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ABSTRACT 
 

Astrophysical jets emitted at the poles of many black holes are difficult to 
explain because the gravitational force is presumed too powerful to allow 
for the escape of massive particles from the hole.  However, if Directed 
Gravity (relativistic beaming of the gravitational force) applies to black 
holes, then the gravitational force in the polar directions should be reduced, 
allowing the pressure differential to overcome gravity, such that jets of 
superfluid neutrons can escape the black hole at the poles.   
 
I first apply the theory to neutron stars, and then apply it to black holes.  I 
will calculate the expected jet speed for a canonical neutron star, as well as 
for the jets of the stellar mass black hole Cygnus X-1, and the 
supermassive black hole M-87*.  I rely on my paper "Relativistic Beaming 
of Gravity and the Missing Mass Problem," Thejournalofcosmology.com, 
Vol.26, No. 27.  I also rely on my paper "A Proposed Unification of Neutron 
Stars and Black Holes," which is available at my website at 
Directedgravity.com.   
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1. Introduction 

 

Without doubt, incorrect assumptions have at times held back the progress of 

science.  For example, the assumption that the Earth is the center of the Universe, 

that everything rotated around the Earth, persisted for millennia.  A complex and 

ultimately useless theory of Epicycles was developed to explain the occasional 

retrograde motion of Planets.  It was not until Copernicus set aside the incorrect 

assumptions of the Geocentric model, and Galileo followed up with observations 

of Jupiter’s moons, that science was able to progress on that issue.   

The current problem of explaining astrophysical jets is extremely difficult to solve.  

This is especially true for Active Galactic Nuclei, AGNs, which are believed to 

contain Supermassive Black Holes (SMBHs).  The Jets appear to originate at or 

near the rotational poles of the SMBHs.  However, the jets from SMBHs are not 

believed to originate inside the SMBH, because of certain well-accepted 

assumptions, one of which is the No-Hair Theorem, and another is the implicit 

assumption the gravitational force emitted from an object is generally isotropic.  

These two assumptions will turn out to be of questionable validity, but together, 

they make it almost impossible to explain astrophysical jets from black holes.   



The modern approach is to say that only Poynting flows escape the black hole, 

which would be possible because they are only electromagnetic and do not 

contain massive particles, and thus do not violate the No-Hair Theorem. (Romero 

& Gutierrez, 2020).   Then, somehow, outside of the black hole, mass is injected 

into the Poynting flows, resulting in an astrophysical jet.  Here is where the 

difficulties arise.  Many different attempts are made to explain the injected mass, 

none of which are very convincing, or which can be made quantifiable.  (Romero 

& Gutierrez, 2020).  Processes which are poorly understood and not very 

quantifiable, such as the Blandford-Znajek process, are invoked as attempted 

explanations.  All the while, one of the most powerful engines in the universe, the 

black hole itself, is not allowed to participate directly in the process, because of 

the widely held assumptions such as the No-Hair Theorem and the generally 

isotropic nature of gravity.   

In this paper I will set aside these unjustified assumptions.  Doing so will result a 

relatively simple and easily understood theory, which will explain how 

astrophysical jets originate inside neutron stars and black holes and are emitted 

from the poles of these compact objects.    This theory should lead to quantifiable 

results and predictions, and should help science progress.     

2. The Assumptions 
 

Assumption #1: The No-Hair Theorem 

The first assumption which prevents us from finding the solution to astrophysical 

jets is the No-Hair Theorem, as it is presently understood.  Originally, the No-Hair 

Theorem meant only that the event horizon of a black hole would remain a 

smooth surface.  Thus, any ripples or imperfections in the event horizon would 

eventually disappear such that the event horizon would remain smooth and even.  

(i.e., the surface would have no “hair.”) (See Thorne, K.S. 1994).  It has long been 

believed that no particles of matter can exit a black hole, because of the extreme 

gravity.  However, this belief has been wrapped into the No-Hair Theorem such 

that these days the No-Hair Theorem means that no matter particles can escape 

the black hole, or alternatively, that black holes can be characterized by only 



three parameters, mass, charge, and angular momentum.  (Mavromatos, N. E. 

