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18.02 Review 
Jeremy Orloff 

1 Review of multivariable calculus (18.02) constructs 

1.1 Introduction 

These notes are a terse summary of what we’ll need from multivariable calculus. If, after reading
these, some parts are still unclear, you should consult your notes or book from your multivariable
calculus or ask about it at office hours. We’ve also posted a more detailed review of line integrals
and Green’s theorem. You should consult that if needed. 

We’ve seen that complex exponentials make trigonometric functions easier to work with and give
insight into many of the properties of trig functions. Similarly, we’ll eventually reformulate some
material from 18.02 in complex form. We’ll see that it’s easier to present and the main properties 
are more transparent in complex form. 

1.2 Terminology and notation 

Vectors. We’ll denote vectors in the plane by (�, �) 

Note. In physics and in 18.02 we usually write vectors in the plane as �� + ��. This use of � and � 
would be confusing in 18.04, so we will write this vector as (�, �). 

In 18.02 you might have used angled brackets ⟨�, �⟩ for vectors and round brackets (�, �) for points.
In 18.04 we will adopt the more standard mathematical convention and use round brackets for both
vectors and points. It shouldn’t lead to any confusion. 

Orthogonal. Orthogonal is a synonym for perpendicular. Two vectors are orthogonal if their dot 
product is zero, i.e. � = (�1, �2) and � = (�1, �2) are orthogonal if 

� ⋅ � = (�1, �2) ⋅ (�1, �2) = �1�1 + �2�2 = 0. 

Composition. Composition of functions will be denoted � (�(�)) or � ◦�(�), which is read as ‘� 
composed with �’ 

1.3 Parametrized curves 

We often use the greek letter gamma for a paramtrized curve, i.e. 

�(�) = (�(�), �(�)). 

We think of this as a moving point tracing out a curve in the plane. The tangent vector 

� ′(�) = (� ′(�), � ′(�)) 

is tangent to the curve at the point (�(�), �(�)). It’s length |� ′(�)| is the instantaneous speed of the 
moving point. 

1 
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x

y
γ(t)γ′(t)

γ′(t)

Parametrized curve �(�) with some tangent vectors � ′(�). 

Example Rev.1. Parametrize the straight line from the point (�0, �0) to (�1, �1). 

Solution: There are always many parametrizations of a given curve. A standard one for straight lines 
is 

�(�) = (�, �) = (�0, �0) + �(�1 − �0, �1 − �0), with 0 ≤ � ≤ 1. 

Example Rev.2. Parametrize the circle of radius � around the point (�0, �0). 

Solution: Again there are many parametrizations. Here is the standard one with the circle traversed
in the counterclockwise direction: 

�(�) = (�, �) = (�0, �0) + �(cos(�), sin(�)), with 0 ≤ � ≤ 2�. 

x

y

(x0, y0)

(x1, y1)

r

Line from (�0, �0) to (�1, �1) and circle around (�0, �0). 

1.4 Chain rule 

For a function � (�, �) and a curve �(�) = (�(�), �(�)) the chain rule gives 

�� (�(�)) �� �� 
= � ′(�) + � ′(�) = �� (�(�)) ⋅ � ′(�) dot product of vectors. 

�� �� |�(�) �� |�(�) 
Here �� is the gradient of � defined in the next section. 

1.5 Grad, curl and div 

Gradient. For a function � (�, �), the gradient is defined as grad� = �� = (��, ��). A vector field 
� which is the gradient of some function is called a gradient vector field. 

Curl. For a vector in the plane �(�, �) = (�(�, �), �(�, �)) we define 

curl� = �� − ��. 
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Note. The curl is a scalar. In 18.02 and in general, the curl of a vector field is another vector field. 
However, for vectors fields in the plane the curl is always in the �̂ direction, so we have simply 
dropped the ̂� and made curl a scalar. 

Divergence. The divergence of the vector field � = (�, �) is 

div� = �� + ��. 

1.6 Level curves 

Recall that the level curves of a function � (�, �) are the curves given by � (�, �) = constant. 

Recall also that the gradient �� is orthogonal to the level curves of � 

1.7 Line integrals 

The ingredients for line (also called path or contour) integrals are the following: 

• A vector field � = (�, �) 

• A curve �(�) = (�(�), �(�)) defined for � ≤ � ≤ � 

Then the line integral of � along � is defined by 

� 

� ⋅ �� = ∫ 
�(�(�)) ⋅ � ′(�)�� = ∫� 

��� + ���. ∫� � 

Example Rev.3. Let � = (−�∕�2, �∕�2) and let � be the unit circle. Compute line integral of � along 
� . 

Solution: You should be able to supply the answer to this example 

1.7.1 Properties of line integrals 

1. Independent of parametrization. 

2. Reverse direction on curve ⇒ change sign. That is, 

� ⋅ ��. � ⋅ �� = − ∫� ∫−� 

(Here, −� means the same curve traversed in the opposite direction.) 

3. If � is closed then we sometimes indicate this with the notation ∮� 
� ⋅ �� = ∮� 

� �� + � ��. 
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1.7.2 Fundamental theorem for gradient fields 

Theorem Rev.4. (Fundamental theorem for gradient fields) 
If � = �� then ∫ � ⋅ �� = � (� ) − � (�), where �, � are the beginning and endpoints respectively � 
of � . 

Proof. By the chain rule we have 

�� (�(�)) 
= �� (�(�)) ⋅ � ′(�) = �(�(�)) ⋅ � ′(�). 

�� 

The last equality follows from our assumption that � = �� . Now we can this when we compute the 
line integral: 

� 

� ⋅ �� = ∫ 
�(�(�)) ⋅ � ′(�) �� ∫� � 

� �� (�(�)) 
�� = ∫ �� � 

= � (�(�)) − � (�(�)) 
= � (� ) − � (�) 

Notice that the third equality follows from the fundamental theorem of calculus. 

Definition. If a vector field � is a gradient field, with � = �� , then we call � a a potential function 
for �. 

Note: the usual physics terminology would be to call −� the potential function for �. 

1.7.3 Path independence and conservative functions 

Definition. For a vector field �, the line integral ∫ 
� ⋅ �� is called path independent if, for any two 

points � and �, the line integral has the same value for every path between � and �. 

Theorem. ∫� 
� ⋅ �� is path independent is equivalent to ∮� 

� ⋅ �� = 0 for any closed path. 

Sketch of proof. Draw two paths from � to � . Following one from � to � and the reverse of the 
other back to � is a closed path. The equivalence follows easily. We refer you to the more detailed 
review of line integrals and Green’s theorem for more details. 

Definition. A vector field with path independent line integrals, equivalently a field whose line inte-
grals around any closed loop is 0 is called a conservative vector field. 

Theorem Rev.5. We have the following equivalence: On a connected region, a gradient field is 
conservative and a conservative field is a gradient field. 

Proof. Again we refer you to the more detailed review for details. Essentially, if � is conservative 
then we can define a potential function � (�, �) as the line integral of � from some base point to (�, �). 

1.8 Green’s Theorem 

Ingredients: � a simple closed curve (i.e. no self-intersection), and � the interior of � . 
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� must be positively oriented (traversed so interior region � is on the left) and piecewise smooth (a 
few corners are okay). 

x

y

R C R C
R C

Theorem Rev.6. Green’s Theorem: If the vector field � = (�, �) is defined and differentiable on 
� then 

� �� + � �� = ∬� 
�� − �� ��. ∮� 

In vector form this is written 

� ⋅ �� = ∬� 
curl� ��. ∮� 

where the curl is defined as curl� = (�� − ��). 

Proof of Green’s Theorem. See the more detailed notes on Green’s theorem and line integrals for 
the proof. 

1.9 Extensions and applications of Green’s theorem 

1.9.1 Simply connected regions 

Definition: A region � in the plane is simply connected if it has “no holes”. Said differently, it is 
simply connected for every simple closed curve � in �, the interior of � is fully contained in �. 

Examples: 

D1 D2

D3

x

y

D4

x

y

D5 = whole plane

D1-D5 are simply connected. For any simple closed curve � inside any of these regions the interior 
of � is entirely inside the region. 

Note. Sometimes we say any curve can be shrunk to a point without leaving the region. 

The regions below are not simply connected. For each, the interior of the curve � is not entirely in 
the region. 
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C

Annulus

x

y

C

Punctured plane

1.9.2 Potential Theorem 

Here is an application of Green’s theorem which tells us how to spot a conservative field on a simply
connected region. The theorem does not have a standard name, so we choose to call it the Potential
Theorem. 

Theorem Rev.7. (Potential Theorem) Take � = (�, �) defined and differentiable on a region �. 

(a) If � = �� then curl� = �� − �� = 0. 

(b) If � is simply connected and curl� = 0 on �, then � = �� for some � . 

We know that on a connected region, being a gradient field is equivalent to being conservative. So we
can restate the Potential Theorem as: on a simply connected region, � is conservative is equivalent 
to curl� = 0. ( ) 
Proof of (a): � = ��, �� , so curl� = ��� − ��� = 0. 

Proof of (b): Suppose � is a simple closed curve in �. Since � is simply connected the interior 
of � is also in �. Therefore, using Green’s theorem we have, 

� ⋅ �� curl� �� = 0. ∮� 
= ∬� 

x

y

D

C

R

This shows that � is conservative in �. Therefore, by Theorem Rev.5 � is a gradient field. 

Summary: Suppose the vector field � = (�, �) is defined on a simply connected region �. Then, 
the following statements are equivalent. 

� 

(1) ∫ 
� ⋅ �� is path independent. 

� 

(2) ∮� 
� ⋅ �� = 0 for any closed path � . 

(3) � = �� for some � in � 

(4) � is conservative in �. 

If � is continuously differentiable then 1,2,3,4 all imply 5: 

(5) curl� = �� − �� = 0 in � 
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1.9.3 Why we need simply connected in the Potential Theorem 

If there is a hole then � might not be defined on the interior of � . (See the example on the tangential 
field below.) 

DC

1.9.4 Extended Green’s Theorem 

We can extend Green’s theorem to a region � which has multiple boundary curves. 

Suppose � is the region between the two simple closed curves �1 and �2. 

C1

C2

R
C1

C2 C3 C4

R

(Note � is always to the left as you traverse either curve in the direction indicated.) 

Then we can extend Green’s theorem to this setting by 

curl� ��. � ⋅ �� + ∮�2 

� ⋅ �� = ∬� ∮�1 

Likewise for more than two curves: 

curl� ��. � ⋅ �� + ∮�2 

� ⋅ �� + ∮�3 

� ⋅ �� + ∮�4 

� ⋅ �� = ∬� ∮�1 

Proof. The proof is based on the following figure. We ‘cut’ both �1 and �2 and connect them by two 
copies of �3, one in each direction. (In the figure we have drawn the two copies of �3 as separate 
curves, in reality they are the same curve traversed in opposite directions.) 

Now the curve � = �1 + �3 + �2 − �3 is a simple closed curve and Green’s theorem holds on it. 
But the region inside � is exactly � and the contributions of the two copies of �3 cancel. That is, 
we have shown that 

curl� �� = ∫�1+�3+�2−�3 

� ⋅ �� = ∫�1+�2 

� ⋅ ��. ∬� 

This is exactly Green’s theorem, which we wanted to prove. 
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C1

C2

C3−C3

The punctured plane. 

(−�, �) Example Rev.8. Let � = 
�2 

(“tangential field”) 

� is defined on � = plane - (0,0) = the punctured plane. (Shown below.) 

x

y

It’s easy to compute (we’ve done it before) that curl� = 0 in �. 

Question: For the tangential field � what values can ∮� 
� ⋅ �� take for � a simple closed curve 

(positively oriented)? 

Solution: We have two cases (i) �1 not around 0 (ii) �2 around 0 

x

y

C1R
C2

In case (i) Green’s theorem applies because the interior does not contain the problem point at the
origin. Thus, 

� ⋅ �� = ∬� 
curl� �� = 0. ∮�1 

For case (ii) we will show that ∮�2 

� ⋅ �� = 2�. 

Let �3 be a small circle of radius �, entirely inside �2. By the extended Green’s theorem we have 

curl� �� = 0. � ⋅ �� − ∮�3 

� ⋅ �� = ∬� ∮�2 

Thus, ∮�2 

� ⋅ �� = ∮�3 

� ⋅ ��. 
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Using the usual parametrization of a circle we can easily compute that the line integral is 

2� 

� ⋅ �� = ∫ 
1 �� = 2�. ���. ∫�3 0 

x

y

C2C3
R

Answer to the question: The only possible values are 0 and 2�. 

We can extend this answer in the following way: 

If � is not simple, then the possible values of ∮� 
� ⋅ �� are 2��, where � is the number of times � 

goes (counterclockwise) around (0,0). 

Not for class: � is called the winding number of � around 0. � also equals the number of times � 
crosses the positive �-axis, counting +1 from below and −1 from above. 

x

y

C
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Topic 1 Notes
Jeremy Orloff 

1 Complex algebra and the complex plane 

We will start with a review of the basic algebra and geometry of complex numbers. Most likely you
have encountered this previously in 18.03 or elsewhere. 

1.1 Motivation 

The equation �2 = −1 has no real solutions, yet we know that this equation arises naturally and we
want to use its roots. So we make up a new symbol for the roots and call it a complex number. 

Definition. The symbols ±� will stand for the solutions to the equation �2 = −1. We will call these 
new numbers complex numbers. We will also write √ 

−1 = ±� 

Note: Engineers typically use � while mathematicians and physicists use �. We’ll follow the mathe-
matical custom in 18.04. 

The number � is called an imaginary number. This is a historical term. These are perfectly valid 
numbers that don’t happen to lie on the real number line.1 We’re going to look at the algebra, 
geometry and, most important for us, the exponentiation of complex numbers. 

Before starting a systematic exposition of complex numbers, we’ll work a simple example. 

Example 1.1. Solve the equation �2 + � + 1 = 0. 

Solution: We can apply the quadratic formula to get √ √ √ √ √ 
−1 ± 1 − 4 −1 ± −3 −1 ± 3 −1 −1 ± 3 � 

� = = = = . 
2 2 2 2 

Think: Do you know how to solve quadratic equations by completing the square? This is how the
quadratic formula is derived and is well worth knowing! 

1.2 Fundamental theorem of algebra 

One of the reasons for using complex numbers is because allowing complex roots means every 
polynomial has exactly the expected number of roots. This is called the fundamental theorem of 
algebra. 

Theorem. (Fundamental theorem of algebra) A polynomial of degree � has exactly � complex 
roots (repeated roots are counted with multiplicity). 

1Our motivation for using complex numbers is not the same as the historical motivation. Historically, mathematicians 
were willing to say �2 = −1 had no solutions. The issue that pushed them to accept complex numbers had to do with
the formula for the roots of cubics. Cubics always have at least one real root, and when square roots of negative numbers
appeared in this formula, even for the real roots, mathematicians were forced to take a closer look at these (seemingly)
exotic objects. 

1 
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In a few weeks, we will be able to prove this theorem as a remarkably simple consequence of one of
our main theorems. 

1.3 Terminology and basic arithmetic 

Definitions 

• Complex numbers are defined as the set of all numbers 

� = � + ��, 

where � and � are real numbers. 

• We denote the set of all complex numbers by �. (On the blackboard we will usually write ℂ 
–this font is called blackboard bold.) 

• We call � the real part of �. This is denoted by � = Re(�). 

• We call � the imaginary part of �. This is denoted by � = Im(�). 

Important: The imaginary part of � is a real number. It does not include the �. 

The basic arithmetic operations follow the standard rules. All you have to remember is that �2 = −1. 
We will go through these quickly using some simple examples. It almost goes without saying that
in 18.04 it is essential that you become fluent with these manipulations. 

• Addition: (3 + 4�) + (7 + 11�) = 10 + 15� 

• Subtraction: (3 + 4�) − (7 + 11�) = −4 − 7� 

• Multiplication: 

(3 + 4�)(7 + 11�) = 21 + 28� + 33� + 44�2 = −23 + 61�. 

Here we have used the fact that 44�2 = −44. 

Before talking about division and absolute value we introduce a new operation called conjugation.
It will prove useful to have a name and symbol for this, since we will use it frequently. 

Complex conjugation is denoted with a bar and defined by 

� + �� = � − ��. 

If � = � + �� then its conjugate is � = � − �� and we read this as “z-bar = � − ��”. 

Example 1.2. 
3 + 5� = 3 − 5�. 

The following is a very useful property of conjugation: If � = � + �� then 

�� = (� + ��)(� − ��) = �2 + �2 . 
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Note that �� is real. We will use this property in the next example to help with division. 

Example 1.3. (Division.) Write 
3 + 4� in the standard form � + ��. 
1 + 2� 

Solution: We use the useful property of conjugation to clear the denominator: 
3 + 4� 3 + 4� 1 − 2� 11 − 2� 11 − 

2 = ⋅ = = �. 
1 + 2� 1 + 2� 1 − 2� 5 5 5 

In the next section we will discuss the geometry of complex numbers, which gives some insight into
the meaning of the magnitude of a complex number. For now we just give the definition. 

Definition. The magnitude of the complex number � + �� is defined as √ |�| = �2 + �2. 

The magnitude is also called the absolute value, norm or modulus. √ √ 
Example 1.4. The norm of 3 + 5� = 9 + 25 = 34. 

Important. The norm is the sum of �2 and �2. It does not include the � and is therefore always 
positive. 

1.4 The complex plane 

1.4.1 The geometry of complex numbers 

Because it takes two numbers � and � to describe the complex number � = � + �� we can visualize 
complex numbers as points in the ��-plane. When we do this we call it the complex plane. Since � 
is the real part of � we call the �-axis the real axis. Likewise, the �-axis is the imaginary axis. 

Imaginary axis 

� 

� 

� 

� 

Imaginary axis 

� = � + �� = (�, �) � = � + �� = (�, �) 
� 

Real axis � Real axis −� 

� 

� = � − �� = (�, −�) 

1.4.2 The triangle inequality 

The triangle inequality says that for a triangle the sum of the lengths of any two legs is greater than
the length of the third leg. 

� 

� � 

Triangle inequality: |��| + |��| > |��| 
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For complex numbers the triangle inequality translates to a statement about complex magnitudes.
Precisely: for complex numbers �1, �2 |�1| + |�2| ≥ |�1 + �2| 
with equality only if one of them is 0 or if arg(�1) = arg(�2). This is illustrated in the following 
figure. 

� 
�1 + �2 

�2 

�1 

� 

Triangle inequality: |�1| + |�2| ≥ |�1 + �2| 
We get equality only if �1 and �2 are on the same ray from the origin, i.e. they have the same 
argument. 

1.5 Polar coordinates 

In the figures above we have marked the length � and polar angle � of the vector from the origin to 
the point � = � + ��. These are the same polar coordinates you saw in 18.02 and 18.03. There are a
number of synonyms for both � and � 

� = |�| = magnitude = length = norm = absolute value = modulus 

� = arg(�) = argument of � = polar angle of � 

As in 18.02 you should be able to visualize polar coordinates by thinking about the distance � from 
the origin and the angle � with the �-axis. 

Example 1.5. Let’s make a table of �, � and � for some complex numbers. Notice that � is not 
uniquely defined since we can always add a multiple of 2� to � and still be at the same point in the 
plane. 
� = � + �� � � 

1 1 0, 2�, 4�, … Argument = 0, means � is along the �-axis 
� √1 �∕2, �∕2 + 2� … Argument = �∕2, means � is along the �-axis 

1 + � 2 �∕4, �∕4 + 2� … Argument = �∕4, means � is along the ray at 45◦ to the �-axis 

Real axis 

Imaginary axis 
� 

1 

1 + � 
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When we want to be clear which value of � is meant, we will specify a branch of arg. For example, 
0 ≤ � < 2� or −� < � ≤ �. This will be discussed in much more detail in the coming weeks. 
Keeping careful track of the branches of arg will turn out to be one of the key requirements of 
complex analysis. 

1.6 Euler’s Formula 

Euler’s (pronounced ‘oilers’) formula connects complex exponentials, polar coordinates, and sines
and cosines. It turns messy trig identities into tidy rules for exponentials. We will use it a lot. The
formula is the following: 

e�� = cos(�) + � sin(�). (1) 
There are many ways to approach Euler’s formula. Our approach is to simply take Equation 1 as
the definition of complex exponentials. This is legal, but does not show that it’s a good definition.
To do that we need to show the e�� obeys all the rules we expect of an exponential. To do that 
we go systematically through the properties of exponentials and check that they hold for complex
exponentials. 

1.6.1 e�� behaves like a true exponential 

P1. e�� differentiates as expected: 
�e�� = �e�� . 
�� 

Proof. This follows directly from the definition: 

�e�� = 
� (cos(�) + � sin(�)) = − sin(�) + � cos(�) = �(cos(�) + � sin(�)) = �e��. 

�� �� 

P2. e�⋅0 = 1. 

Proof. e�⋅0 = cos(0) + � sin(0) = 1. 

P3. The usual rules of exponents hold: 

e��e�� = e�(�+�). 

Proof. This relies on the cosine and sine addition formulas. 

e�� ⋅ e�� = (cos(�) + � sin(�)) ⋅ (cos(�) + � sin(�)) 
= cos(�) cos(�) − sin(�) sin(�) + � (cos(�) sin(�) + sin(�) cos(�)) 
= cos(� + �) + � sin(� + �) = e�(�+�). 

P4. The definition of e�� is consistent with the power series for e�. 

Proof. To see this we have to recall the power series for e�, cos(�) and sin(�). They are 

e� �2 �3 �4 
= 1 + � + + + +… 

2! 3! 4! 
�4 − 

�6 
cos(�) = 1 − 

�2 + +… 
2! 4! 6! 

sin(�) = � − 
�3 + 

�5 
+… 

3! 5! 
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Now we can write the power series for e�� and then split it into the power series for sine and cosine: 

∞ 

e�� 
∑ (��)� 

= 
�! 0 

∞ 
�2� ∞ 

�2�+1 ∑ ∑ 
= (−1)� + � (−1)� 

0 
(2�)! 0 (2� + 1)! 

= cos(�) + � sin(�). 

So the Euler formula definition is consistent with the usual power series for e�. 

Properties P1-P4 should convince you that e�� behaves like an exponential. 

1.6.2 Complex exponentials and polar form 

Now let’s turn to the relation between polar coordinates and complex exponentials. 

Suppose � = � + �� has polar coordinates � and �. That is, we have � = � cos(�) and � = � sin(�). 
Thus, we get the important relationship 

� = � + �� = � cos(�) + �� sin(�) = �(cos(�) + � sin(�)) = �e��. 

This is so important you shouldn’t proceed without understanding. We also record it without the 
intermediate equation. 

� = � + �� = �e��. (2) 

Because � and � are the polar coordinates of (�, �) we call � = �e�� the polar form of �. 

Let’s now verify that magnitude, argument, conjugate, multiplication and division are easy in polar
form. 

Magnitude. |e��| = 1. 

Proof. √ |e��| = | cos(�) + � sin(�)| = cos2(�) + sin2(�) = 1. 

In words, this says that e�� is always on the unit circle – this is useful to remember! 

Likewise, if � = �e�� then |�| = �. You can calculate this, but it should be clear from the definitions: |�| is the distance from � to the origin, which is exactly the same definition as for �. 

Argument. If � = �e�� then arg(�) = �. 

Proof. This is again the definition: the argument is the polar angle �. 

Conjugate. (�e��) = �e−��. 

Proof. 

−�� (�e��) = �(cos(�) + � sin(�)) = �(cos(�) − � sin(�)) = �(cos(−�) + � sin(−�)) = �e . 

In words: complex conjugation changes the sign of the argument. 

= �1e��1 and �2 Multiplication. If �1 = �2e��2 then 

�1�2 = �1�2e�(�1+�2). 
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This is what mathematicians call trivial to see, just write the multiplication down. In words, the 
formula says the for �1�2 the magnitudes multiply and the arguments add. 

Division. Again it’s trivial that 
�1e��1 �1 e�(�1−�2) = . 
�2e��2 �2 

Example 1.6. (Multiplication by 2�) Here’s a simple but important example. By looking at the graph 
we see that the number 2� has magnitude 2 and argument �∕2. So in polar coordinates it equals 2e��∕2. 
This means that multiplication by 2� multiplies lengths by 2 and adds �∕2 to arguments, i.e. rotates 
by 90◦. The effect is shown in the figures below 

Re

Im

2i = 2eiπ/2

π/2
Re

Im

Re

Im× 2i

|2�| = 2, arg(2�) = �∕2 Multiplication by 2� rotates by �∕2 and scales by 2 ( √ )3 
1+� 3 Example 1.7. (Raising to a power) Let’s compute (1 + �)6 and 2 √ √ 
2e��∕4 Solution: 1 + � has magnitude = 2 and arg = �∕4, so 1 + � = . Raising to a power is now 

easy: (√ )6 
2e��∕4 = 8e6��∕4 = 8e3��∕2 (1 + �)6 = = −8�. √ ( √ )3 

Similarly, 
1 + � 3 

= e��∕3, so 
1 + � 3 

= (1 ⋅ e��∕3)3 = e�� = −1 
2 2 

1.6.3 Complexification or complex replacement 

In the next example we will illustrate the technique of complexification or complex replacement. This 
can be used to simplify a trigonometric integral. It will come in handy when we need to compute
certain integrals. 

Example 1.8. Use complex replacement to compute 

� = ∫ 
e� cos(2�) ��. 

Solution: We have Euler’s formula 

2�� e = cos(2�) + � sin(2�), 
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so cos(2�) = Re(e2��). The complex replacement trick is to replace cos(2�) by e2��. We get (justifi-
cation below) 

�� = ∫ 
e� cos 2� + �e� sin 2� ��, � = Re(��). 

Computing �� is straightforward: 

e�(1+2�) �� = ∫ 
e�e�2� �� = ∫ 

e�(1+2�) �� = . 
1 + 2� 

Here we will do the computation first in rectangular coordinates. In applications, for example
throughout 18.03, polar form is often preferred because it is easier and gives the answer in a more
useable form. 

e�(1+2�) 1 − 2� �� = ⋅ 
1 + 2� 1 − 2� 
e�(cos(2�) + � sin(2�))(1 − 2�) = 

5 
1 = e�(cos(2�) + 2 sin(2�) + �(−2 cos(2�) + sin(2�))) 
5 

So, 
1 � = Re(��) = e�(cos(2�) + 2 sin(2�)). 
5 

Justification of complex replacement. The trick comes by cleverly adding a new integral to � as 

follows. Let � = ∫ 
e� sin(2�) ��. Then we let 

�� = � + �� = ∫ 
e�(cos(2�) + � sin(2�)) �� = ∫ 

e�e2�� ��. 

Clearly, by construction, Re(�� ) = � as claimed above. 

Alternative using polar coordinates to simplify the expression for �� : √ 
In polar form, we have 1 + 2� = �e��, where � = 5 and � = arg(1 + 2�) = tan−1(2) in the first 
quadrant. Then: 

e�(1+2�) e� e� 
e�(2�−�) �� = √ = √ = √ (cos(2� − �) + � sin(2� − �)). 

5e�� 5 5 

Thus, 
e� 

� = Re(��) = √ cos(2� − �). 
5 

1.6.4 �th roots 

We are going to need to be able to find the �th roots of complex numbers, i.e., solve equations of the 
form 

�� = �, 

where � is a given complex number. This can be done most conveniently by expressing � and � in 
polar form, � = �e�� and � = �e��. Then, upon substituting, we have to solve 

�� e��� = �e�� 



1 COMPLEX ALGEBRA AND THE COMPLEX PLANE 9 

For the complex numbers on the left and right to be equal, their magnitudes must be the same and
their arguments can only differ by an integer multiple of 2�. This gives 

� = �1∕� �� = � + 2��, where � = 0, ±1, ±2, … 

Solving for �, we have 
� 2�� � = + . 
� � 

Example 1.9. Find all 5 fifth roots of 2. 

Solution: For � = 2, we have � = 2 and � = 0, so the fifth roots of 2 are 

= 21∕5 2���∕5 �� e , where � = 0, ±1, ±2, … 

Looking at the right hand side we see that for � = 5 we have 21∕5e2�� which is exactly the same as 
the root when � = 0, i.e. 21∕5e0�. Likewise � = 6 gives exactly the same root as � = 1, and so on. 
This means, we have 5 different roots corresponding to � = 0, 1, 2, 3, 4. 

= 21∕5, 21∕5e2��∕5, 21∕5e4��∕5, 21∕5e6��∕5, 21∕5e8��∕5 �� 

Similarly we can say that in general � = �e�� has � distinct � th roots: 

= �1∕� e��∕�+� 2�(�∕�) for � = 0, 1, 2, … � − 1. �� 

Example 1.10. Find the 4 fourth roots of 1. 

Solution: We need to solve �4 = 1, so � = 0. So the 4 distinct fourth roots are in polar form 

= 1, e��∕2, e��, e�3�∕2 �� 

and in Cartesian representation 
�� = 1, �, −1, −�. 

Example 1.11. Find the 3 cube roots of -1. 

e� �+� 2�� , e��, e�5�∕3 Solution: �2 = −1 = . So, �� = e� �∕3+� 2�(�∕3) and the 3 cube roots are e��∕3 . 
Since �∕3 radians is 60◦ we can simpify: √ √ 

1 3 1 3 
e��∕3 = cos(�∕3) + � sin(�∕3) = + � ⇒ �� = −1, ± � 

2 2 2 2 

Example 1.12. Find the 5 fifth roots of 1 + �. √ 
Solution: �5 = 1 + � = 2e�(�∕4+2��), for � = 0, 1, 2, …. So, the 5 fifth roots are 

21∕10e��∕20, 21∕10e�9�∕20, 21∕10e�17�∕20, 21∕10e�25�∕20, 21∕10e�33�∕20. 

Using a calculator we could write these numerically as � + ��, but there is no easy simplification. 

Example 1.13. We should check that our technique works as expected for a simple problem. Find
the 2 square roots of 4. 

= 4e� 2�� = 2 and 2e�� Solution: �2 . So, �� = 2e� ��, with � = 0, 1. So the two roots are 2e0 = −2 
as expected! 
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1.6.5 The geometry of �th roots 

Looking at the examples above we see that roots are always spaced evenly around a circle centered
at the origin. For example, the fifth roots of 1 + � are spaced at increments of 2�∕5 radians around 
the circle of radius 21∕5. 

Note also that the roots of real numbers always come in conjugate pairs. 
� � 

2 

1 

Cube roots of -1 

√ 1 + � 1 3 + � 2 

� � 
−1 

√ 
3 − � 2 2 

Fifth roots of 1 + � 

1.7 Inverse Euler formula 

Euler’s formula gives a complex exponential in terms of sines and cosines. We can turn this around
to get the inverse Euler formulas. 

Euler’s formula says: 

e�� −�� = cos(�) + � sin(�) and e = cos(�) − � sin(�). 

By adding and subtracting we get: 

e�� + e−�� e�� − e−�� cos(�) = and sin(�) = . 
2 2� 

Please take note of these formulas we will use them frequently! 

1.8 de Moivre’s formula 

For positive integers � we have de Moivre’s formula: 

(cos(�) + � sin(�))� = cos(��) + � sin(��) 

Proof. This is a simple consequence of Euler’s formula: 

= (e��)� = e��� (cos(�) + � sin(�))� = cos(��) + � sin(��). 

The reason this simple fact has a name is that historically de Moivre stated it before Euler’s formula
was known. Without Euler’s formula there is not such a simple proof. 
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1.9 Representing complex multiplication as matrix multiplication 

Consider two complex numbers �1 = � + �� and �2 = � + �� and their product 

�1�2 = (� + ��)(� + ��) = (�� − ��) + �(�� + ��) =∶ � (3) 

Now let’s define two matrices [ ] [ ] 
� −� � −� �1 = �2 = � � � � 

Note that these matrices store the same information as �1 and �2, respectively. Let’s compute their 
matrix product [ ] [ ] [ ] 

� −� � −� �� − �� −(�� + ��) �1�2 = = ∶= � . � � � � �� + �� �� − �� 

Comparing � just above with � in Equation 3, we see that � is indeed the matrix corresponding 
to the complex number � = �1�2. Thus, we can represent any complex number � equivalently by 
the matrix [ ] 

Re � − Im � � = Im � Re � 

and complex multiplication then simply becomes matrix multiplication. Further note that we can 
write [ ] [ ] 

1 0 0 −1 � = Re � + Im � , 0 1 1 0 [ ] 
0 −1 i.e., the imaginary unit � corresponds to the matrix 1 0 

and �2 = −1 becomes [ ] [ ] [ ] 
0 −1 0 −1 1 0 = − . 1 0 1 0 0 1 

Polar form (decomposition). Writing � = �e�� = �(cos � + � sin �), we find [ ] [ ] [ ] 
cos � − sin � � 0 cos � − sin � � = � = sin � cos � 0 � sin � cos � 

corresponding to a stretch factor � multiplied by a 2D rotation matrix. In particular, multiplication 
by � corresponds to the rotation with angle � = �∕2 and � = 1. 

We will not make a lot of use of the matrix representation of complex numbers, but later it will help
us remember certain formulas and facts. 

1.10 The exponential function 

We have Euler’s formula: e�� = cos(�) + � sin(�). We can extend this to the complex exponential 
function e�. 

Definition. For � = � + �� the complex exponential function is defined as 

e� = e�+�� = e�e�� = e�(cos(�) + � sin(�)). 

In this definition e� is the usual exponential function for a real variable �. 

It is easy to see that all the usual rules of exponents hold: 
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1. e0 = 1 

2. e�1+�2 = e�1e�2 

3. (e�)� = e�� for positive integers �. 

4. (e�)−1 = e−� 

5. e� ≠ 0 

It will turn out that the property 
�e� 

= e� also holds, but we can’t prove this yet because we 
�� 

� haven’t defined what we mean by the complex derivative . 
�� 

Here are some more simple, but extremely important properties of e�. You should become 
fluent in their use and know how to prove them. 

6. |e��| = 1 

Proof. √ |e��| = | cos(�) + � sin(�)| = cos2(�) + sin2(�) = 1. 

7. |e�+��| = e� (as usual � = � + �� and �, � are real). 
Proof. You should be able to supply this. If not: ask a teacher or TA. 

8. The path e�� for 0 < � < ∞ wraps counterclockwise around the unit circle. It does so infinitely
many times. This is illustrated in the following picture. 

t
0 π

4
π
2

3π
4

π 5π
4

3π
2

7π
4

2π 9π
4

5π
2

11π
4

3π 13π
4

7π
2

15π
4

4π
e0 = e2πi = e4πi

eπi/4 = e9πi/4

eπi/2 = e5πi/2

3eπi/4 = e11πi/4

eπi = e3πi

5eπi/4 = e13πi/4

e3πi/2 = e7πi/2

7eπi/4 = e15πi/4

z = eit

The map � → e�� wraps the real axis around the unit circle. 

1.11 Complex functions as mappings 

A complex function � = � (�) is hard to graph because it takes 4 dimensions: 2 for � and 2 for �. So, 
to visualize them we will think of complex functions as mappings. That is we will think of � = � (�) 
as taking a point in the complex �-plane and mapping (sending) it to a point in the complex �-plane. 

We will use the following terms and symbols to discuss mappings. 

• A function � = � (�) will also be called a mapping of � to �. 

• Alternatively we will write � → � or � → � (�). This is read as “� maps to �”. 

• We will say that “� is the image of � under the mapping” or more simply “� is the image of 
�”. 
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• If we have a set of points in the �-plane we will talk of the image of that set under the mapping.
For example, under the mapping � → �� the image of the imaginary �-axis is the real �-axis. 

� → � = �� 

Re(�) 

Im(�) 

� 

Re(�) 

Im(�) 

−1 

The image of the imaginary axis under � → ��. 

Next, we’ll illustrate visualizing mappings with some examples: 

Example 1.14. The mapping � = �2. We visualize this by putting the �-plane on the left and the 
�-plane on the right. We then draw various curves and regions in the �-plane and the corresponding 
image under �2 in the �-plane. 

In the first figure we show that rays from the origin are mapped by �2 to rays from the origin. We 
see that 

1. The ray �2 at �∕4 radians is mapped to the ray � (�2) at �∕2 radians. 

2. The rays �2 and �6 are both mapped to the same ray. This is true for each pair of diametrically 
opposed rays. 

3. A ray at angle � is mapped to the ray at angle 2�. 

Re(z)

Im(z)

L1

L2

L3L4

L5

L6

L7

L8

f(L1)& f(L5)

f(L2)& f(L6)

f(L3)& f(L7)

f(L4)& f(L8)

z 7→ w = z2

� (�) = �2 maps rays from the origin to rays from the origin. 

The next figure gives another view of the mapping. Here we see vertical stripes in the first quadrant
are mapped to parabolic stripes that live in the first and second quadrants. 
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Re(z)

Im(z)

0.5 1 2 3 4

0.5

1

2

3

4

Re(w)

Im(w)

1 2 4 6 88 10 12 14 16

8

16

24

32

z 7→ w = z2

�2 = (�2 − �2) + �2�� maps vertical lines to left facing parabolas. 

The next figure is similar to the previous one, except in this figure we look at vertical stripes in 
both the first and second quadrants. We see that they map to parabolic stripes that live in all four 
quadrants. 

Re(z)

Im(z)

0.5 1 2 3 4−1−2−3−4
Re(w)

Im(w)

1 2 4 6 88 10 12 14 16

8

16

24

32

z 7→ w = z2

� (�) = �2 maps the first two quadrants to the entire plane. 

The next figure shows the mapping of stripes in the first and fourth quadrants. The image map is 
identical to the previous figure. This is because the fourth quadrant is minus the second quadrant, 
but �2 = (−�)2. 
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Re(z)

Im(z)

0.5 1 2 3 4
Re(w)

Im(w)

1 2 4 6 88 10 12 14 16

8

16

24

32

z 7→ w = z2

Vertical stripes in quadrant 4 are mapped identically to vertical stripes in quadrant 2. 

Re(z)

Im(z)

Re(w)

Im(w)

z 7→ w = z2

Simplified view of the first quadrant being mapped to the first two quadrants. 

Re(z)

Im(z)

Re(z)

Im(z)

z 7→ w = z2

Simplified view of the first two quadrants being mapped to the entire plane. 

Example 1.15. The mapping � = e�. Here we present a series of plots showing how the exponential 
function maps � to �. 
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Re(z)

Im(z)

×

×

×

×

0 1 2−1

πi/2

2πi 1 + 2πi

1 + πi/2

Re(w)

Im(w)

1

×

e1 e2

×

z 7→ w = ez

Notice that vertical lines are mapped to circles and horizontal lines to rays from the origin. 

The next four figures all show essentially the same thing: the exponential function maps horizontal
stripes to circular sectors. Any horizontal stripe of width 2� gets mapped to the entire plane minus 
the origin, 

Because the plane minus the origin comes up frequently we give it a name: 

Definition. The punctured plane is the complex plane minus the origin. In symbols we can write it 
as � − {0} or �∕{0}. 

Re(z)

Im(z)

0 1 2−1

πi/2

2πi

πi

−πi

Re(w)

Im(w)

1 e1 e2

z 7→ w = ez

The horizontal strip 0 ≤ � < 2� is mapped to the punctured plane 

Re(z)

Im(z)

0 1 2−1

πi/2

2πi

πi

−πi

Re(w)

Im(w)

1 e1 e2

z 7→ w = ez

The horizontal strip −� < � ≤ � is mapped to the punctured plane 



Re(z)

Im(z)

0

πi

2πi

Re(w)

Im(w)

z 7→ w = ez

Re(z)

Im(z)

0

πi

−πi

Re(w)

Im(w)z 7→ w = ez
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Simplified view showing e� maps the horizontal stripe 0 ≤ � < 2� to the punctured plane. 

Simplified view showing e� maps the horizontal stripe −� < � ≤ � to the punctured plane. 

1.12 The function arg(�) 

1.12.1 Many-to-one functions 

The function � (�) = �2 maps ±� to the same value, e.g. � (2) = � (−2) = 4. We say that � (�) is a 
2-to-1 function. That is, it maps 2 different points to each value. (Technically, it only maps one point
to 0, but we will gloss over that for now.) Here are some other examples of many-to-one functions. 

Example 1.16. � = �3 is a 3-to-1 function. For example, 3 different � values get mapped to � = 1: ( √ )3 ( √ )3 
−1 + 3 � −1 − 3 � 

13 = = = 1 
2 2 

Example 1.17. The function � = e� maps infinitely many points to each value. For example 

0 2�� 4�� 2��� e = e = e = … = e = … = 1 

e��∕2 = e��∕2+2�� = e��∕2+4�� = … = e��∕2+2��� = … = � 

In general, e�+2��� has the same value for every integer �. 



x

y

arg = 0

arg = π/4

arg = π/2

arg = 3π/4

arg = π

arg = 5π/4

arg = 3π/2

arg = 7π/4

arg ≈ 2πarg ≈ π
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1.12.2 Branches of arg(�) 

Important note. You should master this section. Branches of arg(�) are the key that really underlies 
all our other examples. Fortunately it is reasonably straightforward. 

The key point is that the argument is only defined up to multiples of 2�� so every � produces infinitely 
many values for arg(�). Because of this we will say that arg(�) is a multiple-valued function. 

Note. In general a function should take just one value. What that means in practice is that whenever
we use such a function will have to be careful to specify which of the possible values we mean. This
is known as specifying a branch of the function. 

Definition. By a branch of the argument function we mean a choice of range so that it becomes 
single-valued. By specifying a branch we are saying that we will take the single value of arg(�) that 
lies in the branch. 

Let’s look at several different branches to understand how they work: 

(i) If we specify the branch as 0 ≤ arg(�) < 2� then we have the following arguments. 

arg(1) = 0; arg(�) = �∕2; arg(−1) = �; arg(−�) = 3�∕2 

This branch and these points are shown graphically in Figure (i) below. 

Figure (i): The branch 0 ≤ arg(�) < 2� of arg(�). 

Notice that if we start at � = 1 on the positive real axis we have arg(�) = 0. Then arg(�) increases 
as we move counterclockwise around the circle. The argument is continuous until we get back to the
positive real axis. There it jumps from almost 2� back to 0. 

There is no getting around (no pun intended) this discontinuity. If we need arg(�) to be continuous 
we will need to remove (cut) the points of discontinuity out of the domain. The branch cut for this 
branch of arg(�) is shown as a thick orange line in the figure. If we make the branch cut then the 
domain for arg(�) is the plane minus the cut, i.e. we will only consider arg(�) for � not on the cut. 

For future reference you should note that, on this branch, arg(�) is continuous near the negative real 
axis, i.e. the arguments of nearby points are close to each other. 

(ii) If we specify the branch as −� < arg(�) ≤ � then we have the following arguments: 

arg(1) = 0; arg(�) = �∕2; arg(−1) = �; arg(−�) = −�∕2 



x

y

arg = 0

arg = π/4

arg = π/2

arg = 3π/4

arg = π

arg = −3π/4

arg = −π/2

arg = −π/4

arg ≈ 0arg ≈ −π

x

y

arg = 2π

arg = π/4

arg = π/2

arg = 3π/4

arg = π

arg = 5π/4

arg = 3π/2

arg = 7π/4

arg ≈ 2πarg ≈ π

arg ≈ 9π/4
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This branch and these points are shown graphically in Figure (ii) below. 

Figure (ii): The branch −� < arg(�) ≤ � of arg(�). 

Compare Figure (ii) with Figure (i). The values of arg(�) are the same in the upper half plane, but 
in the lower half plane they differ by 2�. 

For this branch the branch cut is along the negative real axis. As we cross the branch cut the value
of arg(�) jumps from � to something close to −�. 

(iii) Figure (iii) shows the branch of arg(�) with �∕4 ≤ arg(�) < 9�∕4. 

Figure (iii): The branch �∕4 ≤ arg(�) < 9�∕4 of arg(�). 

Notice that on this branch arg(�) is continuous at both the positive and negative real axes. The jump 
of 2� occurs along the ray at angle �∕4. 

(iv) Obviously, there are many many possible branches. For example, 

42 < arg(�) ≤ 42 + 2�. 

