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ABSTRACT 
 

In this paper I develop a theory based on the principal of relativistic beaming 
of the gravitational force.  By using Gauss’s Law, I show that compact objects 
such as neutron stars, stellar mass black holes, and the supermassive black 
hole at SgrA*, if rotating relativistically, and in alignment with the rotation 
vector of the galaxy, could possibly explain the missing mass problem for the 
galaxy.  Further, if the theory is considered in the context of the universe as a 
whole, then it is consistent with studies of the Bullet Cluster, because 
neutron stars, black holes and supermassive black holes would not be 
stripped off with the gas in the collision of clusters, but would remain with 
the stars.   
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1. INTRODUCTION 

 
The problem of the missing mass is to understand why galaxies such as the 
Milky Way rotate with flat rotation curves and also why galactic clusters do 
not fly apart, despite the appearance of insufficient mass to maintain those 
structures.  By flat rotation curves, I mean that high surface brightness spiral 
galaxies tend to rotate in such a manner that the stars and gas move at 
similar velocities out to the edge of a given galaxy, rather than moving more 
slowly near the edge as we would expect from Kepler’s laws.  The easy 
solution to these problems is to assume that there exists some new kind of 
matter, termed dark matter, that exists in halos around the galaxies, and 
which provides the needed mass.  The problem with the easy solution is that 
no one has been able to find or identify this dark matter, despite 
considerable theoretical and experimental effort over the last 50 years or so.  
And I really think that Occam would put away his razor and let his beard 
grow out when told that dark matter halo theory requires about five times 
more dark matter than normal baryonic matter to explain the flat rotation 
curves of spirals and the stability of galactic clusters.  (Planck Collaboration et 
al. 2014)   
 
In this paper I will propose a solution to the missing mass problem that 
differs starkly from dark matter halos.  I call it Directed Gravity, by which I 
mean relativistic beaming of the gravitational force.  The key idea is that 
when compact objects such as neutron stars, stellar mass black holes and 
supermassive black holes rotate at nearly the speed of light, the gravitation 
they emit is relativistically beamed in new angles as would be light from such 
a compact object rotating at the same speed.  As I will show in this paper, if a 
compact object rotates relativistically, we should expect the gravitational flux 
emitted by the compact object to be concentrated in the equatorial plane of 
the object, rather than being emitted isotropically.  Further, as I will show in 
the discussion below, this will result in a gravitational field that will decrease 
in the equatorial directions by approximately 1/r, rather than the usual 1/r2 .  
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As I will show below, a 1/r gravitational field can result in a flat rotation 
curve.   

2.  RELATIVISTIC BEAMING OF GRAVITY 
 

When a light source is moving relativistically, the emitted light experiences 
relativistic beaming, which is called the headlight effect.  The widely used 
text “An Introduction to Modern Astrophysics” by Carroll and Ostlie explains 
the headlight effect using only the facts that light travels at the speed c, and 
that light is subject to the formula for the relativistic addition of velocities.  
No other properties of light are involved.  (Carroll & Ostlie 2007, p. 101)  But 
gravity travels at the speed of light, c, according to Einstein’s general 
relativity, and according to experimental observation as well (Abbott et al.  
2017). Further, one should note that the relativistic addition of velocities 
formula is not a property of light, per se, but is a property of spacetime.  
Anything that travels through spacetime must be subject to it, including 
gravity.  Thus, we must conclude that gravity must be subject to relativistic 
beaming, just as light! 
 
It might be argued that gravity does not experience relativistic beaming, 
because such beaming is a form of aberration, and gravity does not 
experience aberration.  However, gravity does experience aberration!  With a 
little thought, one realizes that the time light effect and aberration both 
apply to gravity, but we do not readily perceive them because we cannot see 
the path that gravity takes in the same way that we can see the path of light.  
Since we know that the gravity originated at the previous (that is, the 
retarded) position of the source object, we know that the path the gravity 
took would have been the same path that light would have taken, thus, the 
time light effect should apply to gravity.  And if we were standing on a 
moving body, such as the earth, looking in the direction of a source of 
gravity, such as the sun, and if we could see the apparent path of the 
gravitational force in the same way we can see the apparent path of light, we 
would undoubtedly perceive gravitational aberration!   
 