1996) Of course, the gravitational and electromagnetic forces readily escape black 

holes, as they are not covered by the No-Hair Theorem.    

It is generally conceded that the No-Hair Theorem has never been proven for 

black holes.  Thus, it is called by mathematicians the “No Hair Conjecture.”   

(Mavromatos, N. E. 1996).  As such, it is basically an assumption.  If one believes 

in the strong version of the No-Hair Theorem, then of course the massive particles 

of astrophysical jets could not originate inside the black hole.  However, there is 

good reason to believe the strong version of the No-Hair Theorem is false, as you 

will see in the following discussion of the assumption of isotropic gravity.   

Assumption #2: The Gravitational Force is Generally Isotropic 

This generally unstated assumption has been believed for so long that many of us 

are undoubtedly unaware we are making it!  It comports with our usual 

observations, and it is hard to think of any reasons not to believe it is true.  Of 

course, the Kerr solution for a rotating spherical object is not isotropic, but is 

instead axisymmetric.  This fact should make us receptive to the idea that gravity 

can be other than isotropic.  There is a situation where the emission of the 

gravitational force is very far from isotropy, which I will explain below.   

If an object is approaching us at velocity approaching the speed of light, it is well 

known that light emitted by the object is relativistically beamed in our direction.  

(Carroll et al., 2006, p.101) Thus, the angles of emission, as measured in the 

reference frame of the relativistically moving object, become smaller according to 

us in our reference frame, such that the light is correspondingly of higher 

intensity (brighter). (Carroll et al., 2006, p.101)  

Why should not the same effect of relativistic beaming apply to gravity?  If we 

look at the angles at which gravity is emitted from a relativistically approaching 

object, should they not also become smaller from our point of view?  In general 

relativity, does not the existence of inertial frames imply that, at least on the 

smallest scale, the metric must be the Minkowski metric?  (see Hobson et al, 

2006, p.1) So, if we are looking at the point of emission of gravity, the tiniest scale 



is relevant, and the emission angle should be well-defined, and that angle should 

be reduced from our perspective, just as it is with light.  Thus, relativistic beaming 

should apply to gravity as well as light.  This effect is more carefully argued in my 

paper, “Relativistic Beaming of Gravity and the Missing Mass Problem,” (Blake, 

B.C. 2022) 

If relativistic beaming of gravity does exist, then the gravitational force from a 

relativistically moving object is not emitted isotropically from the point of view of 

stationary observers such as ourselves. Instead, emission is concentrated in the 

direction of the observer.  Of course, any physical effect is ultimately determined 

by observation and experiment.  But logic, and the need for consistency between 

the Special and General Theories, indicates that relativistic beaming of gravity 

probably exists.   

Why Relativistic Beaming of Gravity Matters 

When would relativistic beaming of gravity be observable, and why would it 

matter?  As a practical matter, relativistic beaming of gravity, which I also call 

“Directed Gravity,” should become apparent for certain compact objects such as 

neutron stars and black holes.  If such a compact object is rotating such that an 

appreciable portion of its mass is moving with relativistic speeds as seen by an 

outside observer, then the gravitational force emanating from that mass should 

experience relativistic beaming.  Simple geometrical arguments show that the 

gravity will be beamed into the rotational plane of the compact object.  (Blake, 

B.C. 2022).   The beaming will strengthen the gravitational force felt by objects in 

the rotational plane, and weaken that force felt by objects outside the plane.  The 

force will be weakest in the polar directions.   

If relativistic beaming of gravity does occur, as I believe it must, then directed 

gravity becomes the exception to the generally isotropic nature of gravity as is 

widely assumed.  This anisotropy of gravity becomes very important.  It may 

explain the failure of Kepler’s Laws to describe the outer motions in galaxies, i.e., 

the missing mass problem.  (Blake, B.C. 2022).   Thus, relativistic beaming of 

gravity will be essential to understanding the structure and stability of galaxies, as 

well as the stability of galaxy clusters.  But for the topic of this paper, directed 



gravity will be necessary for understanding how beams of massive particles can 

escape the interiors of neutron stars and black holes in the form of relativistic 

jets.   