(v) We won’t make use of this in 18.04, but, in fact, the branch cut doesn’t have to be a straight line.
Any curve that goes from the origin to infinity will do. The argument will be continuous except for 
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a jump by 2� when � crosses the branch cut. 

1.12.3 The principal branch of arg(�) 

Branch (ii) in the previous section is singled out and given a name: 

Definition. The branch −� < arg(�) ≤ � is called the principal branch of arg(�). We will use the 
notation Arg(�) (capital A) to indicate that we are using the principal branch. (Of course, in cases
where we don’t want there to be any doubt we will say explicitly that we are using the principal
branch.) 

1.12.4 Continuity of arg(�) 

The examples above show that there is no getting around the jump of 2� as we cross the branch cut. 
This means that when we need arg(�) to be continuous we will have to restrict its domain to the plane 
minus a branch cut. 

1.13 Concise summary of branches and branch cuts 

We discussed branches and branch cuts for arg(�). Before talking about log(�) and its branches and 
branch cuts we will give a short review of what these terms mean. You should probably scan this 
section now and then come back to it after reading about log(�). 

Consider the function � = � (�). Suppose that � = � + �� and � = � + ��. 

Domain. The domain of � is the set of � where we are allowed to compute � (�). 

Range. The range (image) of � is the set of all � (�) for � in the domain, i.e. the set of all � reached 
by � . 

Branch. For a multiple-valued function, a branch is a choice of range for the function. We choose
the range to exclude all but one possible value for each element of the domain. 

Branch cut. A branch cut removes (cuts) points out of the domain. This is done to remove points
where the function is discontinuous. 

1.14 The function log(�) 

Our goal in this section is to define the log function. We want log(�) to be the inverse of e�. That 
is, we want elog(�) = �. We will see that log(�) is multiple-valued, so when we use it we will have to 
specify a branch. 

We start by looking at the simplest example which illustrates that log(�) is multiple-valued. 

Example 1.18. Find log(1). 

Solution: We know that e0 = 1, so log(1) = 0 is one answer. 

We also know that e2�� = 1, so log(1) = 2�� is another possible answer. In fact, we can choose any 
multiple of 2��: 

log(1) = 2���, where � is any integer 
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This example leads us to consider the polar form for � as we try to define log(�). If � = �e�� then 
one possible value for log(�) is 

log(�) = log(�e��) = log(�) + ��, 

here log(�) is the usual logarithm of a real positive number. For completeness we show explicitly 
that with this definition elog(�) = �: 

log(�) log(�)+�� log(�)e�� = �e�� e = e = e = �. 

Since � = |�| and � = arg(�) we have arrived at our definition. 

Definition. The function log(�) is defined as 

log(�) = log(|�|) + � arg(�), 

where log(|�|) is the usual natural logarithm of a positive real number. 

Remarks. 

1. Since arg(�) has infinitely many possible values, so does log(�). 

2. log(0) is not defined. (Both because arg(0) is not defined and log(|0|) is not defined.) 

3. Choosing a branch for arg(�) makes log(�) single valued. The usual terminology is to say we 
have chosen a branch of the log function. 

4. The principal branch of log comes from the principal branch of arg. That is, 

log(�) = log(|�|) + � arg(�), where − � < arg(�) ≤ � (principal branch). 

Example 1.19. Compute all the values of log(�). Specify which one comes from the principal 
branch. 

� Solution: We have that |�| = 1 and arg(�) = + 2��, so 
2 

� � log(�) = log(1) + � 
2
+ �2�� = � 

2
+ �2��, where � is any integer. 

The principal branch of arg(�) is between −� and �, so Arg(�) = �∕2. Therefore, the value of log(�) 
from the principal branch is ��∕2. √ 
Example 1.20. Compute all the values of log(−1 − 3 �). Specify which one comes from the 
principal branch. √ 
Solution: Let � = −1 − 3 �. Then |�| = 2 and in the principal branch Arg(�) = −2�∕3. So all the 
values of log(�) are 

2� log(�) = log(2) − � + �2��. 
3 

The value from the principal branch is log(�) = log(2) − �2�∕3. 
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1.14.1 Figures showing � = log(�) as a mapping 

The figures below show different aspects of the mapping given by log(�). 

In the first figure we see that a point � is mapped to (infinitely) many values of �. In this case we 
show log(1) (blue dots), log(4) (red dots), log(�) (blue cross), and log(4�) (red cross). The values in 
the principal branch are inside the shaded region in the �-plane. Note that the values of log(�) for a 
given � are placed at intervals of 2�� in the �-plane. 

Re(z)

Im(z)

×

×

1 2 4

2

4

Re(w)

Im(w)

× ×

× ×

× ×

× ×

−4π

−4

−2π

−2

2π

2

4π

4

π

−π

z 7→ w = log(z)

z = ew ←w

Mapping log(�): log(1), log(4), log(�), log(4�) 

The next figure illustrates that the principal branch of log maps the punctured plane to the horizontal 
strip −� < Im(�) ≤ �. We again show the values of log(1), log(4), log(�) and log(4�). Since we’ve 
chosen a branch, there is only one value shown for each log. 

Re(z)

Im(z)

×

×

1 2 4

2

4

Re(w)

Im(w)

× ×

−4π

−4

−2π

−2

2π

2

4π

4

π

−π

z 7→ w = log(z)

z = ew ←w

Mapping log(�): the principal branch and the punctured plane 

The third figure shows how circles centered on 0 are mapped to vertical lines, and rays from the
origin are mapped to horizontal lines. If we restrict ourselves to the principal branch the circles are 
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mapped to vertical line segments and rays to a single horizontal line in the principal (shaded) region
of the �-plane. 

Re(z)

Im(z)
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2

4

Re(w)

Im(w)

−4π

−4

−2π

−2

2π

2

4π
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π

−π

z 7→ w = log(z)

z = ew ←w

Mapping log(�): mapping circles and rays 

1.14.2 Complex powers 

We can use the log function to define complex powers. 

Definition. Let � and � be complex numbers then the power �� is defined as 

�� = e� log(�). 

This is generally multiple-valued, so to specify a single value requires choosing a branch of log(�). √ 
Example 1.21. Compute all the values of 2�. Give the value associated to the principal branch of 
log(�). 

Solution: We have 
�� � log(2�) = log(2e 2 ) = log(2) + � + �2��. 

2 
So, √ log(2�) log(2) + �� √ �� 

2� = (2�)1∕2 +��� +��� = e 2 = e 2 4 = 2e 4 . 

(As usual � is an integer.) As we saw earlier, this only gives two distinct values. The principal branch 
has Arg(2�) = �∕2, so ( ) √ √ �� √ (1 + �) 2� = 2e 4 = 2 √ = 1 + �. 

2 

The other distinct value is when � = 1 and gives minus the value just above. 

Example 1.22. Cube roots: Compute all the cube roots of �. Give the value which comes from the 
principal branch of log(�). 

� Solution: We have log(�) = � + �2��, where � is any integer. So, 
2 

log(�) 2�� 

�1∕3 � � +� = e 3 = e 6 3 
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This gives only three distinct values 

e��∕6, e�5�∕6, e�9�∕6 

� On the principal branch log(�) = � , so the value of �1∕3 which comes from this is 
2 √ 

e��∕6 3 � = +
2
. 

2 

Example 1.23. Compute all the values of 1�. What is the value from the principal branch? 

Solution: This is similar to the problems above. log(1) = 2���, so 

1� = e� log(1) = e�2��� −2�� = e , where � is an integer. 

The principal branch has log(1) = 0 so 1� = 1. 
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Topic 2 Notes
Jeremy Orloff 

2 Analytic functions 

2.1 Introduction 

The main goal of this topic is to define and give some of the important properties of complex analytic
functions. A function � (�) is analytic if it has a complex derivative � ′(�). In general, the rules for
computing derivatives will be familiar to you from single variable calculus. However, a much richer
set of conclusions can be drawn about a complex analytic function than is generally true about real
differentiable functions. 

2.2 The derivative: preliminaries 

In calculus we defined the derivative as a limit. In complex analysis we will do the same. 

Δ� � (� + Δ�) − � (�) 
� ′(�) = lim = lim . 

Δ�→0 Δ� Δ�→0 Δ� 

Before giving the derivative our full attention we are going to have to spend some time exploring
and understanding limits. To motivate this we’ll first look at two simple examples – one positive and 
one negative. 

Example 2.1. Find the derivative of � (�) = �2. 

Solution: We compute using the definition of the derivative as a limit. 

(� + Δ�)2 − �2 �2 + 2�Δ� + (Δ�)2 − �2 
lim = lim = lim 2� + Δ� = 2�. 
Δ�→0 Δ� Δ�→0 Δ� Δ�→0 

That was a positive example. Here’s a negative one which shows that we need a careful understanding
of limits. 

Example 2.2. Let � (�) = �. Show that the limit for � ′(0) does not converge. 

Solution: Let’s try to compute � ′(0) using a limit: 

� (Δ�) − � (0) Δ� Δ� − �Δ� 
� ′(0) = lim = lim = . 

Δ�→0 Δ� Δ�→0 Δ� Δ� + �Δ� 

Here we used Δ� = Δ� + �Δ�. 

Now, Δ� → 0 means both Δ� and Δ� have to go to 0. There are lots of ways to do this. For example, 
if we let Δ� go to 0 along the �-axis then, Δ� = 0 while Δ� goes to 0. In this case, we would have 

� ′(0) = lim 
Δ� = 1. 

Δ�→0 Δ� 

On the other hand, if we let Δ� go to 0 along the positive �-axis then 

−�Δ� 
� ′(0) = lim = −1. 

Δ�→0 �Δ� 

1 
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The limits don’t agree! The problem is that the limit depends on how Δ� approaches 0. If we came
from other directions we’d get other values. There’s nothing to do, but agree that the limit does not
exist. 

Well, there is something we can do: explore and understand limits. Let’s do that now. 

2.3 Open disks, open deleted disks, open regions 

Definition. The open disk of radius � around �0 is the set of points � with |� − �0| < �, i.e. all points 
within distance � of �0. 

The open deleted disk of radius � around �0 is the set of points � with 0 < |� − �0| < �. That is, we 
remove the center �0 from the open disk. A deleted disk is also called a punctured disk. 

z0

r

z0

r

Left: an open disk around �0; right: a deleted open disk around �0 

Definition. An open region in the complex plane is a set � with the property that every point in � 
can be be surrounded by an open disk that lies entirely in �. We will often drop the word open and 
simply call � a region. 

In the figure below, the set � on the left is an open region because for every point in � we can draw 
a little circle around the point that is completely in �. (The dashed boundary line indicates that the 
boundary of � is not part of �.) In contrast, the set � is not an open region. Notice the point � 
shown is on the boundary, so every disk around � contains points outside �. 

Left: an open region �; right: � is not an open region 

2.4 Limits and continuous functions 

Definition. If � (�) is defined on a punctured disk around �0 then we say 

lim � (�) = �0 �→�0 

if � (�) goes to �0 no matter what direction � approaches �0. 

The figure below shows several sequences of points that approach �0. If lim � (�) = �0 then � (�) 
�→�0 

must go to �0 along each of these sequences. 
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Sequences going to �0 are mapped to sequences going to �0. 

Example 2.3. Many functions have obvious limits. For example: 

lim �2 = 4 
�→2 

and 
lim(�2 + 2)∕(�3 + 1) = 6∕9. 
�→2 

Here is an example where the limit doesn’t exist because different sequences give different limits. 

Example 2.4. (No limit) Show that 

� � + �� 
lim = lim 
�→0 � �→0 � − �� 

does not exist. 

Solution: On the real axis we have 
� � = = 1, 
� � 

so the limit as � → 0 along the real axis is 1. 

By contrast, on the imaginary axis we have 

� �� 
= = −1, 

� −�� 

so the limit as � → 0 along the imaginary axis is -1. Since the two limits do not agree the limit as 
� → 0 does not exist! 

2.4.1 Properties of limits 

We have the usual properties of limits. Suppose 

lim � (�) = �1 and lim �(�) = �2 �→�0 �→�0 

then 

• lim � (�) + �(�) = �1 + �2. 
�→�0 

• lim � (�)�(�) = �1 ⋅ �2. 
�→�0 
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• If �2 ≠ 0 then lim � (�)∕�(�) = �1∕�2 �→�0 

• If ℎ(�) is continuous and defined on a neighborhood of �1 then lim ℎ(� (�)) = ℎ(�1) �→�0
(Note: we will give the official definition of continuity in the next section.) 

We won’t give a proof of these properties. As a challenge, you can try to supply it using the formal
definition of limits given in the appendix. 

We can restate the definition of limit in terms of functions of (�, �). To this end, let’s write 

� (�) = � (� + ��) = �(�, �) + ��(�, �) 

and abbreviate 
� = (�, �), �0 = (�0, �0), �0 = �0 + ��0. 

Then {
lim� →�0 

�(�, �) = �0 lim � (�) = �0 iff 
�→�0 lim� →�0 

�(�, �) = �0. 

Note. The term ‘iff’ stands for ‘if and only if’ which is another way of saying ‘is equivalent to’. 

2.4.2 Continuous functions 

A function is continuous if it doesn’t have any sudden jumps. This is the gist of the following 
definition. 

Definition. If the function � (�) is defined on an open disk around �0 and lim � (�) = � (�0) then we 
�→�0 

say � is continuous at �0. If � is defined on an open region � then the phrase ‘� is continuous on 
�’ means that � is continuous at every point in �. 

As usual, we can rephrase this in terms of functions of (�, �): 

Fact. � (�) = �(�, �) + ��(�, �) is continuous iff �(�, �) and �(�, �) are continuous as functions of 
two variables. 

Example 2.5. (Some continuous functions)
(i) A polynomial 

� (�) = �0 + �1� + �2�
2 +… + ���

� 

is continuous on the entire plane. Reason: it is clear that each power (� + ��)� is continuous as a 
function of (�, �). 

(ii) The exponential function is continuous on the entire plane. Reason: 

e� = e�+�� = e� cos(�) + �e� sin(�). 

So the both the real and imaginary parts are clearly continuous as a function of (�, �). 

(iii) The principal branch Arg(�) is continuous on the plane minus the non-positive real axis. Reason:
this is clear and is the reason we defined branch cuts for arg. We have to remove the negative real 
axis because Arg(�) jumps by 2� when you cross it. We also have to remove � = 0 because Arg(�) 
is not even defined at 0. 
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(iv) The principal branch of the function log(�) is continuous on the plane minus the non-positive 
real axis. Reason: the principal branch of log has 

log(�) = log(�) + � Arg(�). 

So the continuity of log(�) follows from the continuity of Arg(�). 

2.4.3 Properties of continuous functions 

Since continuity is defined in terms of limits, we have the following properties of continuous func-
tions. 

Suppose � (�) and �(�) are continuous on a region �. Then 

• � (�) + �(�) is continuous on �. 

• � (�)�(�) is continuous on �. 

• � (�)∕�(�) is continuous on � except (possibly) at points where �(�) = 0. 

• If ℎ is continuous on � (�) then ℎ(� (�)) is continuous on �. 

Using these properties we can claim continuity for each of the following functions: 

• e�2 

• cos(�) = (e�� + e−��)∕2 

• If � (�) and �(�) are polynomials then � (�)∕�(�) is continuous except at roots of �(�). 

2.5 The point at infinity 

By definition the extended complex plane = � ∪ {∞}. That is, we have one point at infinity to be 
thought of in a limiting sense described as follows. 

A sequence of points {��} goes to infinity if |��| goes to infinity. This “point at infinity” is approached
in any direction we go. All of the sequences shown in the figure below are growing, so they all go
to the (same) “point at infinity”. 

Various sequences all going to infinity. 
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If we draw a large circle around 0 in the plane, then we call the region outside this circle a neigh-
borhood of infinity. 

R

Re(z)

Im(z)

The shaded region outside the circle of radius � is a neighborhood of infinity. 

2.5.1 Limits involving infinity 

The key idea is 1∕∞ = 0. By this we mean 

1 lim = 0 
�→∞ � 

We then have the following facts: 

• lim � (�) = ∞ ⇔ lim 1∕� (�) = 0 
�→�0 �→�0 

• lim � (�) = �0 ⇔ lim � (1∕�) = �0 �→∞ �→0 

• lim � (�) = ∞ ⇔ lim 1 = 0 
�→∞ �→0 � (1∕�) 

Example 2.6. lim e� is not defined because it has different values if we go to infinity in different 
�→∞ 

= e�e�� and directions, e.g. we have e� 

e�e�� lim = 0 
�→−∞ 

e�e�� lim = ∞ 
�→+∞ 

lim e�e�� is not defined, since � is constant, so e�e�� loops in a circle indefinitely. 
�→+∞ 

Example 2.7. Show lim �� = ∞ (for � a positive integer). 
�→∞ 

Solution: We need to show that |��| gets large as |�| gets large. Write � = ����, then 

|��| = |������| = �� = |�|� 

2.5.2 Stereographic projection from the Riemann sphere 

This is a lovely section and we suggest you read it. However it will be a while before we use it in
18.04. 
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One way to visualize the point at ∞ is by using a (unit) Riemann sphere and the associated stereo-
graphic projection. The figure below shows a sphere whose equator is the unit circle in the complex
plane. 

Stereographic projection from the sphere to the plane. 

Stereographic projection from the sphere to the plane is accomplished by drawing the secant line
from the north pole � through a point on the sphere and seeing where it intersects the plane. This
gives a 1-1 correspondence between a point on the sphere � and a point in the complex plane �. It 
is easy to see show that the formula for stereographic projection is 

� � � = (�, �, �) → � = + � . 
1 − � 1 − � 

The point � = (0, 0, 1) is special, the secant lines from � through � become tangent lines to the 
sphere at � which never intersect the plane. We consider � the point at infinity. 

In the figure above, the region outside the large circle through the point � is a neighborhood of 
infinity. It corresponds to the small circular cap around � on the sphere. That is, the small cap 
around � is a neighborhood of the point at infinity on the sphere! 

The figure below shows another common version of stereographic projection. In this figure the 
sphere sits with its south pole at the origin. We still project using secant lines from the north pole. 

2.6 Derivatives 

The definition of the complex derivative of a complex function is similar to that of a real derivative
of a real function: For a function � (�) the derivative � at �0 is defined as 

� (�) − � (�0) � ′(�0) = lim 
�→�0 � − �0 

Provided, of course, that the limit exists. If the limit exists we say � is analytic at �0 or � is differ-
entiable at �0. 
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Remember: The limit has to exist and be the same no matter how you approach �0! 

If � is analytic at all the points in an open region � then we say � is analytic on �. 

As usual with derivatives there are several alternative notations. For example, if � = � (�) we can 
write 

�� � (�) − � (�0) Δ� | � ′(�0) = = lim = lim 
�� �→�0 � − �0 Δ�→0 Δ� |�0 

Example 2.8. Find the derivative of � (�) = �2. 

Solution: We did this above in Example 2.1. Take a look at that now. Of course, � ′(�) = 2�. 

Example 2.9. Show � (�) = � is not differentiable at any point �. 

Solution: We did this above in Example 2.2. Take a look at that now. 

Challenge. Use polar coordinates to show the limit in the previous example can be any value with
modulus 1 depending on the angle at which � approaches �0. 

2.6.1 Derivative rules 

It wouldn’t be much fun to compute every derivative using limits. Fortunately, we have the same
differentiation formulas as for real-valued functions. That is, assuming � and � are differentiable we 
have: 

� • Sum rule: (� (�) + �(�)) = � ′ + � ′ 
�� 

� • Product rule: (� (�)�(�)) = � ′ � + �� ′ 
�� 

� � ′ � − �� ′ 
• Quotient rule: (� (�)∕�(�)) = 

�� �2 

� • Chain rule: �(� (�)) = � ′(� (�))� ′(�) 
�� 

1 • Inverse rule: 
�� −1(�)

= 
�� � ′(� −1(�)) 

To give you the flavor of these arguments we’ll prove the product rule. 

� � (�)�(�) − � (�0)�(�0) (� (�)�(�)) = lim 
�� �→�0 � − �0 

(� (�) − � (�0))�(�) + � (�0)(�(�) − �(�0)) = lim 
�→�0 � − �0 

� (�) − � (�0) (�(�) − �(�0)) = lim �(�) + � (�0) �→�0 � − �0 � − �0 

= � ′(�0)�(�0) + � (�0)� ′(�0) 

Here is an important fact that you would have guessed. We will prove it in the next section. 

Theorem. If � (�) is defined and differentiable on an open disk and � ′(�) = 0 on the disk then � (�) 
is constant. 
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2.7 Cauchy-Riemann equations 

The Cauchy-Riemann equations are our first consequence of the fact that the limit defining � (�) must 
be the same no matter which direction you approach � from. The Cauchy-Riemann equations will 
be one of the most important tools in our toolbox. 

2.7.1 Partial derivatives as limits 

Before getting to the Cauchy-Riemann equations we remind you about partial derivatives. If �(�, �) 
is a function of two variables then the partial derivatives of � are defined as 

�� �(� + Δ�, �) − �(�, �) 
(�, �) = lim , 

�� Δ�→0 Δ� 

i.e. the derivative of � holding � constant. 

�� �(�, � + Δ�) − �(�, �) 
(�, �) = lim , 

�� Δ�→0 Δ� 

i.e. the derivative of � holding � constant. 

2.7.2 The Cauchy-Riemann equations 

The Cauchy-Riemann equations use the partial derivatives of � and � to allow us to do two things: 
first, to check if � has a complex derivative and second, to compute that derivative. We start by 
stating the equations as a theorem. 

Theorem 2.10. (Cauchy-Riemann equations) If � (�) = �(�, �) + ��(�, �) is analytic (complex dif-
ferentiable) then 

�� �� �� �� � ′(�) = + � = − � 
�� �� �� �� 

In particular, 
�� �� and 

�� = − 
�� = . 

�� �� �� �� 

This last set of partial differential equations is what is usually meant by the Cauchy-Riemann equa-
tions. 

Here is the short form of the Cauchy-Riemann equations: 

�� = �� 

�� = −�� 

Proof. Let’s suppose that � (�) is differentiable in some region � and 

� (�) = � (� + ��) = �(�, �) + ��(�, �). 

We’ll compute � ′(�) by approaching � first from the horizontal direction and then from the vertical 
direction. We’ll use the formula 

� (� + Δ�) − � (�) 
� ′(�) = lim , 

Δ�→0 Δ� 
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where Δ� = Δ� + �Δ�. 

Horizontal direction: Δ� = 0, Δ� = Δ� 

� (� + Δ�) − � (�) 
� ′(�) = lim 

Δ�→0 Δ� 
� (� + Δ� + ��) − � (� + ��) 

= lim 
Δ�→0 Δ� 

(�(� + Δ�, �) + ��(� + Δ�, �)) − (�(�, �) + ��(�, �)) 
= lim 

Δ�→0 Δ� 
�(� + Δ�, �) − �(�, �) �(� + Δ�, �) − �(�, �) 

= lim + � 
Δ�→0 Δ� Δ� 
�� �� = (�, �) + � (�, �) 
�� �� 

Vertical direction: Δ� = 0, Δ� = �Δ� (We’ll do this one a little faster.) 

� (� + Δ�) − � (�) 
� ′(�) = lim 

Δ�→0 Δ� 
(�(�, � + Δ�) + ��(�, � + Δ�)) − (�(�, �) + ��(�, �)) 

= lim 
Δ�→0 �Δ� 

�(�, � + Δ�) − �(�, �) �(�, � + Δ�) − �(�, �) 
= lim + � 

Δ�→0 �Δ� �Δ� 
1 �� = (�, �) + 

�� (�, �) 
� �� �� 
�� �� = (�, �) − � (�, �) 
�� �� 

We have found two different representations of � ′(�) in terms of the partials of � and �. If put them 
together we have the Cauchy-Riemann equations: 

�� �� �� �� �� �� − 
�� �� � ′(�) = + � = − � ⇒ = , and = . 

�� �� �� �� �� �� �� �� 

It turns out that the converse is true and will be very useful to us. 

Theorem. Consider the function � (�) = �(�, �) + ��(�, �) defined on a region �. If � and � satisfy 
the Cauchy-Riemann equations and have continuous partials then � (�) is differentiable on �. 

The proof of this is a tricky exercise in analysis. It is somewhat beyond the scope of this class, so
we will skip it. If you’re interested, with a little effort you should be able to grasp it. 

2.7.3 Using the Cauchy-Riemann equations 

The Cauchy-Riemann equations provide us with a direct way of checking that a function is differen-
tiable and computing its derivative. 

Example 2.11. Use the Cauchy-Riemann equations to show that e� is differentiable and its derivative 
is e�. 

= e�+�� Solution: We write e� = e� cos(�) + �e� sin(�). So 

�(�, �) = e� cos(�) and �(�, �) = e� sin(�). 
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Computing partial derivatives we have 

�� = e� cos(�), �� = −e� sin(�) 
�� = e� sin(�), �� = e� cos(�) 

We see that �� = �� and �� = −��, so the Cauchy-Riemann equations are satisfied. Thus, e� is 
differentiable and 

� e� = �� + ��� = e� cos(�) + �e� sin(�) = e�. 
�� 

Example 2.12. Use the Cauchy-Riemann equations to show that � (�) = � is not differentiable. 

Solution: � (� + ��) = � − ��, so �(�, �) = �, �(�, �) = −�. Taking partial derivatives 

�� = 1, �� = 0, �� = 0, �� = −1 

Since �� ≠ �� the Cauchy-Riemann equations are not satisfied and therefore � is not differentiable. 

Theorem. If � (�) is differentiable on a disk and � ′(�) = 0 on the disk then � (�) is constant. 

Proof. Since � is differentiable and � ′(�) ≡ 0, the Cauchy-Riemann equations show that 

��(�, �) = ��(�, �) = ��(�, �) = ��(�, �) = 0 

We know from multivariable calculus that a function of (�, �) with both partials identically zero is 
constant. Thus � and � are constant, and therefore so is � . 

2.7.4 � ′(�) as a 2 × 2 matrix 

Recall that we could represent a complex number � + �� as a 2 × 2 matrix [ ] 
� −� � + �� ↔ . (1) � � 

Now if we write � (�) in terms of (�, �) we have 

� (�) = � (� + ��) = �(�, �) + ��(�, �) ↔ � (�, �) = (�(�, �), �(�, �)). 

We have 
� ′(�) = �� + ���, 

so we can represent � ′(�) as [ ] 
�� −�� . �� �� 

Using the Cauchy-Riemann equations we can replace −�� by �� and �� by �� which gives us the 
representation [ ] 

�� �� � ′(�) ↔ , �� �� 

i.e, � ′(�) is just the Jacobian of � (�, �). 

For me, it is easier to remember the Jacobian than the Cauchy-Riemann equations. Since � ′(�) is a 
complex number I can use the matrix representation in Equation 1 to remember the Cauchy-Riemann
equations! 
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2.8 Cauchy-Riemann all the way down 

We’ve defined an analytic function as one having a complex derivative. The following theorem 
′ shows that if � is analytic then so is � . Thus, there are derivatives all the way down! 

Theorem 2.13. Assume the second order partials of � and � exist and are continuous. If � (�) = �+�� 
is analytic, then so is � ′(�). 

Proof. To show this we have to prove that � ′(�) satisfies the Cauchy-Riemann equations. If � = �+�� 
we know 

′ �� = ��, �� = −��, � = �� + ���. 

Let’s write 
′ � = � + �� , 

so, by Cauchy-Riemann, 
� = �� = ��, � = �� = −��. (2) 

We want to show that �� = �� and �� = −��. We do them one at a time. 

To prove �� = ��, we use Equation 2 to see that 

�� = ��� and �� = ���. 

Since ��� = ���, we have �� = ��. 

Similarly, to show �� = −��, we compute 

�� = ��� and �� = −���. 

So, �� = −��. QED. 

Technical point. We’ve assumed as many partials as we need. So far we can’t guarantee that all the
partials exist. Soon we will have a theorem which says that an analytic function has derivatives of
all order. We’ll just assume that for now. In any case, in most examples this will be obvious. 

2.9 Gallery of functions 

In this section we’ll look at many of the functions you know and love as functions of �. For each 
one we’ll have to do three things. 

1. Define how to compute it. 

2. Specify a branch (if necessary) giving its range. 

3. Specify a domain (with branch cut if necessary) where it is analytic. 

4. Compute its derivative. 

Most often, we can compute the derivatives of a function using the algebraic rules like the quotient
rule. If necessary we can use the Cauchy-Riemann equations or, as a last resort, even the definition
of the derivative as a limit. 

Before we start on the gallery we define the term “entire function”. 
Definition. A function that is analytic at every point in the complex plane is called an entire function. 
We will see that e�, ��, sin(�) are all entire functions. 
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2.9.1 Gallery of functions, derivatives and properties 

The following is a concise list of a number of functions and their complex derivatives. None of 
the derivatives will surprise you. We also give important properties for some of the functions. The 
proofs for each follow below. 

1. � (�) = e� = e� cos(�) + �e� sin(�). 
Domain = all of � (� is entire). 
� ′(�) = e�. 

2. � (�) ≡ � (constant) 
Domain = all of � (� is entire). 
� ′(�) = 0. 

3. � (�) = �� (� an integer ≥ 0) 
Domain = all of � (� is entire). 
� ′(�) = ���−1 . 

4. � (�) (polynomial) 
A polynomial has the form � (�) = ���� + ��−1��−1 +…+ �0. 
Domain = all of � (� (�) is entire). 
� ′(�) = �����−1 + (� − 1)��−1��−1 +…+ 2�2� + �1. 

5. � (�) = 1∕� 

Domain = � − {0} (the punctured plane). 
� ′(�) = −1∕�2 . 

6. � (�) = � (�)∕�(�) (rational function). 
When � and � are polynomials � (�)∕�(�) is called a rational function. 

If we assume that � and � have no common roots, then: 
Domain = � − {roots of �} 

� ′ � − � � ′ � ′(�) = . 
�2 

7. sin(�), cos(�) 
e�� + e−�� e�� − e−�� 

Definition. cos(�) = , sin(�) = 
2 2� 

(By Euler’s formula we know this is consistent with cos(�) and sin(�) when � = � is real.) 
Domain: these functions are entire. 

� cos(�) = − sin(�), 
�� 

� sin(�) = cos(�). 
�� 

Other key properties of sin and cos: 
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- cos2(�) + sin2(�) = 1 

e� - = cos(�) + � sin(�) 
- Periodic in � with period 2�, e.g. sin(� + 2� + ��) = sin(� + ��). 
- They are not bounded! 
- In the form � (�) = �(�, �) + ��(�, �) we have 

cos(�) = cos(�) cosh(�) − � sin(�) sinh(�) 
sin(�) = sin(�) cosh(�) + � cos(�) sinh(�) 

(cosh and sinh are defined below.) 
- The zeros of sin(�) are � = �� for � any integer. 

The zeros of cos(�) are � = �∕2 + �� for � any integer.
(That is, they have only real zeros that you learned about in your trig. class.) 

8. Other trig functions cot(�), sec(�) etc. 
Definition. The same as for the real versions of these function, e.g. cot(�) = cos(�)∕ sin(�), 
sec(�) = 1∕ cos(�). 
Domain: The entire plane minus the zeros of the denominator. 
Derivative: Compute using the quotient rule, e.g. ( ) 

� tan(�) � sin(�) cos(�) cos(�) − sin(�)(− sin(�)) 1 2 � 
�� 

= 
�� 

= 
cos(�)

= 
cos2(�) 

= sec
cos2(�) 

(No surprises there!) 

9. sinh(�), cosh(�) (hyperbolic sine and cosine) 
Definition. 

e� + e−� 
cosh(�) = , 

2 
e� − e−� 

sinh(�) = 
2 

Domain: these functions are entire. 

� cosh(�) = sinh(�), 
�� 

� sinh(�) = cosh(�) 
�� 

Other key properties of cosh and sinh: 

- cosh2(�) − sinh2(�) = 1 

- For real �, cosh(�) is real and positive, sinh(�) is real. 
- cosh(��) = cos(�), sinh(�) = −� sin(��). 

10. log(�) (See Topic 1.) 
Definition. log(�) = log(|�|) + � arg(�). 
Branch: Any branch of arg(�). 
Domain: � minus a branch cut where the chosen branch of arg(�) is discontinuous. 

� 1 log(�) = 
�� � 
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11. �� (any complex �) (See Topic 1.) 
= e� log(�) Definition. �� . 

Branch: Any branch of log(�). 
Domain: Generally the domain is � minus a branch cut of log. If � is an integer ≥ 0 then �� 

is entire. If � is a negative integer then �� is defined and analytic on � − {0}. 
��� 

= ���−1 . 
�� 

12. sin−1(�) √ 
Definition. sin−1(�) = −� log(�� + 1 − �2). 
The definition is chosen so that sin(sin−1(�)) = �. The derivation of the formula is as follows. 
Let � = sin−1(�), so � = sin(�). Then, 

e�� − e−�� 
2�� − 2��e�� − 1 = 0 � = ⇒ e 

2� 
Solving the quadratic in e�� gives √ √ 2�� + −4�2 + 4 e�� = = �� + 1 − �2. 

2 
Taking the log gives √ √ 

�� = log(�� + 1 − �2) ⇔ � = −� log(�� + 1 − �2). 

From the definition we can compute the derivative: 
� sin−1(�) = √ 

1 . 
�� 1 − �2 

Choosing a branch is tricky because both the square root and the log require choices. We will
look at this more carefully in the future. 
For now, the following discussion and figure are for your amusement. 
Sine (likewise cosine) is not a 1-1 function, so if we want sin−1(�) to be single-valued then we 
have to choose a region where sin(�) is 1-1. (This will be a branch of sin−1(�), i.e. a range for 
the image,) The figure below shows a domain where sin(�) is 1-1. The domain consists of the 
vertical strip � = � + �� with −�∕2 < � < �∕2 together with the two rays on boundary where 
� ≥ 0 (shown as red lines). The figure indicates how the regions making up the domain in the 
�-plane are mapped to the quadrants in the �-plane. 

A domain where � → � = sin(�) is one-to-one 
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2.9.2 A few proofs 

Here we prove at least some of the facts stated in the list just above. 

1. � (�) = e�. This was done in Example 2.11 using the Cauchy-Riemann equations. 

2. � (�) ≡ � (constant). This case is trivial. 

3. � (�) = �� (� an integer ≥ 0): show � ′(�) = ���−1 

It’s probably easiest to use the definition of derivative directly. Before doing that we note the 
factorization 

�� − �� = (� − �0)(��−1 + ��−2�0 + ��−3�20 +…+ �2��−3 + ���−2 + ��−1) 0 0 0 0 

Now 

�� − �� � (�) − � (�0) 0 � ′(�0) = lim = lim 
�→�0 � − �0 �→�0 � − �0 

= lim (��−1 + ��−2�0 + ��−3�20 +…+ �2��−3 + ���−2 + ��−1) 0 0 0 �→�0 

= ��� 
0
−1 . 

Since we showed directly that the derivative exists for all �, the function must be entire. 

4. � (�) (polynomial). Since a polynomial is a sum of monomials, the formula for the derivative
follows from the derivative rule for sums and the case � (�) = ��. Likewise the fact the � (�) 
is entire. 

5. � (�) = 1∕�. This follows from the quotient rule. 

6. � (�) = � (�)∕�(�). This also follows from the quotient rule. 

7. sin(�), cos(�). All the facts about sin(�) and cos(�) follow from their definition in terms of 
exponentials. 

8. Other trig functions cot(�), sec(�) etc. Since these are all defined in terms of cos and sin, all 
the facts about these functions follow from the derivative rules. 

9. sinh(�), cosh(�). All the facts about sinh(�) and cosh(�) follow from their definition in terms 
of exponentials. 

10. log(�). The derivative of log(�) can be found by differentiating the relation elog(�) = � using 
the chain rule. Let � = log(�), so e� = � and 

� e� �� �e� �� e��� �� 1 = = 1 ⇒ = 1 ⇒ = 1 ⇒ = 
e� �� �� �� �� �� �� 

Using � = log(�) we get 
� log(�) 1 = . 

�� � 

11. �� (any complex �). The derivative for this follows from the formula 

= e� log(�) ��� 
= e� log(�) ⋅ 

� ��� 
�� ⇒ = = ���−1 

�� � � 
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2.10 Branch cuts and function composition 

We often compose functions, i.e. � (�(�)). In general in this case we have the chain rule to compute 
the derivative. However we need to specify the domain for � where the function is analytic. And
when branches and branch cuts are involved we need to take care. 

Example 2.14. Let � (�) = e�2 . Since e� and �2 are both entire functions, so is � (�) = e�2 . The 
chain rule gives us 

� ′(�) = e�2 (2�). 

Example 2.15. Let � (�) = e� and �(�) = 1∕�. � (�) is entire and �(�) is analytic everywhere but 0. 
So � (�(�)) is analytic except at 0 and 

�� (�(�)) 1∕� ⋅ 
−1 = � ′(�(�))� ′(�) = e 

�� �2 
. 

Example 2.16. Let ℎ(�) = 1∕(e� − 1). Clearly ℎ is entire except where the denominator is 0. The 
denominator is 0 when e� − 1 = 0. That is, when � = 2��� for any integer �. Thus, ℎ(�) is analytic 
on the set 

� − {2���, where � is any integer} 

The quotient rule gives ℎ ′(�) = −e�∕(e� − 1)2. A little more formally: ℎ(�) = � (�(�)). where 
� (�) = 1∕� and � = �(�) = e� − 1. We know that �(�) is entire and � (�) is analytic everywhere 
except � = 0. Therefore, � (�(�)) is analytic everywhere except where �(�) = 0. 

Example 2.17. It can happen that the derivative has a larger domain where it is analytic than the
original function. The main example is � (�) = log(�). This is analytic on � minus a branch cut. 
However 

� 1 log(�) = 
�� � 

is analytic on � − {0}. The converse can’t happen.√ 
Example 2.18. Define a region where 1 − � is analytic. 

Solution: Choosing the principal branch of argument, we have 
√ 
� is analytic on 

� − {� ≤ 0, � = 0}, (see figure below.). 

So 
√ 
1 − � is analytic except where � = 1 − � is on the branch cut, i.e. where � = 1 − � is real and ≤ 0. It’s easy to see that 

� = 1 − � is real and ≤ 0 ⇔ � is real and ≥ 1. √ 
So 1 − � is analytic on the region (see figure below) 

� − {� ≥ 1, � = 0} 

Note. A different branch choice for 
√ 
� would lead to a different region where 

√ 
1 − � is analytic. 
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The figure below shows the domains with branch cuts for this example. 

Re(w)

Im(w)

Re(z)

Im(z)

1

√ √ 
domain for � domain for 1 − � √ 

Example 2.19. Define a region where � (�) = 1 + e� is analytic. 

Solution: Again, let’s take 
√ 
� to be analytic on the region 

� − {� ≤ 0, � = 0} 

So, � (�) is analytic except where 1 + e� is real and ≤ 0. That is, except where e� is real and ≤ −1. 
Now, e� = e�e�� is real only when � is a multiple of �. It is negative only when � is an odd mutltiple 
of �. It has magnitude greater than 1 only when � > 0. Therefore � (�) is analytic on the region 

� − {� ≥ 0, � = odd multiple of �} 

The figure below shows the domains with branch cuts for this example. 

Re(w)

Im(w)

Re(z)

Im(z)

−3πi

−πi

πi

3πi

√ √ 
domain for � domain for e� + 1 

2.11 Appendix: Limits 

The intuitive idea behind limits is relatively simple. Still, in the 19th century mathematicians were
troubled by the lack of rigor, so they set about putting limits and analysis on a firm footing with
careful definitions and proofs. In this appendix we give you the formal definition and connect it 
to the intuitive idea. In 18.04 we will not need this level of formality. Still, it’s nice to know the 
foundations are solid, and some students may find this interesting. 
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2.11.1 Limits of sequences 

Intuitively, we say a sequence of complex numbers �1, �2, … converges to � if for large �, �� is really 
close to �. To be a little more precise, if we put a small circle of radius � around � then eventually the 
sequence should stay inside the circle. Let’s refer to this as the sequence being captured by the circle.
This has to be true for any circle no matter how small, though it may take longer for the sequence to
be ‘captured’ by a smaller circle. 

This is illustrated in the figure below. The sequence is strung along the curve shown heading towards 
�. The bigger circle of radius �2 captures the sequence by the time � = 47, the smaller circle doesn’t 
capture it till � = 59. Note that �25 is inside the larger circle, but since later points are outside the
circle we don’t say the sequence is captured at � = 25 

A sequence of points converging to � 

Definition. The sequence �1, �2, �3, … converges to the value � if for every � > 0 there is a number 
�� such that |�� − �| < � for all � > �� . We write this as 

lim �� = �. 
�→∞ 

Again, the definition just says that eventually the sequence is within � of �, no matter how small you 
choose �. 

Example 2.20. Show that the sequence �� = (1∕� + �)2 has limit -1. 

Solution: This is clear because 1∕� → 0. For practice, let’s phrase it in terms of epsilons: given 
� > 0 we have to choose �� such that 

|�� − (−1)| < � for all � > �� 

One strategy is to look at |�� + 1| and see what �� should be. We have 

1 2� 1 2 |�� − (−1)| = |
(
� 
1 + �

)2
+ 1 | = |�2 + 

� | < 
�2

+ 
� 

So all we have to do is pick �� large enough that 

1 2 + < � 
�2 �� � 

Since this can clearly be done we have proved that �� → �. 
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This was clearly more work than we want to do for every limit. Fortunately, most of the time we can
apply general rules to determine a limit without resorting to epsilons! 

Remarks. 

1. In 18.04 we will be able to spot the limit of most concrete examples of sequences. The formal
definition is needed when dealing abstractly with sequences. 

2. To mathematicians � is one of the go-to symbols for a small number. The prominent and rather
eccentric mathematician Paul Erdos used to refer to children as epsilons, as in ‘How are the
epsilons doing?’ 

3. The term ‘captured by the circle’ is not in common usage, but it does capture what is happen-
ing. 

2.11.2 lim � (�) 
�→�0 

Sometimes we need limits of the form lim � (�) = �. Again, the intuitive meaning is clear: as � gets 
�→�0 

close to �0 we should see � (�) get close to �. Here is the technical definition 

Definition. Suppose � (�) is defined on a punctured disk 0 < |� − �0| < � around �0. We say 
lim � (�) = � if for every � > 0 there is a � such that 
�→�0 |� (�) − �| < � whenever 0 < |� − �0| < � 

This says exactly that as � gets closer (within �) to �0 we have � (�) is close (within �) to �. Since � 
can be made as small as we want, � (�) must go to �. 

Remarks. 

1. Using the punctured disk (also called a deleted neighborhood) means that � (�) does not have 
to be defined at �0 and, if it is then � (�0) does not necessarily equal �. If � (�0) = � then we 
say the � is continuous at �0. 

2. Ask any mathematician to complete the phrase “For every �” and the odds are that they will 
respond “there is a � . . . ” 

2.11.3 Connection between limits of sequences and limits of functions 

Here’s an equivalent way to define limits of functions: the limit lim � (�) = � if, for every sequence 
�→�0 

of points {��} with limit �0 the sequence {� (��)} has limit �. 
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3 Line integrals and Cauchy’s theorem 

3.1 Introduction 

The basic theme here is that complex line integrals will mirror much of what we’ve seen for multi-
variable calculus line integrals. But, just like working with ��� is easier than working with sine and
cosine, complex line integrals are easier to work with than their multivariable analogs. At the same
time they will give deep insight into the workings of these integrals. 

To define complex line integrals, we will need the following ingredients: 

• The complex plane: � = � + �� 

• The complex differential �� = �� + ��� 

• A curve in the complex plane: �(�) = �(�) + ��(�), defined for � ≤ � ≤ �. 

• A complex function: � (�) = �(�, �) + ��(�, �) 

3.2 Complex line integrals 

Line integrals are also called path or contour integrals. Given the ingredients we define the complex 

line integral ∫� 
� (�) �� by 

� 

� (�) �� ∶= ∫ 
� (�(�))� ′(�) ��. (1a) ∫� � 

You should note that this notation looks just like integrals of a real variable. We don’t need the 
vectors and dot products of line integrals in �2. Also, make sure you understand that the product 
� (�(�))� ′(�) is just a product of complex numbers. 