The fact that the gravitational force points to the instantaneous position of 
the object rather than the retarded position does not deny the fact that the 
gravity travelled from the retarded position.  Instead, gravity points to the 
instantaneous position because gravity has a velocity dependent component.  
(Carlip 2000)   



4 
 

 
 
 

2.1. Relativistically Rotating Compact Objects 
 

Consider a relativistically rotating compact object, that is, a relativistically 
rotating stellar mass black hole or supermassive black hole, or a neutron star 
with a core that is relativistically rotating.  If the compact object were not 
rotating, we would expect gravitational rays to emit equally in all directions 
from each point on the compact object.  Let us consider a point “A” on the 
equator of a compact object such that “A” is moving at almost the speed of 
light, c, directly toward our observer as in figure 1 below.   
 

 
Figure 1.  Consider point “A” on a spherical compact object.  In 1(a), the 
object is not rotating, and emits a ray of gravity at a 90° angle.  In 1(b), the 
object is now rotating at 0.9c.  If it emits the same ray of gravity, it will be 
relativistically beamed to an angle of 25.8°.   

 
Consider a ray of gravity that would be emitted from point A at the angle θ′ = 
90° if the compact object were not rotating.  At what angle θ would that ray 
of gravity be emitted if the object were rotating relativistically at 0.9 c?  To 
solve this problem, we use Einstein’s relativistic beaming formula.  (Einstein 
1905)  Here, we use the inverse version where v is replaced by –v and θ by θ′.   
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 cos(θ)  =
cos(𝜃′) +

𝑣
𝑐

1 + (
v
c) (cos(θ′))

 (1) 

 
If we insert θ′ = 90° and v = 0.9 c into the above equation, we obtain the 
result of θ = 25.8°.   In other words, a ray of gravity that would have been 
emitted at 90° will instead be emitted at 25.8°!  Further, rays of gravity 
emitted from point A in every direction will be relativistically beamed toward 
the instantaneous direction of v.  Figure 2 illustrates the gravitational 
beaming from point A for different velocities v.   
 

 
 

 
Figure 2.  This figure illustrates the amount of relativistic beaming of gravity 
for different values of the velocity v.  Figure 2(a) shows that there is no 
beaming for v = 0.  Figures 2(b) through 2(f) show increasing amounts of 
beaming for successively higher values of v as it approaches c.  I created 
this figure using the compass program from MATLAB® by adjusting the 
inputted angles using Einstein’s relativistic beaming formula, Eq. 1.  The 
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compass program from MATLAB® has copyright 1984-2005 The Mathworks, 
Inc.   

 
Now, one might argue that the strong gravity in a compact object might 
change the above result.  However, you should note that in general relativity, 
on the smallest scale, the metric is locally flat and the local manifold will 
always be Minkowski space.  (Hobson et al. 2006, pp. 149, 151)  Thus, at the 
point A where the beaming takes place, the metric will be locally flat, and the 
beaming will take place according to Einstein’s formula.   
 

 
 

3. DERIVATION OF THE FORMULA FOR DIRECTED GRAVITY 
 

In this paper we are interested in whether relativistic beaming of gravity 
could solve the missing mass problem.  To that end, we are most interested 
in compact objects that are rotating at velocities very near c, and that are 
additionally rotating such that their angular momentum vectors line up with 
that of the galaxy.  That some such compact objects should exist seems 
likely, because in recent years researchers have demonstrated stellar 
alignment in open clusters.  (Corsaro et al. 2017, Kovacs 2018)  Further, at 
least one of the two clusters studied by Corsaro showed close alignment with 
galactic north.  (Kamann et al. 2019)  Compact objects that are rotating close 
to c and are in alignment with galactic north are important in that their 
directed gravity should mostly stay in the galactic disk, with only very small 
leakage at the top and bottom of the disk.  We will now develop a theory for 
these particular objects.  We will use Gauss’s law to develop this theory.  By 
the way, we will need to assume that the mass density of the compact 
objects is constant for any particular value of the radius r, r being the 
distance from the central axis of the stellar disk.  This will result in the 
directed gravitational force being a function of r, such that g = g(r).   
 
First, we will model the stellar disk of the galaxy as a cylinder.  Because the 
stellar disk is shaped as a cylinder, its outer surface is a closed surface for the 
purpose of applying Gauss’s law of gravity.  Thus, by Gauss’s law: 
 
 ∮ 𝒈 · 𝒅𝑨

𝑆
= -4πGM 

 

  (2) 
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The formula is from Simpson (2006), where the left hand side of the equation 
represents the surface integral of 𝒈 · 𝒅𝑨 over the entire surface of the stellar 
disk’s cylinder;  g being the gravitational acceleration vector while dA = 𝒏̂ dA 
is a vector that represents the differential unit of surface area along the 
outer surface S of the cylinder, directed outwards.  M is the total mass of the 
relativistically rotating compact objects described above within radius r of 
the central axis of the cylinder and G is the usual gravitational constant.  
Note also that 𝒏̂ is the unit normal vector, h is the height of the stellar disk, 

and 𝐺̅ = 4πG.    
 