3. Directed Gravity as Applied to Neutron Stars 
 

Neutron stars are degenerate objects that result from the collapse of giant stars.  

They are believed to contain a core which is composed primarily of degenerate 

neutrons in a superfluid state.  (Carroll & Ostlie, 2006, p.583).  Superfluids are 

irrotational, so for the core to rotate, vortices are believed to form in the neutron 

superfluid, each of which would provide a quantized amount of rotation.  

(Guenault, 2002, pp. 43-49).  In this paper, I adopt this commonly held view of 

neutron star rotation.  

The superfluid theory of neutron star rotation is important to directed gravity.  

Suppose a neutron star were a solid object that did not contain a superfluid core.  

Then the maximal rotation would occur only at the outer edges of the equator.  

Thus, if relativistic rotation were present, it would likely only occur there, so that 

the mass exhibiting directed gravity would be minimal.  However, because the 

core is believed to be a superfluid, the maximal rotation will occur around each 

vortex throughout the core, greatly increasing the mass subject to relativistic 

rotation and directed gravity, especially if the core is a significant portion of the 

neutron star.   

  Neutron Star Hydrodynamics 

Before presenting the mathematical derivations, I wish to provide a general 

outline of our approach.  We will use a Newtonian derivation for the 

hydrodynamical situation, because that will best illustrate the interplay of forces 

at work.  Of course, for a calculation with greater precision, one should follow up 

with a calculation using relativistic hydrodynamics.  We will assume the neutron 

star is hydrodynamically stable, with the force of gravity balancing the pressure at 

each point of the star, except for any effects of directed gravity.   We are 

interested in the core of the star, which we consider to be composed of superfluid 



neutrons relativistically rotating around vortices which extend in the polar 

directions.  The relativistic rotation will cause directed gravity, which will increase 

the gravitational force in the equatorial plane of the star, but will correspondingly 

decrease the gravitational force in the polar directions.  (Blake, B.C. 2022). The 

decrease in gravity will cause the pressure differential to overcome the 

gravitation, causing acceleration of a stream of superfluid neutrons in the polar 

directions.  Since a superfluid generally exhibits no friction (as long as it does not 

exceed a critical Landau velocity) (Guenault, 2002, p.17), we can easily calculate 

the velocity of the stream of neutrons as it exits the poles of the neutron star.   

Of prime importance will be the state of the vortices in the core.  Should the 

vortices be tangled, we can expect the star to have no jet.  But if they are parallel, 

or have merged, then we should expect to see a jet.   

Mathematical derivation of Neutron Star Hydrodynamics 

Stable stars, including neutron stars, are expected to satisfy the condition of 

hydrostatic equilibrium.   (Carroll & Ostlie, 2006, p.287).  Such a neutron star will 

have a balance between the gravitational force at radius r and the pressure 

differential at that same radius.  The equation which expresses this balance is: 

𝑑𝑃

𝑑𝑟
= −𝐺

𝑀𝑟𝜌

𝑟2
= −𝜌𝑔 

 

(1) 

(Carroll & Ostlie, 2006, p.287) 

Where P is the pressure, r is the radius, G the gravitational constant, Mr , is the 

enclosed mass at that radius, ρ is the density, and g is the gravitational 

acceleration at r caused by the enclosed mass Mr.   

 However, in this paper I propose that directed gravity will cause decreased 

gravitational force in the polar directions.  Assuming that the neutron star is 

otherwise stable, we can use the precursor equation to the equation of 

hydrostatic equilibrium to estimate with what velocity the beam of particles will 

exit the surface of the neutron star.  That precursor equation is:  

 



𝜌
𝑑2𝑟

𝑑𝑡2
= −𝐺

𝑀𝑟𝜌

𝑟2
−

𝑑𝑃

𝑑𝜌
 

 

(2) 

(Carroll & Ostlie, 2006, p.286) 

 

Where d2r/dt2 will be the acceleration of the beam of particles.  Note that we do 

not need to insert a term for friction on the right- hand side, because the 

superfluid neutrons are presumed frictionless.   