An alternative notation uses �� = �� + ��� to write 

� (�) �� = ∫� 
(� + ��)(�� + ���) (1b) ∫� 

Let’s check that Equations 1a and 1b are the same. Equation 1b is really a multivariable calculus 
expression, so thinking of �(�) as (�(�), �(�)) it becomes 

� ( ) 
� (�) �� = ∫ 

[�(�(�), �(�)) + ��(�(�), �(�)] � ′(�) + �� ′(�) �� ∫� � 

But, 
�(�(�), �(�)) + ��(�(�), �(�)) = � (�(�)) 

and 
� ′(�) + �� ′(�) = � ′(�) 

1 
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so the right hand side of this equation is 

� 

� (�(�))� ′(�) ��. ∫� 

That is, it is exactly the same as the expression in Equation 1a. 

Example 3.1. Compute ∫� 
�2�� along the straight line from 0 to 1 + �. 

Solution: We parametrize the curve as �(�) = �(1 + �) with 0 ≤ � ≤ 1. So � ′(�) = 1 + �. The line 
integral is 

1 2�(1 + �) 
�2�� = ∫ 

�2(1 + �)2(1 + �) �� = . ∫ 3 0 

Example 3.2. Compute ∫� 
� �� along the straight line from 0 to 1 + �. 

Solution: We can use the same parametrization as in the previous example. So, 

1 

� �� = ∫ 
�(1 − �)(1 + �) �� = 1. ∫� 0 

Example 3.3. Compute ∫� 
�2 �� along the unit circle. 

�e�� Solution: We parametrize the unit circle by �(�) = e��, where 0 ≤ � ≤ 2�. We have � ′(�) = . 
So, the integral becomes 

2� 2� 2� e�3� 
�2 �� = ∫ 

e2���e�� �� = ∫ 
�e3�� �� = = 0. ∫� 0 0 3 |0 

Example 3.4. Compute ∫ 
� �� along the unit circle. 

Solution: Parametrize �: �(�) = e��, with 0 ≤ � ≤ 2�. So, � ′(�) = �e��. Putting this into the integral 
gives 

2� 2� 

� �� = ∫ 
e�� � e�� �� = ∫ 

� �� = 2��. ∫� 0 0 

3.3 Fundamental theorem for complex line integrals 

This is exactly analogous to the fundamental theorem of calculus. 

Theorem 3.5. (Fundamental theorem of complex line integrals) If � (�) is a complex analytic func-
tion on an open region � and � is a curve in � from �0 to �1 then 

� ′(�) �� = � (�1) − � (�0). ∫� 
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Proof. This is an application of the chain rule. We have 

�� (�(�)) 
= � ′(�(�)) � ′(�). 

�� 
So 

� � � �� (�(�)) 
� ′(�) �� = ∫ 

� ′(�(�)) � ′(�) �� = ∫ 
�� = � (�(�)) = � (�1) − � (�0). �� ∫� � � |� 

′ Another equivalent way to state the fundamental theorem is: if � has an antiderivative � , i.e. � = � 
then 

� (�) �� = � (�1) − � (�0). ∫� 

Example 3.6. Redo ∫� 
�2 ��, with � the straight line from 0 to 1 + �. 

Solution: We can check by inspection that �2 has an antiderivative � (�) = �3∕3. Therefore the 
fundamental theorem implies 

1+� �3 (1 + �)3 2�(1 + �) 
�2 �� = = = . ∫� 3 |0 3 3 

Example 3.7. Redo ∫� 
�2 ��, with � the unit circle. 

Solution: Again, since �2 had antiderivative �3∕3 we can evaluate the integral by plugging the end-
points of � into the �3∕3. Since the endpoints are the same the resulting difference will be 0! 

3.4 Path independence 

We say the integral ∫� 
� (�) �� is path independent if it has the same value for any two paths with the 

same endpoints. More precisely, if � (�) is defined on a region � then ∫� 
� (�) �� is path independent 

in �, if it has the same value for any two paths in � with the same endpoints. 

The following theorem follows directly from the fundamental theorem. The proof uses the same 
argument as Example 3.7. 

Theorem 3.8. If � (�) has an antiderivative in an open region �, then the path integral ∫� 
� (�) �� is 

path independent for all paths in �. 

Proof. Since � (�) has an antiderivative of � (�), the fundamental theorem tells us that the integral 
only depends on the endpoints of � , i.e. 

� (�) �� = � (�1) − � (�0) ∫� 

where �0 and �1 are the beginning and end point of � . 

An alternative way to express path independence uses closed paths. 

Theorem 3.9. The following two things are equivalent. 
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1. The integral ∫� 
� (�) �� is path independent. 

2. The integral ∫� 
� (�) �� around any closed path is 0. 

Proof. This is essentially identical to the equivalent multivariable proof. We have to show two 
things: 

(i) Path independence implies the line integral around any closed path is 0. 

(ii) If the line integral around all closed paths is 0 then we have path independence. 

To see (i), assume path independence and consider the closed path � shown in figure (i) below. Since 

the starting point �0 is the same as the endpoint �1 the line integral ∫� 
� (�) �� must have the same 

value as the line integral over the curve consisting of the single point �0. Since that is clearly 0 we 
must have the integral over � is 0. 

To see (ii), assume ∫� 
� (�) �� = 0 for any closed curve. Consider the two curves �1 and �2 shown 

in figure (ii). Both start at �0 and end at �1. By the assumption that integrals over closed paths are 

0 we have ∫�1−�2 

� (�) �� = 0. So, 

� (�) �� = ∫�2 

� (�) ��. ∫�1 

That is, any two paths from �0 to �1 have the same line integral. This shows that the line integrals 
are path independent. 

x

y

Cc

P = Q

Figure (i) 

x

y

C2

C1

P

Q

Figure (ii) 

3.5 Examples 

Example 3.10. Why can’t we compute ∫� 
� �� using the fundamental theorem. 

Solution: Because � doesn’t have an antiderivative. We can also see this by noting that if � had an 
antiderivative, then its integral around the unit circle would have to be 0. But, we saw in Example
3.4 that this is not the case. 

1 Example 3.11. Compute ∫� 
�� over each of the following contours 

� 
(i) The line from 1 to 1 + �. 
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(ii) The circle of radius 1 around � = 3. 
(iii) The unit circle. 

Solution: For parts (i) and (ii) there is no problem using the antiderivative log(�) because these 
curves are contained in a simply connected region that doesn’t contain the origin. 

(i) √ 1 � �� = log(1 + �) − log(1) = log( 2) + � 
4 
. 

� ∫� 

(ii) Since the beginning and end points are the same, we get 

1 �� = 0 
� ∫� 

(iii) We parametrize the unit circle by �(�) = e�� with 0 ≤ � ≤ 2�. We compute � ′(�) = �e��. So the 
integral becomes 

2� 2� 1 1 �� = ∫ 
�e�� �� = ∫ 

� �� = 2��. 
e�� � ∫� 0 0 

Notice that we could use log(�) if we were careful to let the argument increase by 2� as it went 
around the origin once. 

1 Example 3.12. Compute ∫� 
��, where � is the unit circle in two ways. 

�2 

(i) Using the fundamental theorem. 

(ii) Directly from the definition. 

Solution: (i) Let � (�) = −1∕�. Since � ′(�) = 1∕�2, the fundamental theorem says 

1 �� = ∫� 
� ′(�) �� = � (endpoint) − � (start point) = 0. ∫� �2 

It equals 0 because the start and endpoints are the same. 

(ii) As usual, we parametrize the unit circle as �(�) = e�� with 0 ≤ � ≤ 2�. So, � ′(�) = �e�� and the 
integral becomes 

2� 2� 2� 1 1 
�2 

�� = ∫ 
�e�� �� = ∫ 

�e−�� �� = −e−�� = 0. ∫� 0 e2�� 0 |0 

3.6 Cauchy’s theorem 

Cauchy’s theorem is analogous to Green’s theorem for curl free vector fields. 

Theorem 3.13. (Cauchy’s theorem) Suppose � is a simply connected region, � (�) is analytic on � 
and � is a simple closed curve in �. Then the following three things hold: 

(i) ∫� 
� (�) �� = 0 

(i′) We can drop the requirement that � is simple in part (i). 

(ii) Integrals of � on paths within � are path independent. That is, two paths with the same endpoints 
integrate to the same value. 
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(iii) � has an antiderivative in �. 

Proof. We will prove (i) using Green’s theorem – we could give a proof that didn’t rely on Green’s,
but it would be quite similar in flavor to the proof of Green’s theorem. 

Let � be the region inside the curve. And write � = � + ��. Now we write out the integral as follows 

� (�) �� = ∫� 
(� + ��) (�� + ���) = ∫� 

(� �� − � ��) + �(� �� + � ��). ∫� 

Let’s apply Green’s theorem to the real and imaginary pieces separately. First the real piece: 

� �� − � �� = ∫� 
(−�� − ��) �� �� = 0. ∫� 

We get 0 because the Cauchy-Riemann equations say �� = −��, so −�� − �� = 0. 

Likewise for the imaginary piece: 

� �� + � �� = ∫� 
(�� − ��) �� �� = 0. ∫� 

We get 0 because the Cauchy-Riemann equations say �� = ��, so �� − �� = 0. 

To see part (i′) you should draw a few curves that intersect themselves and convince yourself that
they can be broken into a sum of simple closed curves. Thus, (i′) follows from (i).1 

Part (ii) follows from (i) and Theorem 3.9. 

To see (iii), pick a base point �0 ∈ � and let 

� 

� (�) = ∫ 
� (�) ��. 

�0 

Here the integral is over any path in � connecting �0 to �. By part (ii), � (�) is well defined. If we 
can show that � ′(�) = � (�) then we’ll be done. Doing this amounts to managing the notation to
apply the fundamental theorem of calculus and the Cauchy-Riemann equations. So, let’s write 

� (�) = �(�, �) + ��(�, �), � (�) = � (�, �) + �� (�, �). 

Then we can write 
�� 

= �� + ���, etc. 
�� 

We can formulate the Cauchy-Riemann equations for � (�) as 

�� 1 �� � ′(�) = = (2a) 
�� � �� 

i.e. 
� ′(�) = �� + ��� = 

1(�� + ���) = �� − ���. (2b) 
� 

1In order to truly prove part (i′) we would need a more technically precise definition of simply connected so we could 
say that all closed curves within � can be continuously deformed to each other. 
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For reference, we note that using the path �(�) = �(�) + ��(�), with �(0) = �0 and �(�) = � we have 

� � 

� (�) = ∫ 
� (�) �� = ∫ 

(�(�, �) + ��(�, �))(�� + ���) 
�0 �0 

� 

= ∫ 
(�(�(�), �(�)) + ��(�(�), �(�))(� ′(�) + �� ′(�)) ��. (3) 

0 

Our goal now is to prove that the Cauchy-Riemann equations given in Equation 3 hold for � (�). The 
figure below shows an arbitrary path from �0 to �, which can be used to compute � (�). To compute 
the partials of � we’ll need the straight lines that continue � to � + ℎ or � + �ℎ. 

A

z0

z z + h

z + ih

C

Cx

Cy

Paths for proof of Cauchy’s theorem 

To prepare the rest of the argument we remind you that the fundamental theorem of calculus implies 

∫ ℎ �(�) �� 0 lim = �(0). (4) 
ℎ→0 ℎ 

(That is, the derivative of the integral is the original function.) 

First we’ll look at �� . So, fix � = � + ��. Looking at the paths in the figure above we have 
�� 

� (� + ℎ) − � (�) = ∫�+�� 

� (�) �� − ∫� 
� (�) �� = ∫�� 

� (�) ��. 

The curve �� is parametrized by �(�) = � + � + ��, with 0 ≤ � ≤ ℎ. So, 

�� � (� + ℎ) − � (�) ∫�� 
� (�) �� 

= lim = lim 
�� ℎ→0 ℎ ℎ→0 ℎ 

∫0 
ℎ �(� + �, �) + ��(� + �, �) �� 

= lim 
ℎ→0 ℎ 

= �(�, �) + ��(�, �) 
= � (�). (5) 

The second to last equality follows from Equation 4. 
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Similarly, we get (remember: � = � + ��, so �� = � ��) 

1 �� � (� + �ℎ) − � (�) ∫�� 
� (�) �� 

= lim = lim 
� �� ℎ→0 �ℎ ℎ→0 �ℎ 

∫ ℎ �(�, � + �) + ��(�, � + �) � �� 0 = lim 
ℎ→0 �ℎ 

= �(�, �) + ��(�, �) 
= � (�). (6) 

Together Equations 5 and 6 show 
�� 1 �� � (�) = = 
�� � �� 

′ By Equation 2a we have shown that � is analytic and � = � . □ 

3.7 Extensions of Cauchy’s theorem 

Cauchy’s theorem requires that the function � (�) be analytic on a simply connected region. In cases 
where it is not, we can extend it in a useful way. 

Suppose � is the region between the two simple closed curves �1 and �2. Note, both �1 and �2 are 
oriented in a counterclockwise direction. 

Theorem 3.14. (Extended Cauchy’s theorem) If � (�) is analytic on � then 

� (�) �� = 0. ∫�1−�2 

Proof. The proof is based on the following figure. We ‘cut’ both �1 and �2 and connect them by two 
copies of �3, one in each direction. (In the figure we have drawn the two copies of �3 as separate 
curves, in reality they are the same curve traversed in opposite directions.) 

With �3 acting as a cut, the region enclosed by �1 + �3 − �2 − �3 is simply connected, so Cauchy’s 
Theorem 3.13 applies. We get 

� (�) �� = 0 ∫�1+�3−�2−�3 
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The contributions of �3 and −�3 cancel, which leaves ∫�1−�2 

� (�) �� = 0. QED 

Note. This clearly implies ∫�1 

� (�) �� = ∫�2 

� (�) ��. 

Example 3.15. Let � (�) = 1∕�. � (�) is defined and analytic on the punctured plane. 

x

y

Punctured plane: � − {0} 

Question: What values can ∫� 
� (�) �� take for � a simple closed curve (positively oriented) in 

the plane? 

Solution: We have two cases (i) �1 not around 0, and (ii) �2 around 0 

x

y

C1R
C2

Case (i): Cauchy’s theorem applies directly because the interior does not contain the problem point
at the origin. Thus, 

� (�) �� = 0. ∫�1 

Case (ii): we will show that 

� (�) �� = 2��. ∫�2 

Let �3 be a small circle of radius � centered at 0 and entirely inside �2. 

x

y

C2C3
R

Figure for part (ii) 
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By the extended Cauchy theorem we have 

2� 

� (�) �� = ∫�3 

� (�) �� = ∫ 
� �� = 2��. ∫�2 0 

Here, the line integral for �3 was computed directly using the usual parametrization of a circle. 

Answer to the question: The only possible values are 0 and 2��. 

We can extend this answer in the following way: 

If � is not simple, then the possible values of 

� (�) �� ∫� 

are 2���, where � is the number of times � goes (counterclockwise) around the origin 0. 

Definition. � is called the winding number of � around 0. � also equals the number of times � 
crosses the positive �-axis, counting +1 for crossing from below and −1 for crossing from above. 

x

y

C

A curve with winding number 2 around the origin. 

Example 3.16. A further extension: using the same trick of cutting the region by curves to make it
simply connected we can show that if � is analytic in the region � shown below then 

� (�) �� = 0. ∫�1−�2−�3−�4 

C1

C2 C3 C4

R

That is, �1 − �2 − �3 − �4 is the boundary of the region �. 

Orientation. It is important to get the orientation of the curves correct. One way to do this is to 
make sure that the region � is always to the left as you traverse the curve. In the above example. 
The region is to the right as you traverse �2, �3 or �4 in the direction indicated. This is why we put 
a minus sign on each when describing the boundary. 
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4 Cauchy’s integral formula 

4.1 Introduction 

Cauchy’s theorem is a big theorem which we will use almost daily from here on out. Right away it
will reveal a number of interesting and useful properties of analytic functions. More will follow as
the course progresses. 

If you learn just one theorem this week it should be Cauchy’s integral formula! 

We start with a statement of the theorem for functions. After some examples, we’ll give a gener-
alization to all derivatives of a function. After some more examples we will prove the theorems.
After that we will see some remarkable consequences that follow fairly directly from the Cauchy’s
formula. 

4.2 Cauchy’s integral for functions 

Theorem 4.1. (Cauchy’s integral formula) Suppose � is a simple closed curve and the function � (�) 
is analytic on a region containing � and its interior. We assume � is oriented counterclockwise. Then 
for any �0 inside �: 

1 � (�) 
� (�0) = �� (1) 

2�� ∫� � − �0 

Re(z)

Im(z)

z0

C

A

Cauchy’s integral formula: simple closed curve � , � (�) analytic on and inside � . 

This is remarkable: it says that knowing the values of � on the boundary curve � means we know 
everything about � inside �!! This is probably unlike anything you’ve encountered with functions 
of real variables. 

Aside 1. With a slight change of notation (� becomes � and �0 becomes �) we often write the 
formula as 

1 � (�) 
� (�) = �� (2) 

2�� ∫� � − � 

Aside 2. We’re not being entirely fair to functions of real variables. We will see that for � = � + �� 

1 
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the real and imaginary parts � and � have many similar remarkable properties. � and � are called 
conjugate harmonic functions. 

4.2.1 Examples 

Example 4.2. Compute ∫� 

e�2 

��, where � is the curve shown. 
� − 2 

Re(z)

Im(z)

C

2

= e�2 Solution: Let � (�) . � (�) is entire. Since � is a simple closed curve (counterclockwise) and 
� = 2 is inside � , Cauchy’s integral formula says that the integral is 2��� (2) = 2��e4. 

Example 4.3. Do the same integral as the previous example with � the curve shown. 

Re(z)

Im(z)

C

2

e�2 Solution: Since � (�) = ∕(� − 2) is analytic on and inside � , Cauchy’s theorem says that the 
integral is 0. 

Example 4.4. Do the same integral as the previous examples with � the curve shown. 

Re(z)

Im(z)

C

2

e�2 Solution: This one is trickier. Let � (�) = . The curve � goes around 2 twice in the clockwise 
direction, so we break � into �1 + �2 as shown in the next figure. 
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Re(z)

Im(z)

C1

C1

C2

2

These are both simple closed curves, so we can apply the Cauchy integral formula to each separately.
(The negative signs are because they go clockwise around � = 2.) 

� (�) � (�) � (�) 
�� = ∫�1 

�� + ∫�2 

�� = −2��� (2) − 2��� (2) = −4��� (2). 
� − 2 � − 2 � − 2 ∫� 

4.3 Cauchy’s integral formula for derivatives 

Cauchy’s integral formula is worth repeating several times. So, now we give it for all derivatives 
� (�)(�) of � . This will include the formula for functions as a special case. 

Theorem 4.5. Cauchy’s integral formula for derivatives. If � (�) and � satisfy the same hypotheses 
as for Cauchy’s integral formula then, for all � inside � we have 

�! � (�) 
� (�)(�) = ��, � = 0, 1, 2, … (3) 

2�� ∫� (� − �)�+1 

where, � is a simple closed curve, oriented counterclockwise, � is inside � and � (�) is analytic on 
and inside � . 

e2� 
Example 4.6. Evaluate � = ∫� �4 

�� where � ∶ |�| = 1. 

Solution: With Cauchy’s formula for derivatives this is easy. Let � (�) = e2�. Then, 
� (�) 2�� 8 ′′′(0) = 
�4 3! 3 

� �� = � ��. = ∫� 

Example 4.7. Now Let � be the contour shown below and evaluate the same integral as in the 
previous example. 

Re

Im

C

Solution: Again this is easy: the integral is the same as the previous example, i.e. � = 8��. 
3 
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4.3.1 Another approach to some basic examples 

Suppose � is a simple closed curve around 0. We have seen that 

1 �� = 2��. 
� ∫� 

The Cauchy integral formula gives the same result. That is, let � (�) = 1, then the formula says 

1 � (�) 
�� = � (0) = 1. 

2�� ∫� � − 0 

Likewise Cauchy’s formula for derivatives shows 

1 � (�) 
�� = ∫� 

�� = � (�)(0) = 0, for integers � > 1. ∫� (�)� ��+1 

4.3.2 More examples 

cos(�) Example 4.8. Compute �� over the contour shown. ∫� �(�2 + 8) 

Im(z)

Im(z)
2i

−2i

C

Solution: Let � (�) = cos(�)∕(�2 + 8). � (�) is analytic on and inside the curve � . That is, the roots 
of �2 + 8 are outside the curve. So, we rewrite the integral as 

cos(�)∕(�2 + 8) � (�) 1 �� �� = ∫� 
�� = 2��� (0) = 2�� = 

4 
. 

� � 8 ∫� 

Example 4.9. Compute 
1 �� over the contour shown. ∫� (�2 + 4)2 
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Re(z)

Im(z)

C

i

2i

−i

−2i

Solution: We factor the denominator as 

1 1 = 
(�2 + 4)2 (� − 2�)2(� + 2�)2 

. 

Let 
1 � (�) = 

(� + 2�)2 
. 

Clearly � (�) is analytic inside � . So, by Cauchy’s formula for derivatives: [ ] 
1 � (�) −2 4�� � �� = ∫� 

= 2��� ′(2�) = 2�� = = ∫� (�2 + 4)2 (� − 2�)2 (� + 2�)3 
�=2� 64� 16 

� Example 4.10. Compute �� over the curve � shown below. ∫� �2 + 4 

Re(z)

Im(z)

C
i

2i

−i

−2i

Solution: The integrand has singularities at ±2� and the curve � encloses them both. The solution 
to the previous solution won’t work because we can’t find an appropriate � (�) that is analytic on the 
whole interior of � . Our solution is to split the curve into two pieces. Notice that �3 is traversed 
both forward and backward. 
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Re(z)

Im(z)

C1C1

C3

C2C2

−C3

i

2i

−i

−2i

Split the original curve � into 2 pieces that each surround just one singularity. 

We have 
� � = 

�2 + 4 (� − 2�)(� + 2�)
. 

We let 
� � �1(�) = and �2(�) = . 

� + 2� � − 2� 
So, 

� �1(�) �2(�) = = . 
�2 + 4 � − 2� � + 2� 

The integral, can be written out as 

� � �1(�) �2(�) �� = ∫�1+�3−�3+�2 

�� = ∫�1+�3 

�� + ∫�2−�3 

�� 
�2 + 4 �2 + 4 � − 2� � + 2� ∫� 

Since �1 is analytic inside the simple closed curve �1+�3 and �2 is analytic inside the simple closed 
curve �2 − �3, Cauchy’s formula applies to both integrals. The total integral equals 

2��(�1(2�) + �2(−2�)) = 2��(1∕2 + 1∕2) = 2��. 

Remarks. 1. We could also have done this problem using partial fractions: 

� � � = + . 
(� − 2�)(� + 2�) � − 2� � + 2� 

It will turn out that � = �1(2�) and � = �2(−2�). It is easy to apply the Cauchy integral formula to 
both terms. 

2. Important note. In an upcoming topic we will formulate the Cauchy residue theorem. This will
allow us to compute the integrals in Examples 4.8-4.10 in an easier and less ad hoc manner. 

https://4.8-4.10
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4.3.3 The triangle inequality for integrals 

We discussed the triangle inequality in the Topic 1 notes. It says that 

|�1 + �2| ≤ |�1| + |�2|, (4a) 

with equality if and only if �1 and �2 lie on the same ray from the origin. 

A useful variant of this statement is 

|�1| − |�2| ≤ |�1 − �2|. (4b) 

This follows because Equation 4a implies 

|�1| = |(�1 − �2) + �2| ≤ |�1 − �2| + |�2|. 
Now subtracting �2 from both sides give Equation 4b 

Since an integral is basically a sum, this translates to the triangle inequality for integrals. We’ll state
it in two ways that will be useful to us. 

Theorem 4.11. (Triangle inequality for integrals) Suppose �(�) is a complex valued function of a 
real variable, defined on � ≤ � ≤ �. Then 

� � 

| �(�) �� | ≤ ∫ 
|�(�))| ��, ∫� � 

with equality if and only if the values of �(�) all lie on the same ray from the origin. 

Proof. This follows by approximating the integral as a Riemann sum. 
� � ∑ ≤ 

∑ ||∫� 
�(�) ��|| ≈ | �(��)Δ�| |�(��)|Δ� ≈ ∫� 

|�(�)| ��. 
The middle inequality is just the standard triangle inequality for sums of complex numbers. □ 

Theorem 4.12. (Triangle inequality for integrals II) For any function � (�) and any curve � , we have 

| � (�) ��| |� (�)| |��|. |∫� | ≤ ∫� 

Here �� = � ′(�) �� and |��| = |� ′(�)| ��. 
Proof. This follows immediately from the previous theorem: 

� � | � (�) ��| = | � (�(�))� ′(�) ��| ≤ ∫ 
|� (�(�))||� ′(�)| �� = ∫� 

|� (�)| |��|. |∫� | |∫� | � 

Corollary. If |� (�)| < � on � then 

� (�) �� ≤ � ⋅ (length of �). |∫� | 
Proof. Let �(�), with � ≤ � ≤ �, be a parametrization of � . Using the triangle inequality 

� � |∫� 
� (�) �� | ≤ ∫� 

|� (�)| |��| = ∫� 
|� (�(�))| |� ′(�)| �� ≤ ∫� 

�|� ′(�)| �� = � ⋅ (length of �). 
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Here we have used that √ |� ′(�)| �� = (� ′)2 + (� ′)2 �� = ��, 

the arclength element. □ 

Example 4.13. Compute the real integral 
∞ 1 � �� = ∫−∞ (�2 + 1)2 

Solution: The trick is to integrate � (�) = 1∕(�2 + 1)2 over the closed contour �1 + �� shown, and 
then show that the contribution of �� to this integral vanishes as � goes to ∞. 

Re(z)

Im(z)

CRCR

C1 R−R

i

The only singularity of 
1 � (�) = 

(� + �)2(� − �)2 

inside the contour is at � = �. Let 
1 �(�) = 

(� + �)2 
. 

Since � is analytic on and inside the contour, Cauchy’s formula gives 

�(�) −2 � � (�) �� = ∫�1+�� 

�� = 2��� ′(�) = 2�� = 
2 
. ∫�1+�� 

(� − �)2 (2�)3 

We parametrize �1 by 
�(�) = �, with − � ≤ � ≤ �. 

So, 

� (�) �� = ∫ 

� 1 ��. ∫�1 −� (�2 + 1)2 

This goes to � (the value we want to compute) as � → ∞. 

Next, we parametrize �� by 

�(�) = �e��, with 0 ≤ � ≤ �. 

So, 
� 1 � (�) �� = ∫ 

��e�� �� ∫�� 0 (�2e2�� + 1)2 
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By the triangle inequality for integrals, if � > 1 

� 1 � (�) �� ≤ ∫ 
��e�� ��. (5) 

(�2e2�� + 1)2 |∫�� | 0 | | 
From the triangle equality in the form Equation 4b we know that 

|�2e2�� + 1| ≥ |�2e2��| − |1| = �2 − 1. 

Thus, 
1 1 1 1 ≤ ⇒ ≤ |�2e2�� + 1| |�2e2�� + 1|2 �2 − 1 (�2 − 1)2 

. 

Using Equation 5, we then have 

� � 1 � �� ��e�� |∫�� 

� (�) �� | ≤ ∫0 | (�2e2�� + 1)2 | �� ≤ ∫0 (�2 − 1)2 
�� =

(�2 − 1)2 

Clearly this goes to 0 as � goes to infinity. Thus, the integral over the contour �1 + �� goes to � as 
� gets large. But 

� (�) �� = �∕2 ∫�1+�� 

for all � > 1. We can therefore conclude that � = �∕2. 

As a sanity check, we note that our answer is real and positive as it needs to be. 

4.4 Proof of Cauchy’s integral formula 

4.4.1 A useful theorem 

Before proving the theorem we’ll need a theorem that will be useful in its own right. 

Theorem 4.14. (A second extension of Cauchy’s theorem) Suppose that � is a simply connected 
region containing the point �0. Suppose � is a function which is 

1. Analytic on � − {�0} 

2. Continuous on �. (In particular, � does not blow up at �0.) 

Then, 
�(�) �� = 0 ∫� 

for all closed curves � in �. 

Proof. The extended version of Cauchy’s theorem in the Topic 3 notes tells us that 

�(�) �� = ∫�� 

�(�) ��, ∫� 

where �� is a circle of radius � around �0. 
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Re(z)

Im(z)

z0

C

A

Cr

Since �(�) is continuous we know that |�(�)| is bounded inside ��. Say, |�(�)| < � . The corollary 
to the triangle inequality says that 

�(�) �� ≤ � (length of ��) = � 2��. |∫�� | 
Since � can be as small as we want, this implies that 

�(�) �� = 0. ∫�� 

Note. Using this, we can show that �(�) is, in fact, analytic at �0. The proof will be the same as in 
our proof of Cauchy’s theorem that �(�) has an antiderivative. 

4.4.2 Proof of Cauchy’s integral formula 

1 � (�) 
We reiterate Cauchy’s integral formula from Equation 1: � (�0) = ��. 

2�� ∫� � − �0 

Re(z)

Im(z)

z0

C

A

Proof. (of Cauchy’s integral formula) We use a trick that is useful enough to be worth remembering. 
Let 

� (�) − � (�0) �(�) = . 
� − �0 

Since � (�) is analytic on �, we know that �(�) is analytic on � − {�0}. Since the derivative of � 
exists at �0, we know that 

lim �(�) = � ′(�0). �→�0 
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That is, if we define �(�0) = � ′(�0) then � is continuous at �0. From the extension of Cauchy’s 
theorem just above, we have 

� (�) − � (�0) �(�) �� = 0, i.e. �� = 0. ∫� ∫� � − �0 

Thus 
� (�) � (�0) 1 �� = ∫� 

�� = � (�0) ∫� 
�� = 2��� (�0). ∫� � − �0 � − �0 � − �0 

The last equality follows from our, by now, well known integral of 1∕(� − �0) on a loop around �0. 

4.5 Proof of Cauchy’s integral formula for derivatives 

Recall that Cauchy’s integral formula in Equation 3 says 

�! � (�) 
� (�)(�) = ��, � = 0, 1, 2, … 

2�� ∫� (� − �)�+1 

First we’ll offer a quick proof which captures the reason behind the formula, and then a formal proof. 

Quick proof: We have an integral representation for � (�), � ∈ �, we use that to find an integral 
representation for � ′(�), � ∈ �. [ ] ( ) 

� 1 � (�) 1 � � (�) 1 � (�) 
� ′(�) = �� = �� = �� 

�� 2�� ∫� � − � 2�� ∫� �� � − � 2�� ∫� (� − �)2 

(Note, since � ∈ � and � ∈ � , we know that � − � ≠ 0) Thus, 
1 � (�) 

� ′(�) = �� 
2�� ∫� (� − �)2 

Now, by iterating this process, i.e. by mathematical induction, we can show the formula for higher
order derivatives. 

Formal proof: We do this by taking the limit of 
� (� + Δ�) − � (�) 

lim 
Δ�→0 Δ� 

using the integral representation of both terms: 
1 � (�) 1 � (�) 

� (� + Δ�) = ��, � (�) = �� 
2�� ∫� � − � − Δ� 2�� ∫� � − � 

Now, using a little algebraic manipulation we get 
� (� + Δ�) − � (�) 1 � (�) � (�) 

= − �� 
Δ� 2�� Δ� ∫� � − � − Δ� � − � 

1 � (�)Δ� 
= �� 

2�� Δ� ∫� (� − � − Δ�)(� − �) 
1 � (�) 

= �� 
2�� ∫� (� − �)2 − Δ�(� − �) 

Letting Δ� go to 0, we get Cauchy’s formula for � ′(�): 
� (�) 

� ′(�) = 
1 �� 
2�� ∫� (� − �)2 

There is no problem taking the limit under the integral sign because everything is continuous and
the denominator is never 0. □ 
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4.6 Amazing consequence of Cauchy’s integral formula 

4.6.1 Existence of derivatives 

Theorem. Suppose � (�) is analytic on a region �. Then, � has derivatives of all order. 

Proof. This follows from Cauchy’s integral formula for derivatives. That is, we have a formula for 
all the derivatives, so in particular the derivatives all exist. 

A little more precisely: for any point � in � we can put a small disk around �0 that is entirely 
contained in �. Let � be the boundary of the disk, then Cauchy’s formula gives a formula for all the 
derivatives � (�)(�0) in terms of integrals over � . In particular, those derivatives exist. □ 

Remark. If you look at the proof of Cauchy’s formula for derivatives you’ll see that � having 
derivatives of all orders boils down to 1∕(� − �) having derivatives of all orders for � on a curve 
not containing �. 

Important remark. We have at times assumed that for � = � + �� analytic, � and � have continuous 
higher order partial derivatives. This theorem confirms that fact. In particular, ��� = ���, etc. 

4.6.2 Cauchy’s inequality 

Theorem 4.15. (Cauchy’s inequality) Let �� be the circle |�−�0| = �. Assume that � (�) is analytic 
on �� and its interior, i.e. on the disk |� − �0| ≤ �. Finally let �� = max |� (�)| over � on ��. 
Then |� (�)(�0)| ≤ 

�!�� , � = 1, 2, 3, … (6) 
�� 

Proof. Using Cauchy’s integral formula for derivatives (Equation 3) we have 

|� (�)| �� �! �� |� (�)(�0)| ≤ 
�! |��| ≤ 

�! |��| = ⋅ 2�� |� − �0|�+1 2� 2� ��+1 2� ∫�� 
��+1 ∫�� 

4.6.3 Liouville’s theorem 

Theorem 4.16. (Liouville’s theorem) Assume � (�) is entire and suppose it is bounded in the complex 
plane, namely |� (�)| < � for all � ∈ � then � (�) is constant. 

Proof. For any circle of radius � around �0 the Cauchy inequality says |� ′(�0)| ≤ 
� . But, � can 
� 

be as large as we like so we conclude that |� ′(�0)| = 0 for every �0 ∈ �. Since the derivative is 0, 
the function itself is constant. 

In short: 
If � is entire and bounded then � is constant. 

Note. � (�) = ���� +…+ �0, sin(�), e� are all entire but not bounded. 

Now, practically for free, we get the fundamental theorem of algebra. 

Corollary. (Fundamental theorem of algebra) Any polynomial � of degree � ≥ 1, i.e. 

� (�) = �0 + �1� +…+ ���
�, �� ≠ 0, 
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has exactly � roots. 

Proof. There are two parts to the proof. 

Hard part: Show that � has at least one root. 

This is done by contradiction, together with Liouville’s theorem. Suppose � (�) does not have a 
zero. Then 

1. � (�) = 1∕� (�) is entire. This is obvious because (by assumption) � (�) has no zeros. 

2. � (�) is bounded. This follows because 1∕� (�) goes to 0 as |�| goes to ∞. 

Im(z)

Im(z)

R

CR

M = max of |1/P (z)| in here.

|1/P (z)| small out here.

(It is clear that |1∕� (�)| goes to 0 as � goes to infinity, i.e. |1∕� (�)| is small outside a large circle. 
So |1∕� (�)| is bounded by � .) 

So, by Liouville’s theorem � (�) is constant, and therefore � (�) must be constant as well. But this is 
a contradiction, so the hypothesis of “No zeros” must be wrong, i.e. � must have a zero. 

Easy part: � has exactly � zeros. Let �0 be one zero. We can factor � (�) = (� − �0)�(�). �(�) has 
degree � − 1. If � − 1 > 0, then we can apply the result to �(�). We can continue this process until 
the degree of � is 0. 

4.6.4 Maximum modulus principle 

Briefly, the maximum modulus principle states that if � is analytic and not constant in a domain � 
then |� (�)| has no relative maximum in � and the absolute maximum of |� | occurs on the boundary 
of �. 

In order to prove the maximum modulus principle we will first prove the mean value property. This 
will give you a good feel for the maximum modulus principle. It is also important and interesting in
its own right. 

Theorem 4.17. (Mean value property) Suppose � (�) is analytic on the closed disk of radius � cen-
tered at �0, i.e. the set |� − �0| ≤ �. Then, 

2� 

� (�0) = 
1 � (�0 + �e��) �� (7) 
2� ∫0 
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Proof. This is an application of Cauchy’s integral formula on the disk 

Re(z)

Im(z)

z0

r Cr

�� = |� − �0| ≤ �. 

We can parametrize ��, the boundary of ��, as 

�(�) = �0 + �e��, with 0 ≤ � ≤ 2�, so � ′(�) = ��e��. 

By Cauchy’s formula we have 

2� � (�0 + �e��) 2� 1 � (�) 1 1 � (�0) = �� = ��e�� �� = � (�0 + �e��) �� 
�e�� 2�� ∫�� 

� − �0 2�� ∫ 2� ∫0 0 

This proves the property. □ 

In words, the mean value property says � (�0) is the arithmetic mean of the values on the circle. 

Now we can state and prove the maximum modulus principle. We state the assumptions carefully.
When applying this theorem, it is important to verify that the assumptions are satisfied. 

Theorem 4.18. (Maximum modulus principle) Suppose � (�) is analytic in a connected region � 
and �0 is a point in �. 

1. If |� | has a relative maximum at �0 then � (�) is constant in a neighborhood of �0. 

2. If � is bounded and connected, and � is continuous on � and its boundary, then either � is 
constant or the absolute maximum of |� | occurs only on the boundary of �. 

Proof. Part (1): The argument for part (1) is a little fussy. We will use the mean value property and 
the triangle inequality from Theorem 4.11. 

Since �0 is a relative maximum of |� |, for every small enough circle � ∶ |� − �0| = � around �0 we 
have |� (�)| ≤ |� (�0)| for � on � . Therefore, by the mean value property and the triangle inequality 

2� |� (�0)| = | 1 | (mean value property) � (�0 + �e��) �� 
2� ∫ 0 

2� 
| | 
1 ≤ |� (�0 + �e��)| �� (triangle inequality) 
2� ∫0 

2� ≤ 
1 |� (�0)| �� (|� (�0 + �e��)| ≤ |� (�0)|) 2� ∫0 

= |� (�0)|
Since the beginning and end of the above are both |� (�0)| all the inequalities in the chain must be 
equalities. 
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The first inequality can only be an equality if for all �, � (�0 + �e��) lie on the same ray from the 
origin, i.e. have the same argument or are 0. 

The second inequality can only be an equality if all |� (�0 + �e��)| = |� (�0)|. So we have all � (�0 + 
�e��) have the same magnitude and the same argumeny. This implies they are all the same. 

Finally, if � (�) is constant along the circle and � (�0) is the average of � (�) over the circle then 
� (�) = � (�0), i.e. � is constant on a small disk around �0. 

Part (2): The assumptions that � is bounded and � is continuous on � and its boundary serve to 
guarantee that |� | has an absolute maximum (on � combined with its boundary). Part (1) guarantees
that the absolute maximum can not lie in the interior of the region � unless � is constant. (This
requires a bit more argument. Do you see why?) If the absolute maximum is not in the interior it
must be on the boundary. □ 

Example 4.19. Find the maximum modulus of e� on the unit square with 0 ≤ �, � ≤ 1. 

Solution: |e�+��| = e� , 

so the maximum is when � = 1, 0 ≤ � ≤ 1 is arbitrary. This is indeed on the boundary of the unit 
square 

Example 4.20. Find the maximum modulus for sin(�) on the square [0, 2�] × [0, 2�]. 

Solution: We use the formula 

sin(�) = sin � cosh � + � cos � sinh �. 

So, 

| sin(�)|2 = sin2 � cosh2 � + cos2 � sinh2 � 

= sin2 � cosh2 � + (1 − sin2 �) sinh2 � 

= sin2 � + sinh2 �. 

We know the maximum over � of sin2(�) is at � = �∕2 and � = 3�∕2. The maximum of sinh2 � is 
at � = 2�. So maximum modulus is √ √ 

1 + sinh2(2�) = cosh2(2�) = cosh(2�). 

This occurs at the points 

� 3� � = � + �� = 
2 
+ 2��, and � = 

2 
+ 2��. 

Both these points are on the boundary of the region. 

Example 4.21. Suppose � (�) is entire. Show that if lim � (�) = 0 then � (�) ≡ 0. 
�→∞ 

Solution: This is a standard use of the maximum modulus principle. The strategy is to show that
the maximum of |� (�)| is not on the boundary (of the appropriately chosen region), so � (�) must be 
constant. 

Fix �0. For � > |�0| let �� be the maximum of |� (�)| on the circle |�| = �. The maximum 
modulus theorem says that |� (�0)| < ��. Since � (�) goes to 0, as � goes to infinity, we must have 
�� also goes to 0. This means |� (�0)| = 0. Since this is true for any �0, we have � (�) ≡ 0. 
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Example 4.22. Here is an example of why you need � to be bounded in the maximum modulus 
theorem. Let � be the upper half-plane 

Im(�) > 0. 

So the boundary of � is the real axis. 

Let � (�) = e−��. We have |� (�)| = |e−��| = 1 

for � along the real axis. Since |� (2�)| = |e2| > 1, we see |� | cannot take its maximum along the 
boundary of �. 

Of course, it can’t take its maximum in the interior of � either. What happens here is that � (�) 
doesn’t have a maximum modulus. Indeed |� (�)| goes to infinity along the positive imaginary axis. 
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Topic 5 Notes
Jeremy Orloff 

5 Introduction to harmonic functions 

5.1 Introduction 

Harmonic functions appear regularly and play a fundamental role in math, physics and engineering.
In this topic we’ll learn the definition, some key properties and their tight connection to complex
analysis. The key connection to 18.04 is that both the real and imaginary parts of analytic functions
are harmonic. We will see that this is a simple consequence of the Cauchy-Riemann equations. In
the next topic we will look at some applications to hydrodynamics. 

5.2 Harmonic functions 

We start by defining harmonic functions and looking at some of their properties. 

Definition 5.1. A function �(�, �) is called harmonic if it is twice continuously differentiable and 
satisfies the following partial differential equation: 

∇2� = ��� + ��� = 0. (1) 

Equation 1 is called Laplace’s equation. So a function is harmonic if it satisfies Laplace’s equation. 
The operator ∇2 is called the Laplacian and ∇2� is called the Laplacian of �. 

5.3 Del notation 

Here’s a quick reminder on the use of the notation �. For a function �(�, �) and a vector field 
�(�, �) = (�, �), we have ( ) 

� � (i) � = , 
�� �� 

(ii) grad � = �� = (��, ��) 

(iii) curl � = � × � = (�� − ��) 

(iv) div � = � ⋅ � = �� + �� 

(v) div grad � = � ⋅ �� = ∇2� = ��� + ��� 

(vi) curl grad � = � × � � = 0 

(vii) div curl � = � ⋅ � × � = 0. 

1 
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5.3.1 Analytic functions have harmonic pieces 

The connection between analytic and harmonic functions is very strong. In many respects it mirrors
the connection between e� and sine and cosine. 

Let � = � + �� and write � (�) = �(�, �) + ��(�, �). 

Theorem 5.2. If � (�) = �(�, �) + ��(�, �) is analytic on a region � then both � and � are harmonic 
functions on �. 

Proof. This is a simple consequence of the Cauchy-Riemann equations. Since �� = �� we have 

��� = ���. 

Likewise, �� = −�� implies 
��� = −���. 

Since ��� = ��� we have 
��� + ��� = ��� − ��� = 0. 

Therefore � is harmonic. We can handle � similarly. □ 

Note. Since we know an analytic function is infinitely differentiable we know � and � have the 
required two continuous partial derivatives. This also ensures that the mixed partials agree, i.e. 
��� = ���. 

To complete the tight connection between analytic and harmonic functions we show that any har-
monic function is the real part of an analytic function. 

Theorem 5.3. If �(�, �) is harmonic on a simply connected region �, then � is the real part of an 
analytic function � (�) = �(�, �) + ��(�, �). 

Proof. This is similar to our proof that an analytic function has an antiderivative. First we come up
with a candidate for � (�) and then show it has the properties we need. Here are the details broken 
down into steps 1-4. 