 
Now, since virtually all of the gravitational flux will exit the sides of the disk, 
and none at the top or bottom, we have that 𝒏̂ is perpendicular to g for the 
top and bottom of the cylinder.  Thus, for the top and bottom, we have:   
 
 𝒈 ·  𝒏̂  =  0   (3) 

 
So that the top and bottom of the cylinder will not contribute to the 
integrated surface area, only the outer edge will.   Note also that the g points 
in the opposite direction of 𝒏̂ for the outer edge of the cylinder, so that g · 𝒏̂ 
will equal –g(r) around the cylinder’s outer edge.   
Thus we have,   
 
 

∮𝒈 · 𝒅𝑨
𝑆

 =  ∮ 𝒈 ·  𝒏̂

𝑆

 dA =  ∮(−𝑔(𝑟))dA

𝑆

  

=  − 𝑔(𝑟) ∮ dA

𝑆

 =  −𝑔(r)2πrh 

  (4) 

 
And since g(r) is constant at any particular value of r, and does not depend 
on A, it comes out of the integral.  Now, by Eq. 2 and Eq. 4 above, we have: 
 
 -g(r)π2rh = -4πGM 

 
  (5) 

Which after simplification gives us our formula for the acceleration g(r) 
caused by directed gravity: 
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 g(r) = 
4𝜋𝐺𝑀

2𝜋𝑟ℎ
 = 

G̅𝑀

2𝜋𝑟ℎ
 

 

  (6) 

By multiplying each side of the equation by the test mass m, we obtain the 
force equation for directed gravity:   
 
 F = mg(r) = 

G̅𝑀𝑚

2𝜋𝑟ℎ
 

 

  (7) 

 
F is the force of directed gravity caused by the highly relativistically rotating 
compact objects that are in alignment with galactic north.  The force points 
toward the center of the stellar disk which is modelled as a cylinder of height 
h and radius r.  M is the mass of the highly relativistically rotating compact 
objects that are aligned with galactic north and within radius r, and m is a 
test mass.  Note that since h is a constant, the denominator of the force  
equation increases by r, rather than the usual r2.  Note also that the 
denominator of the force equation is equal to the area of the outer edge of 
the cylinder through which the directed gravity passes. 
 

4. COULD DIRECTED GRAVITY FROM THE GALAXY’S SUPERMASSIVE BLACK 
HOLE EXPLAIN THE MISSING MASS? 

 
We can use our acceleration formula, Eq. 6, derived above to test whether 
directed gravity from the supermassive black hole at SgrA* in the center of 
the galaxy could be the source of the missing mass.  That is, could it be 
responsible for the approximately 170 km s-1 of rotation speed at the edge of 
the galaxy that is attributed to missing mass or dark matter.  (Kafle et al. 
2014, p.10 at figure 8, reading off the circular velocity attributed to the dark 
halo at approximately 15 kpc.)  (de Salas et al. 2019, pp.10 & 11 at figures 3 
and 4, reading off the rotation curves at 15 kpc for two different dark halo 
models.)  The mass of the supermassive black hole at SgrA* has been 
measured to be 4.02 ±0.16 × 106 M⊙ (Boehle et al. 2016).  I am modelling the 
stellar disk of the galaxy as a cylinder of radius 50,000 ly and height 1,000 ly.  
(Coffey 2010; Rix & Bovy 2013).  That translates to a radius of 4.7304 × 1020 m 
and a height of 9.461 × 1018 m.   
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First, we will determine the amount of acceleration necessary to create 170 
km s-1 of rotation speed (circular velocity) using the formula for centripetal 
acceleration, ac.    
 
 ac = 

𝑣2

𝑟
 = 

(170 ×103𝑚 𝑠−1)2

4.73 ×1020𝑚
 = 6.11 × 10-11 m s-2 

 

  (8) 

 
Now, if all of the measured mass of SgrA* were rotating at nearly the speed 
of light, and if it were in alignment with galactic north, then the formula for 
g(r) above would apply to SgrA*.  Thus, we will insert the figures for the mass 
of SgrA* and the dimensions of the galactic disk into the formula for g(r), 
Eq.6,  to determine whether SgrA* could be the source of the missing mass. 

 
 g(r) = 

4πGM

2𝜋𝑟ℎ
 =  

4𝜋(6.67 ×10−11)(7.996 × 1036𝑘𝑔)

2𝜋 (4.73 ×1020𝑚)(9.46 ×1018𝑚)
 = 2.38 × 10-13 m s-2 

 

  (9) 

The result of our calculations is that SgrA* appears to be too small to provide 
the necessary directed gravity to explain the missing mass.  If we divide the 
calculated acceleration g(r) by the expected acceleration from missing mass, 
ac, we obtain: 
 
 𝑔(𝑟)

𝑎𝑐
 = 

2.38 ×10−13

6.11 ×10−11
 = 0.0039 

 

  
(10) 

which is clearly inadequate.   
 