 So, the plan will be to take a neutron star of characteristic size and mass, 

make assumptions about how fast the superfluid core is rotating, and calculate an 

estimate for the velocity of the resulting beam of matter.  We want to see if the 

resulting velocity would be relativistic.   

 We will consider a canonical neutron star of mass, MNS = 1.4M☉, and radius, 

R = 10 km.  The first thing we must determine is an estimate of the central 

pressure.  To do so, we will make the unrealistic assumption that the density, ρ, is 

constant.  This same procedure is followed in Carroll and Ostlie.  This will simplify 

the math, and it is a conservative assumption that will likely underestimate both 

the central pressure and the exit velocity of the beam of particles.  With the 

assumption that the density is constant, the equation for estimating the central 

pressure for a star, here a neutron star, is: 

𝑃𝑐 ≈
2

3
𝜋𝐺𝜌2𝑅𝑁𝑆

2  

 
(Carroll & Ostlie, 2006, pp.492, 559) 

 

(3) 

For MNS = 1.4M☉ and R = 10 km, we use the relation ρ= M/V to obtain ρ = 6.648 × 

1017kg m-3.  Then using equation (3) above, we obtain for the central pressure: 

𝑃𝑐 ≈ 6.1780 × 1033𝑁𝑚−2 



Next, we need to estimate dP/dr, given the assumptions that ρ is constant, and 

P=0 at the surface of the neutron star.  We do this as follows: 

 

𝑑𝑃

𝑑𝑟
≈

𝛥𝑃

𝛥𝑟
=

𝑃𝑠 − 𝑃𝑐

𝑟𝑠 − 𝑟𝑐
=

0 − 𝑃𝑐

𝑟𝑠 − 0
= −

𝑃𝑐

𝑅𝑁𝑆
 

 
  
  

 

And we insert the numbers to get: 

(4) 
 
 
 

 

𝑑𝑃

𝑑𝑟
≈ −

𝑃𝑐

𝑅𝑁𝑆
=

−6.1780 × 1033𝑁𝑚−2

10,000 𝑚
= −6.178 × 1029𝑁𝑚−3 

 

(5) 

 

Where Ps is pressure at the surface, Pc is pressure at the center, rs is radius at the 

surface, and rc is radius at the center.   

 Next, we need to determine g, the gravitational acceleration resulting from 

the enclosed mass.  From equation (1) above, we see that: 

 

𝑔 = 𝐺
𝑀𝑟

𝑟2
 

 

(6) 

Now we need to take equation (2) and divide each term by ρ.  The result is as 

follows: 

 

𝑑2𝑟

𝑑𝑡2
= −𝐺

𝑀𝑟

𝑟2
−

1

𝜌

𝑑𝑃

𝑑𝑟
 

 

(7) 



Now set d2r/dt2 = 0, which is the condition of equilibrium.  In other words, we are 

assuming that but for directed gravity, the neutron star is stable.  This results in 

the following equation: 

 

𝑔 = 𝐺
𝑀𝑟

𝑟2
= −

1

𝜌

𝑑𝑃

𝑑𝑟
 

 

(8) 

But g = GMrr-2.  Now, by inserting ρ = 6.648 x 1017kg m-3 and dP/dr ≈ -6.178 x 1029 

N m-3, each computed above, we obtain: 

 

𝑔 = 𝐺
𝑀𝑟

𝑟2
= −

1

𝜌

𝑑𝑃

𝑑𝑟
= 9.293 × 1011𝑁 𝑘𝑔−1 = 9.293 × 1011𝑚 𝑠−2 

 

(9)  

 Note that g is the effective gravitational acceleration at radius r.  Of course, 

in this case, due to our assumption of constant density, g is constant for all r such 

that RNS ≥ r > 0.   

 We are nearly ready to apply equation (2), the precursor to the equation of 

hydrostatic equilibrium, to determine the exit speed of the beam of particles.  But 

first, we must estimate to what extent the gravitation is reduced in the polar 

directions.  This will depend on how fast is the state of rotation in the superfluid 

core.  Let us assume an ansatz for the purpose of definiteness that the core 

rotates at 0.9c.   