1. Find a candidate, call it �(�), for � ′(�): 
′ If we had an analytic � with � = � + ��, then Cauchy-Riemann says that � = �� − ���. So, 

let’s define 
� = �� − ���. 

′ This is our candidate for � . 

2. Show that �(�) is analytic: 
Write � = � + �� , where � = �� and � = −��. Checking the Cauchy-Riemann equations we 
have [ ] [ ] 

�� �� ��� ��� = �� �� −��� −��� 

Since � is harmonic we know ��� = −���, so �� = ��. It is clear that �� = −��. Thus � 
satisfies the Cauchy-Riemann equations, so it is analytic. 

3. Let � be an antiderivative of �: 
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Since � is simply connected our statement of Cauchy’s theorem guarantees that �(�) has an 
antiderivative in �. We’ll need to fuss a little to get the constant of integration exactly right.
So, pick a base point �0 in �. Define the antiderivative of �(�) by 

� 

� (�) = ∫ 
�(�) �� + �(�0, �0). 

�0 

(Again, by Cauchy’s theorem this integral can be along any path in � from �0 to �.) 

4. Show that the real part of � is �. 
Let’s write � = � + �� . So, � ′(�) = �� − ���. By construction 

� ′(�) = �(�) = �� − ���. 

This means the first partials of � and � are the same, so � and � differ by at most a constant. 
However, also by construction, 

� (�0) = �(�0, �0) = � (�0, �0) + �� (�0, �0), 

So, � (�0, �0) = �(�0, �0) (and � (�0, �0) = 0). Since they agree at one point we must have 
� = �, i.e. the real part of � is � as we wanted to prove. 

Important corollary. � is infinitely differentiable. 

Proof. By definition we only require a harmonic function � to have continuous second partials. Since 
the analytic � is infinitely differentiable, we have shown that so is �! 

5.3.2 Harmonic conjugates 

Definition. If � and � are the real and imaginary parts of an analytic function, then we say � and � 
are harmonic conjugates. 

Note. If � (�) = � + �� is analytic then so is �� (�) = −� + ��. So, if � and � are harmonic conjugates 
and so are � and −�. 

5.4 A second proof that � and � are harmonic 

This fact is important enough that we will give a second proof using Cauchy’s integral formula.
One benefit of this proof is that it reminds us that Cauchy’s integral formula can transfer a general
question on analytic functions to a question about the function 1∕�. We start with an easy to derive 
fact. 

Fact. The real and imaginary parts of � (�) = 1∕� are harmonic away from the origin. Likewise for 

1 �(�) = � (� − �) = 
� − � 

away from the point � = �. 

Proof. We have 
1 � � 
= − � 

� �2 + �2 �2 + �2 
. 
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It is a simple matter to apply the Laplacian and see that you get 0. We’ll leave the algebra to you!
The statement about �(�) follows in either exactly the same way, or by noting that the Laplacian is 
translation invariant. 

Second proof that � analytic implies � and � are harmonic. We are proving that if � = � + �� is 
analytic then � and � are harmonic. So, suppose � is analytic at the point �0. This means there is a 
disk of some radius, say �, around �0 where � is analytic. Cauchy’s formula says 

1 � (�) 
� (�) = ��, 

2�� ∫�� 
� − � 

where �� is the circle |� − �0| = � and � is in the disk |� − �0| < �. 

Now, since the real and imaginary parts of 1∕(� − �) are harmonic, the same must be true of the 
integral, which is limit of linear combinations of such functions. Since the circle is finite and � is 
continuous, interchanging the order of integration and differentiation is not a problem. 

5.5 Maximum principle and mean value property 

These are similar to the corresponding properties of analytic functions. Indeed, we deduce them 
from those corresponding properties. 

Theorem. (Mean value property) If � is a harmonic function then � satisfies the mean value property. 
That is, suppose � is harmonic on and inside a circle of radius � centered at �0 = �0 + ��0 then 

2� 1 �(�0, �0) = �(�0 + �e��) �� 
2� ∫0 

Proof. Let � = � + �� be an analytic function with � as its real part. The mean value property for � 
says 

2� 1 �(�0, �0) + ��(�0, �0) = � (�0) = � (�0 + �e��) �� 
2� ∫0 

2� 1 �(�0 + �e��) + ��(�0 + �e��) �� = 
2� ∫0 

Looking at the real parts of this equation proves the theorem. 

Theorem. (Maximum principle) Suppose �(�, �) is harmonic on a open region �. 

(i) Suppose �0 is in �. If � has a relative maximum or minimum at �0 then � is constant on a disk 
centered at �0. 

(ii) If � is bounded and connected and � is continuous on the boundary of � then the absolute 
maximum and absolute minimum of � occur on the boundary. 

Proof. The proof for maxima is identical to the one for the maximum modulus principle. The proof
for minima comes by looking at the maxima of −�. 

Note. For analytic functions we only talked about maxima because we had to use the modulus in
order to have real values. Since |−� | = |� | we couldn’t use the trick of turning minima into maxima 
by using a minus sign. 
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5.6 Orthogonality of curves 

An important property of harmonic conjugates � and � is that their level curves are orthogonal. We 
start by showing their gradients are orthogonal. 

Lemma 5.4. Let � = � + �� and suppose that � (�) = �(�, �) + ��(�, �) is analytic. Then the dot 
product of their gradients is 0, i.e. 

�� ⋅ �� = 0. 

Proof. The proof is an easy application of the Cauchy-Riemann equations. 

�� ⋅ �� = (��, ��) ⋅ (��, ��) = ���� + ���� = ���� − ���� = 0 

In the last step we used the Cauchy-Riemann equations to substitute �� for �� and −�� for ��. □ 

The lemma holds whether or not the gradients are 0. To guarantee that the level curves are smooth
the next theorem requires that � ′(�) ≠ 0. 

Theorem. Let � = � + �� and suppose that 

� (�) = �(�, �) + ��(�, �) 

is analytic. If � ′(�) ≠ 0 then the level curve of � through (�, �) is orthogonal to the level curve � 
through (�, �). 

Proof. The technical requirement that � ′(�) ≠ 0 is needed to be sure that the level curves are smooth. 
We need smoothness so that it even makes sense to ask if the curves are orthogonal. We’ll discuss
this below. Assuming the curves are smooth the proof of the theorem is trivial: We know from 
18.02 that the gradient �� is orthogonal to the level curves of � and the same is true for �� and 
the level curves of �. Since, by Lemma 5.4, the gradients are orthogonal this implies the curves are 
orthogonal. 

Finally, we show that � ′(�) ≠ 0 means the curves are smooth. First note that 

� ′(�) = ��(�, �) − ���(�, �) = ��(�, �) + ���(�, �). 

Now, since � ′(�) ≠ 0 we know that 
�� = (��, ��) ≠ 0. 

Likewise, �� ≠ 0. Thus, the gradients are not zero and the level curves must be smooth. 

Example 5.5. The figures below show level curves of � and � for a number of functions. In all cases, 
the level curves of � are in orange and those of � are in blue. For each case we show the level curves 
separately and then overlayed on each other. 
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Example 5.6. Let’s work out the gradients in a few simple examples. 

(i) Let 
� (�) = �2 = (�2 − �2) + �2��, 

So 
�� = (2�, −2�) and �� = (2�, 2�). 

It’s trivial to check that �� ⋅ �� = 0, so they are orthogonal. 
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(ii) Let 
1 � � 

� (�) = = − � 
� �2 �2 

. 

So, it’s easy to compute ( ) ( ) 
�2 − �2 −2�� 2�� �2 − �2 

�� = , and �� = , . 
�4 �4 �4 �4 

Again it’s trivial to check that �� ⋅ �� = 0, so they are orthogonal. 

Example 5.7. (Degenerate points: � ′(�) = 0.) Consider 

� (�) = �2 . 

From the previous example we have 

�(�, �) = �2 − �2 , �(�, �) = 2��, �� = (2�, −2�), �� = (2�, 2�). 

At � = 0, the gradients are both 0 so the theorem on orthogonality doesn’t apply. 

Let’s look at the level curves through the origin. The level curve (really the ‘level set’) for 

� = �2 − �2 = 0 

is the pair of lines � = ±�. At the origin this is not a smooth curve. 

Look at the figures for �2 above. It does appear that away from the origin the level curves of � 
intersect the lines where � = 0 at right angles. The same is true for the level curves of � and the lines 
where � = 0. You can see the degeneracy forming at the origin: as the level curves head towards 0 
they get pointier and more right angled. So the level curve � = 0 is more properly thought of as four 
right angles. The level curve of � = 0, not knowing which leg of � = 0 to intersect orthogonally 
takes the average and comes into the origin at 45◦. 
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Topic 6 Notes
Jeremy Orloff 

6 Two dimensional hydrodynamics and complex potentials 

6.1 Introduction 

Laplace’s equation and harmonic functions show up in many physical models. As we have just seen,
harmonic functions in two dimensions are closely linked with complex analytic functions. In this
section we will exploit this connection to look at two dimensional hydrodynamics, i.e. fluid flow. 

Since static electric fields and steady state temperature distributions are also harmonic, the ideas and
pictures we use can be repurposed to cover these topics as well. 

6.2 Velocity fields 

Suppose we have water flowing in a region � of the plane. Then at every point (�, �) in � the water 
has a velocity. In general, this velocity will change with time. We’ll let � stand for the velocity 
vector field and we can write 

�(�, �, �) = (�(�, �, �), �(�, �, �)). 

The arguments (�, �, �) indicate that the velocity depends on these three variables. In general, we 
will shorten the name to velocity field. 

A beautiful and mesmerizing example of a velocity field is at http://hint.fm/wind/index.html. 
This shows the current velocity of the wind at all points in the continental U.S. 

6.3 Stationary flows 

If the velocity field is unchanging in time we call the flow a stationary flow. In this case, we can drop 
� as an argument and write: 

�(�, �) = (�(�, �), �(�, �)) 

Here are a few examples. These pictures show the streamlines from similar figures in topic 5. We’ve
added arrows to indicate the direction of flow. 

Example 6.1. Uniform flow. � = (1, 0). 

Example 6.2. Eddy (vortex) � = (−�∕�2, �∕�2) 

1 

http://hint.fm/wind/index.html
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Example 6.3. Source � = (�∕�2, �∕�2) 

6.4 Physical assumptions, mathematical consequences 

This is a wordy section, so we’ll start by listing the mathematical properties that will follow from
our assumptions about the velocity field � = � + ��. 

(A) � = �(�, �) is a function of �,�, but not time � (stationary). 

(B) div � = 0 (divergence free). 

(C) curl � = 0 (curl free). 

6.4.1 Physical assumptions 

We will make some standard physical assumptions. These don’t apply to all flows, but they do 
apply to a good number of them and they are a good starting point for understanding fluid flow 
more generally. More important to 18.04, these are the flows that are readily susceptible to complex 
analysis. 

Here are the assumptions about the flow, we’ll discuss them further below: 

(A) The flow is stationary. 

(B) The flow is incompressible. 

(C) The flow is irrotational. 

We have already discussed stationarity in Section 6.3, so let’s now discuss the other two properties. 
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(B) Incompressibility. We will assume throughout that the fluid is incompressible. This means that
the density of the fluid is constant across the domain. Mathematically this says that the velocity field 
� must be divergence free, i.e. for � = (�, �): 

div� ≡ � ⋅ � = �� + �� = 0. 

To understand this, recall that the divergence measures the infinitesimal flux of the field. If the flux
is not zero at a point (�0, �0) then near that point the field looks like 

Left: Divergent field: div� > 0, right: Convergent field: div� < 0 

If the field is diverging or converging then the density must be changing! That is, the flow is not 
incompressible. 

As a fluid flow the left hand picture represents a source and the right represents a sink. In electrostat-
ics where � expresses the electric field, the left hand picture is the field of a positive charge density
and the right is that of a negative charge density. 

If you prefer a non-infinitesimal explanation, we can recall Green’s theorem in flux form. It says 
that for a simple closed curve � and a field � = (�, �), differentiable on and inside � , the flux of � 
through � satisfies 

Flux of � across � � ⋅ � �� = ∫ ∫� 
div� �� ��, = ∫� 

where � is the region inside � . Now, suppose that div�(�0, �0) > 0, then div�(�, �) > 0 for all 
(�, �) close to (�0, �0). So, choose a small curve � around (�0, �0) such that div� > 0 on and inside 
� . By Green’s theorem 

Flux of � through � div� �� �� > 0. = ∫ ∫� 

Clearly, if there is a net flux out of the region the density is decreasing and the flow is not incom-
pressible. The same argument would hold if div�(�0, �0) < 0. We conclude that incompressible is 
equivalent to divergence free. 

(C) Irrotational flow. We will assume that the fluid is irrotational. This means that the there are no 
infinitesimal vortices in �. Mathematically this says that the velocity field � must be curl free, i.e. 
for � = (�, �): 

curl� ≡ � × � = �� − �� = 0. 

To understand this, recall that the curl measures the infinitesimal rotation of the field. Physically this
means that a small paddle placed in the flow will not spin as it moves with the flow. 

6.4.2 Examples 

Example 6.4. The eddy is irrotational! The eddy from Example 6.2 is irrotational. The vortex at 
the origin is not in � = � − {0} and you can easily check that curl� = 0 everywhere in �. This is 
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not physically impossible: if you placed a small paddle wheel in the flow it would travel around the
origin without spinning! 

Example 6.5. Shearing flows are rotational. Here’s an example of a vector field that has rotation, 
though not necessarily swirling. 

Re(z)

Im(z)

Shearing flow: box turns because current is faster at the top. 

The field � = (��, 0) is horizontal, but curl� = −� ≠ 0. Because the top moves faster than the bottom
it will rotate a square parcel of fluid. The minus sign tells you the parcel will rotate clockwise! This
is called a shearing flow. The water at one level will be sheared away from the level above it. 

6.4.3 Summary 

(A) Stationary: � depends on �, �, but not �, i.e., 

�(�, �) = (�(�, �), �(�, �)). 

(B) Incompressible: divergence free: 

div� = �� + �� = 0, i.e. �� = −��. 

(C) Irrotational: curl free: 

curl� = �� − �� = 0, i.e., �� = ��. 

For future reference we put the last two equalities in a numbered equation: 

�� = −�� and �� = �� (1) 

These look almost like the Cauchy-Riemann equations (with sign differences)! 

6.5 Complex potentials 

There are different ways to do this. We’ll start by seeing that every complex analytic function leads
to an irrotational, incompressible flow. Then we’ll go backwards and see that all such flows lead to
an analytic function. We will learn to call the analytic function the complex potential of the flow. 

Annoyingly, we are going to have to switch notation. Because � and � are already taken by the vector 
field �, we will call our complex potential 

Φ = � + ��. 
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6.5.1 Analytic functions give us incompressible, irrotational flows 

Let Φ(�) be an analytic function on a region �. For � = � + �� we write 

Φ(�) = �(�, �) + ��(�, �). 

From this we can define a vector field 

� = �� = (��, ��) =∶ (�, �), 

here we mean that � and � are defined by �� and ��. 

From our work on analytic and harmonic functions we can make a list of properties of these functions. 

1. � and � are both harmonic. 

2. The level curves of � and � are orthogonal. 

3. Φ′ = �� − ���. 

4. � is divergence and curl free (proof just below). That is, the analytic function Φ has given us 
an incompressible, irrotational vector field �. 

It is standard terminology to call � a potential function for the vector field �. We will also call Φ a 
complex potential function for �. The function � will be called the stream function of � (the name 
will be explained soon). The function Φ′ will be called the complex velocity. 

Proof. (� is curl and divergence free.) This is an easy consequence of the definition. We find 

curl� = �� − �� = ��� − ��� = 0 

div� = �� + �� = ��� + ��� = 0 (since � is harmonic). 

We’ll postpone examples until after deriving the complex potential from the flow. 

6.5.2 Incompressible, irrotational flows always have complex potential functions 

For technical reasons we need to add the assumption that � is simply connected. This is not usually
a problem because we often work locally in a disk around a point (�0, �0). 

Theorem. Assume � = (�, �) is an incompressible, irrotational field on a simply connected region 
�. Then there is an analytic function Φ which is a complex potential function for �. 

Proof. We have done all the heavy lifting for this in previous topics. The key is to use the property 
Φ′ = � − �� to guess Φ′ . Working carefully we define 

�(�) = � − �� 

Step 1: Show that � is analytic. Keeping the signs straight, the Cauchy Riemann equations are 

�� = (−�)� and �� = −(−�)� = ��. 

But, these are exactly the equations in Equation 1. Thus �(�) is analytic. 
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Step 2: Since � is simply connected, Cauchy’s theorem says that �(�) has an antiderivative on �. 
We call the antiderivative Φ(�). 

Step 3: Show that Φ(�) is a complex potential function for �. This means we have to show that if 
we write Φ = � + �� , then � = ��. To do this we just unwind the definitions. 

Φ′ = �� − ��� (standard formula for Φ′) 
Φ′ = � = � − �� (definition of Φ and �) 

Comparing these equations we get 

�� = �, �� = �. 

But this says precisely that �� = �. QED 

Example 6.6. Source fields. The vector field ( ) � � � = � 
�2 
, 
�2 

models a source pushing out water or the 2D electric field of a positive charge at the origin. (If you
prefer a 3D model, it is the field of an infinite wire with uniform charge density along the �-axis.) 
Show that � is curl-free and divergence-free and find its complex potential. 

We could compute directly that this is curl-free and divergence-free away from 0. An alternative 
method is to look for a complex potential Φ. If we can find one then this will show � is curl and 
divergence free and find � and � all at once. If there is no such Φ then we’ll know that � is not both 
curl and divergence free. 

One standard method is to use the formula for Φ′: 

(� − ��) � � Φ′ = � − �� = � = � = . 
�2 (��) � 

This is analytic and we have 
Φ(�) = � log(�). 

6.6 Stream functions 

In everything we did above poor old � just tagged along as the harmonic conjugate of the potential 
function �. Let’s turn our attention to it and see why it’s called the stream function. 
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Theorem. Suppose that 
Φ = � + �� 

is the complex potential for a velocity field �. Then the fluid flows along the level curves of � . That 
is, the � is everywhere tangent to the level curves of � . The level curves of � are called streamlines 
and � is called the stream function. 

Proof. Again we have already done most of the heavy lifting to prove this. Since � is the velocity 
of the flow at each point, the flow is always tangent to �. You also need to remember that �� is 
perpendicular to the level curves of �. So we have: 

1. The flow is parallel to �. 

2. � = ��, so the flow is orthogonal to the level curves of �. 

3. Since � and � are harmonic conjugates, the level curves of � are orthogonal to the level curves 
of �. 

Combining 2 and 3 we see that the flow must be along the level curves of � . 

6.6.1 Examples 

We’ll illustrate the streamlines in a series of examples that start by defining the complex potential
for a vector field. 

Example 6.7. Uniform flow. Let 
Φ(�) = �. 

Find � and draw a plot of the streamlines. Indicate the direction of the flow. 

Solution: Write 
Φ = � + ��. 

So 
� = � and � = �� = (1, 0), 

which says the flow has uniform velocity and points to the right. We also have 

� = �, 

so the streamlines are the horizontal lines � = constant. 

Uniform flow to the right. 
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Note that another way to see that the flow is to the right is to check the direction that the potential � 
increases. The Topic 5 notes show pictures of this complex potential which show both the streamlines
and the equipotential lines. 

Example 6.8. Linear source. Let 
Φ(�) = log(�). 

Find � and draw a plot of the streamlines. Indicate the direction of the flow. 

Solution: Write 
Φ = log(�) + ��. 

So 
� = log(�) and � = �� = (�∕�2, �∕�2), 

which says the flow is radial and decreases in speed as it gets farther from the origin. The field is
not defined at � = 0. We also have 

� = �, 

so the streamlines are rays from the origin. 

Linear source: radial flow from the origin. 

6.6.2 Stagnation points 

A stagnation point is one where the velocity field is 0. 

Stagnation points. If Φ is the complex potential for a field � then the stagnation points � = 0 are 
exactly the points � where Φ′(�) = 0. 

Proof. This is clear since � = (��, ��) and Φ′ = �� − ���. 

Example 6.9. Stagnation points. Draw the streamlines and identify the stagnation points for the 
potential Φ(�) = �2. 

Solution: (We drew the level curves for this in Topic 5.) We have 

Φ = (�2 − �2) + �2��. 

So the streamlines are the hyperbolas: 2�� = constant. Since � = �2 − �2 increases as |�| increases 
and decreases as |�| increases, the arrows, which point in the direction of increasing �, are as shown 
on the figure below. 
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Stagnation flow: stagnation point at � = 0. 

The stagnation points are the zeros of 
Φ′(�) = 2�, 

i.e. the only stagnation point is at the � = 0. 

Note. The stagnation points are what we called the critical points of a vector field in 18.03. 

6.7 More examples with pretty pictures 

Example 6.10. Linear vortex. Analyze the flow with complex potential function 

Φ(�) = � log(�). 

Solution: Multiplying by � switches the real and imaginary parts of log(�) (with a sign change). We 
have 

Φ = −� + � log(�). 

The stream lines are the curves log(�) = constant, i.e. circles with center at � = 0. The flow is 
clockwise because the potential � = −� increases in the clockwise direction. 

Linear vortex. 

This flow is called a linear vortex. We can find � using Φ′ . 

� � � Φ′ = = + � = �� − ���. � �2 �2 

So 
� = (��, ��) = (�∕�2 , −�∕�2). 
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(By now this should be a familiar vector field.) There are no stagnation points, but there is a singu-
larity at the origin. 

Example 6.11. Double source. Analyze the flow with complex potential function 

Φ(�) = log(� − 1) + log(� + 1). 

Solution: This is a flow with linear sources at ±1. We used Octave to plot the level curves of 
� = Im(Φ). 

Two sources. 

We can analyze this flow further as follows. 

• Near each source the flow looks like a linear source. 

• On the �-axis the flow is along the axis. That is, the �-axis is a streamline. It’s worth seeing 
three different ways of arriving at this conclusion. 

Reason 1: By symmetry of vector fields associated with each linear source, the � components cancel 
and the combined field points along the �-axis. 

Reason 2: We can write 

Φ(�) = log(� − 1) + log(� + 1) = log((� − 1)(� + 1)) = log(�2 − 1). 

So 
Φ′(�) = 

2� . 
�2 − 1 

On the imaginary axis 
2�� 

Φ′(��) = . 
−�2 − 1 

Thus, ( ) 
2� � = 0, 

�2 + 1 

which is along the axis. 

Reason 3: On the imaginary axis Φ(��) = log(−�2 − 1). Since this has constant imaginary part, the 
axis is a streamline. 

Because of the branch cut for log(�) we should probably be a little more careful here. First note that 
the vector field � comes from Φ′ = 2�∕(�2 − 1), which doesn’t have a branch cut. So we shouldn’t 
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really have a problem. Now, as � approaches the �-axis from one side or the other, the argument of 
log(�2 −1) approaches either � or −�. That is, as such limits, the imaginary part is constant. So the 
streamline on the �-axis is the limit case of streamlines near the axis. 

Since Φ′(�) = 0 when � = 0, the origin is a stagnation point. This is where the fields from the two
sources exactly cancel each other. 

Example 6.12. A source in uniform flow. Consider the flow with complex potential 

Φ(�) = � + 
� log(�). 
2� 

This is a combination of uniform flow to the right and a source at the origin. The figure below was
drawn using Octave. It shows that the flow looks like a source near the origin. Farther away from
the origin the flow stops being radial and is pushed to the right by the uniform flow. 

A source in uniform flow. 

Since the components of Φ′ and � are the same except for signs, we can understand the flow by 
considering 

� Φ′(�) = 1 + . 
2�� 

Near � = 0 the singularity of 1∕� is most important and 

Φ′ � ≈ . 
2�� 

So, the vector field looks a linear source. Far away from the origin the 1∕� term is small and Φ′(�) ≈ 
1, so the field looks like uniform flow. 

Setting Φ′(�) = 0 we find one stagnation point 

� = − 
� . 
2� 

It is the point on the �-axis where the flow from the source exactly balances that from the uniform 
flow. For bigger values of � the source pushes fluid farther out before being overwhelmed by the 
uniform flow. That is why � is called the source strength. 

Example 6.13. Source + sink. Consider the flow with complex potential 

Φ(�) = log(� − 2) − log(� + 2). 

This is a combination of source (log(� − 2)) at � = 2 and a sink (− log(� + 2)) at � = −2. 
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A source plus a sink. 
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Topic 7 Notes
Jeremy Orloff 

7 Taylor and Laurent series 

7.1 Introduction 

We originally defined an analytic function as one where the derivative, defined as a limit of ratios,
existed. We went on to prove Cauchy’s theorem and Cauchy’s integral formula. These revealed 
some deep properties of analytic functions, e.g. the existence of derivatives of all orders. 

Our goal in this topic is to express analytic functions as infinite power series. This will lead us to
Taylor series. When a complex function has an isolated singularity at a point we will replace Taylor
series by Laurent series. Not surprisingly we will derive these series from Cauchy’s integral formula. 

Although we come to power series representations after exploring other properties of analytic func-
tions, they will be one of our main tools in understanding and computing with analytic functions. 

7.2 Geometric series 

Having a detailed understanding of geometric series will enable us to use Cauchy’s integral formula
to understand power series representations of analytic functions. We start with the definition: 

Definition. A finite geometric series has one of the following (all equivalent) forms. 

�� = �(1 + � + �2 + �3 +… + ��) 
= � + �� + ��2 + ��3 +… + ��� 

�∑ 
= ��� 

�=0 ∑� 

= � �� 
�=0 

The number � is called the ratio of the geometric series because it is the ratio of consecutive terms 
of the series. 

Theorem. The sum of a finite geometric series is given by 

�(1 − ��+1) 
�� = �(1 + � + �2 + �3 +… + ��) = . (1) 

1 − � 

Proof. This is a standard trick that you’ve probably seen before. 

�� = �+ �� + ��2 +… + ��� 

��� = �� + ��2 +… + ��� +���+1 

When we subtract these two equations most terms cancel and we get 

�� − ��� = � − ���+1 

1 
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Some simple algebra now gives us the formula in Equation 1. 

Definition. An infinite geometric series has the same form as the finite geometric series except there 
is no last term: 

∞∑ 
� = � + �� + ��2 +… = � �� . 

�=0 

Note. We will usually simply say ‘geometric series’ instead of ‘infinite geometric series’. 

Theorem. If |�| < 1 then the infinite geometric series converges to 

∞ 
� � = � 

∑ 
�� = (2) 

1 − � �=0 

If |�| ≥ 1 then the series does not converge. 

Proof. This is an easy consequence of the formula for the sum of a finite geometric series. Simply 
let � → ∞ in Equation 1. 

Note. We have assumed a familiarity with convergence of infinite series. We will go over this in
more detail in the appendix to this topic. 

7.2.1 Connection to Cauchy’s integral formula 

Cauchy’s integral formula says 
1 � (�) 

� (�) = ��. 
2�� ∫� � − � 

Inside the integral we have the expression 

1 
� − � 

which looks a lot like the sum of a geometric series. We will make frequent use of the following
manipulations of this expression. 

( ) 1 1 1 1 = ⋅ = 1 + (�∕�) + (�∕�)2 +… (3) 
� − � � 1 − �∕� � 

The geometric series in this equation has ratio �∕�. Therefore, the series converges, i.e. the formula 
is valid, whenever |�∕�| < 1, or equivalently when 

|�| < |�|. 
Similarly, ( ) 1 1 = −1 

⋅ = −1 1 + (�∕�) + (�∕�)2 +… (4) 
� − � � 1 − �∕� � 

The series converges, i.e. the formula is valid, whenever |�∕�| < 1, or equivalently when 

|�| > |�|. 
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7.3 Convergence of power series 

When we include powers of the variable � in the series we will call it a power series. In this section 
we’ll state the main theorem we need about the convergence of power series. Technical details will
be pushed to the appendix for the interested reader. 

Theorem 7.1. Consider the power series 

∞∑ 
� (�) = ��(� − �0)� . 

�=0 

There is a number � ≥ 0 such that: 

1. If � > 0 then the series converges absolutely to an analytic function for |� − �0| < �. 

2. The series diverges for |�−�0| > �. � is called the radius of convergence. The disk |�−�0| < 
� is called the disk of convergence. 

3. The derivative is given by term-by-term differentiation 

∞∑ 
� ′(�) = ���(� − �0)�−1 

�=0 

′ The series for � also has radius of convergence �. 

4. If � is a bounded curve inside the disk of convergence then the integral is given by term-by-
term integration 

∞∑ 
� (�) �� = ��(� − �0)� ∫� ∫� �=0 

Notes. 

• The theorem doesn’t say what happens when |� − �0| = �. 

• If � = ∞ the function � (�) is entire. 

• If � = 0 the series only converges at the point � = �0. In this case, the series does not represent 
an analytic function on any disk around �0. 

• Often (not always) we can find � using the ratio test. 

The proof of this theorem is in the appendix. 

7.3.1 Ratio test and root test 

Here are two standard tests from calculus on the convergence of infinite series. 

Ratio test. Consider the series 
∑∞ ��. If � = lim�→∞ |��+1∕��| exists, then: 0 

1. If � < 1 then the series converges absolutely. 
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2. If � > 1 then the series diverges. 

3. If � = 1 then the test gives no information. 

Note. In words, � is the limit of the absolute ratios of consecutive terms. 

Again the proof will be in the appendix. (It boils down to comparison with a geometric series.) 

Example 7.2. Consider the geometric series 1 + � + �2 + �3 + …. The limit of the absolute ratios 
of consecutive terms is 

� = lim 
|��+1| 

= |�| 
�→∞ |��|

Thus, the ratio test agrees that the geometric series converges when |�| < 1. We know this converges 
to 1∕(1 − �). Note, the disk of convergence ends exactly at the singularity � = 1. 

∞∑ �� 
Example 7.3. Consider the series � (�) = 

�! 
. The limit from the ratio test is 

�=0 

|��+1|∕(� + 1)! |�| 
� = lim = lim = 0. 

�→∞ |��|∕�! � + 1 

Since � < 1 this series converges for every �. Thus, by Theorem 7.1, the radius of convergence for 
this series is ∞. That is, � (�) is entire. Of course we know that � (�) = e�. 

Root test. Consider the series 
∑∞ ��. If � = lim�→∞ |��|1∕� exists, then: 0 

1. If � < 1 then the series converges absolutely. 

2. If � > 1 then the series diverges. 

3. If � = 1 then the test gives no information . 

Note. In words, � is the limit of the �th roots of the (absolute value) of the terms. 

The geometric series is so fundamental that we should check the root test on it. 

Example 7.4. Consider the geometric series 1 + � + �2 + �3 +…. The limit of the �th roots of the 
terms is 

� = lim |��|1∕� = lim |�| = |�| 
�→∞ 

Happily, the root test agrees that the geometric series converges when |�| < 1. 

7.4 Taylor series 

The previous section showed that a power series converges to an analytic function inside its disk of 
convergence. Taylor’s theorem completes the story by giving the converse: around each point of 
analyticity an analytic function equals a convergent power series. 

Theorem 7.5. (Taylor’s theorem) Suppose � (�) is an analytic function in a region �. Let �0 ∈ �. 
Then, 

∞∑ 
� (�) = ��(� − �0)�, 

�=0 



7 TAYLOR AND LAURENT SERIES 5 

where the series converges on any disk |� − �0| < � contained in �. Furthermore, we have formulas 
for the coefficients 

� (�)(�0) 1 � (�) 
�� = = ��. (5) 

�! 2�� ∫� (� − �0)�+1 

(Where � is any simple closed curve in � around �0, with its interior entirely in �.) 

We call the series the power series representing � around �0. 

The proof will be given below. First we look at some consequences of Taylor’s theorem. 

Corollary. The power series representing an analytic function around a point �0 is unique. That is, 
the coefficients are uniquely determined by the function � (�). 

Proof. Taylor’s theorem gives a formula for the coefficients. 

7.4.1 Order of a zero 

Theorem. Suppose � (�) is analytic on the disk |� − �0| < � and � is not identically 0. Then there 
is an integer � ≥ 0 such that �� ≠ 0 and � has Taylor series around �0 given by 

∞ 

� (�) = (� − �0)�(�� + ��+1(� − �0) +…) = (� − �0)� 
∑ 

��(� − �0)�−�. (6) 
�=� 

Proof. Since � (�) is not identically 0, not all the Taylor coefficients are zero. So, we take � to be the 
index of the first nonzero coefficient. 

Theorem 7.6. Zeros are isolated. If � (�) is analytic and not identically zero then the zeros of � are 
isolated. (By isolated we mean that we can draw a small disk around any zeros that doesn’t contain
any other zeros.) 

Isolated zero at �0: � (�0) = 0, � (�) ≠ 0 elsewhere in the disk. 

Proof. Suppose � (�0) = 0. Write � as in Equation 6. There are two factors: 

(� − �0)� 

and 
�(�) = �� + ��+1(� − �0) + … 

Clearly (�−�0)� ≠ 0 if � ≠ �0. We have �(�0) = �� ≠ 0, so �(�) is not 0 on some small neighborhood 
of �0. We conclude that on this neighborhood the product is only zero when � = �0, i.e. �0 is an 
isolated 0. 

Definition. The integer � in Theorem 7.6 is called the order of the zero of � at �0. 

Note, if � (�0) ≠ 0 then �0 is a zero of order 0. 
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7.5 Taylor series examples 

The uniqueness of Taylor series along with the fact that they converge on any disk around �0 where 
the function is analytic allows us to use lots of computational tricks to find the series and be sure
that it converges. 

Example 7.7. Use the formula for the coefficients in terms of derivatives to give the Taylor series 
of � (�) = e� around � = 0. 

Solution: Since � ′(�) = e�, we have � (�)(0) = e0 = 1. So, 

∑ 
e� �2 �3

∞ 
�� 

= 1 + � + + +… = 
2! 3! �! �=0 

Example 7.8. Expand � (�) = �8e3� in a Taylor series around � = 0. 

Solution: Let � = 3�. So, 
∞ ∞ ∑ �� ∑ 3� 

3� = e� e = = �� 

�! �! �=0 �=0 

Thus, 
∞∑ 3� 

� (�) = ��+8 . 
�! �=0 

Example 7.9. Find the Taylor series of sin(�) around � = 0 (Sometimes the Taylor series around 0 
is called the Maclaurin series.) 

Solution: We give two methods for doing this. 

Method 1. { 
�� sin(�) (−1)� for � = 2� + 1 = odd, � = 0, 1, 2, … 

� (�)(0) = = 
��� 0 for � even 

Method 2. Using 
e�� − e−�� 

sin(�) = , 
2� 

we have [ ] ∑ ∑ ∑ 1 
∞ (��)� ∞ (−��)� 1

∞ 

sin(�) = − = [(1 − (−1)�)] �
��� 

2� �! �! 2� �! �=0 �=0 �=0 

(We need absolute convergence to add series like this.) 

Conclusion: 
∞ 

�2�+1 ∑ 
sin(�) = (−1)� 

(2� + 1)!
, 

�=0 

which converges for |�| < ∞. 

Example 7.10. Expand the rational function 

1 + 2�2 
� (�) = 

�3 + �5 
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around � = 0. 

Solution: Note that � has a singularity at 0, so we can’t expect a convergent Taylor series expansion.
We’ll aim for the next best thing using the following shortcut. [ ] 

1 2(1 + �2) − 1 1 1 � (�) = = 2 − . 
�3 1 + �2 �3 1 + �2 

Using the geometric series we have 

∞∑ 1 1 (−�2)� = = = 1 − �2 + �4 − �6 +… 
1 + �2 1 − (−�2) �=0 

Putting it all together 

( ) ( 1 ) ∞∑ 
� (�) = 

1 2 − 1 + �2 − �4 +… = + 1 − (−1)��2�+1 

�3 �3 � �=0 

Note. The first terms are called the singular part, i.e. those with negative powers of �. The sum-
mation is called the regular or analytic part. Since the geometric series for 1∕(1 + �2) converges for |�| < 1, the entire series is valid in 0 < |�| < 1 

Example 7.11. Find the Taylor series for 

e� 
� (�) = 

1 − � 

around � = 0. Give the radius of convergence. 

Solution: We start by writing the Taylor series for each of the factors and then multiply them out. ( )( ) �2 �3 
� (�) = 1 + � + + +… 1 + � + �2 + �3 +… 

2! 3! ( ) ( ) 1 = 1 + (1 + 1)� + 1 + 1 + 
1 �2 + 1 + 1 + 

1 + �3 +… 
2! 2! 3! 

The biggest disk around � = 0 where � is analytic is |�| < 1. Therefore, by Taylor’s theorem, the 
radius of convergence is � = 1. 

� (�) is analytic on |�| < 1 and has a singularity at � = 1. 

Example 7.12. Find the Taylor series for 

1 � (�) = 
1 − � 

around � = 5. Give the radius of convergence. 
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Solution: We have to manipulate this into standard geometric series form. ( ( ) ( )2 ( )3 
) 

1 � − 5 � − 5 � − 5 � (�) = = −1 1 − + − +… 
−4(1 + (� − 5)∕4) 4 4 4 4 

Since � (�) has a singularity at � = 1 the radius of convergence is � = 4. We can also see this by 
considering the geometric series. The geometric series ratio is (� − 5)∕4. So the series converges 
when |� − 5|∕4 < 1, i.e. when |� − 5| < 4, i.e. � = 4. 

Disk of convergence stops at the singularity at � = 1. 

Example 7.13. Find the Taylor series for 

� (�) = log(1 + �) 

around � = 0. Give the radius of convergence. 

Solution: We know that � is analytic for |�| < 1 and not analytic at � = −1. So, the radius of 
convergence is � = 1. To find the series representation we take the derivative and use the geometric 
series. 

� ′(�) = 
1 = 1 − � + �2 − �3 + �4 −… 

1 + � 
Integrating term by term (allowed by Theorem 7.1) we have 

∞∑ �3 − 
�4 

� (�) = �0 + � − 
�2 + +… = �0 + (−1)�−1 �� 

2 3 4 � �=1 

Here �0 is the constant of integration. We find it by evalating at � = 0. 

� (0) = �0 = log(1) = 0. 

Disk of convergence for log(1 + �) around � = 0. 

Example 7.14. Can the series ∑ 
��(� − 2)� 

converge at � = 0 and diverge at � = 3. 

Solution: No! We have �0 = 2. We know the series diverges everywhere outside its radius of 
convergence. So, if the series converges at � = 0, then the radius of convergence is at least 2. Since |3 − �0| < 2 we would also have that � = 3 is inside the disk of convergence. 
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7.5.1 Proof of Taylor’s theorem 

For convenience we restate Taylor’s Theorem 7.5. 

Taylor’s theorem. (Taylor series) Suppose � (�) is an analytic function in a region �. Let �0 ∈ �. 
Then, 

∞∑ 
� (�) = ��(� − �0)�, 

�=0 

where the series converges on any disk |� − �0| < � contained in �. Furthermore, we have formulas 
for the coefficients 

� (�)(�0) 1 � (�) 
�� = = �� (7) 

�! 2�� ∫� (� − �0)�+1 

Proof. In order to handle convergence issues we fix 0 < �1 < �2 < �. We let � be the circle |� − �0| = �2 (traversed counterclockise). 

Disk of convergence extends to the boundary of � 
�1 < �2 < �, but �1 and �2 can be arbitrarily close to �. 

Take � inside the disk |� − �0| < �1. We want to express � (�) as a power series around �0. To do 
this we start with the Cauchy integral formula and then use the geometric series. 

As preparation we note that for � on � and |� − �0| < �1 we have 

|� − �0| < �1 < �2 = |� − �0|, 
so |� − �0| < 1. |� − �0| 
Therefore, 

∞ ( )� ∞ 
1 1 1 1 ∑ � − �0 

∑ (� − �0)� 

= ⋅ = = 
� − � � − �0 1 − �−�0 � − �0 � − �0 (� − �0)�+1 

�−�0 
�=0 �=0 
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Using this and the Cauchy formula gives 

1 � (�) 
� (�) = �� 

2�� ∫� � − � 
∞ 

1 ∑ � (�) 
= (� − �0)� �� 

2�� ∫� (� − �0)�+1 
�=0 

∞ ( ) ∑ 1 � (�) 
= �� (� − �0)� 

2�� ∫� (� − �0)�+1 
�=0 
∞∑ � (�)(�0) = (� − �0)� 

�! �=0 

The last equality follows from Cauchy’s formula for derivatives. Taken together the last two equali-
ties give Taylor’s formula. QED 

7.6 Singularities 

Definition. A function � (�) is singular at a point �0 if it is not analytic at �0 

Definition. For a function � (�), the singularity �0 is an isolated singularity if � is analytic on the 
deleted disk 0 < |� − �0| < � for some � > 0. 

� + 1 Example 7.15. � (�) = has isolated singularities at � = 0, ±�. 
�3(�2 + 1) 

Example 7.16. � (�) = e1∕� has an isolated singularity at � = 0. 

Example 7.17. � (�) = log(�) has a singularity at � = 0, but it is not isolated because a branch cut, 
starting at � = 0, is needed to have a region where � is analytic. 

Example 7.18. � (�) = 
1 has singularities at � = 0 and � = 1∕� for � = ±1, ±2, … The 

sin(�∕�) 
singularities at ±1∕� are isolated, but the one at � = 0 is not isolated. 

Every neighborhood of 0 contains zeros at 1∕� for large �. 

7.7 Laurent series 

Theorem 7.19. (Laurent series). Suppose that � (�) is analytic on the annulus 

� ∶ �1 < |� − �0| < �2. 

Then � (�) can be expressed as a series 

∞ ∞ ∑ ∑ �� � (�) = + ��(� − �0)�. (� − �0)� 
�=1 �=0 
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The coefficients have the formulus 

1 � (�) 
�� = �� 

2�� ∫� (� − �0)�+1 

�� =
1 � (�)(� − �0)�−1 ��, 
2�� ∫� 

where � is any circle |� − �0| = � inside the annulus, i.e. �1 < � < �2. 

Furthermore 

∞∑ 
• The series ��(� − �0)� converges to an analytic function for |� − �0| < �2. 

�=0 

∞∑ �� • The series converges to an analytic function for |� − �0| > �1. 
�=1 

(� − �0)� 

• Together, the series both converge on the annulus � where � is analytic. 

The proof is given below. First we define a few terms. 

Definition. The entire series is called the Laurent series for � around �0. The series 

∞∑ 
��(� − �0)� 

�=0 

is called the analytic or regular part of the Laurent series. The series 

∞∑ �� 

�=1 
(� − �0)� 

is called the singular or principal part of the Laurent series. 

Note. Since � (�) may not be analytic (or even defined) at �0 we don’t have any formulas for the 
coefficients using derivatives. 

Proof. (Laurent series). Choose a point � in �. Now set circles �1 and �3 close enough to the 
boundary that � is inside �1 + �2 − �3 − �2 as shown. Since this curve and its interior are contained 
in �, Cauchy’s integral formula says 

1 � (�) 
� (�) = �� 

2�� ∫�1+�2−�3−�2 
� − � 

The contour used for proving the formulas for Laurent series. 
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The integrals over �2 cancel, so we have 

1 � (�) 
� (�) = ��. 

2�� ∫�1−�3 
� − � 

Next, we divide this into two pieces and use our trick of converting to a geometric series. The 
calculuations are just like the proof of Taylor’s theorem. On �1 we have 

|� − �0| < 1, |� − �0| 
so 

1 � (�) 1 � (�) 1 
2�� ∫�1 

� − � 
�� =

2�� ∫�1 
� − �0 

⋅ ( ) �� 
1 − �−�0 

�−�0 ∑ 1
∞ � (�) 

= (� − �0)� �� 
2�� ∫�1 (� − �0)�+1 

�=0 
∞ ( ) ∑ 1 � (�) 

= �� (� − �0)� 

2�� ∫�1 (� − �0)�+1 
�=0 
∞∑ 

= ��(� − �0)�. 
�=0 

Here �� is defined by the integral formula given in the statement of the theorem. Examining the 
above argument we see that the only requirement on � is that |� − �0| < �2. So, this series converges 
for all such �. 