However, the problem with this analysis is that the figure for the mass of 
SgrA* represents only the mass which is gravitating isotropically.  Any mass 
that is moving near the speed of light, and thus has its gravitational force 
beamed into the equatorial plane, will not be included in the figure for the 
mass.  Consider for example the orbit of the S-2, a star whose orbit has been 
recently used to measure the mass of SgrA*.  S-2’s orbit will be unaffected by 
relativistically moving mass throughout the entirety of its orbit, except for 
those times when it crosses the equatorial plane.  The result of crossing the 
plane will be small changes in the orbital parameters, which will be the 
subject of a future paper.   
 



10 
 

Therefore, we cannot rule out the possibility that SgrA* is the source of the 
missing mass.  However, for this to be the case, SgrA* must be approximately 
1000 times more massive than has been measured, with the additional mass 
being relativistically moving matter.    
 
If a person concludes that the Supermassive black hole is too small to be the 
source of missing mass, then there are other possible sources of directed 
gravity in the galaxy:  neutron stars and stellar mass black holes that are 
compact remnants of supernovae.  Could the neutron stars or stellar mass 
black holes be the source of the missing mass? 

 
 
 
 
 

5. COULD DIRECTED GRAVITY FROM NEUTRON STARS OR STELLAR MASS  
BLACK HOLES EXPLAIN THE MISSING MASS 

 
Our galaxy has probably produced approximately 109 compact remnants of 
supernovae consisting of neutron stars and stellar mass black holes.  (Branch 
& Wheeler 2017, p. 597)  With neutron stars and stellar mass black holes 
each more massive than 1 M⊙

 , this would represent about three orders of 
magnitude more mass than is present in SgrA*.  Could directed gravity from 
these compact remnants be the source of gravitational acceleration 
attributed to dark matter?  

 
5.1. Brief Discussion of Neutron Stars and Stellar Mass Black Holes 

 
While neutron stars and stellar mass black holes are the compact remnants 
of supernovae, neutron stars are believed to result from supernovae of 
moderate sized stars, while stellar mass black holes would result from 
supernovae from very large stars.  Neutron stars range in mass from about 1 
M⊙ to 2 M⊙, with the canonical size considered to be 1.4 M⊙.  (Branch & 
Wheeler 2017, p. 598)  Stellar mass black holes range from about 5 M⊙ to 
perhaps 100 M⊙, with the canonical size being 10 M⊙.  (Branch & Wheeler  
2017, p. 602)  The outer shells of neutron stars rotate at less than the speed 
of light, with the fastest discovered so far rotating at 715 Hz (Hessels et al. 
2006) which translates to a linear speed at the equator of about 0.24 c.  (See 
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Appendix 1)  However, the cores of many neutron stars are believed to be 
composed of neutrons in a superfluid state that rotate at greater speeds 
than the stellar surfaces.  (Haskell et al. 2018; Haskell & Melatos 2015; Alpar 
et al. 1984)  As for stellar mass black holes, many rotate with spin 
parameters between 0.7 and 1, which are believed to be relativistic.  (Branch 
& Wheeler 2017, p. 599)  For the relative numbers, neutron stars should 
outnumber stellar mass black holes by about an order of magnitude.  (Branch 
& Wheeler 2017, p. 597)   
 
As before, we are most interested in compact remnants that are rotating at 
nearly the speed of light, c, and that are in close alignment with galactic 
north.  Of the approximately 109 compact remnants, we would like to know 
how many satisfy these conditions, and what their total mass would be.  For 
these questions we can only speculate as to the answers.  So that is what we 
will do!   
 