 We will make our estimate by examining Figure (2) from my paper 

“Directed Gravity and the Missing Mass Problem,” (Blake, B.C. 2022).  Figure (2) 

(reprinted below as Figure (1)) illustrates the amount of relativistic beaming of 

gravity for different velocities of v, and is based upon Einstein’s formula for 

relativistic beaming of light.  We can estimate the reduction of gravitational force 

in the polar direction at 0.9c by comparing Figure 1(a) and 1(e).  Simple inspection 

shows about 6 force arrows between 60° and 120° for Figure 1(a), with no 



beaming, while one sees about 2 force arrows between the same two degrees for 

Figure 1(e), for v = 0.9c.  Projecting to the surface, we would have 36 force arrows 

in the first case, and 4 force arrows in the second.  Since 36 / 4 = 9, we expect the 

gravitational force in the polar direction to be about 1/9th as strong for the v = 

0.9c case than if the gravitation were isotropic.   

 

Figure 1   

 

Figure 1.  This figure illustrates the amount of relativistic beaming of gravity for 
different values of the velocity v.  Figure 1(a) shows that there is no beaming for 
v = 0.  Figures 1(b) through 1(f) show increasing amounts of beaming for 
successively higher values of v as it approaches c. The figure is taken from Blake, 
B.C. 2022, and is reprinted with permission of the publisher, The Journal of 
Cosmology.   I created this figure using the compass program from MATLAB® by 
adjusting the inputted angles using Einstein’s relativistic beaming formula, Eq. 1.  
The compass program from MATLAB® has copyright 1984-2005 The Mathworks, 
Inc.   



 

Now, we look once again at the precursor equation, eq. (2): 

𝑑2𝑟

𝑑𝑡2
= −𝐺

𝑀𝑟

𝑟2
−

1

𝜌

𝑑𝑃

𝑑𝑟
 

The left-hand side represents the acceleration of the neutron superfluid in the 

core.  The first term on the right-hand side is the acceleration due to gravity, 

while the second term is the acceleration due to the pressure differential.  But we 

have concluded that, because of directed gravity, the gravitational term should be 

reduced, in this case, by a factor of 1/9th.  Thus, for this problem, the equation 

should read: 

 

𝑑2𝑟

𝑑𝑡2
= −(

1

9
)𝐺

𝑀𝑟

𝑟2
−

1

𝜌

𝑑𝑃

𝑑𝑟
 

 

(10)  

 

 

Then, by eq. (8), we have: 

 

𝑑2𝑟

𝑑𝑡2
= − (

1

9
) 𝑔 + 𝑔 =

8

9
𝑔 

 

(11)  

Which simplifies to: 

 

𝑑2𝑟

𝑑𝑡2
=

8

9
(9.293 × 1011𝑚 𝑠−2) = 8.260 × 1011𝑚 𝑠−2 

 

(12)  

Thus, we have determined the acceleration toward the poles for a beam of 

superfluid neutrons in this case to be 8.260 × 1011𝑚 𝑠−2.   



Calculation of the Velocity of the Polar Beams 

Now, we can calculate the exit velocity of the beams at the surface of the neutron 

star.  We wish to determine whether the beams will be relativistic.  We start by 

integrating the acceleration with respect to time.   

 

𝑣(𝑡) = ∫
𝑑2𝑟

𝑑𝑡2
𝑑𝑡 + 𝑣0 

 

(13)  

But 𝑣0 = 0.  So, inserting the value for the acceleration gives: 

 

𝑣(𝑡) = ∫ 8.260 × 1011𝑚 𝑠−2 𝑑𝑡 = 8.260 × 1011 𝑡 

 

(14)  

Next, we will calculate the distance in terms of t by integrating our expression for 

v(t).   

 

𝑑 = ∫ 𝑣(𝑡)𝑑𝑡 + 𝑑0 

 

(15)  

But 𝑑0 = 0.  Inserting the value of v(t) gives: 

 

𝑑 = ∫ 8.260 × 1011𝑡𝑑𝑡 = 4.13 × 1011𝑡2 

 

(16)  

Now, we find t for 𝑑 = 𝑅𝑁𝑆 = 10,000 𝑚.   