Similarly on �3 we have |� − �0| < 1, |� − �0| 
so 

1 � (�) 1 � (�) 1 
2�� ∫�3 

� − � 
�� =

2�� ∫�3

− 
� − �0 

⋅ (
1 − �−�0 

) �� 

�−�0 

∞∑ (� − �0)� 

= − 
1 � (�) �� 
2�� ∫�3 (� − �0)�+1 

�=0 
∞ ( ) ∑ 

= − 
1 � (�)(� − �0)� �� (� − �0)−�−1 

2�� ∫�1 �=0 
∞∑ �� = − . 
�=1 

(� − �0)� 

In the last equality we changed the indexing to match the indexing in the statement of the theorem.
Here �� is defined by the integral formula given in the statement of the theorem. Examining the 
above argument we see that the only requirement on � is that |� − �0| > �1. So, this series converges 
for all such �. 
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Combining these two formulas we have 
∞ ∞ 

1 � (�) ∑ �� 
∑ 

� (�) = �� = + ��(� − �0)� 

2�� ∫�1−�3 
� − � (� − �0)� 

�=1 �=0 

The last thing to note is that the integrals defining �� and �� do not depend on the exact radius of 
the circle of integration. Any circle inside � will produce the same values. We have proved all the
statements in the theorem on Laurent series. QED 

7.7.1 Examples of Laurent series 

In general, the integral formulas are not a practical way of computing the Laurent coefficients. In-
stead we use various algebraic tricks. Even better, as we shall see, is the fact that often we don’t 
really need all the coefficients and we will develop more techniques to compute those that we do
need. 

Example 7.20. Find the Laurent series for 
� + 1 � (�) = 
� 

around �0 = 0. Give the region where it is valid. 

Solution: The answer is simply 

� (�) = 1 + 
1 . 
� 

This is a Laurent series, valid on the infinite region 0 < |�| < ∞. 

Example 7.21. Find the Laurent series for 

� (�) = 
� 

�2 + 1 

around �0 = �. Give the region where your answer is valid. Identify the singular (principal) part. 

Solution: Using partial fractions we have 

1 1 1 1 � (�) = ⋅ + ⋅ . 
2 � − � 2 � + � 

Since 
1 is analytic at � = � it has a Taylor series expansion. We find it using geometric series. 

� + � 
∞∑( )� 1 1 1 1 −� − � = ⋅ = 

� + � 2� 1 + (� − �)∕(2�) 2� �=0 
2� 

So the Laurent series is 
∞ ( ∑ )� 1 1 1 −� − � � (�) = ⋅ + 

2 � − � 4� 2� �=0 

The singular (principal) part is given by the first term. The region of convergence is 0 < |� − �| < 2. 

Note. We could have looked at � (�) on the region 2 < |� − �| < ∞. This would have produced a
different Laurent series. We discuss this further in an upcoming example. 

Example 7.22. Compute the Laurent series for 
� + 1 � (�) = 

�3(�2 + 1) 
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on the region � ∶ 0 < |�| < 1 centered at � = 0. 

Solution: This function has isolated singularities at � = 0, ±�. Therefore it is analytic on the region 
�. 

� (�) has singularities at � = 0, ±�. 

At � = 0 we have 
� (�) = 

1 
�3 

(1 + �)(1 − �2 + �4 − �6 + …). 

Multiplying this out we get 

1 1 � (�) = + − 1 − 1 + � + �2 − �3 −… . 
�3 �2 � 

The following example shows that the Laurent series depends on the region under consideration. 

Example 7.23. Find the Laurent series around � = 0 for � (�) = 
1 in each of the following 

�(� − 1) 
regions: 

(i) the region �1 ∶ 0 < |�| < 1 

(ii) the region �2 ∶ 1 < |�| < ∞. 

Solution: For (i) 

1 � (�) = −1 
⋅ = −1(1 + � + �2 +…) = −1 − 1 − � − �2 −… 

� 1 − � � � 

For (ii): Since the usual geometric series for 1∕(1 − �) does not converge on �2 we need a different 
form, ( ) 1 1 1 1 � (�) = ⋅ = 1 + 

1 + +… 
� �(1 − 1∕�) �2 � �2 

Since |1∕�| < 1 on �2 our use of the geometric series is justified. 

One lesson from this example is that the Laurent series depends on the region as well as the formula
for the function. 

7.8 Digression to differential equations 

Here is a standard use of series for solving differential equations. 

Example 7.24. Find a power series solution to the equation 

� ′(�) = � (�) + 2, � (0) = 0. 
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Solution: We look for a solution of the form 
∞∑ 

� (�) = ���
�. 

�=0 

Using the initial condition we find � (0) = 0 = �0. Substituting the series into the differential 
equation we get 

� ′(�) = �1 + 2�2� + 3�3�3 +… = � (�) + 2 = �0 + 2 + �1� + �2�
2 +… 

Equating coefficients and using �0 = 0 we have 

�1 = �0 + 2 ⇒ �1 = 2 

2�2 = �1 ⇒ �2 = �1∕2 = 1 

3�3 = �2 ⇒ �3 = 1∕3 

4�4 = �3 ⇒ �4 = 1∕(3 ⋅ 4) 

In general 
�� 1 (� + 1)��+1 = �� ⇒ ��+1 = = 

(� + 1) 3 ⋅ 4 ⋅ 5 ⋯ (� + 1)
. 

You can check using the ratio test that this function is entire. 

7.9 Poles 

Poles refer to isolated singularities. So, we suppose � (�) is analytic on 0 < |� − �0| < � and has 
Laurent series 

∞ ∞ ∑ ∑ �� � (�) = + ��(� − �0)�. (� − �0)� 
�=1 �=0 

Definition of poles. If only a finite number of the coefficients �� are nonzero we say �0 is a finite 
pole of � . In this case, if �� ≠ 0 and �� = 0 for all � > � then we say �0 is a pole of order �. 

• If �0 is a pole of order 1 we say it is a simple pole of � . 

• If an infinite number of the �� are nonzero we say that �0 is an essential singularity or a pole 
of infinite order of � . 

• If all the �� are 0, then �0 is called a removable singularity. That is, if we define � (�0) = �0 
then � is analytic on the disk |� − �0| < �. 

The terminology can be a bit confusing. So, imagine that I tell you that � is defined and analytic on 
the punctured disk 0 < |� − �0| < �. Then, a priori we assume � has a singularity at �0. But, if after
computing the Laurent series we see there is no singular part we can extend the definition of � to 
the full disk, thereby ‘removing the singularity’. 

We can explain the term essential singularity as follows. If � (�) has a pole of order � at �0 then 
(� − �0)�� (�) is analytic (has a removable singularity) at �0. So, � (�) itself is not much harder to 
work with than an analytic function. On the other hand, if �0 is an essential singularity then no 
algebraic trick will change � (�) into an analytic function at �0. 
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7.9.1 Examples of poles 

We’ll go back through many of the examples from the previous sections. 

Example 7.25. The rational function 

1 + 2�2 
� (�) = 

�3 + �5 

expanded to ) ∞ 

� (�) = + 1 − (−1)��2�+1 . 
( 1 ∑ 

�3 � �=0 

Thus, � = 0 is a pole of order 3. 

Example 7.26. Consider 
� + 1 � (�) = = 1 + 

1 . 
� � 

Thus, � = 0 is a pole of order 1, i.e. a simple pole. 

Example 7.27. Consider 
� 1 1 � (�) = = ⋅ + �(�), 

�2 + 1 2 � − � 
where �(�) is analytic at � = �. So, � = � is a simple pole. 

Example 7.28. The function 
1 � (�) = 

�(� − 1) 
has isolated singularities at � = 0 and � = 1. Show that both are simple poles. 

Solution: In a neighborhood of � = 0 we can write 

�(�) 1 � (�) = , where �(�) = 
� � − 1

. 

Since �(�) is analytic at 0, � = 0 is a finite pole. Since �(0) ≠ 0, the pole has order 1, i.e. it is simple. 

Likewise, in a neighborhood of � = 1, 

ℎ(�) 
� (�) = where ℎ(�) = 

1 . 
� − 1

, 
� 

Since ℎ is analytic at � = 1, � has a finite pole there. Since ℎ(1) ≠ 0 it is simple. 

Example 7.29. Consider 
1∕� 1 1 e = 1 + 

1 + + +… 
� 2!�2 3!�3 

So, � = 0 is an essential singularity. 

Example 7.30. log(�) has a singularity at � = 0. Since the singularity is not isolated, it can’t be
classified as either a pole or an essential singularity. 
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7.9.2 Residues 

In preparation for discussing the residue theorem in the next topic we give the definition and an 
example here. 

Note well, residues have to do with isolated singularites. 

Definition 7.31. Consider the function � (�) with an isolated singularity at �0, i.e. defined on 0 < |� − �0| < � and with Laurent series 

∞ ∞ ∑ ∑ �� � (�) = + ��(� − �0)�. (� − �0)� 
�=1 �=0 

The residue of � at �0 is �1. This is denoted 

Res(�, �0) or Res � = �1. �=�0 

What is the importance of the residue? If � is a small, simple closed curve that goes counterclockwise 
around �0 then 

� (�) = 2���1. ∫� 

� is small enough to be inside |� − �0| < �, and surround �0. 

This is easy to see by integrating the Laurent series term by term. The only nonzero integral comes
from the term �1∕�. 

Example 7.32. The function 

� (�) = e1∕(2�) = 1 + 
1 + 

1 +… 
2� 2(2�)2 

has an isolated singularity at 0. From the Laurent series we see that 

1 Res(�, 0) = 
2
. 

7.10 Appendix: convergence 

This section needs to be completed. It will give some of the careful technical definitions and ar-
guments regarding convergence and manipulation of series. In particular it will define the notion 
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of uniform convergence. The short description is that all of our manipulations of power series are
justified on any closed bounded region. Almost, everything we did can be restricted to a closed disk
or annulus, and so was valid. 
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Topic 8 Notes
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8 Residue Theorem 

8.1 Poles and zeros 

We remind you of the following terminology: Suppose � (�) is analytic at �0 and 

� (�) = ��(� − �0)� + ��+1(� − �0)�+1 +… , 

with �� ≠ 0. Then we say � has a zero of order � at �0. If � = 1 we say �0 is a simple zero. 

Suppose � has an isolated singularity at �0 and Laurent series 

�� ��−1 �1 � (�) = + +…+ + �0 + �1(� − �0) + … 
(� − �0)� (� − �0)�−1 � − �0 

which converges on 0 < |� − �0| < � and with �� ≠ 0. Then we say � has a pole of order � at �0. 
If � = 1 we say �0 is a simple pole. 

There are several examples in the Topic 7 notes. Here is one more 

Example 8.1. 
� + 1 � (�) = 

�3(�2 + 1) 
has isolated singularities at � = 0, ±� and a zero at � = −1. We will show that � = 0 is a pole of 
order 3, � = ±� are poles of order 1 and � = −1 is a zero of order 1. The style of argument is the 
same in each case. 

At � = 0: 
1 � + 1 � (�) = ⋅ . 
�3 �2 + 1 

Call the second factor �(�). Since �(�) is analytic at � = 0 and �(0) = 1, it has a Taylor series 

� + 1 �(�) = = 1 + �1� + �2�
2 +… 

�2 + 1 

Therefore 
1 �1 �2 � (�) = + + +… . 
�3 �2 � 

This shows � = 0 is a pole of order 3. 
1 �+1 At � = �: � (�) = ⋅ . Call the second factor �(�). Since �(�) is analytic at � = �, it has a 
�−� �3(�+�) 

Taylor series 
� + 1 �(�) = = �0 + �1(� − �) + �2(� − �)2 +… 

�3(� + �) 
where �0 = �(�) ≠ 0. Therefore 

�0 � (�) = + �1 + �2(� − �) + … . 
� − � 

This shows � = � is a pole of order 1. 

The arguments for � = −� and � = −1 are similar. 

1 
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8.2 Words: Holomorphic and meromorphic 

Definition. A function that is analytic on a region � is called holomorphic on �. 

A function that is analytic on � except for a set of poles of finite order is called meromorphic on �. 

Example 8.2. Let 
� + �2 + �3 

� (�) = 
(� − 2)(� − 3)(� − 4)(� − 5)

. 

This is meromorphic on � with (simple) poles at � = 2, 3, 4, 5. 

8.3 Behavior of functions near zeros and poles 

The basic idea is that near a zero of order �, a function behaves like (� − �0)� and near a pole of order 
�, a function behaves like 1∕(� − �0)�. The following make this a little more precise. 

Behavior near a zero. If � has a zero of order � at �0 then near �0, 

� (�) ≈ ��(� − �0)�, 

for some constant ��. 

Proof. By definition � has a Taylor series around �0 of the form 

� (�) = ��(� − �0)� + ��+1(� − �0)�+1 +… ( ) 
��+1 ��+2 = ��(� − �0)� 1 + (� − �0) + (� − �0)2 +… 
�� �� 

Since the second factor equals 1 at �0, the claim follows. 

Behavior near a finite pole. If � has a pole of order � at �0 then near �0, 
�� � (�) ≈ , 

(� − �0)� 

for some constant ��. 

Proof. This is nearly identical to the previous argument. By definition � has a Laurent series around 
�0 of the form 

�� ��−1 �1 � (�) = + +…+ + �0 +… 
(� − �0)� (� − �0)�−1 � − �0 ( ) 

�� ��−1 ��−2 = 1 + (� − �0) + (� − �0)2 +… 
(� − �0)� �� �� 

Since the second factor equals 1 at �0, the claim follows. 

8.3.1 Picard’s theorem and essential singularities 

Near an essential singularity we have Picard’s theorem. We won’t prove or make use of this theorem
in 18.04. Still, we feel it is pretty enough to warrant showing to you. 

Picard’s theorem. If � (�) has an essential singularity at �0 then in every neighborhood of �0, � (�) 
takes on all possible values infinitely many times, with the possible exception of one value. 

Example 8.3. It is easy to see that in any neighborhood of � = 0 the function � = e1∕� takes every 
value except � = 0. 
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8.3.2 Quotients of functions 

We have the following statement about quotients of functions. We could make similar statements if
one or both functions has a pole instead of a zero. 

Theorem. Suppose � has a zero of order � at �0 and � has a zero of order � at �0. Let 

� (�) 
ℎ(�) = 

�(�) 
. 

Then 

• If � > � then ℎ(�) has a pole of order � − � at �0. 

• If � < � then ℎ(�) has a zero of order � − � at �0. 

• If � = � then ℎ(�) is analytic and nonzero at �0. 

We can paraphrase this as ℎ(�) has ‘pole’ of order � − � at �0. If � − � is negative then the ‘pole’ 
is actually a zero. 

Proof. You should be able to supply the proof. It is nearly identical to the proofs above: express � 
and � as Taylor series and take the quotient. 

Example 8.4. Let 
sin(�) 

ℎ(�) = . 
�2 

We know sin(�) has a zero of order 1 at � = 0 and �2 has a zero of order 2. So, ℎ(�) has a pole of 
order 1 at � = 0. Of course, we can see this easily using Taylor series ( ) 

1 ℎ(�) = � − 
�3 

+… 
�2 3! 

8.4 Residues 

In this section we’ll explore calculating residues. We’ve seen enough already to know that this will
be useful. We will see that even more clearly when we look at the residue theorem in the next section. 

We introduced residues in the previous topic. We repeat the definition here for completeness. 

Definition. Consider the function � (�) with an isolated singularity at �0, i.e. defined on the region 
0 < |� − �0| < � and with Laurent series (on that region) 

∞ ∞ ∑ ∑ �� � (�) = + ��(� − �0)�. (� − �0)� 
�=1 �=0 

The residue of � at �0 is �1. This is denoted 

Res(�, �0) = �1 or Res � = �1. �=�0 
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What is the importance of the residue? If � is a small, simple closed curve that goes counterclockwise 
around �1 then 

� (�) = 2���1. ∫� 

� small enough to be inside |� − �0| < �, surround �0 and contain no other singularity of � . 

This is easy to see by integrating the Laurent series term by term. The only nonzero integral comes
from the term �1∕�. 

Example 8.5. 
� (�) = e1∕2� = 1 + 

1 + 
1 +… 

2� 2(2�)2 

has an isolated singularity at 0. From the Laurent series we see that Res(�, 0) = 1∕2. 

Example 8.6. 

(i) Let 
1 2 4 � (�) = + + + 5 + 6�. 
�3 �2 � 

� has a pole of order 3 at � = 0 and Res(� , 0) = 4. 

(ii) Suppose 
2 � (�) = + �(�), 
� 

where � is analytic at � = 0. Then, � has a simple pole at 0 and Res(�, 0) = 2. 

(iii) Let 
� (�) = cos(�) = 1 − �2∕2! + … . 

Then � is analytic at � = 0 and Res(�, 0) = 0. 

(iv) Let ( ) 
sin(�) 1 � (�) = = � − 

�3 +… = 1 − 
�2 

+… 
� � 3! 3! 

So, � has a removable singularity at � = 0 and Res(� , 0) = 0. 

Example 8.7. Using partial fractions. Let 

� (�) = 
� . 

�2 + 1 

Find the poles and residues of � . 
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Solution: Using partial fractions we write 

� 1 1 1 1 � (�) = = ⋅ + ⋅ . 
(� − �)(� + �) 2 � − � 2 � + � 

The poles are at � = ±�. We compute the residues at each pole: 

At � = �: 
� (�) = 

1 
⋅ 

1 + something analytic at �. 
2 � − � 

Therefore the pole is simple and Res(� , �) = 1∕2. 

At � = −�: 
� (�) = 

1 
⋅ 

1 + something analytic at −�. 
2 � + � 

Therefore the pole is simple and Res(� , −�) = 1∕2. 

Example 8.8. Mild warning! Let 
1 � (�) = − 

�(1 − �) 
then we have the following Laurent expansions for � around � = 0. 

On 0 < |�| < 1: 
1 = −1 � (�) = −1 

⋅ (1 + � + �2 +…). 
� 1 − � � 

Therefore the pole at � = 0 is simple and Res(�, 0) = −1. 

On 1 < |�| < ∞: ( ) 1 1 1 1 � (�) = ⋅ = 1 + 
1 + +… . 

�2 1 − 1∕� �2 � �2 

Even though this is a valid Laurent expansion you must not use it to compute the residue at 0. This is
because the definition of residue requires that we use the Laurent series on the region 0 < |� − �0| < 
�. 

Example 8.9. Let 
� (�) = log(1 + �). 

This has a singularity at � = −1, but it is not isolated, so not a pole and therefore there is no residue 
at � = −1. 

8.4.1 Residues at simple poles 

Simple poles occur frequently enough that we’ll study computing their residues in some detail. Here
are a number of ways to spot a simple pole and compute its residue. The justification for all of them
goes back to Laurent series. 

Suppose � (�) has an isolated singularity at � = �0. Then we have the following properties. 

Property 1. If the Laurent series for � (�) has the form 

�1 + �0 + �1(� − �0) + … 
� − �0 

then � has a simple pole at �0 and Res(� , �0) = �1. 
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Property 2 If 
�(�) = (� − �0)� (�) 

is analytic at �0 then �0 is either a simple pole or a removable singularity. In either case Res(� , �0) = 
�(�0). (In the removable singularity case the residue is 0.) 

Proof. Directly from the Laurent series for � around �0. 

Property 3. If � has a simple pole at �0 then 

lim (� − �0)� (�) = Res(�, �0) �→�0 

This says that the limit exists and equals the residue. Conversely, if the limit exists then either the
pole is simple, or � is analytic at �0. In both cases the limit equals the residue. 

Proof. Directly from the Laurent series for � around �0. 

Property 4. If � has a simple pole at �0 and �(�) is analytic at �0 then 

Res(� �, �0) = �(�0) Res(�, �0). 

If �(�0) ≠ 0 then 
1 Res(� ∕�, �0) = Res(�, �0). �(�0) 

Proof. Since �0 is a simple pole, 

�1 � (�) = + �0 + �1(� − �0) � − �0 

Since � is analytic, 
�(�) = �0 + �1(� − �0) + … , 

where �0 = �(�0). Multiplying these series together it is clear that 

Res(��, �0) = �0�1 = �(�0) Res(� , �0). QED 

The statement about quotients � ∕� follows from the proof for products because 1∕� is analytic at 
�0. 

Property 5. If �(�) has a simple zero at �0 then 1∕�(�) has a simple pole at �0 and 

1 Res(1∕�, �0) = 
� ′(�0)

. 

Proof. The algebra for this is similar to what we’ve done several times above. The Taylor expansion 
for � is 

�(�) = �1(� − �0) + �2(� − �0)2 +… , 

where �1 = � ′(�0). So 

1 1 = 
⎛ ⎜⎜⎝ 

1 
⎞ ⎟⎟⎠ 

�(�) �1(� − �0) 1 + �2 

�1 
(� − �0) + … 
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The second factor on the right is analytic at �0 and equals 1 at �0. Therefore we know the Laurent 
expansion of 1∕� is ( ) 1 1 = 1 + �1(� − �0) + … 

�(�) �1(� − �0) 

Clearly the residue is 1∕�1 = 1∕� ′(�0). QED. 

Example 8.10. Let 
2 + � + �2 

� (�) = 
(� − 2)(� − 3)(� − 4)(� − 5)

. 

Show all the poles are simple and compute their residues. 

Solution: The poles are at � = 2, 3, 4, 5. They are all isolated. We’ll look at � = 2 the others are 
similar. Multiplying by � − 2 we get 

2 + � + �2 
�(�) = (� − 2)� (�) = 

(� − 3)(� − 4)(� − 5)
. 

This is analytic at � = 2 and 
8 = −4 �(2) = 

3
. 

−6 
So the pole is simple and Res(�, 2) = −4∕3. 

Example 8.11. Let 
1 � (�) = 

sin(�)
. 

Find all the poles and their residues. 

Solution: The poles of � (�) are the zeros of sin(�), i.e. �� for � an integer. Since the derivative 

sin′(��) = cos(��) ≠ 0, 

the zeros are simple and by Property 5 above 

1 Res(�, ��) = = (−1)�. 
cos(��) 

Example 8.12. Let 
1 � (�) = 

�(�2 + 1)(� − 2)2 
. 

Identify all the poles and say which ones are simple. 

Solution: Clearly the poles are at � = 0, ±�, 2. 

At � = 0: 
�(�) = �� (�) 

is analytic at 0 and �(0) = 1∕4. So the pole is simple and the residue is �(0) = 1∕4. 

At � = �: 
1 �(�) = (� − �)� (�) = 

�(� + �)(� − 2)2 

is analytic at �, the pole is simple and the residue is �(�). 

At � = −�: This is similar to the case � = �. The pole is simple. 
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At � = 2: 
1 �(�) = (� − 2)� (�) = 

�(�2 + 1)(� − 2) 
is not analytic at 2, so the pole is not simple. (It should be obvious that it’s a pole of order 2.) 

Example 8.13. Let �(�), �(�) be analytic at � = �0. Assume �(�0) ≠ 0, �(�0) = 0, � ′(�0) ≠ 0. Find 

�(�) 
Res 
�=�0 �(�)

. 

Solution: Since � ′(�0) ≠ 0, � has a simple zero at �0. So 1∕� has a simple pole at �0 and 

1 Res(1∕�, �0) = 
� ′(�0) 

Since �(�0) ≠ 0 we know 

�(�0) Res(�∕�, �0) = �(�0) Res(1∕�, �0) = 
� ′(�0)

. 

8.4.2 Residues at finite poles 

For higher-order poles we can make statements similar to those for simple poles, but the formulas
and computations are more involved. The general principle is the following 

Higher order poles. If � (�) has a pole of order � at �0 then 

�(�) = (� − �0)�� (�) 

is analytic at �0 and if 
�(�) = �0 + �1(� − �0) + … 

then 
�(�−1)(�0) Res(�, �0) = ��−1 = . 
(� − 1)! 

Proof. This is clear using Taylor and Laurent series for � and � . 

Example 8.14. Let 
sinh(�) 

� (�) = 
�5 

and find the residue at � = 0. 

Solution: We know the Taylor series for 

sinh(�) = � + �3∕3! + �5∕5! + … 

(You can find this using sinh(�) = (e� − e−�)∕2 and the Taylor series for e�.) Therefore, 

1 1 1 � (�) = + + +… 
�4 3!�2 5! 

We see Res(�, 0) = 0. 
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Note, we could have seen this by realizing that � (�) is an even function. 

Example 8.15. Let 
sinh(�)e� 

� (�) = . 
�5 

Find the residue at � = 0. 

Solution: It is clear that Res(�, 0) equals the coefficient of �4 in the Taylor expansion of sinh(�)e�. 
We compute this directly as ( )( ) ( 1 ) �3 �2 �3 1 sinh(�)e� = � + +… 1 + � + + +… = …+ + �4 +… 

3! 2 3! 4! 3! 

So 
1 1 5 Res(�, 0) = + = 
3! 4! 24

. 

Example 8.16. Find the residue of 

1 � (�) = 
�(�2 + 1)(� − 2)2 

at � = 2. 
1 Solution: �(�) = (� − 2)2� (�) = is analytic at � = 2. So, the residue we want is the �1 term 

�(�2+1) 
in its Taylor series, i.e. � ′(2). This is easy, if dull, to compute 

Res(�, 2) = � ′(2) = − 
13 
100 

8.4.3 cot(�) 

The function cot(�) turns out to be very useful in applications. This stems largely from the fact that
it has simple poles at all multiples of � and the residue is 1 at each pole. We show that first. 

Fact. � (�) = cot(�) has simple poles at �� for � an integer and Res(�, ��) = 1. 

Proof. 
cos(�) 

� (�) = 
sin(�) 

. 

This has poles at the zeros of sin, i.e. at � = ��. At poles � is of the form �∕� where � has a simple 
zero at �0 and �(�0) ≠ 0. Thus we can use the formula 

�(�0) Res(� , �0) = 
� ′(�0)

. 

In our case, we have 
cos(��) Res(�, ��) = = 1, 
cos(��) 

as claimed. 

Sometimes we need more terms in the Laurent expansion of cot(�). There is no known easy formula
for the terms, but we can easily compute as many as we need using the following technique. 

Example 8.17. Compute the first several terms of the Laurent expansion of cot(�) around � = 0. 
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Solution: Since cot(�) has a simple pole at 0 we know 

�1 cot(�) = + �0 + �1� + �2�
2 +… 

� 
We also know 

cos(�) 1 − �2∕2 + �4∕4! − … 
cot(�) = = 

sin(�) � − �3∕3! + �5∕5! − … 
Cross multiplying the two expressions we get( )( ) 

�1 � − 
�3 �5 �4 

+ �0 + �1� + �2�
2 +… + −… = 1 − 

�2 + −… 
� 3! 5! 2 4! 

We can do the multiplication and equate the coefficients of like powers of �. ( ) ( ) ( ) 
�1 �0 �1 �1 �4 

�1 + �0� + − + �1 �2 + − + �2 �3 + − + �3 �4 = 1 − 
�2 + 

3! 3! 5! 3! 2! 4! 
So, starting from �1 = 1 and �0 = 0, we get 

−�1∕3! + �1 = −1∕2! ⇒ �1 = −1∕3 

−�0∕3! + �2 = 0 ⇒ �2 = 0 

�1∕5! − �1∕3! + �3 = 1∕4! ⇒ �3 = −1∕45. 

As noted above, all the even terms are 0 as they should be. We have 

1 − 
� − 

�3 
cot(�) = +… 

� 3 45 

8.5 Cauchy Residue Theorem 

This is one of the major theorems in 18.04. It will allow us to make systematic our previous somewhat
ad hoc approach to computing integrals on contours that surround singularities. 

Theorem. (Cauchy’s residue theorem) Suppose � (�) is analytic in the region � except for a set of 
isolated singularities. Also suppose � is a simple closed curve in � that doesn’t go through any of 
the singularities of � and is oriented counterclockwise. Then 

� (�) �� = 2�� 
∑ 

residues of � inside � ∫� 

Proof. The proof is based of the following figures. They only show a curve with two singularities
inside it, but the generalization to any number of signularities is straightforward. In what follows we
are going to abuse language and say pole when we mean isolated singularity, i.e. a finite order pole
or an essential singularity (‘infinite order pole’). 
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The left figure shows the curve � surrounding two poles �1 and �2 of � . The right figure shows 
the same curve with some cuts and small circles added. It is chosen so that there are no poles of 
� inside it and so that the little circles around each of the poles are so small that there are no other
poles inside them. The right hand curve is 

�̃ = �1 + �2 − �3 − �2 + �4 + �5 − �6 − �5 

The left hand curve is � = �1+�4. Since there are no poles inside �̃ we have, by Cauchy’s theorem, 

� (�) �� = ∫�1+�2−�3−�2+�4+�5−�6−�5 

� (�) �� = 0 ∫ �̃ 

Dropping �2 and �5, which are both added and subtracted, this becomes 

� (�) �� = ∫�3+�6 

� (�) �� (1) ∫�1+�4 

If 
�2 �1 � (�) = … + + + �0 + �1(� − �1) + … 

(� − �1)2 � − �1 

is the Laurent expansion of � around �1 then 

�2 �1 � (�) �� = ∫�3

… + + + �0 + �1(� − �1) + … �� ∫�3 (� − �1)2 � − �1 

= 2���1 

= 2�� Res(�, �1) 

Likewise 

� (�) �� = 2�� Res(�, �2). ∫�6 

Using these residues and the fact that � = �1 + �4, Equation 1 becomes 

� (�) �� = 2�� Res(�, �1) + Res(� , �2) . ∫� 

[ ]
That proves the residue theorem for the case of two poles. As we said, generalizing to any number
of poles is straightforward. 

Example 8.18. Let 
1 � (�) = . 

�(�2 + 1) 

Compute ∫ 
� (�) �� over each of the contours �1, �2, �3, �4 shown. 
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Solution: The poles of � (�) are at � = 0, ±�. Using the residue theorem we just need to compute the 
residues of each of these poles. 

At � = 0: 
1 �(�) = �� (�) = 

�2 + 1 
is analytic at 0 so the pole is simple and 

Res(�, 0) = �(0) = 1. 

At � = �: 
1 �(�) = (� − �)� (�) = 

�(� + �) 
is analytic at � so the pole is simple and 

Res(�, �) = �(�) = −1∕2. 

At � = −�: 
1 �(�) = (� + �)� (�) = 

�(� − �) 
is analytic at −� so the pole is simple and 

Res(� , −�) = �(−�) = −1∕2. 

Using the residue theorem we have 

� (�) �� = 0 (since � is analytic inside �1) ∫�1 

� (�) �� = 2�� Res(�, �) = −�� ∫�2 

� (�) �� = 2�� [Res(�, �) + Res(�, 0)] = �� ∫�3 

� (�) �� = 2�� [Res(�, �) + Res(�, 0) + Res(�, −�)] = 0. ∫�4 

Example 8.19. Compute 
5� − 2 ��. 
�(� − 1) ∫|�|=2 
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Solution: Let 
5� − 2 � (�) = 
�(� − 1)

. 

The poles of � are at � = 0, 1 and the contour encloses them both. 

At � = 0: 
5� − 2 �(�) = �� (�) = 
(� − 1) 

is analytic at 0 so the pole is simple and 

Res(�, 0) = �(0) = 2. 

At � = 1: 
5� − 2 �(�) = (� − 1)� (�) = 

� 
is analytic at 1 so the pole is simple and 

Res(�, 1) = �(1) = 3. 

Finally 
5� − 2 �� = 2�� [Res(�, 0) + Res(�, 1)] = 10��. ∫� �(� − 1) 

Example 8.20. Compute 

�2 sin(1∕�) ��. ∫|�|=1 

Solution: Let 
� (�) = �2 sin(1∕�). 

� has an isolated singularity at � = 0. Using the Taylor series for sin(�) we get (1 1 1 ) 1∕6 
�2 sin(1∕�) = �2 − + −… = � − +… 

� 3!�3 5!�5 � 

So, Res(�, 0) = �1 = −1∕6. Thus the residue theorem gives 

�2 sin(1∕�) �� = 2�� Res(�, 0) = − �� 
3 
. ∫|�|=1 

Example 8.21. Compute 
�� ��, ∫� �(� − 2)4 
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where, � ∶ |� − 2| = 1. 

Solution: Let 
1 � (�) = 

�(� − 2)4 
. 

The singularity at � = 0 is outside the contour of integration so it doesn’t contribute to the integral. 

To use the residue theorem we need to find the residue of � at � = 2. There are a number of ways to 
do this. Here’s one: 

1 1 = 
� 2 + (� − 2) 

1 1 =
2 
⋅ 
1 + (� − 2)∕2 ( ) 

1 (� − 2)2 (� − 2)3 
= 1 − 

� − 2 + − +… 
2 2 4 8 

This is valid on 0 < |� − 2| < 2. So, 

1 1 1 1 1 1 � (�) = ⋅ = − + − +… 
(� − 2)4 � 2(� − 2)4 4(� − 2)3 8(� − 2)2 16(� − 2) 

Thus, Res(�, 2) = −1∕16 and 

� (�) �� = 2�� Res(�, 2) = −�� 
8 
. ∫� 

Example 8.22. Compute 
1 �� ∫� sin(�) 

over the contour � shown. 

Solution: Let 
� (�) = 1∕ sin(�). 

There are 3 poles of � inside � at 0, � and 2�. We can find the residues by taking the limit of 
(� − �0)� (�). Each of the limits is computed using L’Hospital’s rule. (This is valid, since the rule is 
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just a statement about power series. We could also have used Property 5 from the section on residues
of simple poles above.) 

At � = 0: 
� 1 lim = lim = 1. 

�→0 sin(�) �→0 cos(�) 
Since the limit exists, � = 0 is a simple pole and 

Res(�, 0) = 1. 

At � = �: 
� − � 1 lim = lim = −1. 

�→� sin(�) �→� cos(�) 
Since the limit exists, � = � is a simple pole and 

Res(�, �) = −1. 

At � = 2�: The same argument shows 

Res(�, 2�) = 1. 

Now, by the residue theorem 

� (�) �� = 2�� [Res(�, 0) + Res(�, �) + Res(�, 2�)] = 2��. ∫� 

8.6 Residue at ∞ 

The residue at ∞ is a clever device that can sometimes allow us to replace the computation of many
residues with the computation of a single residue. 

Suppose that � is analytic in � except for a finite number of singularities. Let � be a positively 
oriented curve that is large enough to contain all the singularities. 

All the poles of � are inside � 

Definition. We define the residue of � at infinity by 

Res(�, ∞) = − 
1 � (�) ��. 
2�� ∫� 

We should first explain the idea here. The interior of a simple closed curve is everything to left as you
traverse the curve. The curve � is oriented counterclockwise, so its interior contains all the poles of 
� . The residue theorem says the integral over � is determined by the residues of these poles. 
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On the other hand, the interior of the curve −� is everything outside of � . There are no poles of � 
in that region. If we want the residue theorem to hold (which we do –it’s that important) then the
only option is to have a residue at ∞ and define it as we did. 

The definition of the residue at infinity assumes all the poles of � are inside � . Therefore the residue 
theorem implies ∑ 

Res(� , ∞) = − the residues of � . 

To make this useful we need a way to compute the residue directly. This is given by the following 
theorem. 

Theorem. If � is analytic in � except for a finite number of singularities then ( 1 ) 
Res(�, ∞) = −Res � (1∕�), 0 . 

�2 

Proof. The proof is just a change of variables: � = 1∕�. 

Change of variable: � = 1∕� 

First note that � = 1∕� and 
�� = −(1∕�2) ��. 

Next, note that the map � = 1∕� carries the positively oriented �-circle of radius � to the negatively 
oriented �-circle of radius 1∕�. (To see the orientiation, follow the circled points 1, 2, 3, 4 on � in 
the �-plane as they are mapped to points on �̃ in the �-plane.) Thus, 

1 Res(� , ∞) = − 
1 � (�) �� = � (1∕�) 1 �� 
2�� ∫� 2�� ∫ ̃ �2 � 

̃ Finally, note that � = 1∕� maps all the poles inside the circle � to points outside the circle � . So 
̃ ̃ the only possible pole of (1∕�2)� (1∕�) that is inside � is at � = 0. Now, since � is oriented 

clockwise, the residue theorem says ( ) 
1 1 � (1∕�) 1 �� = − Res � (1∕�), 0 
2�� ∫�̃ �2 �2 

Comparing this with the equation just above finishes the proof. 

Example 8.23. Let 
5� − 2 � (�) = 
�(� − 1)

. 

Earlier we computed 

� (�) �� = 10�� ∫|�|=2 
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by computing residues at � = 0 and � = 1. Recompute this integral by computing a single residue 
at infinity. 

Solution: 
1 1 5∕� − 2 5 − 2� � (1∕�) = = 
�2 �2 (1∕�)(1∕� − 1) �(1 − �)

. 

We easily compute that ( 1 ) 
Res(� , ∞) = −Res � (1∕�), 0 = −5. 

�2 

Since |�| = 2 contains all the singularities of � we have 

� (�) �� = −2�� Res(�, ∞) = 10��. ∫|�|=2 

This is the same answer we got before! 
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Topic 9 Notes
Jeremy Orloff 

9 Definite integrals using the residue theorem 

9.1 Introduction 

In this topic we’ll use the residue theorem to compute some real definite integrals. 
� 

� (�) �� ∫� 

The general approach is always the same 

1. Find a complex analytic function �(�) which either equals � on the real axis or which is closely 
connected to � , e.g. � (�) = cos(�), �(�) = e��. 

2. Pick a closed contour � that includes the part of the real axis in the integral. 

3. The contour will be made up of pieces. It should be such that we can compute ∫ 
�(�) �� over 

each of the pieces except the part on the real axis. 

4. Use the residue theorem to compute ∫� 
�(�) ��. 

5. Combine the previous steps to deduce the value of the integral we want. 

9.2 Integrals of functions that decay 

The theorems in this section will guide us in choosing the closed contour � described in the intro-
duction. 

The first theorem is for functions that decay faster than 1∕�. 

Theorem 9.1. (a) Suppose � (�) is defined in the upper half-plane. If there is an � > 1 and � > 0 
such that 

� |� (�)| < |�|� 

for |�| large then 

lim � (�) �� = 0, 
�→∞ ∫�� 

where �� is the semicircle shown below on the left. 

Re(z)

Im(z)

R−R

CR

Re(z)

Im(z)
R−R

CR

1 
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Semicircles: left: �e��, 0 < � < � right: �e��, � < � < 2�. 

(b) If � (�) is defined in the lower half-plane and 

� |� (�)| < |�|� 
, 

where � > 1 then 

lim � (�) �� = 0, 
�→∞ ∫�� 

where �� is the semicircle shown above on the right. 

Proof. We prove (a), (b) is essentially the same. We use the triangle inequality for integrals and the
estimate given in the hypothesis. For � large 

� � � �� |∫�� 

� (�) �� | ≤ ∫�� 

|� (�)| |��| ≤ ∫�� 
|�|� 

|��| = ∫ �� 
� �� = 

��−1 
. 

0 

Since � > 1 this clearly goes to 0 as � → ∞. QED 

The next theorem is for functions that decay like 1∕�. It requires some more care to state and prove. 

Theorem 9.2. (a) Suppose � (�) is defined in the upper half-plane. If there is an � > 0 such that 

� |� (�)| < |�| 
for |�| large then for � > 0 

� (�)e��� �� = 0, lim 
�1→∞, �2→∞ ∫�1+�2+�3 

where �1 + �2 + �3 is the rectangular path shown below on the left. 

Re(z)

Im(z)

x1−x2

i(x1 + x2)
C1

C2

C3

Re(z)

Im(z)
x1−x2

−i(x1 + x2)

C1

C2

C3

Rectangular paths of height and width �1 + �2. 

(b) Similarly, if � < 0 then 

� (�)e��� �� = 0, lim 
�1→∞, �2→∞ ∫�1+�2+�3 

where �1 + �2 + �3 is the rectangular path shown above on the right. 

Note. In contrast to Theorem 9.1 this theorem needs to include the factor e���. 

Proof. (a) We start by parametrizing �1, �2, �3. 

�1: �1(�) = �1 + ��, � from 0 to �1 + �2 
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�2: �2(�) = � + �(�1 + �2), � from �1 to −�2 

�3: �3(�) = −�2 + ��, � from �1 + �2 to 0. 

Next we look at each integral in turn. We assume �1 and �2 are large enough that 

� |� (�)| < |�| 
on each of the curves �� . 

|∫�1 

� (�)e��� �� | ≤ ∫�1 

|� (�)e���| |��| ≤ ∫�1 
| ��| |e���| |��| 

�1+�2 � |e���1−��| �� √ = ∫ 0 �21 
+ �2 

�1+�2 ≤ 
� e−�� �� 
�1 ∫0 

� = (1 − e−�(�1+�2))∕�. 
�1 

Since � > 0, it is clear that this last expression goes to 0 as �1 and �2 go to ∞. 

|∫�2 

� (�)e��� �� | ≤ ∫�2 

|� (�)e���| |��| ≤ ∫�2 
| ��| |e���| |��| 

�1 � |e���−�(�1+�2)| �� √ = ∫ −�2 �2 + (�1 + �2)2 

�1+�2 ≤ 
�e−�(�1+�2) �� 
�1 + �2 ∫0 
−�(�1+�2) ≤ �e 

Again, clearly this last expression goes to 0 as �1 and �2 go to ∞. 

The argument for �3 is essentially the same as for �1, so we leave it to the reader. 

The proof for part (b) is the same. You need to keep track of the sign in the exponentials and make 
sure it is negative. 

Example. See Example 9.16 below for an example using Theorem 9.2. 

∞ ∞ 

9.3 Integrals ∫ 
and ∫ −∞ 0 

Example 9.3. Compute 
∞ 1 � ��. = ∫−∞ (1 + �2)2 
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Solution: Let 
� (�) = 1∕(1 + �2)2 . 

It is clear that for � large 
� (�) ≈ 1∕�4 . 

In particular, the hypothesis of Theorem 9.1 is satisfied. Using the contour shown below we have,
by the residue theorem, 

� (�) �� = 2�� 
∑ 

residues of � inside the contour. (1) ∫�1+�� 

Re(z)

Im(z)

R−R

CR

C1

i

We examine each of the pieces in the above equation. 

� (�) ��: By Theorem 9.1(a), ∫�� 

lim � (�) �� = 0. 
�→∞ ∫�� 

� (�) ��: Directly, we see that ∫�1 

� ∞ 

lim � (�) �� = lim � (�) �� = ∫ 
� (�) �� = �. 

�→∞ ∫�1 
�→∞ ∫−� −∞ 

So letting � → ∞, Equation 1 becomes 

∞ ∑ 
� = ∫ 

� (�) �� = 2�� residues of � inside the contour. 
−∞ 

Finally, we compute the needed residues: � (�) has poles of order 2 at ±�. Only � = � is inside the 
contour, so we compute the residue there. Let 

1 �(�) = (� − �)2� (�) = 
(� + �)2 

. 

Then 
2 1 Res(�, �) = � ′(�) = − = 

(2�)3 4� 
So, 

� � = 2�� Res(�, �) = . 
2 
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Example 9.4. Compute 
∞ 

= ∫ 
1 � ��. 

−∞ �4 + 1 

Solution: Let � (�) = 1∕(1 + �4). We use the same contour as in the previous example 

Re(z)

Im(z)

R−R

CR

C1

eiπ/4ei3π/4

As in the previous example, 

lim � (�) �� = 0 
�→∞ ∫�� 

and ∞ 

lim � (�) �� = ∫ 
� (�) �� = �. 

�→∞ ∫�1 −∞ 

So, by the residue theorem 

� = lim � (�) �� = 2�� 
∑ 

residues of � inside the contour. 
�→∞ ∫�1+�� 

The poles of � are all simple and at 

e��∕4, e�3�∕4, e�5�∕4, e�7�∕4. 

