pressure Rise (dP/dt)_{max}
- Volume Normalized Rate of Pressure Increase $(\mathrm{K}_{\mathrm{St}})$
- Minimum Explosible Concentration (MEC)
 Minimum Ignition Energy (MIE)

within and gridlon Energy (wite)	A REAL PROPERTY AND A REAL	
	MIE	Minimum ignition energy, the smallest amount of heat or energy that can cause your dust to ignite
	MEC	Minimum explosive concentration, the smallest amount of dust in the air that will ignite to cause an explosion.
	РМАХ	Maximum pressure, the greatest amount of pressure and maximum amount of damage that your dust can cause is an enclosed space
SEPTEMBER 30 2019		AMERICAN SOCIETY OF SAFETY PROFESSIONALS

PARTICULATE SIZE

- Rate of combustion depends on particle size.
- The smaller the average particle size:
 - The greater the rate of combustion.
- The more hazardous the particulate.
- Rarely are all particles the same size.
 Usually shown as a distribution.
- \bullet The generally accepted size criterion for flame propagation is 500 μ (passing U.S. #35 sieve).

CONCENTRATION

ABER 30, 2019

- Deflagration hazard when dust cloud concentration ranges between: • Greater than or equal to the lower explosive limit (LEL)
- Less than or equal to the upper explosive limit (UEL) rarely available figure
- Laboratory tests will determine the Minimum Explosible
- Concentration (MEC)

BER 30, 2019

- This figure is measured in grams/cubic meter (g/m³).
- Typically decreases with decreasing particle size (i.e. the smaller the particle, the lower the concentration needed for explosibility).

AMERICAN SOCIETY OF SAFETY PRO

• Variations occur - MEC is lowered as the diameter of particles decreases.

MOISTURE CONTENT

- Moisture in particles raises minimum ignition temperature (MIT).
 - Increases agglomeration of particles.
 - Heat is absorbed during heating and vaporization of the moisture.
- Direct relationship between moisture content and:
 - Minimum ignition energy (MIE)
 - Minimum explosible concentration (MEC)
 - Maximum pressure developed by deflagration $(\mathrm{P}_{\mathrm{max}})$
 - Maximum rate of pressure rise (*dP/dt*)_{max}

SEPTEMBER 30, 2019

MAXIMUM DEFLAGRATION PRESSURE

conditions

- Maximum Pressure Developed by the Deflagration (P_{max})
 - The maximum pressure produced during a deflagration
 - P_{max} is determined in accordance with ASTM E 1226,
 - Standard Test Method for Explosibility of Dust Clouds
 Demonstrates the power of the dust particles under ideal

MERICAN SOCIETY OF SAFETY PR

RATE OF PRESSURE INCREASE

• Volume-Normalized Rated of Pressure Increase (K_{st})

- Also referred to as the Deflagration Index
- The maximum rate of pressure increase normalized to the volume in which the rate was measured.

Examples of K_{st} Values for Different Types of Dusts

Dust explosion class*	K _{st} (barm/s)*	Characteristic*	Typical material**
St 0	0	No explosion	Silica
St 1	>0 and ± 200	Weak explosion	Powdered milk, charcoal, sulfur, sugar and zinc
St 2	>200 and ± 300	Strong explosion	Cellulose, wood flour, and poly methyl acrylate
St 3	>300	Very strong explosion	Anthraguinone, aluminum, and magnesium
The actual class is sat characteristics of the	mple specific and v material such as p	vill depend on varying article size or moisture.	
The second s			

Fire & Explosion Hazards

FIRE TETRAHEDRON

- Fire comprises 4 parts:
 - Fuel (something that will burn)
 - Heat (enough to make it burn)
 - Oxygen
 - Chain Reaction

FLASH FIRE

NFPA 652 defines as: "A fire that spreads by means of a flame front rapidly through a diffuse fuel, such as dust, gas, or the vapors of an ignitable liquid, without the production of damaging pressure."

DEFLAGRATION

NIF PAR 65 2 defines age: expanding ball of flame that is reproduced by the second of combustion zone at a

velocity that is less Usually, deflagrations rapidly produce large increases in **passad increases** in **passad increases** occur within a **configure cedentie** dium."