 

10,000 𝑚 = 4.13 × 1011𝑡2 
 

(17)  

Which yields: 



 

𝑡 = 1.56 × 10−4𝑠 
 

(18)  

 Now that we have the time when the beam reaches the surface of the neutron 

star, we can easily determine the velocity at that time. 

 

𝑣(𝑡) = 8.260 × 1011𝑡 = 8.260 × 1011(1.56 × 10−4𝑠)
= 1.29 × 108𝑚𝑠−1 = 0.43𝑐 

 

(19)  

Thus, we found that a canonical neutron star, for which the superfluid neutron 

core was rotating at 0.9 c, could emit jets of superfluid neutrons from each pole 

with velocity 0.43 c, based on the theory of directed gravity.   

 

4. Directed Gravity Applied to Black Holes 
 

We can apply the theory of directed gravity to black holes in a similar manner as 

for neutron stars.  I take this approach for several reasons.  Firstly, it is possible 

that black holes in the real world are just neutron stars that are entirely enclosed 

by their Schwarzschild radius.  (Blake,B.C., 2021)  Of course, this idea is contrary 

to the usually accepted picture of a black hole containing a singularity.  Both of 

these ideas rely on Dr. Penrose’s work on trapped surfaces, the difference being 

that singularities depend on the assumption that gravitational collapse continues 

beyond the neutron star stage, while I surmise that such collapse stops at the 

neutron star stage.   

So, I follow my theory of unification of neutron stars and black holes from Blake, 

B.C. 2021, because firstly, it may be true, but secondly, it makes possible the use 

of the same techniques we used above in the calculation of the speed of jets from 

black holes.  Note also that it will predict that black hole jets begin as beams of 

superfluid neutrons, which will become visible once the neutrons begin to decay 



into protons and electrons, allowing for the production of synchrotron radiation if 

magnetic fields are present.    

To apply the theory of directed gravity to black holes, we will first calculate the 

size of the presumed enclosed neutron star.  We will presume that all neutron 

stars have approximately the same average density; so, we will use the density of 

the canonical neutron star in our calculations.  Then we will take the observed 

mass of the black hole, and make that equal to the mass of the enclosed neutron 

star, which is consistent with our approach that black holes are just neutron stars 

inside their Schwarzschild radius.  With the given mass and density, we can then 

calculate the radius of the enclosed neutron star.  This gives us all of the 

information we need to calculate the velocity of the jet in the same manner we 

did for neutron stars.   

4(a) Applying Directed Gravity to Cygnus X-1 

  
Cygnus X-1 is a galactic X-ray source that is believed to be a stellar mass black 
hole.  It’s distance from Earth has been recently reexamined with the conclusion 
that it is further away than previously believed.  This causes a reassessment of its 
mass, with the latest mass determination of 21.2 M☉.  (Miller-Jones et al. 2021)  

 

Applying the analysis described above, we first find the radius of the presumably 
enclosed neutron star, RNS.  Once again presuming that all neutron stars have 
approximately the same density, 𝜌 = 6.648 × 1017𝑘𝑔 𝑚−3, we can divide the 
mass, 21.2 M☉, by the density ρ, above, to get the volume, 𝑉 = 6.343 × 1013 𝑚3, 

which by using the usual formula for the volume of a sphere, implies that 𝑅𝑁𝑆 =
24.74 𝑘𝑚.  
We then use (3) to determine the estimate of the central pressure, 𝑃𝑐 ≈

3.77 × 1034𝑃𝑎, and (4) to obtain dP/dr ≈ −1.53 × 1030𝑁 𝑚−3.  We further 

determine using (8), that 𝑔 = 2.30 × 1012𝑚 𝑠−2 .  Finally, by using (11), we 

determine that the acceleration of the neutron jet is 
𝑑2𝑟

𝑑𝑡2
= 2.04 × 1012𝑚 𝑠−2.   