Only e��∕4 and e�3�∕4 are inside the contour. We compute their residues as limits using L’Hospital’s 
= e��∕4 ∶ rule. For �1 

� − �1 e−�3�∕4 1 1 Res(� , �1) = lim (� − �1)� (�) = lim = lim = = 
�→�1 �→�1 1 + �4 �→�1 4�3 4e�3�∕4 4 

= e�3�∕4 ∶ and for �2 

� − �2 e−��∕4 1 1 Res(�, �2) = lim (� − �2)� (�) = lim = lim = = 
�→�2 �→�2 1 + �4 �→�2 4�3 4e�9�∕4 4 

So, ( ) ( ) √ 
2 −1 − � 1 − � 2� � = 2��(Res(�, �1) + Res(�, �2)) = 2�� √ + √ = 2�� − √ = � 
2 4 2 4 2 4 2 

Example 9.5. Suppose � > 0. Show 

∞ cos(�) �e−� 
�� = . ∫0 �2 + �2 2� 
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Solution: The first thing to note is that the integrand is even, so 

1 ∞ cos(�) 
� = 

2 ∫−∞ �2 + �2 
. 

Also note that the square in the denominator tells us the integral is absolutely convergent. 

We have to be careful because cos(�) goes to infinity in either half-plane, so the hypotheses of The-
orem 9.1 are not satisfied. The trick is to replace cos(�) by e��, so 

∞ e�� 1 �̃ = ∫ 
��, with � = Re(�̃). 

−∞ �2 + �2 2 

Now let 
e�� 

� (�) = 
�2 + �2 

. 

For � = � + �� with � > 0 we have 

|e�(�+��)| e−� |� (�)| = |�2 + �2| = |�2 + �2| . 
Since e−� < 1, � (�) satisfies the hypotheses of Theorem 9.1 in the upper half-plane. Now we can
use the same contour as in the previous examples 

Re(z)

Im(z)

R−R

CR

C1

ib

We have 

lim � (�) �� = 0 
�→∞ ∫�� 

and ∞ 
̃ lim � (�) �� = ∫ 

� (�) �� = �. 
�→∞ ∫�1 −∞ 

So, by the residue theorem 

�̃ = lim � (�) �� = 2�� 
∑ 

residues of � inside the contour. 
�→∞ ∫�1+�� 

The poles of � are at ±�� and both are simple. Only �� is inside the contour. We compute the residue 
as a limit using L’Hospital’s rule 

e�� e−� 
Res(�, ��) = lim (� − ��) = . 

�→�� �2 + �2 2�� 

So, 
�e−� 

�̃ = 2�� Res(�, ��) = . 
� 
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Finally, 
1 �e−� 

� = Re(�̃) = , 
2 2� 

as claimed. 

Warning: Be careful when replacing cos(�) by e�� that it is appropriate. A key point in the above 
1 example was that � = Re(�̃). This is needed to make the replacement useful. 2 

9.4 Trigonometric integrals 

The trick here is to put together some elementary properties of � = e�� on the unit circle. 

1. e−�� = 1∕�. 

e�� + e−�� � + 1∕� 
2. cos(�) = = . 

2 2 

e�� − e−�� � − 1∕� 
3. sin(�) = = . 

2� 2� 

We start with an example. After that we’ll state a more general theorem. 

Example 9.6. Compute 
2� �� . ∫0 1 + �2 − 2� cos(�) 

Assume that |�| ≠ 1. 

Solution: Notice that [0, 2�] is the interval used to parametrize the unit circle as � = e��. We need 
to make two substitutions: 

� + 1∕� 
cos(�) = 

2 

�� = �e�� �� ⇔ 
�� �� = 
�� 

Making these substitutions we get 

2� �� � = ∫ 0 1 + �2 − 2� cos(�) 
1 �� 

⋅ = ∫|�|=1 1 + �2 − 2�(� + 1∕�)∕2 �� 

1 ��. = ∫|�|=1 �((1 + �2)� − �(�2 + 1)) 

So, let 
1 � (�) = . 

�((1 + �2)� − �(�2 + 1)) 
The residue theorem implies ∑ 

� = 2�� residues of � inside the unit circle. 
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We can factor the denominator: 

−1 � (�) = 
��(� − �)(� − 1∕�)

. 

The poles are at �, 1∕�. One is inside the unit circle and one is outside. 

1 If |�| > 1 then 1∕� is inside the unit circle and Res(�, 1∕�) = 
�(�2 − 1) 
1 If |�| < 1 then � is inside the unit circle and Res(�, �) = 

�(1 − �2) 

We have { 
2� if � > 1 

�2−1 � = 2� if |�| < 1 1−�2 

The example illustrates a general technique which we state now. 

Theorem 9.7. Suppose �(�, �) is a rational function with no poles on the circle 

�2 + �2 = 1 

then for ( ) 
1 � + 1∕� � − 1∕� 

� (�) = � , 
�� 2 2� 

we have 
2� ∑ 

�(cos(�), sin(�)) �� = 2�� residues of � inside |�| = 1. ∫0 

Proof. We make the same substitutions as in Example 9.6. So, ( ) 2� � + 1∕� � − 1∕� �� �(cos(�), sin(�)) �� = ∫|�|=1 
� , ∫ 2 2� �� 0 

The assumption about poles means that � has no poles on the contour |�| = 1. The residue theorem 
now implies the theorem. 

9.5 Integrands with branch cuts 

Example 9.8. Compute 
∞ �1∕3 

� ��. = ∫0 1 + �2 

Solution: Let 
�1∕3 

� (�) = 
1 + �2 

. 

Since this is asymptotically comparable to �−5∕3, the integral is absolutely convergent. As a complex 
function 

�1∕3 
� (�) = 

1 + �2 
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needs a branch cut to be analytic (or even continuous), so we will need to take that into account with
our choice of contour. 

First, choose the following branch cut along the positive real axis. That is, for � = �e�� not on the 
axis, we have 0 < � < 2�. 

Next, we use the contour �1 + �� − �2 − �� shown below. 

Re(z)

Im(z)

CR

C1

−C2

−Cr

i

−i

Contour around branch cut: inner circle of radius �, outer of radius �. 

We put convenient signs on the pieces so that the integrals are parametrized in a natural way. You 
should read this contour as having � so small that �1 and �2 are essentially on the �-axis. Note well, 
that, since �1 and �2 are on opposite sides of the branch cut, the integral 

� (�) �� ≠ 0. ∫�1−�2 

First we analyze the integral over each piece of the curve. 

On ��: Theorem 9.1 says that 

lim � (�) �� = 0. 
�→∞ ∫�� 

On ��: For concreteness, assume � < 1∕2. We have |�| = �, so 

|�1∕3| �1∕3 ≤ 
(1∕2)1∕3 |� (�)| = |1 + �2| ≤ 

1 − �2 3∕4 
. 

Call the last number in the above equation � . We have shown that, for small �, |� (�)| < � . So, 
2� 2� | � (�) ��| ≤ ∫ 

|� (�e��)||��e��| �� ≤ ∫ 
�� �� = 2���. |∫�� | 0 0 

Clearly this goes to zero as � → 0. 

On �1: 
∞ 

lim � (�) �� = ∫ 
� (�) �� = �. 

�→0, �→∞ ∫�1 0 

= e�2�∕3|�|1∕3 On �2: We have (essentially) � = 2�, so �1∕3 . Thus, 
∞ 

lim � (�) �� = e�2�∕3 ∫ 
� (�) �� = e�2�∕3�. 

�→0, �→∞ ∫�2 0 
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The poles of � (�) are at ±�. Since � is meromorphic inside our contour the residue theorem says 

� (�) �� = 2��(Res(� , �) + Res(� , −�)). ∫�1+�� −�2−�� 

Letting � → 0 and � → ∞ the analysis above shows 

(1 − e�2�∕3)� = 2��(Res(� , �) + Res(�, −�)) 

All that’s left is to compute the residues using the chosen branch of �1∕3 

(−�)1∕3 (e�3�∕2)1∕3 e−�� 
Res(� , −�) = = = = −1 

−2� 2e�3�∕2 2 2 
�1∕3 e��∕6 e−��∕3 

Res(�, �) = = = 
2� 2e��∕2 2 

A little more algebra gives √ −1 + e−��∕3 
(1 − e�2�∕3)� = 2�� ⋅ = ��(−1 + 1∕2 − � 3∕2) = −��e��∕3. 

2 

Continuing 

−��e��∕3 �� �∕2 �∕2 � � = = = = = √ . 1 − e�2�∕3 e��∕3 − e−��∕3 (e��∕3 − e−��∕3)∕2� sin(�∕3) 3 

Whew! (Note: a sanity check is that the result is real, which it had to be.) 

Example 9.9. Compute 
∞ �� � √ . = ∫1 � �2 − 1 

Solution: Let 
1 � (�) = √ . 

� �2 − 1 

The first thing we’ll show is that the integral 
∞ 

� (�) �� ∫1 

is absolutely convergent. To do this we split it into two integrals 

∞ 2 ∞ �� �� �� √ √ √ . ∫ 
= ∫ 

+ ∫ 1 � �2 − 1 1 � �2 − 1 2 � �2 − 1 

The first integral on the right can be rewritten as 

2 
2 2 √ 1 1 1 1 2 √ ⋅ √ �� ≤ ∫ √ ⋅ √ �� = √ � − 1 . ∫1 � � + 1 � − 1 1 2 � − 1 2 |1 

This shows the first integral is absolutely convergent. 
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The function � (�) is asymptotically comparable to 1∕�2, so the integral from 2 to ∞ is also absolutely 
convergent. 

We can conclude that the original integral is absolutely convergent. 

Next, we use the following contour. Here we assume the big circles have radius � and the small 
ones have radius �. 

Re(z)

Im(z)

R

rr

C1

C2 −C3

−C4

C5

−C6

−C7

1−1

C8

We use the branch cut for square root that removes the positive real axis. In this branch 

0 < arg(�) < 2� and 0 < arg( 
√ 
�) < �. 

For � (�), this necessitates the branch cut that removes the rays [1, ∞) and (−∞, −1] from the com-
plex plane. 

The pole at � = 0 is the only singularity of � (�) inside the contour. It is easy to compute that 

1 1 Res(�, 0) = √ = = −�. 
� −1 

So, the residue theorem gives us 

� (�) �� = 2�� Res(� , 0) = 2�. (2) ∫�1+�2−�3−�4+�5−�6−�7+�8 

In a moment we will show the following limits 

lim � (�) �� = lim � (�) �� = 0 
�→∞ ∫�1 

�→∞ ∫�5 

lim � (�) �� = lim � (�) �� = 0. 
�→0 ∫�3 

�→0 ∫�7 

We will also show 

lim � (�) �� = lim � (�) �� 
�→∞, �→0 ∫�2 

�→∞, �→0 ∫−�4 

= lim � (�) �� = lim � (�) �� = �. 
�→∞, �→0 ∫−�6 

�→∞, �→0 ∫�8 
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Using these limits, Equation 2 implies 4� = 2�, i.e. 

� = �∕2. 

All that’s left is to prove the limits asserted above. 

The limits for �1 and �5 follow from Theorem 9.1 because 

|� (�)| ≈ 1∕|�|3∕2 

for large �. 

We get the limit for �3 as follows. Suppose � is small, say much less than 1. If 

� = −1 + �e�� 

is on �3 then, 

|� (�)| = √ 
1 √ = 

1 √ √ ≤ 
�√ . |� � − 1 � + 1| | − 1 + �e��| | − 2 + �e��| � � 

where � is chosen to be bigger than 

1 √ | − 1 + �e��| | − 2 + �e��| 
for all small �. 

Thus, 

||∫�3 

� (�) ��|| ≤ ∫�3 

√ �√ |��| ≤ 
�√ ⋅ 2�� = 2�� �. 

� � 

This last expression clearly goes to 0 as � → 0. 

The limit for the integral over �7 is similar. 

We can parameterize the straight line �8 by 

� = � + ��, 

where � is a small positive number and � goes from (approximately) 1 to ∞. Thus, on �8, we have 

arg(�2 − 1) ≈ 0 and � (�) ≈ � (�). 

All these approximations become exact as � → 0. Thus, 
∞ 

lim � (�) �� = ∫ 
� (�) �� = �. 

�→∞, �→0 ∫�8 1 

We can parameterize −�6 by 
� = � − �� 

where � goes from ∞ to 1. Thus, on �6, we have 

arg(�2 − 1) ≈ 2�, 
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so √ √ 
�2 − 1 ≈ − �2 − 1. 

This implies 
1 � (�) ≈ − √ = −� (�). 

� �2 − 1 

Thus, 
1 ∞ 

lim � (�) �� = ∫ 
−� (�) �� = ∫ 

� (�) �� = �. 
�→∞, �→0 ∫−�6 ∞ 1 

We can parameterize �2 by � = −� + �� where � goes from ∞ to 1. Thus, on �2, we have 

arg(�2 − 1) ≈ 2�, 

so √ √ 
�2 − 1 ≈ − �2 − 1. 

This implies 
1 � (�) ≈ √ = � (�). 

(−�)(− �2 − 1) 
Thus, 

1 ∞ 

lim � (�) �� = ∫ 
� (�) (−��) = ∫ 

� (�) �� = �. 
�→∞, �→0 ∫�2 ∞ 1 

The last curve −�4 is handled similarly. 

9.6 Cauchy principal value 

First an example to motivate defining the principal value of an integral. We’ll actually compute the
integral in the next section. 

Example 9.10. Let 
∞ sin(�) 

� ��. = ∫ � 0 

This integral is not absolutely convergent, but it is conditionally convergent. Formally, of course, 
we mean 

� sin(�) 
� = lim ��. 

�→∞ ∫ � 0 

We can proceed as in Example 9.5. First note that sin(�)∕� is even, so 

1 ∞ sin(�) 
� = ��. 

2 ∫ � −∞ 

Next, to avoid the problem that sin(�) goes to infinity in both the upper and lower half-planes we 
replace the integrand by e

�� 
. 

� 

We’ve changed the problem to computing 

∞ e�� 
�̃ = ∫ 

��. 
� −∞ 
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The problems with this integral are caused by the pole at 0. The biggest problem is that the integral
doesn’t converge! The other problem is that when we try to use our usual strategy of choosing a
closed contour we can’t use one that includes � = 0 on the real axis. This is our motivation for 
defining principal value. We will come back to this example below. 

Definition. Suppose we have a function � (�) that is continuous on the real line except at the point 
�1, then we define the Cauchy principal value as 

∞ �1−�1 � 

p.v. ∫ 
� (�) �� = lim � (�) �� + ∫ 

� (�) ��. 
�→∞, �1→0 ∫ −∞ −� �1+�1 

Provided the limit converges. You should notice that the intervals around �1 and around ∞ are 
symmetric. Of course, if the integral 

∞ 

� (�) �� ∫−∞ 

converges, then so does the principal value and they give the same value. We can make the definition
more flexible by including the following cases. 

1. If � (�) is continuous on the entire real line then we define the principal value as 
∞ � 

p.v. ∫ 
� (�) �� = lim � (�) �� 

�→∞ ∫ −∞ −� 

2. If we have multiple points of discontinuity, �1 < �2 < �3 < … < ��, then 
∞ �1−�1 �2−�2 �3−�3 � 

p.v. ∫ 
� (�) �� = lim ∫ 

� (�) �� + ∫ 
+ ∫ 

+… ∫ 
� (�) ��. 

−∞ −� �1+�1 �2+�2 ��+�� 

Here the limit is taken as � → ∞ and each of the �� → 0. 

x
x1 x2

[ ] [ ] [ ]

−R x1 − r1 x1 − r1 x2 − r2 x2 − r2 R

Intervals of integration for principal value are symmetric around �� and ∞ 

The next example shows that sometimes the principal value converges when the integral itself does
not. The opposite is never true. That is, we have the following theorem. 

∞ 

Theorem 9.11. If � (�) has discontinuities at �1 < �2 < … < �� and ∫ 
� (�) �� converges then 

−∞ ∞ 

so does p.v. ∫ 
� (�) ��. 

−∞ 

Proof. The proof amounts to understanding the definition of convergence of integrals as limits. The
integral converges means that each of the limits 

�1−�1 

lim � (�) �� 
�1→∞, �1→0 ∫−�1 

�2−�2 

lim 
�1→0, �2→0 ∫ �1+�1 

� (�) �� 

… (3) 

lim 
�2→∞, ��→0 ∫ 

�2 

� (�) ��. 
��+�� 
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converges. There is no symmetry requirement, i.e. �1 and �2 are completely independent, as are �1 
and �1 etc. 

The principal value converges means 

�1−�1 �2−�2 �3−�3 � 

lim ∫ 
+ ∫ 

+ ∫ 
+… ∫ 

� (�) �� (4) 
−� �1+�1 �2+�2 ��+�� 

converges. Here the limit is taken over all the parameter � → ∞, �� → 0. This limit has symmetry, 
e.g. we replaced both �1 and �1 in Equation 3 by �1 etc. Certainly if the limits in Equation 3 converge 
then so do the limits in Equation 4. QED 

Example 9.12. Consider both 

∞ ∞ 1 1 �� and p.v. ∫ 
��. ∫ � � −∞ −∞ 

The first integral diverges since 

−�1 �2 1 1 �� + ∫ 
�� = ln(�1) − ln(�1) + ln(�2) − ln(�2). ∫ � � −�1 �2 

This clearly diverges as �1, �2 → ∞ and �1, �2 → 0. 

On the other hand the symmetric integral 

−� � 1 1 �� + ∫ 
�� = ln(�) − ln(�) + ln(�) − ln(�) = 0. ∫ � � −� � 

This clearly converges to 0. 

We will see that the principal value occurs naturally when we integrate on semicircles around points.
We prepare for this in the next section. 

9.7 Integrals over portions of circles 

We will need the following theorem in order to combine principal value and the residue theorem. 

Theorem 9.13. Suppose � (�) has a simple pole at �0. Let �� be the semicircle �(�) = �0 + �e��, 
with 0 ≤ � ≤ �. Then 

lim � (�) �� = �� Res(� , �0) (5) 
�→0 ∫�� 

Re(z)

Im(z)

z0

r

Cr

Small semicircle of radius � around �0 
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Proof. Since we take the limit as � goes to 0, we can assume � is small enough that � (�) has a Laurent 
expansion of the punctured disk of radius � centered at �0. That is, since the pole is simple, 

�1 � (�) = + �0 + �1(� − �0) + … for 0 < |� − �0| ≤ �. 
� − �0 

Thus, 
� � ( ) 

� (�) �� = ∫ 
� (�0 + �e��) ��e�� �� = ∫ 

�1� + �0��e�� + �1��
2e�2� +… �� ∫�� 0 0 

The �1 term gives ���1. Clearly all the other terms go to 0 as � → 0. QED. 

If the pole is not simple the theorem doesn’t hold and, in fact, the limit does not exist. 

The same proof gives a slightly more general theorem. 

Theorem 9.14. Suppose � (�) has a simple pole at �0. Let �� be the circular arc �(�) = �0 + �e��, 
with �0 ≤ � ≤ �0 + �. Then 

lim � (�) �� = �� Res(� , �0) �→0 ∫�� 

Re(z)

Im(z)

z0
r

Cr

α

Small circular arc of radius � around �0 

Example 9.15. (Return to Example 9.10.) A long time ago we left off Example 9.10 to define 
principal value. Let’s now use the principal value to compute 

∞ e�� 
�̃ = p.v. ∫ 

��. 
� −∞ 

Solution: We use the indented contour shown below. The indentation is the little semicircle the goes 
around � = 0. There are no poles inside the contour so the residue theorem implies 

e�� 
�� = 0. 

� ∫�1−��+�2+�� 

Re(z)

Im(z)

0

C1 C2

CR

−Cr

−R −r r R

2Ri
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Next we break the contour into pieces. 

e�� 
̃ lim �� = �. 

�→∞, �→0 ∫�1+�2 
� 

Theorem 9.2(a) implies 
e�� 

lim �� = 0. 
� �→∞ ∫�� 

Equation 5 in Theorem 9.13 tells us that 

lim 
�→0 ∫�� 

( ) 
e�� e�� 

�� = �� Res , 0 = �� 
� � 

Combining all this together we have 

e�� 
lim �� = �̃ − �� = 0, 

�→∞, �→0 ∫�1−��+�2+�� 
� 

∞ sin(�) so �̃ = ��. Thus, looking back at Example 5, where � = ∫ 
��, we have 

� 0 

1 � � = Im(�̃) = 
2 
. 

2 

There is a subtlety about convergence we alluded to above. That is, � is a genuine (conditionally) 
convergent integral, but �̃ only exists as a principal value. However since � is a convergent integral 
we know that computing the principle value as we just did is sufficient to give the value of the 
convergent integral. 

9.8 Fourier transform 

Definition. The Fourier transform of a function � (�) is defined by 

∞ 

�̂ (�) = ∫ 
� (�)e−��� �� 

−∞ 

This is often read as ‘� -hat’. 

Theorem. (Fourier inversion formula.) We can recover the original function � (�) with the Fourier 
inversion formula ∞ 1 �̂ (�)e��� ��. � (�) = 

2� ∫−∞ 

So, the Fourier transform converts a function of � to a function of � and the Fourier inversion con-
verts it back. Of course, everything above is dependent on the convergence of the various integrals. 

Proof. We will not give the proof here. (We may get to it later in the course.) 

Example 9.16. Let {
e−�� for � > 0 

� (�) = , 
0 for � < 0 

where � > 0. Compute �̂ (�) and verify the Fourier inversion formula in this case. 
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Solution: Computing �̂ is easy: For � > 0 
∞ ∞ 1 �̂ (�) = ∫ 
� (�)e−��� �� = ∫ 

e−��e−��� �� = (recall � > 0). 
� + �� −∞ 0 

We should first note that the inversion integral converges. To avoid distraction we show this at the 
end of this example. 

Now, let 
1 �(�) = 

� + �� 
� Note that �̂ (�) = �(�) and |�(�)| < |�| for large |�|. 

To verify the inversion formula we consider the cases � > 0 and � < 0 separately. For � > 0 we use 
the standard contour. 

Re(z)

Im(z)

x1−x2

i(x1 + x2) C1

C2

C3

C4

Theorem 9.2(a) implies that 

lim 
�1→∞, �2→∞ ∫�1+�2+�3 

�(�)e��� �� = 0 (6) 

Clearly 
∞ 

lim 
�1→∞, �2→∞ ∫�4 

�(�)e��� �� = ∫ −∞ 
�̂ (�) �� (7) 

The only pole of �(�)e��� is at � = ��, which is in the upper half-plane. So, applying the residue
theorem to the entire closed contour, we get for large �1, �2: ( ) 

e��� e−�� �(�)e��� �� = 2�� Res , �� = . (8) 
� + �� � ∫�1+�2+�3+�4 

Combining the three equations 6, 7 and 8, we have 
∞ 

−�� �̂ (�) �� = 2�e for � > 0 ∫−∞ 

This shows the inversion formula holds for � > 0. 

For � < 0 we use the contour 

Re(z)

Im(z)

x1−x2

−i(x1 + x2) C1

C2

C3

C4
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Theorem 9.2(b) implies that 

lim �(�)e��� �� = 0 
�1→∞, �2→∞ ∫�1+�2+�3 

Clearly 
∞ 

lim 
1 �(�)e��� �� = 1 �̂ (�) �� 

�1→∞, �2→∞ 2� ∫�4
2� ∫−∞ 

Since, there are no poles of �(�)e��� in the lower half-plane, applying the residue theorem to the entire 
closed contour, we get for large �1, �2: ( ) 

e��� �(�)e��� �� = −2�� Res , �� = 0. 
� + �� ∫�1+�2+�3+�4 

Thus, 
∞ 1 �̂ (�) �� = 0 for � < 0 

2� ∫−∞ 

This shows the inversion formula holds for � < 0. 

Finally, we give the promised argument that the inversion integral converges. By definition 
∞ ∞ e��� �̂ (�)e��� �� = ∫ 

�� ∫ � + �� −∞ −∞ 
∞ � cos(��) + � sin(��) − �� cos(��) + �� sin(��) = ∫−∞ �2 + �2 

�� 

The terms without a factor of � in the numerator converge absolutely because of the �2 in the 
denominator. The terms with a factor of � in the numerator do not converge absolutely. For example, 
since 

� sin(��) 
�2 + �2 

decays like 1∕�, its integral is not absolutely convergent. However, we claim that the integral does
converge conditionally. That is, both limits 

�2 0 � sin(��) � sin(��) lim �� and lim �� 
�2→∞ ∫0 �2 + �2 �1→∞ ∫−�1 

�2 + �2 

exist and are finite. The key is that, as sin(��) alternates between positive and negative arches, the 
� function is decaying monotonically. So, in the integral, the area under each arch adds or 

�2 + �2 

subtracts less than the arch before. This means that as �1 (or �2) grows the total area under the
curve oscillates with a decaying amplitude around some limiting value. 

ω

Total area oscillates with a decaying amplitude. 
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9.9 Solving DEs using the Fourier transform 

Let 
� � = . 
�� 

Our goal is to see how to use the Fourier transform to solve differential equations like 

� (�)� = � (�). 

Here � (�) is a polynomial operator, e.g. 

�2 + 8� + 7�. 

We first note the following formula: 
�̂� (�) = ��� .̂ (9) 

Proof. This is just integration by parts: 
∞ 

�̂� (�) = ∫ 
� ′(�)e−��� �� 

−∞ 
∞ 

� (�)e−��� −��� �� = ∞ � (�)(−��e |−∞ − ∫−∞ 
∞ 

= �� ∫ 
� (�)e−��� �� 

−∞ 

= ���̂ (�) QED 

In the third line we assumed that � decays so that � (∞) = � (−∞) = 0. 

It is a simple extension of Equation 9 to see 

(�̂ (�)� )(�) = � (��)� .̂ 

We can now use this to solve some differential equations. 

Example 9.17. Solve the equation {
e−�� if � > 0 

� ′′(�) + 8� ′(�) + 7�(�) = � (�) = 
0 if � < 0 

Solution: In this case, we have 
� (�) = �2 + 8� + 7�, 

so 
� (�) = �2 + 8� + 7 = (� + 7)(� + 1). 

The DE 
� (�)� = � (�) 

transforms to 
� (��)�̂  = � .̂ 
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Using the Fourier transform of � found in Example 9.16 we have 

�̂  1 �̂(�) = = 
� (��) (� + ��)(7 + ��)(1 + ��)

. 

Fourier inversion says that 
∞ 1 �(�)e��� �� �(�) = ̂ 

2� ∫−∞ 

As always, we want to extend �̂  to be function of a complex variable �. Let’s call it �(�): 

1 �(�) = 
(� + ��)(7 + ��)(1 + ��)

. 

Now we can proceed exactly as in Example 9.16. We know |�(�)| < �∕|�|3 for some constant � . 
Thus, the conditions of Theorem 9.2 are easily met. So, just as in Example 9.16, we have: 

For � > 0, e��� is bounded in the upper half-plane, so we use the contour below on the left. 
∞ 1 �(�) = 

1 �̂(�)e��� �� = lim �(�)e��� �� 
2� ∫ 2� �1→∞, �2→∞ ∫�4 −∞ 

1 �(�)e��� �� = lim 
2� �1→∞, �2→∞ ∫�1+�2+�3+�4 

= � 
∑ 

residues of e����(�) in the upper half-plane 

The poles of e����(�) are at 
��, 7�, �. 

These are all in the upper half-plane. The residues are respectively, 

e−�� e−7� e−� 
�(7 − �)(1 − �)

, 
�(� − 7)(−6)

, 
�(� − 1)(6) 

Thus, for � > 0 we have 

e−�� e−7� e−� �(�) = − + 
(7 − �)(1 − �) (� − 7)(6) (� − 1)(6)

. 

Re(z)

Im(z)

x1−x2

i(x1 + x2) C1

C2

C3

C4

Contour for � > 0 

Re(z)

Im(z)

x1−x2

−i(x1 + x2) C1

C2

C3

C4

Contour for � < 0 
More briefly, when � < 0 we use the contour above on the right. We get the exact same string of
equalities except the sum is over the residues of e����(�) in the lower half-plane. Since there are no 
poles in the lower half-plane, we find that 

�̂(�) = 0 
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when � < 0. 

Conclusion (reorganizing the signs and order of the terms): {
0 for � < 0 

�(�) = e−�� e−7� e−� + − for � > 0. (7−�)(1−�) (7−�)(6) (1−�)(6) 

Note. Because |�(�)| < �∕|�|3, we could replace the rectangular contours by semicircles to com-
pute the Fourier inversion integral. 

Example 9.18. Consider {
e−�� if � > 0 

� ′′ + � = � (�) = 
0 if � < 0. 

Find a solution for � > 0. 

Solution: We work a little more quickly than in the previous example. 

Taking the Fourier transform we get 

�̂ (�) �̂ (�) 1 �̂(�) = = = . 
� (��) 1 − �2 (� + ��)(1 − �2) 

(In the last expression, we used the known Fourier transform of � .) 

As usual, we extend �̂(�) to a function of �: 

1 �(�) = . 
(� + ��)(1 − �2) 

This has simple poles at 
−1, 1, ��. 

Since some of the poles are on the real axis, we will need to use an indented contour along the real
axis and use principal value to compute the integral. 

The contour is shown below. We assume each of the small indents is a semicircle with radius �. The 
big rectangular path from (�, 0) to (−�, 0) is called ��. 

Re(z)

Im(z)

1−1

ai

C1 C3 C5

CR

−C2 −C4

−R R

2Ri
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For � > 0 the function e����(�) < �∕|�|3 in the upper half-plane. Thus, we get the following limits: 

e����(�) �� = 0 lim (Theorem 9.2(b)) 
�→∞ ∫�� 

e����(�) �� = �� Res(e����(�), −1) lim (Theorem 9.14) 
�→∞, �→0 ∫�2 

e����(�) �� = �� Res(e����(�), 1) lim (Theorem 9.14) 
�→∞, �→0 ∫�4 

∞ 

e����(�) �� = p.v. ∫ 
�(�)e��� �� lim ̂ 

�→∞, �→0 ∫�1+�3+�5 −∞ 

Putting this together with the residue theorem we have 

∞ 

e����(�) �� = p.v. ∫ 
�(�)e��� �� − �� Res(e����(�), −1) − �� Res(e����(�), 1) lim ̂ 

�→∞, �→0 ∫�1−�2+�3−�4+�5+�� −∞ 

= 2�� Res(e���, ��). 

All that’s left is to compute the residues and do some arithmetic. We don’t show the calculations,
but give the results 

e−�� Res(e����(�), −1) = 
2(� − �) 

e�� Res(e����(�), 1) = −
2(� + �) 

e−�� Res(e����(�), ��) = − 
�(1 + �2) 

We get, for � > 0, 
∞ 1 �(�) = p.v. ∫ 
�̂(�)e��� �� 

2� −∞ 
� Res(e����(�), −1) + 

� Res(e����(�), 1) + � Res(e����(�), ��) = 
2 2 
�−�� � 1 = + sin(�) − cos(�). 
1 + �2 1 + �2 1 + �2 
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Topic 10 Notes
Jeremy Orloff 

10 Conformal transformations 

10.1 Introduction 

In this topic we will look at the geometric notion of conformal maps. It will turn out that analytic
functions are automatically conformal. Once we have understood the general notion, we will look
at a specific family of conformal maps called fractional linear transformations and, in particular at
their geometric properties. As an application we will use fractional linear transformations to solve
the Dirichlet problem for harmonic functions on the unit disk with specified values on the unit circle.
At the end we will return to some questions of fluid flow. 

10.2 Geometric definition of conformal mappings 

We start with a somewhat hand-wavy definition: 

Informal definition. Conformal maps are functions on � that preserve the angles between curves. 

More precisely: Suppose � (�) is differentiable at �0 and �(�) is a smooth curve through �0. To be 
concrete, let’s suppose �(�0) = �0. The function maps the point �0 to �0 = � (�0) and the curve � to 

�̃(�) = � (�(�)). 

Under this map, the tangent vector � ′(�0) at �0 is mapped to the tangent vector 

�̃ ′(�0) = (� ◦�)′(�0) 

at �0. With these notations we have the following definition. 

Definition. The function � (�) is conformal at �0 if there is an angle � and a scale � > 0 such that 
for any smooth curve �(�) through �0 the map � rotates the tangent vector at �0 by � and scales it by 
�. That is, for any � , the tangent vector (� ◦�)′(�0) is found by rotating � ′(�0) by � and scaling it by 
�. 

If � (�) is defined on a region �, we say it is a conformal map on � if it is conformal at each point � 
in �. 

Note. The scale factor � and rotation angle � depends on the point �, but not on any of the curves 
through �. 

Example 10.1. The figure below shows a conformal map � (�) mapping two curves through �0 to 
two curves through �0 = � (�0). The tangent vectors to each of the original curves are both rotated 
and scaled by the same amount. 

1 
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x

y

γ′
1(t0)

γ1(t)

γ′
2(t0)

γ2(t)

z0

u

v

(f ◦ γ1)′(t0)

f(γ1(t))

(f ◦ γ2)′(t0)
f(γ2(t))

w0

z 7→ w = f(z)

w0 = f(z0)

A conformal map rotates and scales all tangent vectors at �0 by the same ammount. 

Remark 1. Conformality is a local phenomenon. At a different point �1 the rotation angle and scale 
factor might be different. 

Remark 2. Since rotations preserve the angles between vectors, a key property of conformal maps 
is that they preserve the angles between curves. 

Example 10.2. Recall that way back in Topic 1 we saw that � (�) = �2 maps horizontal and vertical 
grid lines to mutually orthogonal parabolas. We will see that � (�) is conformal. So, the orthogonality
of the parabolas is no accident. The conformal map preserves the right angles between the grid lines. 

x

y

u

v

z 7→ w = z2

10.3 Tangent vectors as complex numbers 

In 18.02, you used parametrized curves �(�) = (�(�), �(�)) in the ��-plane. Considered this way, the 
tangent vector is just the derivative: 

� ′(�) = (� ′(�), � ′(�)). 

Note, as a vector, (� ′ , � ′) represents a displacement. If the vector starts at the origin, then the endpoint 
is at (� ′ , � ′). More typically we draw the vector starting at the point �(�). 
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In 18.04, we use parametrized curves �(�) = �(�) + ��(�) in the complex plane. Considered this way, 
the tangent vector is just the derivative: 

� ′(�) = � ′(�) + �� ′(�). 

It should be clear that these representations are equivalent. The vector (� ′ , � ′) and the complex 
number � ′ + �� ′ both represent the same displacement. Also, the length of a vector and the angle
between two vectors is the same in both representations. 

Thinking of tangent vectors to curves as complex numbers allows us to recast conformality in terms
of complex numbers. 

Theorem 10.3. If � (�) is conformal at �0 then there is a complex number � = �e�� such that the 
map � multiplies tangent vectors at �0 by �. Conversely, if the map � multiplies all tangent vectors 
at �0 by � = �e�� then � is conformal at �0. 

Proof. By definition � is conformal at �0 means that there is an angle � and a scalar � > 0 such 
that the map � rotates tangent vectors at �0 by � and scales them by �. This is exactly the effect of 
multiplication by � = �e��. 

10.4 Analytic functions are conformal 

Theorem 10.4. (Operational definition of conformal) If � is analytic on the region � and � ′(�0) ≠ 0, 
then � is conformal at �0. Furthermore, the map � multiplies tangent vectors at �0 by � ′(�0). 

Proof. The proof is a quick computation. Suppose � = �(�) is curve through �0 with �(�0) = �0. The 
curve �(�) is transformed by � to the curve � = � (�(�)). By the chain rule we have 

�� (�(�)) 
= � ′(�(�0))� ′(�0) = � ′(�0)� ′(�0). �� |�0 

The theorem now follows from Theorem 10.3. 

Example 10.5. (Basic example) Suppose � = �e�� and consider the map � (�) = ��. Geometrically, 
this map rotates every point by � and scales it by �. Therefore, it must have the same effect on all 
tangent vectors to curves. Indeed, � is analytic and � ′(�) = � is constant. 

Example 10.6. Let � (�) = �2. So � ′(�) = 2�. Thus the map � has a different affect on tangent 
vectors at different points �1 and �2. 

Example 10.7. (Linear approximation) Suppose � (�) is analytic at � = 0. The linear approximation 
(first two terms of the Taylor series) is 

� (�) ≈ � (0) + � ′(0)�. 

If �(�) is a curve with �(�0) = 0 then, near �0, 

� (�(�)) ≈ � (0) + � ′(0)�(�). 

That is, near 0, � looks like our basic example plus a shift by � (0). 

Example 10.8. The map � (�) = � has lots of nice geometric properties, but it is not conformal. It
preserves the length of tangent vectors and the angle between tangent vectors. The reason it isn’t 
conformal is that is does not rotate tangent vectors. Instead, it reflects them across the �-axis. 

In other words, it reverses the orientation of a pair of vectors. Our definition of conformal maps 
requires that it preserves orientation. 
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10.5 Digression to harmonic functions 

Theorem 10.9. If � and � are harmonic conjugates and � = � + �� has � ′(�0) ≠ 0, then the level 
curves of � and � through �0 are orthogonal. 

Note. We proved this in an earlier topic using the Cauchy-Riemann equations. Here will make an
argument involving conformal maps. 

Proof. First we’ll examine how � maps the level curve �(�, �) = �. Since � = � + ��, the image of 
the level curve is � = � + ��, i.e it’s (contained in) a vertical line in the �-plane. Likewise, the level 
curve �(�, �) = � is mapped to the horizontal line � = � + ��. 

Thus, the images of the two level curves are orthogonal. Since � is conformal it preserves the angle 
between the level curves, so they must be orthogonal. 

x

y

u = a
v = b

z0

u

v
u = a

v = b
w0

z 7→ w = g(z) = u(x, y) + iv(x, y)

w0 = g(z0)

� = � + �� maps level curves of � and � to grid lines. 

10.6 Riemann mapping theorem 

The Riemann mapping theorem is a major theorem on conformal maps. The proof is fairly technical
and we will skip it. In practice, we will write down explicit conformal maps between regions. 

Theorem 10.10. (Riemann mapping theorem) If � is simply connected and not the whole plane, 
then there is a bijective conformal map from � to the unit disk. 

Corollary. For any two such regions there is a bijective conformal map from one to the other. We 
say they are conformally equivalent. 

10.7 Fractional linear transformations 

Definition. A fractional linear transformation is a function of the form 

�� + � � (�) = , where �, �, �, � are complex constants and �� − �� ≠ 0 
�� + � 

These are also called Mobius transforms or bilinear transforms. We will abbreviate fractional linear 
transformation as FLT. 

Simple point. If �� − �� = 0 then � (�) is a constant function. 
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Proof. The full proof requires that we deal with all the cases where some of the coefficients are 0.
We’ll give the proof assuming � ≠ 0 and leave the case � = 0 to you. Assuming � ≠ 0, the condition 
�� − �� = 0 implies 

� (�, �) = (�, �). 
� 

So, 
(�∕�)(�� + �) � � (�) = = . 

�� + � � 
That is, � (�) is constant. 

Extension to ∞. It will be convenient to consider linear transformations to be defined on the ex-
tended complex plane � ∪ {∞} by defining {

�∕� if � ≠ 0 
� (∞) = 

∞ if � = 0 

� (−�∕�) = ∞ if � ≠ 0. 

10.7.1 Examples 

Example 10.11. (Scale and rotate) Let � (�) = ��. If � = � is real this scales the plane. If � = e�� it 
rotates the plane. If � = �e�� it does both at once. 

x

y

−1−2 1 2

−i

i

2i

u

v

−2 −1 1 2

−i

i

2i
z 7→ w = az

a = reiθ

Multiplication by � = �e�� scales by � and rotates by � 

Note that � is the fractional linear transformation with coefficients [ ] [ ] 
� � � 0 = . � � 0 1 

(We’ll see below the benefit of presenting the coefficients in matrix form!) 

Example 10.12. (Scale and rotate and translate) Let � (�) = �� + �. Adding the � term introduces a 
translation to the previous example. 

x

y

−1−2 1 2

−i

i

2i

u

v

−2 −1 1 2

−i

i

2i
z 7→ w = az + b

The map � = �� + � scales, rotates and shifts the square. 
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Note that � is the fractional linear transformation with coefficients [ ] [ ] 
� � � � = . � � 0 1 

Example 10.13. (Inversion) Let � (�) = 1∕�. This is called an inversion. It turns the unit circle 
inside out. Note that � (0) = ∞ and � (∞) = 0. In the figure below the circle that is outside the unit 
circle in the � plane is inside the unit circle in the � plane and vice-versa. Note that the arrows on 
the curves are reversed. 

x

y

1

i

u

v

1

i

z 7→ w = 1/z

The map � = 1∕� inverts the plane. 

Note that � is the fractional linear transformation with coefficients [ ] [ ] 
� � 0 1 = . � � 1 0 

Example 10.14. Let 
� − � � (�) = . 
� + � 

We claim that this maps the �-axis to the unit circle and the upper half-plane to the unit disk. 

Proof. First take � real, then √ 
� − � �2 + 1 |� (�)| = |� + �| = √ = 1. 

�2 + 1 

So, � maps the �-axis to the unit circle. 

Next take � = � + �� with � > 0, i.e. � in the upper half-plane. Clearly 

|� + 1| > |� − 1|, 
so |� + �| = |� + �(� + 1)| > |� + �(� − 1)| = |� − �|, 
implying that 

� − � |� (�)| = |� + �| < 1. 

So, � maps the upper half-plane to the unit disk. 

We will use this map frequently, so for the record we note that 

� (�) = 0, � (∞) = 1, � (−1) = �, � (0) = −1, � (1) = −�. 
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These computations show that the real axis is mapped counterclockwise around the unit circle start-
ing at 1 and coming back to 1. 

x

y

-1 0 1

i

u

v

1

i

−i

z 7→ w =
z − i

z + i

� − � The map � = maps the upper-half plane to the unit disk. 
� + � 

10.7.2 Lines and circles 

Theorem. A linear fractional transformation maps lines and circles to lines and circles. 

Before proving this, note that it does not say lines are mapped to lines and circles to circles. For 
example, in Example 10.14 the real axis is mapped the unit circle. You can also check that inversion 
� = 1∕� maps the line � = 1 + �� to the circle |� − 1∕2| = 1∕2. 

Proof. We start by showing that inversion maps lines and circles to lines and circles. Given � and 
� = 1∕� we define �, �, � and � by 

1 � − �� 
� = � + �� and � = = = � + �� 

� �2 + �2 

So, 
� = 

� and � = − 
� 

�2 + �2 �2 + �2 
. 

Now, every circle or line can be described by the equation 

�� + �� + �(�2 + �2) = � 

(If � = 0 it descibes a line, otherwise a circle.) We convert this to an equation in �, � as follows. 

�� + �� + �(�2 + �2) = � 

�� �� � 
⇔ + + � = 

�2 + �2 �2 + �2 �2 + �2 

⇔ �� − �� + � = �(�2 + �2). 

In the last step we used the fact that 

�2 + �2 = |�|2 = 1∕|�|2 = 1∕(�2 + �2). 

We have shown that a line or circle in �, � is transformed to a line or circle in �, �. This shows that 
inversion maps lines and circles to lines and circles. 

We note that for the inversion � = 1∕�. 
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1. Any line not through the origin is mapped to a circle through the origin. 

2. Any line through the origin is mapped to a line through the origin. 

3. Any circle not through the origin is mapped to a circle not through the origin. 

4. Any circle through the origin is mapped to a line not through the origin. 

Now, to prove that an arbitrary fractional linear transformation maps lines and circles to lines and
circles, we factor it into a sequence of simpler transformations. 

First suppose that � = 0. So, 
� (�) = (�� + �)∕�. 

Since this is just translation, scaling and rotating, it is clear it maps circles to circles and lines to
lines. 

Now suppose that � ≠ 0. Then, 

� (�� + �) + � − �� 
�� + � � � � � − ��∕� 

� (�) = = = + 
�� + � �� + � � �� + � 

So, � = � (�) can be computed as a composition of transforms 

� → �1 = �� + � → �2 = 1∕�1 → � = 
� + (� − ��∕�)�2 � 

We know that each of the transforms in this sequence maps lines and circles to lines and circles.
Therefore the entire sequence does also. □ 

10.7.3 Mapping �� to �� 

It turns out that for two sets of three points �1, �2, �3 and �1, �2, �3 there is a fractional linear 
transformation that takes �� to �� . We can construct this map as follows. 