5.2. Missing Mass Calculation with Neutron Stars and  
Stellar Mass Black Holes 

 
We shall speculate that there is a class of neutron stars and stellar mass 
black holes that rotate at nearly c and are in close alignment with galactic 
north, and that their total mass is approximately 109 M⊙.  The reason for this 
speculation will become clear as we perform calculations below.   
Additionally, we will assume that the mass density of this class of neutron 
stars and stellar black holes is a function of the distance r to the central axis 
of the galactic disk, with the consequence that g = g(r).  Thus the conditions 
for our formula for g(r) are satisfied.  Therefore, we can use Eq.6 to figure 
the acceleration at the edge of the disk due to directed gravity: 
 
 g(r) = 

4𝜋𝐺𝑀

2𝜋𝑟ℎ
 = 

4𝜋(6.674 ×10−11)109(1.9891×1030𝑘𝑔)

2𝜋(4.73 ×1020𝑚)(9.46 ×1018𝑚)
 = 5.93 × 10-11 ms-2 

 

  
(11) 

We can translate that acceleration to circular velocity at the edge of the 
stellar disk by once again using the formula for centripetal acceleration, Eq. 
8, noting that the centripetal acceleration equals the gravitational 
acceleration.     
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𝑔(𝑟)  =  𝑎𝑐 =  

𝑣2

𝑟
   

  
(12) 

 
That implies:   
 
 vc= √𝑔(𝑟)𝑟 = √(5.93 × 10−11𝑚𝑠−2)(4.73 × 1020𝑚)= 167 

kms-1 

 

  
(13) 

Of course, 167 km s-1 is very close to 170 km s-1 which is the expected value 
for the circular velocity caused by dark matter at the edge of the stellar disk.  
So if our speculation is correct, directed gravity from neutron stars and 
stellar mass black holes that are rotating at nearly c and are in close 
alignment with galactic north could explain the missing mass problem for the 
galaxy.   
 

 
 

5.3. Plotting a Circular Velocity Curve for Directed Gravity 
 

We would like to plot the circular velocity for each value of r within the 
stellar disk and also beyond the edge of the disk.  However, we first need to 
know whether directed gravity from compact objects outside of the radius r 
will affect the gravitational field at r.  It turns out that for a cylindrically 
shaped stellar disk, with g=g(r), the directed gravity from the compact 
objects outside of the radius r cancels out to zero.  (See Appendix 2)   Thus, 
to compute the acceleration at each value of r within the stellar disk, we 
simply need to apply the formula for g(r), Eq. 6, keeping in mind that the 
value for M = M(r) will be a function of r, in that M will be the mass of the 
compact objects that are within the distance r of the central axis, and of 
course are rotating at near c and in alignment with galactic north.  A further 
complication is that finding M(r) will be difficult unless we know how the 
mass density of our class of compact objects varies with r.  To make the 
calculation possible, we will assume for this particular diagram that the mass 
density of our class of neutron stars and stellar mass black holes is uniform 
throughout the stellar disk.   
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After obtaining g for each value of r, we will compute each value for the 
circular velocity, vc(r).   Note that beyond the edge of the stellar disk, that is, 
beyond about 15 kpc, M will be a constant.  Thus, beyond the disk, 
 
 
 

vc =√𝑔(𝑟)𝑟=√
4𝜋𝐺𝑀

2𝜋ℎ
  

=√
4𝜋(6.674 ×10−11)109(1.9891×1030𝑘𝑔)

2𝜋(9.46×1018𝑚)
=167kms-1  

 

  
(14) 

Thus, we have the following graph for the contribution to circular velocity by 
directed gravity, where we have made the additional assumption of 
uniformity of the mass density of our special class of compact objects 
throughout the stellar disk. 

 
 
Figure 3.  This figure shows the circular velocity curve of directed gravity in 
the Milky Way Galaxy from the special class of compact objects, assuming 
that their mass density is constant throughout the stellar disk, and that 
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their total mass is 109 M⊙.  Once the edge of the stellar disk is reached at 

approximately 15 kpc, the curve flattens out to a constant value of  
167 kms-1.   
 

 
You may note that this graph looks very similar to the dark halo contribution 
to circular velocity from figure 3 of Sofue et al (2009).   
 

 
 
 
 
 
 

6.  CONCLUDING REMARKS 
 

6.1. The Bullet Cluster 
 

In a celebrated paper, Clowe et al. (2006) determined that observations of 
the Bullet Cluster were inconsistent with modified Newtonian dynamics, 
(MOND), and claimed that this presented direct empirical evidence of dark 
matter.  During the collision of two clusters, the stellar components and the 
X-ray emitting plasma were essentially segregated.  However, gravitational 
lensing maps did not trace the plasma, which was the dominant baryonic 
component, but instead approximately traced the distribution of galaxies.  
(Clowe et al. 2006)  Do these results contradict the theory of directed 
gravity?  The answer is “No.”  Directed gravity comes from compact stellar 
objects such as neutron stars, stellar mass black holes and supermassive 
black holes.  All of these compact objects would have stayed with the 
distribution of galaxies, along with the stars, and would not have been 
stripped off by ram pressure to join the X-ray emitting plasma.  Thus, the 
observations of the Bullet Cluster, although arguably disproving MOND, in no 
way prove the existence of dark matter in halos.  Instead, those observations 
are beautifully consistent in principle with the theory of directed gravity.  
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6.2. General Conclusion 

 
In this paper we have endeavored to show that gravitation should be subject 
to relativistic beaming in the same manner as light.  Because both light and 
gravity are believed to travel at the speed c, and because both must be 
subject to the relativistic addition of velocities which is a property of the 
spacetime through which they pass, we conclude that gravity must be 
subject to relativistic beaming.  Further, we can calculate the amount of 
beaming by applying Einstein’s formula for relativistic beaming of light.   
 