 
With the acceleration of the jet, we can use simple calculus to find that the 
velocity of the jet equals 1.06 c.  This confirms that the velocity is relativistic.  Of 
course, the actual velocity must be less than c, but we can use this result to 



estimate the gamma factor.  We do this by imagining a Universe that has a speed 
limit either much larger than c, or has no speed limit.  We will calculate the 
Newtonian kinetic energy for that Universe.  Then, we will set the result equal to 
the relativistic kinetic energy in our Universe, and solve for γ.   
 
 

𝐾𝐸 =
1

2
𝑚𝑣2 = 1/2𝑚(1.06𝑐)2 

(20)  
 
 

 

𝐾𝐸𝑟𝑒𝑙 = (𝛾 − 1)𝑚𝑐2 
 

(21)  

Setting  𝐾𝐸 = 𝐾𝐸𝑟𝑒𝑙, and solving for γ, yields γ ≈ 1.56.   

 

4(b) Applying directed gravity to M87 
 

M87 is a giant Elliptical galaxy in the Virgo cluster.  It contains a supermassive 

black hole from which extends a visible blue jet.  We will use the theory of 

directed gravity to obtain an estimate of the speed of the jet, in particular, to 

determine if it should be relativistic.   

For the mass of M87*, the supermassive black hole, we use 7.22 × 109𝑀☉.  

(Miller-Jones et al. 2021)  For density of presumed enclosed neutron star, we 

once again use by assumption the density of a canonical neutron star, 𝜌 =

6.648 × 1017𝑘𝑔 𝑚−3.  For the volume of the enclosed neutron star, we get 𝑉 =
𝑚

𝜌
= 2.16 × 1022 𝑚3.  This results in a radius of the enclosed neutron star, 𝑟𝑁𝑆 =

1.73 × 107𝑚.  Using these figures we then compute the approximate central 

pressure, 𝑃𝑐: 

 

𝑃𝑐 ≈
2

3
𝜋𝐺𝜌2𝑅𝑁𝑆

2 = 1.85 × 1040𝑃𝑎 

 

(22)  



We then obtain, 

 

𝑑𝑃

𝑑𝑟
≈ −

𝑃𝑐

𝑅𝑁𝑆
= −1.07 × 1033𝑁 𝑚−3 

 

(23)  

And for gravitational acceleration, g, of the superfluid neutron stream,  

 

𝑔 = −
1

𝜌

𝑑𝑃

𝑑𝑟
= 1.61 × 1015𝑚 𝑠−2 

 

(24)  

Once again, we will presume an ansatz for definiteness that the linear rotation 

speed around the vortexes in the core of the enclosed neutron star is about 0.9 c.  

This will result in a reduction of the gravitational term in (7) of 1/9, as shown 

above.   

 

𝑑2𝑟

𝑑𝑡2
= −(

1

9
)𝐺

𝑀𝑟

𝑟2
−

1

𝜌

𝑑𝑃

𝑑𝑟
 

 

(25)  

 

 

Then, by ( 11), we have: 

 

𝑑2𝑟

𝑑𝑡2
= − (

1

9
) 𝑔 + 𝑔 =

8

9
𝑔 

 

(26)  

We then obtain for the net acceleration of the jet: 

 



𝑑2𝑟

𝑑𝑡2
=

8

9
(1.61 × 1015𝑚 𝑠−2) = 1.43 × 1015𝑚 𝑠−2 

 

(27) 

Once again, we use simple calculus to obtain the velocity of the jet while within 

the enclosed neutron star: 

 

𝑣(𝑡) = ∫
𝑑2𝑟

𝑑𝑡2
𝑑𝑡 = 1.43 × 1015𝑡   

 

(28)  

The distance from the center, while in the enclosed neutron star, is: 

 

𝑑 = ∫ 𝑣(𝑡)𝑑𝑡 = 7.14 × 1014𝑡2 

 

(29)  

 

 

The time it takes to reach the surface of the enclosed neutron star is: 

 

𝑡 = 1.56 × 10−4𝑠 
 

(30)  

And the resulting velocity at the surface of the enclosed neutron star is: 

 

𝑣(𝑡) = 2.22 × 1011𝑚 𝑠−1 = 742 𝑐 
 

(31) 

This is of course much faster than the speed of light.  We can conclude that the 

Newtonian calculation of the speed of the jet indicates that it is likely relativistic, 

although it could not actually exceed the speed of light.  We can estimate the γ 

factor, as we did for Cygnus X-1.  The result is: 𝛾 ≈ 2.8 × 105, which is also very 

high.  We will discuss how to improve these calculations in the conclusion.   