Let 
(� − �1)(�2 − �3) �1(�) = 
(� − �3)(�2 − �1)

. 

Notice that 
�1(�1) = 0, �1(�2) = 1, �1(�3) = ∞. 

Likewise let 
(� − �1)(�2 − �3) �2(�) = 
(� − �3)(�2 − �1)

. 

Notice that 
�2(�1) = 0, �2(�2) = 1, �2(�3) = ∞. 

Now � (�) = � −1◦�1(�) is the required map. 2 
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10.7.4 Correspondence with matrices 

We can identify the transformation 
�� + � � (�) = 
�� + � 

with the matrix [ ] 
� � . � � 

This identification is useful because of the following algebraic facts.[ ] [ ] 
� � � � 1. If � ≠ 0 then and � correspond to the same FLT. � � � � 

Proof. This follows from the obvious equality 

�� + � ��� + �� = . 
�� + � ��� + �� [ ] [ ] 

� � � � 2. If � (�) corresponds to � = and �(�) corresponds to � = then composition � � � ℎ 
� ◦�(�) corresponds to matrix multiplication ��. 

Proof. The proof is just a bit of algebra. ( ) 
�� + � � ((�� + � )∕(�� + ℎ)) + � (�� + ��)� + �� + �ℎ 

� ◦�(�) = � = = 
�� + ℎ � ((�� + � )∕(�� + ℎ)) + � (�� + ��)� + �� + �ℎ [ ] [ ] [ ] 

� � � � �� + �� �� + �ℎ �� = = � � � ℎ �� + �� �� + �ℎ 

The claimed correspondence is clear from the last entries in the two lines above.[ ] 
� � 3. If � (�) corresponds to � = then � has an inverse and � −1(�) corresponds to �−1 and � � [ ] 

� −� also to , i.e. to �−1 without the factor of 1∕ det(�). −� � 

Proof. Since ��−1 = � it is clear from the previous fact that � −1 corresponds to �−1. Since [ ] 
1 � −� �−1 = 

�� − �� −� � [ ] 
� −� Fact 1 implies �−1 and both correspond to the same FLT, i.e. to � −1. −� � 

Example 10.15. [ ] 
� � 1. The matrix 0 1 

corresponds to � (�) = �� + �. [ ] 
e�� 

2. The matrix e−
0 
�� corresponds to rotation by 2�. 0 [ ] 

0 1 3. The matrix 1 0 
corresponds to the inversion � = 1∕�. 
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10.8 Reflection and symmetry 

10.8.1 Reflection and symmetry in a line 

Example 10.16. Suppose we have a line � and a point �1 not on �. The reflection of �1 in � is the 
point �2 so that � is the perpendicular bisector to the line segment �1�2. Since there is exactly one 
such point �2, the reflection of a point in a line is unique. 

Definition. If �2 is the reflection of �1 in �, we say that �1 and �2 are symmetric with respect to the 
line �. 

In the figure below the points �1 and �2 are symmetric in the �-axis. The points �3 and �4 are 
symmetric in the line �. 

x

y

z1

z2

a

a

S
z3

z4

b

b

In order to define the reflection of a point in a circle we need to work a little harder. Looking back 
at the previous example we can show the following. 

Fact. If �1 and �2 are symmetric in the line �, then any circle through �1 and �2 intersects � 
orthogonally. 

Proof. Call the circle � . Since � is the perpendicular bisector of a chord of � , the center of � lies 
on �. Therefore � is a radial line, i.e. it intersects � orthogonally. 

x

y

z1

z2

a

a

S
z3

z4

b

b

Circles through symmetric points intersect the line at right angles. 
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10.8.2 Reflection and symmetry in a circle 

We will adapt this for our definition of reflection in a circle. So that the logic flows correctly we 
need to start with the definition of symmetric pairs of points. 

Definition. Suppose � is a line or circle. A pair of points �1, �2 is called symmetric with respect to 
� if every line or circle through the two points intersects � orthogonally. 

First we state an almost trivial fact. 

Fact. Fractional linear transformations preserve symmetry. That is, if �1 and �2 are symmetric in a 
line or circle �, then, for an FLT � , � (�1) and � (�2) are symmetric in � (�). 

Proof. The definition of symmetry is in terms of lines and circles, and angles. Fractional linear 
transformations map lines and circles to lines and circles and, being conformal, preserve angles. □ 

Theorem. Suppose � is a line or circle and �1 a point not on �. There is a unique point �2 such that 
the pair �1, �2 is symmetric in �. 

Proof. Let � be a fractional linear transformation that maps � to a line. We know that �1 = � (�1) 
has a unique reflection �2 in this line. Since � −1 preserves symmetry, �1 and �2 = � −1(�2) are 
symmetric in �. Since �2 is the unique point symmetric to �1 the same is true for �2 vis-a-vis �1. 
This is all shown in the figure below. 

x

y

z1 z2 = T−1(w2)

S

x

y

w1 = T (z1) w2

T (S)

w = T (z)

We can now define reflection in a circle. 

Definition. The point �2 in the theorem is called the reflection of �1 in �. 

10.8.3 Reflection in the unit circle 

Using the symmetry preserving feature of fractional linear transformations, we start with a line and
transform to the circle. Let � be the real axis and � the unit circle. We know the FLT 

� − � � (�) = 
� + � 

maps � to � . We also know that the points � and � are symmetric in �. Therefore 

� − � � − � �1 = � (�) = and �2 = � (�) = 
� + � � + � 

are symmetric in �. Looking at the formulas, it is clear that �2 = 1∕�1. This is important enough 
that we highlight it as a theorem. 

Theorem. (Reflection in the unit circle) The reflection of � = � + �� = �e�� in the unit circle is 

e�� 1 � � + �� 
= = = . 

� |�|2 �2 + �2 � 



10 CONFORMAL TRANSFORMATIONS 12 

The calculations from 1∕� are all trivial. 

Notes. 

1. It is possible, but more tedious and less insightful, to arrive at this theorem by direct calcula-
tion. 

2. If � is on the unit circle then 1∕� = �. That is, � is its own reflection in the unit circle –as it 
should be. 

3. The center of the circle 0 is symmetric to the point at ∞. 

The figure below shows three pairs of points symmetric in the unit circle: 

1 1 + � −2 + � �1 = 2; �1 = �2 = 1 + �; �2 = , �3 = −2 + �; �3 = . 
2
, 

2 5 

x

y

1

i

z1w1

z2

w2

z3

w3

Pairs of points �� ; �� symmetric in the unit circle. 

Example 10.17. Reflection in the circle of radius �. Suppose � is the circle |�| = � and �1 is a 
point not on �. Find the reflection of �1 in �. 

Solution: Our strategy is to map � to the unit circle, find the reflection and then map the unit circle 
back to �. 

Start with the map � (�) = � = �∕�. Clearly � maps � to the unit circle and 

�1 = � (�1) = �1∕�. 

The reflection of �1 is 
�2 = 1∕�1 = �∕�1. 

Mapping back from the unit circle by � −1 we have 

�2 = � −1(�2) = ��2 = �2∕�1. 

Therefore the reflection of �1 is �2∕�1. 
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Here are three pairs of points symmetric in the circle of radius 2. Note, that this is the same figure
as the one above with everything doubled. 

−4 + 2� �1 = 4; �1 = 1, �2 = 2 + 2�; �2 = 1 + �, �3 = −4 + 2�; �3 = . 
5 

x

y

1

i

z1w1

z2

w2

z3

w3

Pairs of points �� ; �� symmetric in the circle of radius 2. 

Example 10.18. Find the reflection of �1 in the circle of radius � centered at �. 

Solution: Let � (�) = (� − �)∕�. � maps the circle centered at � to the unit circle. The inverse map 
is 

� −1(�) = �� + �. 

So, the reflection of �1 is given by mapping � to � (�), reflecting this in the unit circle, and mapping 
back to the original geometry with � −1. That is, the reflection �2 is 

�1 − � � �2 
�1 → → → �2 = + �. 

� �1 − � �1 − � 

We can now record the following important fact. 

Fact. (Reflection of the center) For a circle � with center � the pair �, ∞ is symmetric with respect 
to the circle. 

Proof. This is an immediate consequence of the formula for the reflection of a point in a circle. For
example, the reflection of � in the unit circle is 1∕�. So, the reflection of 0 is infinity. 

Example 10.19. Show that if a circle and a line don’t intersect then there is a pair of points �1, �2 
that is symmetric with respect to both the line and circle. 

Solution: By shifting, scaling and rotating we can find a fractional linear transformation � that maps
the circle and line to the following configuration: The circle is mapped to the unit circle and the line
to the vertical line � = � > 1. 

x

y

a1/r r1
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For any real �, �1 = � and �2 = 1∕� are symmetric in the unit circle. We can choose a specific � so 
that � and 1∕� are equidistant from �, i.e. also symmetric in the line � = �. It is clear geometrically 
that this can be done. Algebraically we solve the equation √ √ � + 1∕� 1 = � ⇒ �2 − 2�� + 1 = 0 ⇒ � = � + �2 − 1 ⇒ = � − �2 − 1. 

2 � √ √ 
Thus �1 = � −1(� + �2 − 1) and �2 = � −1(� − �2 − 1) are the required points. 

Example 10.20. Show that if two circles don’t intersect then there is a pair of points �1, �2 that is 
symmetric with respect to both circles. 

Solution: Using a fractional linear transformation that maps one of the circles to a line (and the other
to a circle) we can reduce the problem to that in the previous example. 

Example 10.21. Show that any two circles that don’t intersect can be mapped conformally to con-
centric circles. 

Solution: Call the circles �1 and �2. Using the previous example start with a pair of points �1, �2 
which are symmetric in both circles. Next, pick a fractional linear transformation � that maps �1 to 
0 and �2 to infinity. For example, 

� − �1 � (�) = . 
� − �2 

Since � preserves symmetry 0 and ∞ are symmetric in the circle � (�1). This implies that 0 is the 
center of � (�1). Likewise 0 is the center of � (�2). Thus, � (�1) and � (�2) are concentric. 

10.9 Solving the Dirichlet problem for harmonic functions 

In general, a Dirichlet problem in a region � asks you to solve a partial differential equation in � 
where the values of the solution on the boundary of � are specificed. 

Example 10.22. Find a function � harmonic on the unit disk such that {
1 for 0 < � < � 

�(e��) = 
0 for −� < � < 0 

This is a Dirichlet problem because the values of � on the boundary are specified. The partial differ-
ential equation is implied by requiring that � be harmonic, i.e. we require ∇2� = 0. We will solve 
this problem in due course. 

10.9.1 Harmonic functions on the upper half-plane 

Our strategy will be to solve the Dirichlet problem for harmonic functions on the upper half-plane
and then transfer these solutions to other domains. 

Example 10.23. Find a harmonic function �(�, �) on the upper half-plane that satisfies the boundary 
condition {

1 for � < 0 
�(�, 0) = 

0 for � > 0 
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Solution: We can write down a solution explicitly as 

1 �(�, �) = �, 
� 

where � is the argument of � = � + ��. Since we are only working on the upper half-plane we can
take any convenient branch with branch cut in the lower half-plane, say −�∕2 < � < 3�∕2. 

x

y

u = 1 u = 0

z = x+ iy

r2r1

θ

To show � is truly a solution, we have to verify two things: 

1. � satisfies the boundary conditions 

2. � is harmonic. 

) 

Both of these are straightforward. First, look at the point �2 on the positive �-axis. This has argument 
� = 0, so �(�2, 0) = 0. Likewise arg(�1) = �, so �(�1, 0) = 1. Thus, we have shown point (1). 

To see point (2) remember that 
log(�) = log(�) + ��. 

So, ( 1 � = Re log(�) 
�� 

Since it is the real part of an analytic function, � is harmonic. 

. 

Example 10.24. Suppose �1 < �2 < �3. Find a harmonic function � on the upper half-plane that 
satisfies the boundary condition 

�(�, 0) = 

⎧ ⎪⎪⎨⎪⎪⎩ 

�0 for � < �1 

�1 for �1 < � < �2 

�2 for �2 < � < �3 

�3 for �3 < � 

Solution: We mimic the previous example and write down the solution 

�3 �2 �1 �(�, �) = �3 + (�2 − �3) + (�1 − �2) + (�0 − �1) . 
� � � 

Here, the �� are the angles shown in the figure. One again, we chose a branch of � that has 0 < � < � 
for points in the upper half-plane. (For example the branch −�∕2 < � < 3�∕2.) 

x

y

x1 x2 x3

u = c0 u = c1 u = c2 u = c3

z = x+ iy

θ1 θ2 θ3

r0 r1 r2 r3
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To convince yourself that � satisfies the boundary condition test a few points: 

• At �3: all the �� = 0. So, �(�3, 0) = �3 as required. 

• At �2: �1 = �2 = 0, �3 = �. So, �(�2, 0) = �3 + �2 − �3 = �2 as required. 

• Likewise, at �1 and �0, � have the correct values. 

As before, � is harmonic because it is the real part of the analytic function 

(�2 − �3) (�1 − �2) (�1 − �0) Φ(�) = �3 + log(� − �3) + log(� − �2) + log(� − �1). �� �� �� 

10.9.2 Harmonic functions on the unit disk 

Let’s try to solve a problem similar to the one in Example 10.22. 

Example 10.25. Find a function � harmonic on the unit disk such that { 

�(e��) = 
1 for −�∕2 < � < �∕2 

0 for �∕2 < � < 3�∕2 

x

y

i

−i

u = 1u = 0
z

Solution: Our strategy is to start with a conformal map � from the upper half-plane to the unit disk.
We can use this map to pull the problem back to the upper half-plane. We solve it there and then
push the solution back to the disk. 

Let’s call the disk �, the upper half-plane � . Let � be the variable on � and � the variable on � . 
Back in Example 10.14 we found a map from � to �. The map and its inverse are 

� − � �� + � � = � (�) = , � = � −1(�) = 
� + � −� + 1

. 

Re(z)

Im(z)

i

−i

u = 1u = 0
z

Re(w)

Im(w)

−1 1

ϕ = 1 ϕ = 1

ϕ = 0

w

θ1 θ2

w = T−1(z) = iz+i
−z+1

z = T (w) = w−i
w+i

The function � on � is transformed by � to a function � on � . The relationships are 

�(�) = �◦� −1(�) or �(�) = �◦� (�) 
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These relationships determine the boundary values of � from those we were given for �. We compute: 

� −1(�) = −1, � −1(−�) = 1, � −1(1) = ∞, � −1(−1) = 0. 

This shows the left hand semicircle bounding � is mapped to the segment [−1, 1] on the real axis. 
Likewise, the right hand semicircle maps to the two half-lines shown. (Literally, to the ‘segment’ 1 
to ∞ to −1.) 

We know how to solve the problem for a harmonic function � on � : ( ) 1 �(�) = 1 − 
1 �2 + �1 = Re 1 − 

1 log(� − 1) + 
1 log(� + 1) . 

� � �� �� 
Transforming this back to the disk we have ( ) 

�(�) = �◦� −1(�) = Re 1 − 
1 log(� −1(�) − 1) + 

1 log(� −1(�) + 1) . 
�� �� 

If we wanted to, we could simplify this somewhat using the formula for � −1. 

10.10 Flows around cylinders 

10.10.1 Milne-Thomson circle theorem 

The Milne-Thomson theorem allows us to insert a circle into a two-dimensional flow and see how 
the flow adjusts. First we’ll state and prove the theorem. 

Theorem. (Milne-Thomson circle theorem) If � (�) is a complex potential with all its singularities 
outside |�| = � then ( ) 

�2 
Φ(�) = � (�) + � 

� 

is a complex potential with streamline on |�| = � and the same singularities as � in the region |�| > �. 

Proof. First note that �2∕� is the reflection of � in the circle |�| = �. 

Next we need to see that � (�2∕�) is analytic for |�| > �. By assumption � (�) is analytic for |�| ≤ �, 
so it can be expressed as a Taylor series 

� (�) = �0 + �1� + �2�
2 +… (1) 

Therefore, ( ) ( )2 �2 �2 �2 
� = �0 + �1 + �2 +… (2) 

� � � 

All the singularities of � are outside |�| = �, so the Taylor series in Equation 1 converges for |�| ≤ �. This means the Laurent series in Equation 2 converges for |�| ≥ �. That is, � (�2∕�) is 
analytic for |�| ≥ �, i.e. it introduces no singularies to Φ(�) outside |�| = �. 

The last thing to show is that |�| = � is a streamline for Φ(�). This follows because for � = �e�� 

Φ(�e��) = � (�e��) + � (�e��) 

is real. Therefore 
�(�e��) = Im(Φ(�e��) = 0. 



10 CONFORMAL TRANSFORMATIONS 18 

10.10.2 Examples 

Think of � (�) as representing flow, possibly with sources or vortices outside |�| = �. Then Φ(�) 
represents the new flow when a circular obstacle is placed in the flow. Here are a few examples. 

Example 10.26. (Uniform flow around a circle) We know from Topic 6 that � (�) = � is the complex 
potential for uniform flow to the right. So, 

Φ(�) = � + �2∕� 

is the potential for uniform flow around a circle of radius � centered at the origin. 

Uniform flow around a circle 

Just because they look nice, the figure includes streamlines inside the circle. These don’t interact 
with the flow outside the circle. 

Note, that as � gets large flow looks uniform. We can see this analytically because 

Φ′(�) = 1 − �2∕�2 

goes to 1 as � gets large. (Recall that the velocity field is (��, ��), where Φ = � + �� . . . ) 

Example 10.27. (Source flow around a circle) Here the source is at � = −2 (outside the unit circle) 
with complex potential 

� (�) = log(� + 2). 

With the appropriate branch cut the singularities of � are also outside |�| = 1. So we can apply 
Milne-Thomson and obtain (1 ) 

Φ(�) = log(� + 2) + log + 2 
� 

Source flow around a circle 

We know that far from the origin the flow should look the same as a flow with just a source at � = −2. 
Let’s see this analytically. First we state a useful fact: 
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Useful fact. If �(�) is analytic then so is ℎ(�) = �(�) and ℎ ′(�) = � ′(�). 

Proof. Use the Taylor series for � to get the Taylor series for ℎ and then compare ℎ ′(�) and � ′(�). □ 

Using this we have 

Φ′(�) = 1 − 
1 

� + 2 �(1 + 2�) 
For large � the second term decays much faster than the first, so 

Φ′(�) ≈ 
1 

� + 2
. 

That is, far from � = 0, the velocity field looks just like the velocity field for � (�), i.e. the velocity 
field of a source at � = −2. 

Example 10.28. (Transforming flows) If we use 

�(�) = �2 

we can transform a flow from the upper half-plane to the first quadrant 

Source flow around a quarter circular corner 

10.11 Examples of conformal maps and excercises 

As we’ve seen, once we have flows or harmonic functions on one region, we can use conformal maps
to map them to other regions. In this section we will offer a number of conformal maps between
various regions. By chaining these together along with scaling, rotating and shifting we can build a
large library of conformal maps. Of course there are many many others that we will not touch on. 

For convenience, in this section we will let 

� − � �0(�) = . 
� + � 

This is our standard map of taking the upper half-plane to the unit disk. 

Example 10.29. Let �� be the half-plane above the line 

� = tan(�)�, 
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i.e., {(�, �) ∶ � > tan(�)�}. Find an FLT from �� to the unit disk. 

Solution: We do this in two steps. First use the rotation 

−��� �−�(�) = e 

to map �� to the upper half-plane. Follow this with the map �0. So our map is �0◦�−� (�). 

You supply the picture 

Example 10.30. Let � be the channel 0 ≤ � ≤ � in the ��-plane. Find a conformal map from � to 
the upper half-plane. 

Solution: The map � (�) = e� does the trick. (See the Topic 1 notes!) 

You supply the picture: horizontal lines get mapped to rays from the origin and vertical segments
in the channel get mapped to semicircles. 

Example 10.31. Let � be the upper half of the unit disk. Show that � −1 maps � to the second 
quadrant. 

0 

Solution: You supply the argument and figure. 

Example 10.32. Let � be the upper half of the unit disk. Find a conformal map from � to the upper 
half-plane. 

Solution: The map � −1(�) maps � to the second quadrant. Then multiplying by −� maps this to the 0
first quadrant. Then squaring maps this to the upper half-plane. In the end we have ( ( ))2 �� + � � (�) = −� . 

−� + 1 

You supply the sequence of pictures. 

Example 10.33. Let � be the infinite well {(�, �) ∶ � ≤ 0, 0 ≤ � ≤ �}. Find a conformal map 
from � to the upper half-plane. 

� 

� 

�� 

� 

Solution: The map � (�) = e� maps � to the upper half of the unit disk. Then we can use the map
from Example 10.32 to map the half-disk to the upper half-plane. 

You supply the sequence of pictures. 

Example 10.34. Show that the function 

� (�) = � + 1∕� 

maps the region shown below to the upper half-plane. 
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� 

� 
−1 1 

� 

Solution: You supply the argument and figures 
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Topic 11 Notes
Jeremy Orloff 

11 Argument Principle 

11.1 Introduction 

The argument principle (or principle of the argument) is a consequence of the residue theorem. It 
connects the winding number of a curve with the number of zeros and poles inside the curve. This 
is useful for applications (mathematical and otherwise) where we want to know the location of zeros
and poles. 

11.2 Principle of the argument 

Setup. 
� a simple closed curve, oriented in a counterclockwise direction. 
� (�) analytic on and inside � , except for (possibly) some finite poles inside (not on) � and some zeros 
inside (not on) � . 

Let �1, … , �� be the poles of � inside � . 
Let �1, … , �� be the zeros of � inside � . 
Write mult(��) = the multiplicity of the zero at ��. Likewise write mult(��) = the order of the pole 
at ��. 

We start with a theorem that will lead to the argument principle. 

Theorem 11.1. With the above setup (∑ ∑ ) � ′(�) 
�� = 2�� mult(��) − mult(��) . ∫� � (�) 

Proof. To prove this theorem we need to understand the poles and residues of � ′(�)∕� (�). With this 
in mind, suppose � (�) has a zero of order � at �0. The Taylor series for � (�) near �0 is 

� (�) = (� − �0)��(�) 

where �(�) is analytic and never 0 on a small neighborhood of �0. This implies 

� ′(�) �(� − �0)�−1�(�) + (� − �0)�� ′(�) 
= 

� (�) (� − �0)��(�) 
� � ′(�) 

= 
� − �0

+ 
�(�) 

Since �(�) is never 0, � ′(�)∕�(�) is analytic near �0. This implies that �0 is a simple pole of 
� ′(�)∕� (�) and ( ) 

� ′(�) 
Res , �0 = � = mult(�0). � (�) 

1 
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Likewise, if �0 is a pole of order � then the Laurent series for � (�) near �0 is 

� (�) = (� − �0)−��(�) 

where �(�) is analytic and never 0 on a small neighborhood of �0. Thus, 

� ′(�) �(� − �0)−�−1�(�) + (� − �0)−�� ′(�) 
= − 

� (�) (� − �0)−��(�) 
� � ′(�) 

= − + 
� − �0 �(�) 

Again we have that �0 is a simple pole of � ′(�)∕� (�) and ( ) 
� ′(�) 

Res , �0 = −� = −mult(�0). � (�) 

The theorem now follows immediately from the Residue Theorem: 

� ′(�) 
�� = 2��sum of the residues ∫� � (�) (∑ ∑ ) 

= 2�� mult(��) − mult(��) . 

Definition. We write �� ,� for the sum of multiplicities of the zeros of � inside � . Likewise for �� ,� . 
So the Theorem 11.1 says, 

′ 
�� = 2�� �� ,� − �� ,� . (1) 

� ∫� 

� ( ) 

Definition. Winding number. We have an intuition for what this means. We define it formally via 
Cauchy’s formula. If � is a closed curve then its winding number (or index) about �0 is defined as 

Ind(�, �0) =
1 1 ��. 
2�� ∫� � − �0 

(In class I’ll draw some pictures. You should draw a few now.) 

11.2.1 Mapping curves: � ◦� 

One of the key notions in this topic is mapping one curve to another. That is, if � = �(�) is a curve 
and � = � (�) is a function, then � = � ◦�(�) = � (�(�)) is another curve. We say � maps � to � ◦� . 
We have done this frequently in the past, but it is important enough to us now, so that we will stop
here and give a few examples. This is a key concept in the argument principle and you should make
sure you are very comfortable with it. 

Example 11.2. Let �(�) = e�� with 0 ≤ � ≤ 2� (the unit circle). Let � (�) = �2. Describe the curve 
� ◦� . 

Solution: Clearly � ◦�(�) = e2�� traverses the unit circle twice as � goes from 0 to 2�. 

Example 11.3. Let �(�) = �� with −∞ < � < ∞ (the �-axis). Let � (�) = 1∕(� + 1). Describe the 
curve � ◦�(�). 
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Solution: � (�) is a fractional linear transformation and maps the line given by � to the circle through 
the origin centered at 1∕2. By checking at a few points: 

1 1 + � 1 1 − � � (−�) = = , � (0) = 1, � (�) = = , � (∞) = 0. 
−� + 1 2 � + 1 2 

We see that the circle is traversed in a clockwise manner as � goes from −∞ to ∞. 

Re(z)

Im(z)

0

i = γ(1)

−i = γ(−1)

γ(t) = it

Re(w)

Im(w)

1 = f(0)

f(−i)

f(i)

f(∞) 1/2

f ◦ γ(t) = 1/(1 + it)

w = f(z) = 1
z+1

The curve � = �(�) = �� is mapped to � = � ◦�(�)) = 1∕(�� + 1). 

11.2.2 Argument principle 

You will also see this called the principle of the argument. 

Theorem 11.4. Argument principle. For � and � with the same setup as above 

� ′(�) ∫� � (�) 
�� = 2�� Ind(� ◦�, 0) = 2��(�� ,� − �� ,� ) (2) 

Proof. Theorem 11.1 showed that 

� ′(�) ∫� � (�) 
�� = 2��(��,� − ��,� ) 

So we need to show is that the integral also equals the winding number given. This is simply the 
change of variables � = � (�). With this change of variables the countour � = �(�) becomes � = 
� ◦�(�) and �� = � ′(�) �� so 

� ′(�) �� �� = ∫� ◦� 
= 2�� Ind(� ◦�, 0) ∫� � (�) � 

The last equality in the above equation comes from the definition of winding number. 

Note that by assumption � does not go through any zeros of � , so � = � (�(�)) is never zero and 1∕� 
in the integral is not a problem. 

Here is an easy corollary to the argument principle that will be useful to us later. 

Corollary. Assuming that � ◦� does not go through −1, i.e. there are no zeros of 1+ � (�) on � then 

′ � 
= 2�� Ind(� ◦�, −1) = 2��(�1+� ,� − �� ,� ). (3) 

� + 1 ∫� 
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Proof. Applying the argument principle in Equation 2 to the function 1 + � (�), we get 

(1 + � )′(�) ∫� 1 + � (�) 
�� = 2�� Ind(1 + � ◦�, 0) = 2��(�1+� ,� − �1+� ,� ) 

Now, we can compare each of the terms in this equation to those in Equation 3: 

(1 + � )′(�) � ′(�) 
�� = ∫� 

�� (because (1 + � )′ = � ′) ∫� 1 + � (�) 1 + � (�) 
Ind(1 + � ◦�, 0) = Ind(� ◦�, −1) (1 + � winds around 0 ⇔ � winds around -1) 

�1+� ,� = �1+� ,� (same in both equations) 
�1+� ,� = �� ,� (poles of � = poles of 1 + � ) 

Example 11.5. Let � (�) = �2+� Find the winding number of � ◦� around 0 for each of the following 
curves. 

1. �1 = circle of radius 2. 
2. �2 = circle of radius 1/2. 
3. �3 = circle of radius 1. 

answers. � (�) has zeros at 0, −1. It has no poles. 

So, � has no poles and two zeros inside �1. The argument principle says Ind(� ◦�1, 0) = ��,�1 − 
�� ,� = 2 

Likewise � has no poles and one zero inside �2, so Ind(� ◦�2, 0) = 1 − 0 = 1 

For �3 a zero of � is on the curve, i.e. � (−1) = 0, so the argument principle doesn’t apply. The 
image of �3 is shown in the figure below – it goes through 0. 

Re(z)

Im(z)

γ1

γ2
γ3

21
2

1
Re(w)

Im(w)

w = f(z) = z2 + z

The image of 3 different circles under � (�) = �2 + �. 

11.2.3 Rouché’s theorem. 

Theorem 11.6. Rouchés theorem. Make the following assumptions: 
� is a simple closed curve 
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�, ℎ are analytic functions on and inside � , except for some finite poles. 
There are no poles of � and ℎ on � . |ℎ| < |� | everywhere on � . 

Then 
Ind(� ◦�, 0) = Ind((� + ℎ)◦�, 0). 

That is, 
�� ,� − �� ,� = �� +ℎ,� − �� +ℎ,� (4) 

Proof. In class we gave a heuristic proof involving a person walking a dog around � ◦� on a leash of 
length ℎ◦� . Here is the analytic proof. 

The argument principle requires the function to have no zeros or poles on � . So we first show that 
this is true of � , � + ℎ, (� + ℎ)∕� . The argument is goes as follows. 

Zeros: The fact that 0 ≤ |ℎ| < |� | on � implies � has no zeros on � . It also implies � + ℎ has no 
zeros on � , since the value of ℎ is never big enough to cancel that of � . Since � and � + ℎ have no 
zeros, neither does (� + ℎ)∕� . 

Poles: By assumption � and ℎ have no poles on � , so � + ℎ has no poles there. Since � has no zeros 
on � , (� + ℎ)∕� has no poles there. 

Now we can apply the argument principle to � and � + ℎ 

′ � 1 �� = Ind(� ◦�, 0) = �� ,� − �� ,� . (5) 
2�� ∫� � 

1 (� + ℎ)′ 
�� = Ind((� + ℎ)◦�, 0) = �� +ℎ,� − �� +ℎ,� . (6) 

2�� ∫� � + ℎ ( ) 
ℎ ℎ � + ℎ 

Next, by assumption < 1, so ◦� is inside the unit circle. . This means that 1+ 
ℎ = |� | � � � 

maps � to the inside of the unit disk centered at 1. (You should draw a figure for this.) This implies 
that (( ) ) 

� + ℎ 
Ind ◦�, 0 = 0. 

� 

� + ℎ � ′ 
Let � = . The above says Ind(�◦�, 0) = 0. So, ∫� 

�� = 0. (We showed above that � has 
� � 

no zeros or poles on � .) 
′ (� + ℎ)′ � 

Now, it’s easy to compute that 
� ′

= − . So, using 
� � + ℎ � 

′ � ′ (� + ℎ)′ � 
Ind(�◦�, 0) = ∫� 

�� = ∫� 
�� − ∫� 

�� = 0 ⇒ Ind((� + ℎ)◦�, 0) = Ind(� ◦�, 0). 
� � + ℎ � 

Now equations 5 and 6 tell us ��,� − �� ,� = �� +ℎ,� − �� +ℎ,� , i.e. we have proved Rouchés theorem. 

Corollary. Under the same hypotheses, If ℎ and � are analytic (no poles) then 

�� ,� = �� +ℎ,� . 
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Proof. Since the functions are analytic �� ,� and �� +ℎ,� are both 0. So Equation 4 shows �� = �� +ℎ. 
QED. 

We think of ℎ as a small perturbation of � . 

Example 11.7. Show all 5 zeros of �5 + 3� + 1 are inside the curve �2 ∶ |�| = 2. 

Solution: Let � (�) = �5 and ℎ(�) = 3� +1. Clearly all 5 roots of � (really one root with multiplicity 
5) are inside �2. Also clearly, |ℎ| < 7 < 32 = |� | on �2. The corollary to Rouchés theorem says all 
5 roots of � + ℎ = �5 + 3� + 1 must also be inside the curve. 

Example 11.8. Show � + 3 + 2e� has one root in the left half-plane. 

Solution: Let � (�) = � + 3, ℎ(�) = 2e�. Consider the contour from −�� to �� along the �-axis and 
then the left semicircle of radius � back to −��. That is, the contour �1 + �� shown below. 

Re(z)

Im(z)

iR

−iR

CR

C1

To apply the corollary to Rouchés theorem we need to check that (for � large) |ℎ| < |� | on �1 + ��. 
On �1, � = ��, so |� (�)| = |3 + ��| ≥ 3, |ℎ(�)| = 2|e��| = 2. 

So |ℎ| < |� | on �1. 

On ��, � = � + �� with � < 0 and |�| = �. So, 

|� (�)| > � − 3 for � large, |ℎ(�)| = 2|e�+��| = 2e� < 2 (since � < 0). 

So |ℎ| < |� | on ��. 

The only zero of � is at � = −3, which lies inside the contour. 

Therefore, by the Corollary to Rouchés theorem, � + ℎ has the same number of roots as � inside 
the contour, that is 1. Now let � go to infinity and we see that � + ℎ has only one root in the entire 
half-plane. 

Theorem. Fundamental theorem of algebra. 

Rouchés theorem can be used to prove the fundamental theorem of algebra as follows. 

Proof. Let 
� (�) = �� + ��−1�

�−1 +…+ �0 

be an �th order polynomial. Let � (�) = �� and ℎ = � − � . Choose an � such that � > 
max(1, �|��−1|, … , �|�0|). Then on |�| = � we have 

� � ��−1 + ��−2 +…+ < �� |ℎ| ≤ |��−1|��−1 + |��−2|��−2 +…+ |�0| ≤ 
� . 
� � � 
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On |�| = � we have |� (�)| = ��, so we have shown |ℎ| < |� | on the curve. Thus, the corollary to 
Rouchés theorem says � + ℎ and � have the same number of zeros inside |�| = �. Since we know 
� has exactly � zeros inside the curve the same is true for the polynomial � + ℎ. Now let � go to 
infinity, we’ve shown that � + ℎ has exactly � zeros in the entire plane. 

Note. The proof gives a simple bound on the size of the zeros: they are all have magnitude less than
or equal to max(1, �|��−1|, … , �|�0|). 
11.3 Nyquist criterion for stability 

The Nyquist criterion is a graphical technique for telling whether an unstable linear time invariant
system can be stabilized using a negative feedback loop. We will look a little more closely at such
systems when we study the Laplace transform in the next topic. For this topic we will content 
ourselves with a statement of the problem with only the tiniest bit of physical context. 

Note. You have already encountered linear time invariant systems in 18.03 (or its equivalent) when
you solved constant coefficient linear differential equations. 

11.3.1 System functions 

A linear time invariant system has a system function which is a function of a complex variable. 
Typically, the complex variable is denoted by � and a capital letter is used for the system function. 

Let �(�) be such a system function. We will make a standard assumption that �(�) is meromorphic
with a finite number of (finite) poles. This assumption holds in many interesting cases. For example,
quite often �(�) is a rational function �(�)∕� (�) (� and � are polynomials). 

We will be concerned with the stability of the system. 

Definition. The system with system function �(�) is called stable if all the poles of � are in the left 
half-plane. That is, if all the poles of � have negative real part. 

The system is called unstable if any poles are in the right half-plane, i.e. have positive real part. 

For the edge case where no poles have positive real part, but some are pure imaginary we will call
the system marginally stable. This case can be analyzed using our techniques. For our purposes it 
would require and an indented contour along the imaginary axis. If we have time we will do the 
analysis. 

� Example 11.9. Is the system with system function �(�) = stable? 
(� + 2)(�2 + 4� + 5) 

Solution: The poles are −2, −2 ± �. Since they are all in the left half-plane, the system is stable. 
� Example 11.10. Is the system with system function �(�) = stable? 

(�2 − 4)(�2 + 4� + 5) 
Solution: The poles are ±2, −2 ± �. Since one pole is in the right half-plane, the system is unstable. 

� Example 11.11. Is the system with system function �(�) = stable? 
(� + 2)(�2 + 4) 

Solution: The poles are −2, ±2�. There are no poles in the right half-plane. Since there are poles on
the imaginary axis, the system is marginally stable. 

Terminology. So far, we have been careful to say ‘the system with system function �(�)’. From 
now on we will allow ourselves to be a little more casual and say ‘the system �(�)’. It is perfectly 
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clear and rolls off the tongue a little easier! 

11.3.2 Pole-zero diagrams 

We can visualize �(�) using a pole-zero diagram. This is a diagram in the �-plane where we put a 
small cross at each pole and a small circle at each zero. 

Example 11.12. Give zero-pole diagrams for each of the systems 

� � � �1(�) = , �2(�) = , �3(�) = 
(� + 2)(�2 + 4� + 5) (�2 − 4)(�2 + 4� + 5) (� + 2)(�2 + 4) 

Solution: These are the same systems as in the examples just above. We first note that they all have
a single zero at the origin. So we put a circle at the origin and a cross at each pole. 

Re(s)

Im(s)

x
x

x

G1(s)

1

i

Re(s)

Im(s)

x x
x

x

G2(s)

1

i

Re(s)

Im(s)

x

x

x

G3(s)

1

i

Pole-zero diagrams for the three systems. 

11.3.3 A bit about stability 

This is just to give you a little physical orientation. Given our definition of stability above, we could,
in principle, discuss stability without the slightest idea what it means for physical systems. 

The poles of �(�) correspond to what are called modes of the system. A simple pole at �1 corresponds 
to a mode �1(�) = e�1�. The system is stable if the modes all decay to 0, i.e. if the poles are all in the 
left half-plane. 

Physically the modes tell us the behavior of the system when the input signal is 0, but there are
initial conditions. A pole with positive real part would correspond to a mode that goes to infinity as 
� grows. It is certainly reasonable to call a system that does this in response to a zero signal (often
called ‘no input’) unstable. 

To connect this to 18.03: if the system is modeled by a differential equation, the modes correspond
to the homogeneous solutions �(�) = e��, where � is a root of the characteristic equation. In 18.03 we
called the system stable if every homogeneous solution decayed to 0. That is, if the unforced system
always settled down to equilibrium. 

11.3.4 Closed loop systems 

If the system with system function �(�) is unstable it can sometimes be stabilized by what is called a 
negative feedback loop. The new system is called a closed loop system. Its system function is given 
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by Black’s formula 
�(�) 

���(�) = (7) 
1 + ��(�)

, 

where � is called the feedback factor. We will just accept this formula. Any class or book on control 
theory will derive it for you. 

In this context �(�) is called the open loop system function. 

Since ��� is a system function, we can ask if the system is stable. 

Theorem. The poles of the closed loop system function ���(�) given in Equation 7 are the zeros 
of 1 + ��(�). 

Proof. Looking at Equation 7, there are two possible sources of poles for ���. 

1. The zeros of the denominator 1 + ��. The theorem recognizes these. 

2. The poles of �. Since � is in both the numerator and denominator of ��� it should be clear that 
the poles cancel. We can show this formally using Laurent series. If � has a pole of order � at �0 
then ( ) 

�(�) = 
1 �� + ��−1(� − �0) + … �0(� − �0)� + �1(� − �0)�+1 +… , 

(� − �0)� 

where �� ≠ 0. So, ( ) 1 �� + ��−1(� − �0) + … �0(� − �0)� +… (�−�0)� 

���(�) = ( ) � 1 + �� + ��−1(� − �0) + … �0(� − �0)� +… (�−�0)� ( ) 
�� + ��−1(� − �0) + … �0(� − �0)� +… 

= ( ) , 
(� − �0)� + � �� + ��−1(� − �0) + … �0(� − �0)� +… 

which is clearly analytic at �0. (At �0 it equals ��∕(���) = 1∕�.) 

Example 11.13. Set the feedback factor � = 1. Assume � is real, for what values of � is the open 

loop system �(�) = 
1 stable? For what values of � is the corresponding closed loop system 

� + � 
���(�) stable? 

(There is no particular reason that � needs to be real in this example. But in physical systems, 
complex poles will tend to come in conjugate pairs.) 

Solution: �(�) has one pole at � = −�. Thus, it is stable when the pole is in the left half-plane, i.e. 
for � > 0. 

The closed loop system function is 

1∕(� + �) 1 = ���(�) = 
1 + 1∕(� + �) � + � + 1

. 

This has a pole at � = −� − 1, so it’s stable if � > −1. The feedback loop has stabilized the unstable 
open loop systems with −1 < � ≤ 0. (Actually, for � = 0 the open loop is marginally stable, but it 
is fully stabilized by the closed loop.) 

Note. The algebra involved in canceling the �+� term in the denominators is exactly the cancellation 
that makes the poles of � removable singularities in ���. 

� + 1 Example 11.14. Suppose �(�) = . Is the open loop system stable? Is the closed loop system 
� − 1 

stable when � = 2. 
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Solution: �(�) has a pole in the right half-plane, so the open loop system is not stable. The closed
loop system function is 

� (� + 1)∕(� − 1) � + 1 = = ���(�) = 
1 + �� 1 + 2(� + 1)∕(� − 1) 3� + 1

. 

The only pole is at � = −1∕3, so the closed loop system is stable. This is a case where feedback 
stabilized an unstable system. 

� − 1 Example 11.15. �(�) = . Is the open loop system stable? Is the closed loop system stable 
� + 1 

when � = 2. 

Solution: The only pole of �(�) is in the left half-plane, so the open loop system is stable. The closed 
loop system function is 

� (� − 1)∕(� + 1) � − 1 = = ���(�) = 
1 + �� 1 + 2(� − 1)∕(� + 1) 3� − 1

. 

This has one pole at � = 1∕3, so the closed loop system is unstable. This is a case where feedback
destabilized a stable system. It can happen! 

11.3.5 Nyquist plot 

For the Nyquist plot and criterion the curve � will always be the imaginary �-axis. That is 

� = �(�) = ��, where −∞ < � < ∞. 

For a system �(�) and a feedback factor �, the Nyquist plot is the plot of the curve 

� = ��◦�(�) = ��(��). 

That is, the Nyquist plot is the image of the imaginary axis under the map � = ��(�). 

Note. In �(�) the variable is a greek omega and in � = �◦� we have a double-u. 

Example 11.16. Let �(�) = 
1 . Draw the Nyquist plot with � = 1. 

� + 1 
Solution: In this case �(�) is a fractional linear transformation, so we know it maps the imaginary
axis to a circle. It is easy to check it is the circle through the origin with center � = 1∕2. You can 
also check that it is traversed clockwise. 
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−2i = γ(−2)

2i = γ(2)

Re(w)

Im(w)

G(0)

G(2i)

G(−2i)

G(∞) 1
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w = G ◦ γ(ω) = 1
iω+1
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Nyquist plot of �(�) = 1∕(� + 1), with � = 1. 

Example 11.17. Take �(�) from the previous example. Describe the Nyquist plot with gain factor 
� = 2. 

Solution: The Nyquist plot is the graph of ��(��). The factor � = 2 will scale the circle in the 
previous example by 2. That is, the Nyquist plot is the circle through the origin with center � = 1. 

In general, the feedback factor will just scale the Nyquist plot. 

11.3.6 Nyquist criterion 

The Nyquist criterion gives a graphical method for checking the stability of the closed loop system. 

Theorem 11.18. Nyquist criterion. Suppose that �(�) has a finite number of zeros and poles in 
the right half-plane. Also suppose that �(�) decays to 0 as � goes to infinity. Then the closed loop 
system with feedback factor � is stable if and only if the winding number of the Nyquist plot around 
� = −1 equals the number of poles of �(�) in the right half-plane. 

More briefly, 

���(�) is stable ⇔ Ind(��◦�, −1) = ��,RHP 

Here, � is the imaginary �-axis and ��,RHP is the number of poles of the original open loop system 
function �(�) in the right half-plane. 

Proof. ��� is stable exactly when all its poles are in the left half-plane. Now, recall that the poles 
of ��� are exactly the zeros of 1+ ��. So, stability of ��� is exactly the condition that the number 
of zeros of 1 + �� in the right half-plane is 0. 

Let’s work with a familiar contour. 

Re(w)

Im(w)

iR

−iR

CR

C1
x
z1

x
z2

Let �� = �1 + ��. Note that �� is traversed in the clockwise direction. Choose � large enough 
that the (finite number) of poles and zeros of � in the right half-plane are all inside ��. Now we can 
apply Equation 3 in the corollary to the argument principle to ��(�) and � to get 

−Ind(��◦��, −1) = �1+��, �� 
− ��, �� 

(The minus sign is because of the clockwise direction of the curve.) Thus, for all large � 

the system is stable ⇔ �1+��, �� 
= 0 ⇔ Ind(��◦��, −1) = ��, ��. 