SEPTEMBER 30, 2019

DEFLAGRATION

- 4 Conditions Necessary for Dust Deflagration:
 - Combustible particulate of sufficiently small particle size to be deflagrable (i.e. explosible).
 - Deflagrable (i.e. explosible) particulate suspension of sufficiently high concentration.
 - Deflagrable (i.e. explosible) particulate is suspended in air or other oxidizing medium (i.e. sufficient oxygen concentration).
 - Source of ignition is strong enough to ignite where applied to the suspension that is of sufficient concentration for flame propagation.

J. M. Cholin Consultants, Inc.

DEFLAGRATION

- Liberate large quantities of heat very rapidly.
- Increases the air temperature rapidly.
- Causes the air and combustion product gases to expand rapidly.
- Rapid heating & expansion causes large pressures to develop.
- Pressure increase produces a radiating acoustic wave.
- Pressure increase causes rapid flow of combustion product gases.

N SOCIETY OF SAFETY PR

J. M. Cholin Consultants, Inc. EPTEMBER 30, 2019

DETONATION

ABER 30, 2019

NFPA 68 defines as: "Propagation of a combustion zone at a velocity greater than the speed of sound in the unreacted medium."

EXPLOSION

ABER 30, 2019

NFPA 69 defines as: "The bursting or rupturing of an enclosure or container due to the development of internal pressure from a deflagration."

The <u>explosion</u> is the <u>result</u>.

The <u>deflagration</u> is the <u>process</u> that causes the result.

FLASH FIRE VS. DEFLAGRATION VS. EXPLOSION

SECONDARY EXPLOSION

Dust deflagration in process equipment causes failure.

Produces a strong disturbance in the form of a blast wave and associated air motion.

Disturbance causes settled dust into suspension and forms a combustible dust cloud.

Cloud often ignited by the flame that has emerged from the equipment.

DUST LAYER DEPTH

- NFPA 654 Layer Depth Criterion is 1/32" (0.8 mm)
- Dust explosion or flash-fire hazard exists if:
 - Total area of nonseparated dust accumulations exceeding the layer depth criterion is greater than 5% of the footprint area.
 - Area of any single nonseparated dust accumulation exceeding the layer depth criterion is greater than 1000 ${\rm ft}^2.$
 - Total volume of nonseparated dust accumulations is greater than the layer depth criterion multiplied by 5% of the footprint area.
 - Total volume of any single nonseparated dust accumulations is greater than the layer depth criterion multiplied by 1000 $\rm ft^2.$

ERICAN SOCIETY OF SAFETY PROF

AMERICAN SOCIETY OF SAFETY PRO

- Mass Method A
- Mass Method B
- Risk Assessment Method

SEPTEMBER 30, 2019

SER 30, 2019

HAZARD MANAGEMENT

- Control of Ignition Sources
- •Control of Concentration
- •Explosion Protection

CONTROL OF IGNITION

- •Mechanical Sparks & Friction
- •Electrical Equipment per NFPA 70
- •Static Electricity
- •Cartridge-Actuated Tools
- •Hot Work
- •Process & Comfort Heating Equipment
- Hot Surfaces SEPTEMBER 30, 2019

CONTROL OF CONCENTRATION

- •Control of Oxidant Concentration
- •Control of Fuel
- Housekeeping

14

WEST PHARMACEUTICAL SERVICES

- January 29, 2003
- Kinston, NC • Fine Plastic Powder
- 6 Deaths
- 36 Injured

CTA ACOUSTICS

• February 20, 2003 • Corbin, Kentucky

Resin Dust

 Resin was a phenolic binder used to produce fiberglass mats • 7 Deaths

• 37 Injured

DIDION MILLING

• May 31, 2017

- Cambria, Wisconsin
- Corn Dust
- •5 Deaths
- •14 Injured

Owner Responsibilities

OWNER RESPONSIBILITIES

- Determine combustibility and explosibility hazard of materials.
- Conduct a Dust Hazard Analysis (DHA)
 A systematic review to identify and evaluate the potential fire, flash fire, or explosion hazards.

IN SOCIETY OF SAFETY PRO

- Manage identified fire, flash-fire, and explosion hazards.
 - A prescriptive approach.
- A performance-based approach.
- Communicate hazards to affected personnel.
- Establish written Safety Management System.

SEPTEMBER 30, 2019