As a practical matter, relativistic beaming of gravity, or directed gravity, will 
most easily be observed with regards to rotating compact objects such as 
stellar mass black holes, supermassive black holes, and possibly neutron 
stars.  Directed gravity from such compact objects should result in an 
increased concentration of gravitational flux in the equatorial planes of such 
objects, as we demonstrated in the discussions accompanying Fig. 1 and  
Fig. 2.     
 
Concentration of gravity in a plane, in particular, in the stellar plane of the 
galaxy, suggests the possibility of directed gravity providing an efficient 
solution to the missing mass problem.  Thus, we became interested in a 
particular class of compact objects: those which are rotating at very near the 
speed of light, c, and which are also in close alignment with galactic north.  
The directed gravity from compact objects in this class would stay almost 
entirely in the stellar disk.  Thus, we developed a theory for this particular 
class of compact objects.   
 
We used Gauss’s law of gravity to derive formulas for the gravitational force 
and acceleration due to directed gravity in the galaxy from this class of 
objects.  The acceleration formula, Eq.6,  is: 
 
 g(r) = 

4𝜋𝐺𝑀

2𝜋𝑟ℎ
 = 

G̅𝑀

2𝜋𝑟ℎ
 

 

  
(15) 

And the force formula, Eq. 7, is:  
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 F = mg(r) = 
G̅𝑀𝑚

2𝜋𝑟ℎ
 

 

  
(16) 

 
 
Note that both of these formulas depend inversely on the radius r, rather 
than the usual 1/r2 dependence.  Since gravity decreasing as 1/r could result 
in a flat rotation curve, we proceeded to investigate the possible connection 
of directed gravity with the missing mass problem.   
 
The first question to address was whether directed gravity from the central 
supermassive black hole in the galaxy, at SgrA*, could be responsible for the 
additional gravitation attributed to missing mass.  To investigate this, we 
hypothesized that the supermassive black hole might satisfy the conditions 
for the application of the formula for directed gravity acceleration, g(r), 
which we developed above at Eq. 6.    That is, we assumed for sake of 
argument that the supermassive black hole spins at nearly the speed of light, 
c, and that its angular momentum vector is aligned with that of the galaxy.  
The other condition, that its mass density is a function of r, the distance from 
the central axis, would seem to be trivially true.   
 
Thus, we could apply the formula for g(r), Eq. 6, derived above.  The result 
was that the acceleration from the directed gravity of the central 
supermassive black hole would be at best only 0.004 of that needed to 
explain the contribution of missing mass to the rotation curve of the galaxy.  
(Eq. 10)  Thus, we concluded that the supermassive black hole at SgrA* was 
probably too small to explain the missing mass problem.  We noted, 
however, that if SgrA* were about 1000 times more massive than measured, 
with that additional mass moving at nearly the speed of light, then SgrA* 
could explain the missing mass!   
 
We next considered the possibility that compact objects resulting from 
supernovae: neutron stars and stellar mass black holes, could provide the 
necessary directed gravity.  We first assumed that that the mass density of 
the special class of stellar mass black holes and neutron stars was a function 
of the distance r from the central axis of the stellar disk.  Then we made a 
speculation: that the combined mass of neutron stars and stellar mass black 
holes that were rotating at nearly c, and were in alignment with galactic 
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north, equaled approximately 109 M⊙.  With that speculation, we were ready 
to apply the formula for g(r) of directed gravity at Eq. 6.     
 
The result of that calculation showed that the gravitational acceleration of 
missing mass could be explained by neutron stars and stellar mass black 
holes that satisfied the above conditions, if their total mass was about 109 
M⊙. (Eq.11)  We calculated that this would result in a contribution to the 
circular velocity at the edge of the galaxy of 167 km s-1, which is very close to 
the expected 170 km s-1 from missing mass. (Eq.12) 
 
By making a further assumption, that the mass density of the compact 
objects in our special class was uniform throughout the stellar disk, we were 
able to calculate the circular velocity at each value of r.   Thus we proceeded 
to plot a circular velocity curve for directed gravity for each value of r within 
the stellar disk, and extended the curve to 40 kpc.  (Fig. 3) We noted the 
similarity between the curve we derived for circular velocity from directed 
gravity and the expected dark halo circular velocity curve from Sofue et al. 
(2009).  
 