5. Comparison with Observations 

5(a) Neutron star 

For a canonical neutron star, we calculated a jet speed of 0.43 c, which we 

pointed out should be an underestimate.  We can compare that result with the 

observed estimates of the jet speed of the pulsar in the Light House Nebula, 

estimated at 0.8 c, (Pavan et al. 2014) and the jet speed of the Vela Pulsar, 

estimated at 0.9 c. (Durant et al., 2013 at p. 771).  Of course, both of these pulsars 

are young neutron stars, which resulted from supernova that occurred during 

human history.  It might be appropriate to choose a higher ansatz for the speed of 

rotation of the core than the 0.9 c that I used in my calculations when modelling 

young neutron stars such as these.   

5(b) Cygnus X-1 

For the stellar mass black hole Cygnus X-1, we calculated a jet speed of 1.06 c, 

which is slightly more that the speed of light, which is a relic of our use of 

Newtonian hydrodynamics.  However, we estimated that the gamma factor 

should be about 1.56.  Because the jets of Cygnus X-1 are dark, I am not aware of 

observations of the jet speed, except that the jets are believed to be relativistic.  

We know that there are jets, however, because they impact with the interstellar 

medium and form an energized ring detectable by radio emission. (Gallo et al. 

2005)    

5(c) M-87* 

For the supermassive black hole M-87*, we calculated a jet speed of 709 c, with a 

gamma estimate of 2.5 × 105.  Chandra x-ray observations indicate that parts of 

the jet are moving in excess of 0.99 c, which is a high gamma factor.   (Mohon, L. 

2020) 

 

6. Conclusion 
 

This paper takes the first step in determining whether directed gravity can explain 

the existence of jets emerging from the poles of neutron stars and black holes.  



The first step was to perform the calculations with Newtonian hydrodynamics to 

see whether the result was reasonable, i.e., whether the jets would be relativistic 

as observed.  By this measure the theory was successful for neutron stars, stellar 

mass black holes, and even supermassive black holes.   

The next step should be to revisit these calculations using relativistic 

hydrodynamics.  Of course, one must be sure that the relativistic hydrodynamic 

theory does not have implicit assumptions that are inconsistent with directed 

gravity.  If it does, then a recasting of the hydrodynamic theory may be necessary.   

Another issue relates to my decision to include no friction term in the precursor 

equation (2).  The justification was that the jet was composed of a superfluid of 

neutrons which should be frictionless.  However, most superfluids have a Landau 

critical velocity above which friction results.  My problem was that I have no idea 

what that critical velocity would be for superfluid neutrons, and I have no way to 

reliably estimate it.  The Landau critical velocity could be important, especially for 

supermassive black holes, which might help explain the very high value for γ that I 

found for M-87.  Also, using relativistic hydrodynamics might improve the result.  

Another concern for compact objects is the relative mass of the core as compared 

to the mass of the entire compact object.  If the mass of the core rotating near 

the speed of light is very small compared to the mass of the compact object, then 

the 1/𝑟2 gravity from the rest of the compact object may prevent the jet from 

escaping the compact object.  Then, of course, there would be no visible jet.   

Finally, I would like to point out why the directed gravity solution to the mass 

injection problem is so enticing.  Jets from SMBHs can be hundreds of Kilo parsecs 

long.  (Doeleman et al, 2012) For the beams to travel so far, it would seem likely 

that a major component should be neutrons.  Additionally, the jets stay 

columnated at these extreme distances, requiring special properties of the jet for 

this to occur.  Directed gravity indicates that these jets begin as a relativistic flow 

of superfluid neutrons that are rotating relativistically.  Thus, we have a beam of 

neutrons with extreme angular momentum, allowing for the beam to remain 

stable while travelling such great distances.   
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