Personally, I think that the answer to the missing mass will turn out to be 
some combination of directed gravity from the Supermassive black hole and 
from other compact objects in the galaxy.  However, it would be somewhat 
rash to claim that we have solved the missing mass problem.  After all, the 
additional mass needed in SgrA* subject to directed gravity would be quite 
large.  And as for neutron stars and stellar mass black holes, we had to 
speculate as to the total mass of neutron stars and stellar mass black holes 
that satisfied the conditions for application of the formulas for directed 
gravity, especially regarding the speed and direction of rotation.  However, 
we have suggested a possible theory that could efficiently explain the 
missing mass problem without increasing the mass of the universe by a 
factor of five as required for dark matter halos.  Further, our theory 
surpasses MOND as it is compatible with the observations of the Bullet 
Cluster.   
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Appendix 1 
 

Calculation showing that a neutron star rotating at 716 Hz spins with a linear 
velocity at its equator of at most 0.24 c. 
 
Here we provide a calculation of the approximate linear velocity at the 
equator of Pulsar PSR J1748-2446ad, which rotates at 716 Hz.  (Hessels et al. 
2006)  This translates to a linear speed at the equator of about 0.24 c, as the 
following computation shows.  The reference states that, if the pulsar mass is 
less than 2M⊙, then the radius must be less than 16 km.  (Hessels et al. 2006)  
A 16 km radius would imply a circumference of C = 2πR = 2π(16,000m) = 
1.00531 × 105 m.  Thus, the distance travelled in one second is D = 
(716)(1.00531 × 105 m) = 7.198 × 107 m.  Thus, the maximum linear velocity 
of the neutron star’s surface at the equator is v = 7.198 × 107 m s-1 ≈ 0.24 c.   
 

 
 

Appendix 2 
 

Proof that the directed gravitational forces from the special class of compact 
objects that are outside of radius r sum to zero.   
 
In Figure 4(a), we are looking at the galactic disk from above.   We are 
interested in the directed gravitational forces on the point P at radius r from 
the center of the disk.  We will show that the sum of the directed 
gravitational forces from the special class of compact objects located outside 
the radius r, that is, from the compact objects located in the shaded region of 
Figure 4, sum to zero.   
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Figure 4.  In 4(a), we see a polar view of the stellar disk.  We are considering 
the directed gravitational forces from the special class of compact objects 
that are outside of radius r.  In 4(b), we see depicted a circular ring of 
compact objects of the special class at a distance s from the central axis of 
the stellar disk.  Note that points A, B, C and D lie on the ring.  The 
argument below will show that the directed gravitational forces from the 
ring upon the point P balance to zero, and further, that the directed 
gravitational forces from all of the special class of compact objects in the 
shaded area balance to zero. 
 
First we note that this is a two dimensional problem.  Because the special 
class of compact objects includes only those that are rotating at nearly c, and 
have their rotation axes strongly aligned with the galaxy, the directed gravity 
travels horizontally and stays within a narrow plane within the galactic disk.  
Thus, the directed gravity from above and below that particular plane will 
have little effect on the forces at the point P.   Thus we have the following 
proof.   
 
Figure 4(b), redrawn from Figure 4(a) but with additional information, shows  
 
a ring of stellar mass black holes at distance s from the center of the stellar 
disk.  Points A, B, C and D lie upon the ring.   The linear mass density of stellar 
mass black holes along the ring will be 𝜌(r), but since r is constant along the 

ring, ρ will be a constant.  𝐴𝐵̂ is an arc along the ring of arc length α1, so that 
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M1 = ρα1 will be the mass of the special class of black holes along the arc 𝐴𝐵̂.  

I have constructed the line r1, which bisects the arc 𝐴𝐵̂ and intersects P, such 

that r1 is the radial distance between the arc 𝐴𝐵̂ and P.  Extending the lines 

from 𝐴𝐵̂ through P, we find another arc 𝐶𝐷̂ at radius r2 from P on the other 
side of the ring.  Note that by construction, the angles at P labeled φ1 and φ2 
are congruent.     
 
Note that we have two triangles, 𝐴𝐵𝑃̅̅ ̅̅ ̅̅  and 𝐶𝐷𝑃̅̅ ̅̅ ̅̅  which appear to be similar.  
By similar, we mean that the triangles’ corresponding sides are in proportion, 
and their corresponding angles are congruent.  (Polyanin 2007, p. 44, No.3°)  
To prove they are similar, we use the Intersecting Chord Theorem for a circle, 
by which we conclude:   
 

 𝑎𝑏 = 𝑐𝑑 (17) 
 

(Polyanin 2007, p. 58, No. 12). Now, since b and d are nonzero, this of course 
implies: 
 

 
𝑎

𝑑
=  

𝑐

𝑏
 (18) 

 
Thus the corresponding sides of the triangles are in proportion, and since the 
included angles of the sides, φ1 and φ2 are congruent, we can conclude by 
the Side Angle Side Theorem that the triangles 𝐴𝐵𝑃̅̅ ̅̅ ̅̅  and 𝐶𝐷𝑃̅̅ ̅̅ ̅̅  are similar!  
(Polyanin 2007, p. 44, No.3°3)  Since the triangles are similar, we know that 
𝐴𝐵̅̅ ̅̅  and 𝐶𝐷̅̅ ̅̅  are also in proportion!   
 

Next, we compare the directed gravitational forces from the arcs 𝐴𝐵̂ and 𝐶𝐷̂ 
on the point P.  We use Eq. 7 to determine the respective forces.   
 

 𝐹1 =  
𝐺̅𝑀1𝑚

2𝜋𝑟1ℎ
; 𝐹2 =  

𝐺̅𝑀2𝑚

2𝜋𝑟2ℎ
 (19) 

 

Where F1 is the force of the arc 𝐴𝐵̂ on the mass m at P, M1 is the mass of the  
 

arc 𝐴𝐵̂, h is the height of the stellar disk, 𝐺̅ = 4πG, G being the gravitational 
constant.  We of course have similar definitions for F2.   
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Now recall that M1 = ρα1 and M2 = ρα2.  Thus we have: 

 

 𝐹1 =  
𝐺̅𝜌𝛼1𝑚

2𝜋𝑟1ℎ
; 𝐹2 =  

𝐺̅𝜌𝛼2𝑚

2𝜋𝑟2ℎ
 (20) 

 
 
Now, by the similarity of triangles 𝐴𝐵𝑃̅̅ ̅̅ ̅̅  and  𝐶𝐷𝑃̅̅ ̅̅ ̅̅ , we can conclude that: 
 

 

|𝐴𝐵̅̅ ̅̅ |

|𝐴𝑃̅̅ ̅̅ |
=  

|𝐶𝐷̅̅ ̅̅ |

|𝑃𝐶̅̅ ̅̅ |
 

 

(21) 

 

If we consider the limit as the arc length α1 approaches zero, we see that 𝐴𝐵̂ 

approaches the line segment 𝐴𝐵̅̅ ̅̅ , 𝐶𝐷̂ approaches the line segment 𝐶𝐷̅̅ ̅̅ , 𝐴𝑃̅̅ ̅̅  
approaches r1, and 𝑃𝐶̅̅̅̅  approaches r2.   
  
Thus, in the limit as α1 approaches zero,  
 

 
|𝐴𝐵̂|

𝑟1
=  

|𝐶𝐷̂|

𝑟2
 (22) 

 

 

 
Which is equivalent to: 

 
𝛼1

𝑟1
=  

𝛼2

𝑟2
 (23) 

 
Thus, in the limit as α1 approaches zero, 
 

 𝐹⃗1  =
𝐺̅𝜌𝛼1𝑚

2𝜋𝑟1ℎ
𝑟̂1 =  − 

𝐺̅𝜌𝛼2𝑚

2𝜋𝑟2ℎ
𝑟̂2   =  − 𝐹⃗2  (24) 

 
Where the minus sign arises because the two Forces are oppositely directed, 

and 𝑟̂1 and 𝑟̂2 are unit vectors in the direction of 𝐹⃗1 and 𝐹⃗2 respectively.   
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Now to find the net force of the ring upon P, we just integrate the sum of the 
two force differentials for all values of the angle φ.   
 

 𝐹𝑃
⃗⃗⃗⃗⃗ =  

1

2
∫ (𝑑𝐹1

⃗⃗ ⃗⃗ +  𝑑𝐹2
⃗⃗⃗⃗⃗)

2𝜋

0

𝑑𝜑 = 0 (25) 

 
 
The integral equals zero because the integrand is identically zero 
everywhere.   
 

Now, we can add up the force 𝐹𝑃
⃗⃗⃗⃗⃗ for each ring from r to R.  As all rings will 

contribute zero force upon P, the directed gravity from all of the special class 
of compact objects outside the radius r will sum to zero.  This is what we set 
out to prove!   
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