Finally, we can let � go to infinity. The assumption that �(�) decays 0 to as � goes to ∞ implies 
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that in the limit, the entire curve ��◦�� becomes a single point at the origin. So in the limit ��◦�� 
becomes ��◦� . QED 

11.3.7 Examples using the Nyquist Plot mathlet 

The Nyquist criterion is a visual method which requires some way of producing the Nyquist plot.
For this we will use one of the MIT Mathlets (slightly modified for our purposes). 

Open the Nyquist Plot applet at 
http://web.mit.edu/jorloff/www/jmoapplets/nyquist/nyquistCrit.html 

Play with the applet, read the help. 

Now refresh the browser to restore the applet to its original state. Check the Formula box. The 
formula is an easy way to read off the values of the poles and zeros of �(�). In its original state, 
applet should have a zero at � = 1 and poles at � = 0.33 ± 1.75 �. 

The left hand graph is the pole-zero diagram. The right hand graph is the Nyquist plot. 

Example 11.19. To get a feel for the Nyquist plot. Look at the pole diagram and use the mouse
to drag the yellow point up and down the imaginary axis. Its image under ��(�) will trace out the 
Nyquis plot. 

Notice that when the yellow dot is at either end of the axis its image on the Nyquist plot is close to
0. 

Example 11.20. Refresh the page, to put the zero and poles back to their original state. There are
two poles in the right half-plane, so the open loop system �(�) is unstable. With � = 1, what is the 
winding number of the Nyquist plot around -1? Is the closed loop system stable? 

Solution: The curve winds twice around -1 in the counterclockwise direction, so the winding number 
Ind(��◦�, −1) = 2. Since the number of poles of � in the right half-plane is the same as this winding 
number, the closed loop system is stable. 

Example 11.21. With the same poles and zeros, move the � slider and determine what range of � 
makes the closed loop system stable. 

Solution: When � is small the Nyquist plot has winding number 0 around -1. For these values of �, 
��� is unstable. As � increases, somewhere between � = 0.65 and � = 0.7 the winding number
jumps from 0 to 2 and the closed loop system becomes stable. This continues until � is between 3.10 
and 3.20, at which point the winding number becomes 1 and ��� becomes unstable. 

Answer: The closed loop system is stable for � (roughly) between 0.7 and 3.10. 

Example 11.22. In the previous problem could you determine analytically the range of � where 
���(�) is stable? 

Solution: Yes! This is possible for small systems. It is more challenging for higher order systems,
but there are methods that don’t require computing the poles. 

In this case, we have 

�−1 
�(�) (�−0.33)2+1.752 � − 1 = = ���(�) = 

1 + ��(�) 1 + �(�−1) (� − 0.33)2 + 1.752 + �(� − 1) 
(�−0.33)2+1.752 

http://web.mit.edu/jorloff/www/jmoapplets/nyquist/nyquistCrit.html


11 ARGUMENT PRINCIPLE 13 

So the poles are the roots of 

(� − 0.33)2 + 1.752 + �(� − 1) = �2 + (� − 0.66)� + 0.332 + 1.752 − � 

For a quadratic with positive coefficients the roots both have negative real part. This happens when 

0.66 < � < 0.332 + 1.752 ≈ 3.17. 

Example 11.23. What happens when � goes to 0. 

Solution: As � goes to 0, the Nyquist plot shrinks to a single point at the origin. In this case the 
winding number around -1 is 0 and the Nyquist criterion says the closed loop system is stable if and
only if the open loop system is stable. 

This should make sense, since with � = 0, 

� = = �. ��� 1 + �� 

Example 11.24. Make a system with the following zeros and poles: 

A pair of zeros at 0.6 ± 0.75� 
A pair of poles at −0.5 ± 2.5�. 
A single pole at 0.25. 

Is the corresponding closed loop system stable when � = 6? 

Solution: The answer is no, ��� is not stable. � has one pole in the right half plane. The mathlet 
shows the Nyquist plot winds once around � = −1 in the clockwise direction. So the winding 
number is -1, which does not equal the number of poles of � in the right half-plane. 

If we set � = 3, the closed loop system is stable. 

11.4 A bit on negative feedback 

Given Equation 7, in 18.04 we can ask if there are any poles in the right half-plane without needing
any underlying physical model. Still, it’s nice to have some sense of where this fits into science and
engineering. 

In a negative feedback loop the output of the system is looped back and subtracted from the input. 

Example 11.25. The heating system in my house is an example of a system stabilized by feedback.
The thermostat is the feedback mechanism. When the temperature outside (input signal) goes down
the heat turns on. Without the thermostat it would stay on and overheat my house. The thermostat
turns the heat up or down depending on whether the inside temperature (the output signal) is too low
or too high (negative feedback). 

Example 11.26. Walking or balancing on one foot are examples negative feedback systems. If you
feel yourself falling you compensate by shifting your weight or tensing your muscles to counteract
the unwanted acceleration. 
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12 Laplace transform 

12.1 Introduction 

The Laplace transform takes a function of time and transforms it to a function of a complex variable 
�. Because the transform is invertible, no information is lost and it is reasonable to think of a function 
� (�) and its Laplace transform � (�) as two views of the same phenomenon. Each view has its uses
and some features of the phenomenon are easier to understand in one view or the other. 

We can use the Laplace transform to transform a linear time invariant system from the time domain
to the �-domain. This leads to the system function �(�) for the system –this is the same system 
function used in the Nyquist criterion for stability. 

One important feature of the Laplace transform is that it can transform analytic problems to algebraic
problems. We will see examples of this for differential equations. 

12.2 A brief introduction to linear time invariant systems 

Let’s start by defining our terms. 

Signal. A signal is any function of time. 

System. A system is some machine or procedure that takes one signal as input does something with 
it and produces another signal as output. 

Linear system. A linear system is one that acts linearly on inputs. That is, �1(�) and �2(�) are inputs 
to the system with outputs �1(�) and �2(�) respectively, then the input �1 + �2 produces the output 
�1 + �2 and, for any constant �, the input ��1 produces output ��1. 

This is often phrased in one sentence as input �1�1 + �2�2 produces output �1�1 + �2�2, i.e. linear 
combinations of inputs produces a linear combination of the corresponding outputs. 

Time invariance. Suppose a system takes input signal � (�) and produces output signal �(�). The 
system is called time invariant if the input signal �(�) = � (� − �) produces output signal �(� − �). 

LTI. We will call a linear time invariant system an LTI system. 

Example 12.1. Consider the constant coefficient differential equation 

3� ′′ + 8� ′ + 7� = � (�) 

This equation models a damped harmonic oscillator, say a mass on a spring with a damper, where 
� (�) is the force on the mass and �(�) is its displacement from equilibrium. If we consider � to be 
the input and � the output, then this is a linear time invariant (LTI) system. 

Example 12.2. There are many variations on this theme. For example, we might have the LTI system 

3� ′′ + 8� ′ + 7� = � ′(�), 

where we call � (�) the input signal and �(�) the output signal. 

1 
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12.3 Laplace transform 

Definition. The Laplace transform of a function � (�) is defined by the integral 
∞ (� ; �) = ∫ 
e−��� (�) ��, 

0 

for those � where the integral converges. Here � is allowed to take complex values. 

Important note. The Laplace transform is only concerned with � (�) for � ≥ 0. Generally, speaking 
we can require � (�) = 0 for � < 0. 

Standard notation. Where the notation is clear, we will use an upper case letter to indicate the 
Laplace transform, e.g, (� ; �) = � (�). 

The Laplace transform we defined is sometimes called the one-sided Laplace transform. There is a 
two-sided version where the integral goes from −∞ to ∞. 

12.3.1 First examples 

Let’s compute a few examples. We will also put these results in the Laplace transform table at the
end of these notes. 

e�� Example 12.3. Let � (�) = . Compute � (�) = (� ; �) directly. Give the region in the complex 
�-plane where the integral converges. 

(e��; �) = ∫ 

∞
e��e 

∞ e(�−�)� ∞ 
−�� �� = ∫ 

e(�−�)� �� = { 
� − � | 0 0 0 

1 if Re(�) > Re(�) 
�−� = 
divergent otherwise 

The last formula comes from plugging ∞ into the exponential. This is 0 if Re(� − �) < 0 and 
undefined otherwise. 

Example 12.4. Let � (�) = �. Compute � (�) = (� ; �) directly. Give the region in the complex 
�-plane where the integral converges. 

∞ �e−�� ∞ 
−�� �� (�; �) = ∫ 

�e = { 
−� | 0 0 

� if Re(�) > 0 
� = 
divergent otherwise 

The last formula comes from plugging ∞ into the exponential. This is 0 if Re(−�) < 0 and undefined 
otherwise. 

Example 12.5. Let � (�) = �. Compute � (�) = (� ; �) directly. Give the region in the complex 
�-plane where the integral converges. 

∞ ∞ �e−�� − 
e−�� (�; �) = ∫ 

�e =
−� �2 |0 

−�� �� 
0{ 

1 if Re(�) > 0 
�2 = 
divergent otherwise 
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Example 12.6. Compute (cos(��)). 

Solution: We use the formula 
e��� + e−��� cos(��) = . 

2 

1∕(� − ��) + 1∕(� + ��) � 
So, 

(cos(��); �) = = 
2 �2 + �2 

. 

12.3.2 Connection to Fourier transform 

The Laplace and Fourier transforms are intimately connected. In fact, the Laplace transform is often
called the Fourier-Laplace transform. To see the connection we’ll start with the Fourier transform 
of a function � (�). 

∞ 

�̂ (�) = ∫ 
� (�)e−��� ��. 

−∞ 

If we assume � (�) = 0 for � < 0, this becomes 

∞ 

�̂ (�) = ∫ 
� (�)e−��� ��. (1) 

0 

Now if � = �� then the Laplace transform is 

∞ (� ; �) = (� ; ��) = ∫ 
� (�)e−��� �� (2) 

0 

Comparing these two equations we see that �̂ (�) = (� ; ��). We see the transforms are basically
the same things using different notation –at least for functions that are 0 for � < 0. 

12.4 Exponential type 

The Laplace transform is defined when the integral for it converges. Functions of exponential type 
are a class of functions for which the integral converges for all � with Re(�) large enough. 

Definition. We say that � (�) has exponential type � if there exists an � such that |� (�)| < �e�� for 
all � ≥ 0. 

Note. As we’ve defined it, the exponential type of a function is not unique. For example, a function
of exponential type 2 is clearly also of exponential type 3. It’s nice, but not always necessary, to find
the smallest exponential type for a function. 

Theorem. If � has exponential type � then (� ) converges absolutely for Re(�) > �. 

Proof. We prove absolute convergence by bounding 

|� (�)e−��|. 
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The key here is that Re(�) > � implies Re(� − �) < 0. So, we can write 

∞ ∞ ∞ |� (�)e−��| �� ≤ ∫ 
|�e(�−�)�| �� = ∫ 

�eRe(�−�)� �� ∫0 0 0 

The last integral clearly converges when Re(� − �) < 0. QED 

Example 12.7. Here is a list of some functions of exponential type. 

� (�) = e�� ∶ < 2eRe(�)� � (�) (exponential type Re(�)) 
� (�) = 1 ∶ � (�) < 2 = 2e0⋅� (exponential type 0) 

� (�) = cos(��) ∶ |� (�)| ≤ 1 (exponential type 0) 

In the above, all of the inequalities are for � ≥ 0. 

For � (�) = �, it is clear that for any � > 0 there is an � depending on � such that |� (�)| ≤ �e�� 
for � ≥ 0. In fact, it is a simple calculus exercise to show � = 1∕(��) works. So, � (�) = � has 
exponential type � for any � > 0. 

The same is true of ��. It’s worth pointing out that this follows because, if � has exponential type � 
and � has exponential type � then � � has exponential type � + �. So, if � has exponential type � then 
�� has exponential type ��. 

12.5 Properties of Laplace transform 

We have already used the linearity of Laplace transform when we computed (cos(��)). Let’s offi-
cially record it as a property. 

Property 1. The Laplace transform is linear. That is, if � and � are constants and � and � are 
functions then (�� + ��) = �(� ) + �(�). (3) 

(The proof is trivial –integration is linear.) 

Property 2. A key property of the Laplace transform is that, with some technical details, 

Laplace transform transforms derivatives in � to multiplication by � (plus some details). 

This is proved in the following theorem. 

Theorem. If � (�) has exponential type � and Laplace transform � (�) then 

(� ′(�); �) = �� (�) − � (0), valid for Re(�) > �. (4) 

Proof. We prove this using integration by parts. 
∞ ∞ 

′(�)e−�� �� = � (�)e−�� ∞ (� ′; �) = ∫ 
� |0 + ∫ 

�� (�)e−�� �� = −� (0) + �� (�). 
0 0 

∞, � (�)e−�� In the last step we used the fact that at � = = 0, which follows from the assumption 
about exponential type. 
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Equation 4 gives us formulas for all derivatives of � . 

(� ′′; �) = �2� (�) − �� (0) − � ′(0) (5) 
(� ′′′; �) = �3� (�) − �2� (0) − �� ′(0) − � ′′(0) (6) 

Proof. For Equation 5: 

(� ′′; �) = ((� ′)′; �) = �(� ′; �)−� ′(0) = � (�� (�) − � (0))−� ′(0) = �2� (�)−�� (0)−� ′(0). QED 

The proof Equation 6 is similar. Also, similar statements hold for higher order derivatives. 

Note. There is a further complication if we want to consider functions that are discontinuous at the
origin or if we want to allow � (�) to be a generalized function like �(�). In these cases � (0) is not 
defined, so our formulas are undefined. The technical fix is to replace 0 by 0− in the definition and 
all of the formulas for Laplace transform. You can learn more about this by taking 18.031. 

Property 3. Theorem. If � (�) has exponential type �, then � (�) is an analytic function for Re(�) > � 
and 

� ′(�) = −(�� (�); �). (7) 

Proof. We take the derivative of � (�). The absolute convergence for Re(�) large guarantees that we 
can interchange the order of integration and taking the derivative. 

∞ ∞ � � ′(�) = � (�)e−�� �� = ∫ 
−�� (�)e−�� �� = (−�� (�); �). 

�� ∫0 0 

This proves Equation 7. 

Equation 7 is called the �-derivative rule. We can extend it to more derivatives in �: Suppose (� ; �) = � (�). Then, 

(�� (�); �) = −� ′(�) (8) 
(��� (�); �) = (−1)�� (�)(�) (9) 

Equation 8 is the same as Equation 7 above. Equation 9 follows from this. 

Example 12.8. Use the s-derivative rule and the formula (1; �) = 1∕� to compute the Laplace 
transform of �� for � a positive integer. 

Solution: Let � (�) = 1 and � (�) = (� ; �). Using the s-derivative rule we get 

1 (�; �) = (�� ; �) = −� ′(�) = 
�2 

2 (�2; �) = (�2� ; �) = (−1)2� ′′(�) = 
�3 

�! (��; �) = (��� ; �) = (−1)�� �(�) = 
��+1 

Property 4. �-shift rule. As usual, assume � (�) = 0 for � < 0. Suppose � > 0. Then, 

(� (� − �); �) = e−��� (�) (10) 
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Proof. We go back to the definition of the Laplace transform and make the change of variables 
� = � − �. 

∞ ∞ (� (� − �); �) = ∫ 
� (� − �)e−�� �� = ∫ 

� (� − �)e−�� �� 
0 � 
∞ ∞ 

= ∫ 
� (�)e−�(�+�) �� = e−�� ∫ 

� (�)e−�� �� = e−��� (�). 
0 0 

The properties in Equations 3-10 will be used in examples below. They are also in the table at the 
end of these notes. 

12.6 Differential equations 

Coverup method. We are going to use partial fractions and the coverup method. We will assume
you have seen partial fractions. If you don’t remember them well or have never seen the coverup
method, you should read the note Partial fractions and the coverup method posted with the class 
notes. 

Example 12.9. Solve � ′′ − � = e2�, �(0) = 1, � ′(0) = 1 using Laplace transform. 

Solution: Call (�) = � . Apply the Laplace transform to the equation gives 

(�2� − ��(0) − � ′(0)) − � = 1 
� − 2 

A little bit of algebra now gives 

(�2 − 1)� = 1 + � + 1. 
� − 2 

So 
1 � + 1 1 1 � = + = + 

(� − 2)(�2 − 1) �2 − 1 (� − 2)(�2 − 1) � − 1 

Use partial fractions to write 

� � � 1 � = + + + 
� − 2 � − 1 � + 1 � − 1

. 

The coverup method gives � = 1∕3, � = −1∕2, � = 1∕6. 

We recognize 
1 

� − � 
as the Laplace transform of e��, so 

�(�) = �e2� + �e� + �e−� + e� = 
1e2� − 

1e� + 
1e−� + e�. 

3 2 6 

Example 12.10. Solve � ′′ − � = 1, �(0) = 0, � ′(0) = 0. 

Solution: The rest (zero) initial conditions are nice because they will not add any terms to the algebra.
As in the previous example we apply the Laplace transform to the entire equation. 

1 1 1 � � � �2� − � = , so � = = = + + 
� �(�2 − 1) �(� − 1)(� + 1) � � − 1 � + 1 

The coverup method gives � = −1, � = 1∕2, � = 1∕2. So, 

� = � + �e� + �e−� = −1 + 
1
2
e� + 

2
1e−�. 
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12.7 System functions and the Laplace transform 

When we introduced the Nyquist criterion for stability we stated without any justification that the
system was stable if all the poles of the system function �(�)were in the left half-plane. We also 
asserted that the poles corresponded to exponential modes of the system. In this section we’ll use 
the Laplace transform to more fully develop these ideas for differential equations. 

12.7.1 Lightning review of 18.03 

Definitions. 
� 1. � = is called a differential operator. Applied to a function � (�) we have 
�� 

�� 
�� = . 

�� 

We read �� as ‘� applied to � .’ 

Example 12.11. If � (�) = �3 + 2 then �� = 3�2, �2� = 6�. 

2. If � (�) is a polynomial then � (�) is called a polynomial differential operator. 

Example 12.12. Suppose � (�) = �2 + 8� + 7. What is � (�)? Compute � (�) applied to � (�) = 
�3 + 2� + 5. Compute � (�) applied to �(�) = e2�. 

Solution: � (�) = �2 + 8� + 7� . (The � in 7� is the identity operator.) To compute � (�)� we 
compute all the terms and sum them up: 

� (�) = �3 + 2� + 5 

�� (�) = 3�2 + 2 

�2� (�) = 6� 

Therefore: (�2 + 8� + 7�)� = 6� + 8(3�2 + 2) + 7(�3 + 2� + 5) = 7�3 + 24�2 + 20� + 51. 

�(�) = e2� 

��(�) = 2e2� 

�2�(�) = 4e2� 

Therefore: (�2 + 8� + 7�)� = 4e2� + 8(2)e2� + 7e2� = (4 + 16 + 7)e2� = � (2)e2�. 

The substitution rule is a straightforward statement about the derivatives of exponentials. 

Theorem 12.13. (Substitution rule) For a polynomial differential operator � (�) we have 

� (�)e�� = � (�)e�� . (11) 

Proof. This is obvious. We ‘prove it’ by example. Let � (�) = �2 + 8� + 7� . Then 

� (�)��� = �2e�� + 8�e�� + 7e�� = � (�)e�� = (�2 + 8� + 7)e�� . 
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Let’s continue to work from this specific example. From it we’ll be able to remind you of the general
approach to solving constant coefficient differential equations. 

Example 12.14. Suppose � (�) = �2+8�+7. Find the exponential modes of the equation � (�)� = 0. 

Solution: The exponential modes are solutions of the form �(�) = e�0�. Using the substititution rule 

� (�)e�0� = 0 ⇔ � (�0) = 0. 

That is, �(�) = e�0� is a mode exactly when �0 is a root of � (�). The roots of � (�) are −1, −7. So the 
modal solutions are 

−� −7� �1(�) = e and �2(�) = e . 

Example 12.15. Redo the previous example using the Laplace transform. 

Solution: For this we solve the differential equation with arbitrary initial conditions: 

� (�)� = � ′′ + 8� ′ + 7� = 0; �(0) = �1, � ′(0) = �2. 

Let � (�) = (�; �). Applying the Laplace transform to the equation we get 

(�2� (�) − ��(0) − � ′(0)) + 8(�� (�) − �(0)) + 7� (�) = 0 

Algebra: 
��1 + 8�1 + �2 (�2 + 8� + 7)� (�) − ��1 − �2 − 8�1 = 0 ⇔ � = 
�2 + 8� + 7 

Factoring the denominator and using partial fractions, we get 

��1 + 8�1 + �2 ��1 + 8�1 + �2 � � � (�) = = = + 
�2 + 8� + 7 (� + 1)(� + 7) � + 1 � + 7

. 

We are unconcerned with the exact values of � and �. Taking the Laplace inverse we get 

−� + �e−7� �(�) = �e . 

That is, �(�) is a linear combination of the exponential modes. 

You should notice that the denominator in the expression for � (�) is none other than the characteristic 
polynomial � (�). 

12.7.2 The system function 

Example 12.16. With the same � (�) as in Example 12.12 solve the inhomogeneous DE with rest 
initial conditions: � (�)� = � (�), �(0) = 0, � ′(0) = 0. 

Solution: Taking the Laplace transform of the equation we get 

� (�)� (�) = � (�). 

Therefore 
1 � (�) = � (�) 

� (�) 
We can’t find �(�) explicitly because � (�) isn’t specified. 
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But, we can make the following definitions and observations. Let �(�) = 1∕� (�). If we declare � 
to be the input and � the output of this linear time invariant system, then �(�) is called the system 
function. So, we have 

� (�) = �(�) ⋅ � (�). (12) 

The formula � = � ⋅ � can be phrased as 

output = system function × input. 

Note well, the roots of � (�) correspond to the exponential modes of the system, i.e. the poles of 
�(�) correspond to the exponential modes. 

The system is called stable if the modes all decay to 0 as � goes to infinity. That is, if all the poles 
have negative real part. 

Example 12.17. This example is to emphasize that not all system functions are of the form 1∕� (�). 
Consider the system modeled by the differential equation 

� (�)� = �(�)� , 

where � and � are polynomials. Suppose we consider � to be the input and � to be the ouput. Find 
the system function. 

Solution: If we start with rest initial conditions for � and � then the Laplace transform gives 
� (�)�(�) = �(�)� (�) or 

�(�) 
�(�) = ⋅ � (�) 

� (�) 
Using the formulation 

output = system function × input, 

we see that the system function is 
�(�) 

�(�) = 
� (�) 

. 

Note that when � (�) = 0 the differential equation becomes � (�)� = 0. If we make the assumption 
that the �(�)∕� (�) is in reduced form, i.e. � and � have no common zeros, then the modes of the 
system (which correspond to the roots of � (�)) are still the poles of the system function. 

Comments. All LTI systems have system functions. They are not even all of the form �(�)∕� (�). 
But, in the �-domain, the output is always the system function times the input. If the system function
is not rational then it may have an infinite number of poles. Stability is harder to characterize, but
under some reasonable assumptions the system will be stable if all the poles are in the left half-plane. 

The system function is also called the transfer function. You can think of it as describing how the 
system transfers the input to the output. 

12.8 Laplace inverse 

Up to now we have computed the inverse Laplace transform by table lookup. For example, −1(1∕(�− 
�)) = e��. To do this properly we should first check that the Laplace transform has an inverse. 

We start with the bad news: Unfortunately this is not strictly true. There are many functions with
the same Laplace transform. We list some of the ways this can happen. 



12 LAPLACE TRANSFORM 10 

1. If � (�) = �(�) for � ≥ 0, then clearly � (�) = �(�). Since the Laplace transform only concerns 
� ≥ 0, the functions can differ completely for � < 0. 

2. Suppose � (�) = e�� and {
� (�) for � ≠ 1 

�(�) = . 
0 for � = 1. 

That is, � and � are the same except we arbitrarily assigned them different values at � = 1. Then, 
since the integrals won’t notice the difference at one point, � (�) = �(�) = 1∕(� − �). In this sense 
it is impossible to define −1(� ) uniquely. 

The good news is that the inverse exists as long as we consider two functions that only differ on a
negligible set of points the same. In particular, we can make the following claim. 

Theorem. Suppose � and � are continuous and � (�) = �(�) for all � with Re(�) > � for some �. 
Then � (�) = �(�) for � ≥ 0. 

This theorem can be stated in a way that includes piecewise continuous functions. Such a statement
takes more care, which would obscure the basic point that the Laplace transform has a unique inverse
up to some, for us, trivial differences. 

We start with a few examples that we can compute directly. 

Example 12.18. Let 
� (�) = e�� . 

So, 
1 � (�) = . 

� − � 
Show 

� (�) = 
∑ 

Res(� (�)e��) (13) 
�+�∞ 

� (�) = 
1 � (�)e�� �� (14) 
2�� ∫�−�∞ 

The sum is over all poles of e��∕(� − �). As usual, we only consider � > 0. 

Here, � > Re(�) and the integral means the path integral along the vertical line � = �. 

Solution: Proving Equation 13 is straightforward: It is clear that 

e�� 
� − � 

has only one pole which is at � = �. Since, ( ) ∑ e�� = e�� Res , � 
� − � 

we have proved Equation 13. 

Proving Equation 14 is more involved. We should first check the convergence of the integral. In this 
case, � = � + ��, so the integral is 

�+�∞ ∞ e(�+��)� e�� ∞ e��� 1 1 � (�)e�� �� = � �� = ��. 
2�� ∫ 2�� ∫ � + �� − � 2� ∫ � + �� − � �−�∞ −∞ −∞ 
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The (conditional) convergence of this integral follows using exactly the same argument as in the 
e�� example near the end of Topic 9 on the Fourier inversion formula for � (�) = . That is, the 

integrand is a decaying oscillation, around 0, so its integral is also a decaying oscillation around 
some limiting value. 

Now we use the contour shown below. 

Re(z)

Im(z)

C1

−C2

−C3

C4

c−Ri

c+Ri−R+Ri

−R−Ri

c

x
a

We will let � go to infinity and use the following steps to prove Equation 14. 

1. The residue theorem guarantees that if the curve is large enough to contain � then ( ) 
e�� ∑ e�� 1 = e�� �� = Res , � . 

2�� ∫�1−�2−�3+�4 
� − � � − � 

2. In a moment we will show that the integrals over �2, �3, �4 all go to 0 as � → ∞. 

3. Clearly as � goes to infinity, the integral over �1 goes to the integral in Equation 14 

Putting these steps together we have 

e�� �+�∞ e�� e�� = lim �� = ∫ 
��. 

�→∞ ∫�1−�2−�3+�4 
� − � � − � �−�∞ 

Except for proving the claims in step 2, this proves Equation 14. 

To verify step 2 we look at one side at a time. 

�2: �2 is parametrized by � = �(�) = � + ��, with −� ≤ � ≤ �. So, 

� � e�� e(�+��)� e�� e�� − e−�� �� �� = . = ∫ 
≤ ∫ |∫�2 

� − � | −� |� + �� − � | −� � �� 

Since � and � are fixed, it’s clear this goes to 0 as � goes to infinity. 

The bottom �4 is handled in exactly the same manner as the top �2. 

�3: �3 is parametrized by � = �(�) = −� + ��, with −� ≤ � ≤ �. So, | e�� | � e(−�+��)� � e−�� e−�� � 2�e−�� �� �� = �� = . = ∫ 
≤ ∫ |∫�3 

� − � | −� |−� + �� − � | −� � + � � + � ∫−� � + � 

Since � and � > 0 are fixed, it’s clear this goes to 0 as � goes to infinity. 

Example 12.19. Repeat the previous example with � (�) = � for � > 0, � (�) = 1∕�2. 
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This is similar to the previous example. Since � decays like 1∕�2 we can actually allow � ≥ 0 

Theorem 12.20. Laplace inversion 1. Assume � is continuous and of exponential type �. Then for 
� > � we have 

�+�∞ 

� (�) = 
1 � (�)e�� ��. (15) 
2�� ∫�−�∞ 

As usual, this formula holds for � > 0. 

Proof. The proof uses the Fourier inversion formula. We will just accept this theorem for now. 
Example 12.18 above illustrates the theorem. 

Theorem 12.21. Laplace inversion 2. Suppose � (�) has a finite number of poles and decays like 
1∕� (or faster). Define 

� (�) = 
∑ 

Res(� (�)e��, ��), where the sum is over all the poles ��. (16) 

Then (� ; �) = � (�) 

Proof. Proof given in class. To be added here. The basic ideas are present in the examples above,
though it requires a fairly clever choice of contours. 

The integral inversion formula in Equation 15 can be viewed as writing � (�) as a ‘sum’ of exponen-
tials. This is extremely useful. For example, for a linear system if we know how the system responds
to input � (�) = e�� for all �, then we know how it responds to any input by writing it as a ‘sum’ of 
exponentials. 

12.9 Delay and feedback. 

Let � (�) = 0 for � < 0. Fix � > 0 and let ℎ(�) = � (� − �). So, ℎ(�) is a delayed version of the signal 
� (�). The Laplace property Equation 10 says 

−��� (�), �(�) = e 

where � and � are the Laplace transforms of ℎ and � respectively. 

Now, suppose we have a system with system function �(�). (Again, called the open loop system.)
As before, can feed the output back through the system. But, instead of just multiplying the output
by a scalar we can delay it also. This is captured by the feedback factor �e−��. 

The system function for the closed loop system is 

� ���(�) = 
1 + �e−��� 

Note even if you start with a rational function the system function of the closed loop with delay is
not rational. Usually it has an infinite number of poles. 

Example 12.22. Suppose �(�) = 1, � = 1 and � = 1 find the poles of ���(�). 

Solution: 
1 . ���(�) = 

1 + e−� 

So the poles occur where e−� = −1, i.e. at ���, where � is an odd integer. There are an infinite 
number of poles on the imaginary axis. 

Example 12.23. Suppose �(�) = 1, � = 1 and � = 1∕2 find the poles of ���(�). Is the closed loop 
system stable? 
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Solution: 
1 ���(�) = 

1 + e−�∕2
. 

So the poles occur where e−� = −2, i.e. at − log(2)+���, where � is an odd integer. Since − log(2) < 
0, there are an infinite number of poles in the left half-plane. With all poles in the left half-plane,
the system is stable. 

Example 12.24. Suppose �(�) = 1, � = 1 and � = 2 find the poles of ���(�). Is the closed loop 
system stable? 

Solution: 
1 . ���(�) = 

1 + 2e−� 

So the poles occur where e−� = −1∕2, i.e. at log(2)+���, where � is an odd integer. Since log(2) > 0, 
there are an infinite number of poles in the right half-plane. With poles in the right half-plane, the
system is not stable. 

Remark. If Re(�) is large enough we can express the system function 

1 �(�) = 
1 + �e−�� 

as a geometric series 

1 −�� + �2 −2�� − �3 −3�� +… = 1 − �e e e 
1 + �e−�� 

So, for input � (�), we have output 

−��� (�) + �2e−2��� (�) − �3e−3��� (�) + … �(�) = �(�)� (�) = � (�) − �e 

Using the shift formula Equation 10, we have 

�(�) = � (�) − �� (� − �) + �2� (� − 2�) − �3� (� − 3�) + … 

(This is not really an infinite series because � (�) = 0 for � < 0.) If the input is bounded and � < 1 
then even for large � the series is bounded. So bounded input produces bounded output –this is also
what is meant by stability. On the other hand if � > 1, then bounded input can lead to unbounded 
output –this is instability. 

12.10 Table of Laplace transforms 

Properties and Rules 

We assume that � (�) = 0 for � < 0. 

Function Transform 
∞ 

� (�) � (�) = ∫ 
� (�)e−�� �� (Definition) 

0 

� � (�) + � �(�) � � (�) + � �(�) (Linearity) 
e��� (�) � (� − �) (�-shift) 
� ′(�) �� (�) − � (0) 



0 
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� ′′(�) �2� (�) − �� (0) − � ′(0) 
� (�)(�) ��� (�) − ��−1� (0)− ⋯ − � (�−1)(0) 
�� (�) −� ′(�) 
��� (�) (−1)�� (�)(�) 

−��� (�) � (� − �) e (�-translation or �-shift) 
� � (�) 
� (�) �� (integration rule) ∫ � 

� (�) ∞ 

� (�) �� 
� ∫� 



12 LAPLACE TRANSFORM 15 

Function Table 

Function Transform Region of convergence 

1 1∕� Re(�) > 0 

e�� 1∕(� − �) Re(�) > Re(�) 
� 1∕�2 Re(�) > 0 

�� �!∕��+1 Re(�) > 0 

cos(��) �∕(�2 + �2) Re(�) > 0 

sin(��) �∕(�2 + �2) Re(�) > 0 

e�� cos(��) (� − �)∕((� − �)2 + �2) Re(�) > Re(�) 
e�� sin(��) �∕((� − �)2 + �2) Re(�) > Re(�) 
�(�) 1 all � 

�(� − �) −�� e all � 

e�� + e−�� cosh(��) = 
2 

�∕(�2 − �2) Re(�) > � 

e�� − e−�� sinh(��) = 
2 

�∕(�2 − �2) Re(�) > � 

1 (sin(��) − �� cos(��)) 
2�3 

1 
(�2 + �2)2 

Re(�) > 0 

2 
� 
� 
sin(��) � 

(�2 + �2)2 
Re(�) > 0 

1 (sin(��) + �� cos(��)) 
2� 

�2 

(�2 + �2)2 
Re(�) > 0 

��e�� �!∕(� − �)�+1 Re(�) > Re(�) 
1√ 
� � 

1√ 
� 

Re(�) > 0 

�� Γ(� + 1) 
��+1 

Re(�) > 0 
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Topic 13 Notes
Jeremy Orloff 

13 Analytic continuation and the Gamma function 

13.1 Introduction 

In this topic we will look at the Gamma function. This is an important and fascinating function that
generalizes factorials from integers to all complex numbers. We look at a few of its many interesting
properties. In particular, we will look at its connection to the Laplace transform. 

We will start by discussing the notion of analytic continuation. We will see that we have, in fact,
been using this already without any comment. This was a little sloppy mathematically speaking and
we will make it more precise here. 

13.2 Analytic continuation 

If we have an function which is analytic on a region �, we can sometimes extend the function to be 
analytic on a bigger region. This is called analytic continuation. 

Example 13.1. Consider the function 

∞ 

� (�) = ∫ 
e3�e−�� ��. (1) 

0 

We recognize this as the Laplace transform of � (�) = e3� (though we switched the variable from � 
to �). The integral converges absolutely and � is analytic in the region � = {Re(�) > 3}. 

Can we extend � (�) to be analytic on a bigger region �? That is, can we find a region � a function 
�̃ (�) such that 
1. � contains � 
2. �̃ (�) is analytic on � 
3. �̃ (�) agrees with � on �, i.e. �̃ (�) = � (�) for � ∈ �. 

Solution: Yes! We know that � (�) = 
1 –valid for any � in �. So we can define �̃ (�) = 

1 
� − 3 � − 3 

for any � in � = � − {3}. 

We say that we have analytically continued � on � to �̃ on �. 

Note. Usually we don’t rename the function. We would just say � (�) defined by Equation 1 can be 

continued to � (�) = 
1 on �. 

� − 3 
Definition. Suppose � (�) is analytic on a region �. Suppose also that � is contained in a region �. 
We say that � can be analytically continued from � to � if there is a function �̃ (�) such that 

1. �̃ (�) is analytic on �. 
2. �̃ (�) = � (�) for all � in �. 

As noted above, we usually just use the same symbol � for the function on � and its continuation to 
�. 

1 
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Re(z)

Im(z)

AB

−1

The region � = Re(�) > 0 is contained in � = Re(�) > −1. 

Note. We used analytic continuation implicitly in, for example, the Laplace inversion formula in-
1 volving residues of � (�) = (� ; �). Recall that we wrote that for � (�) = e3�, � (�) = and 

�−3 

� (�) = 
∑ 

residues of � . 

As an integral, � (�) was defined for Re(�) > 3, but the residue formula relies on its analytic contin-
uation to � − {3}. 

13.2.1 Analytic continuation is unique 

Theorem 13.2. Suppose �, � are analytic on a connected region �. If � = � on an open subset of 
� then � = � on all of �. 

Proof. Let ℎ = � − �. By hypothesis ℎ(�) = 0 on an open set in �. Clearly this means that the zeros 
of ℎ are not isolated. Back in Topic 7 we showed that for analytic ℎ on a connected region � either 
the zeros are isolated or else ℎ is identically zero on �. Thus, ℎ is identically 0, which implies � = � 
on �. 

Corollary. There is at most one way to analytically continue a function from a region � to a con-
nected region �. 

Proof. Two analytic continuations would agree on � and therefore must be the same. 

Extension. Since the proof of the theorem uses the fact that zeros are isolated, we actually have the
stronger statement: if � and � agree on a nondiscrete subset of � then they are equal. In particular, 
if � and � are two analytic functions on � and they agree on a line or ray in � then they are equal. 

Here is an example that shows why we need � to be connected in Theorem 13.2. 

Example 13.3. Suppose � is the plane minus the real axis. Define two functions on � as follows. {
1 for � in the upper half-plane 

� (�) = 
0 for � in the lower half-plane {
1 for � in the upper half-plane 

�(�) = 
1 for � in the lower half-plane 

Both � and � are analytic on � and agree on an open set (the upper half-plane), but they are not the 
same function. 
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Here is an example that shows a little care must be taken in applying the corollary. 

Example 13.4. Suppose we define � and � as follows 

� (�) = log(�) with 0 < � < 2� 

�(�) = log(�) with −� < � < � 

Clearly � and � agree on the first quadrant. But we can’t use the theorem to conclude that � = � 
everywhere. The problem is that the regions where they are defined are different. � is defined on � 
minus the positive real axis, and � is defined on � minus the negative real axis. The region where 
they are both defined is � minus the real axis, which is not connected. 

Because they are both defined on the upper half-plane, we can conclude that they are the same there.
(It’s easy to see this is true.) But (in this case) being equal in the first quadrant doesn’t imply they
are the same in the lower half-plane. 

13.3 Definition and properties of the Gamma function 

Definition. The Gamma function is defined by the integral formula 

∞ 

Γ(�) = ∫ 
��−1e−� �� (2) 

0 

The integral converges absolutely for Re(�) > 0. 

Properties 

1. Γ(�) is defined and analytic in the region Re(�) > 0. 

2. Γ(� + 1) = �!, for integers � ≥ 0. 

3. Γ(� + 1) = �Γ(�) (functional equation)
This property and Property 2 characterize the factorial function. Thus, Γ(�) generalizes �! to 
complex numbers �. Some authors will write Γ(� + 1) = �!. 

4. Γ(�) can be analytically continued to be meromorphic on the entire plane with simple poles at 
0, −1, −2 …. The residues are 

(−1)� 
Res(Γ, −�) = 

�! [ ∞ ( ) ]−1 ∏ 
�e�� −�∕� 5. Γ(�) = 1 + 

� e , where � is Euler’s constant 
� 1 

1 1 � = lim 1 + 
1 + +… − log(�) ≈ 0.577 

�→∞ 2 3 � 

This property uses an infinite product. Unfortunately we won’t have time, but infinte products
represent an entire topic on their own. Note that the infinite product makes the positions of 
the poles of Γ clear. 

� 6. Γ(�)Γ(1 − �) = 
sin(��)

With Property 5 this gives a product formula for sin(��). 
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√ 
7. Γ(� + 1) ≈ 2���+1∕2e−� for |�| large, Re(�) > 0. √ 

In particular, �! ≈ 2���+1∕2e−�. (Stirling’s formula) 

8. 22�−1Γ(�)Γ(� + 1∕2) = 
√ 
�Γ(2�) (Legendre duplication formula) 

Notes. These are just some of the many properties of Γ(�). As is often the case, we could have 
chosen to define Γ(�) in terms of some of its properties and derived Equation 2 as a theorem. 

We will prove (some of) these properties below. √ √ 
Example 13.5. Use the properties of Γ to show that Γ(1∕2) = � and Γ(3∕2) = �∕2. 

Solution: From Property 2 we have Γ(1) = 0! = 1. The Legendre duplication formula with � = 1∕2 
then shows (1) (1) √ 

20Γ Γ(1) = 
√ 
�Γ(1) ⇒ Γ = �. 

2 2 
Now, using the functional equation Property 3 we get √ (3) (1 ) (1) � 1 Γ = Γ + 1 = Γ = . 

2 2 2 2 2 

13.4 Connection to Laplace 

Γ(�) Claim. For Re(�) > 1 and Re(�) > 0, (��−1; �) = . 
�� 

∞ 

��−1e−�� ��. Proof. By definition (��−1; �) = It is clear that if Re(�) > 1, then the integral ∫0 
converges absolutely for Re(�) > 0. 

Let’s start by assuming that � > 0 is real. Use the change of variable � = ��. The Laplace integral 
becomes ∞ ∞ ( )�−1 ∞ 

��−1e−�� �� = ∫ 
� −� �� 1 ��−1e−� Γ(�) e = = ��. ∫ � � �� ∫ �� 

0 0 0 

Γ(�) This shows that (��−1; �) = for � real and positive. Since both sides of this equation are 
�� 

analytic on Re(�) > 0, the extension to Theorem 13.2 guarantees they are the same. 

Corollary. Γ(�) = (��−1; 1). (Of course, this is also clear directly from the definition of Γ(�) in 
Equation 2. 

13.5 Proofs of (some) properties of Γ 

Property 1. This is clear since the integral converges absolutely for Re(�) > 0. 
�! Property 2. We know (see the Laplace table) (��; �) = . Setting � = 1 and using the corollary 
��+1 

to the claim above we get 
Γ(� + 1) = (��; 1) = �!. 

(We could also prove this formula directly from the integral definition of of Γ(�).) 



13 ANALYTIC CONTINUATION AND THE GAMMA FUNCTION 5 

Property 3. We could do this relatively easily using integration by parts, but let’s continue using the
Laplace transform. Let � (�) = ��. We know 

Γ(� + 1) (�, �) = 
��+1 

′ Now assume Re(�) > 0, so � (0) = 0. Then � = ���−1 and we can compute (� ′; �) two ways. 

�Γ(�) (� ′; �) = (���−1; �) = 
�� 

Γ(� + 1) (� ′; �) = �(��; �) = 
�� 

Comparing these two equations we get property 3 for Re(�) > 0. 

Property 4. We’ll need the following notation for regions in the plane. 

�0 = {Re(�) > 0} 

�1 = {Re(�) > −1} − {0} 

�2 = {Re(�) > −2} − {0, −1} 

�� = {Re(�) > −�} − {0, −1, … , −� + 1} 

So far we know that Γ(�) is defined and analytic on �0. Our strategy is to use Property 3 to analyti-
cally continue Γ from �0 to ��. Along the way we will compute the residues at 0 and the negative 
integers. 

Rewrite Property 3 as 
Γ(� + 1) Γ(�) = (3) 

� 
The right side of this equation is analytic on �1. Since it agrees with Γ(�) on �0 it represents an 
analytic continuation from �0 to �1. We easily compute 

Res(Γ, 0) = lim �Γ(�) = Γ(1) = 1. 
�→0 

Γ(� + 2) Similarly, Equation 3 can be expressed as Γ(� + 1) = . So, 
� + 1 

Γ(� + 1) Γ(� + 2) Γ(�) = = (4) 
� (� + 1)� 

The right side of this equation is analytic on �2. Since it agrees with Γ on �0 it is an analytic 
continuation to �2. The residue at −1 is 

Γ(1) Res(Γ, −1) = lim (� + 1)Γ(�) = = −1. 
�→−1 −1 

We can iterate this procedure as far as we want 

Γ(� + � + 1) Γ(�) = (5) 
(� + �)(� + � − 1) + … + (� + 1)� 
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The right side of this equation is analytic on ��+1. Since it agrees with Γ on �0 it is an analytic 
continuation to ��+1. The residue at −� is 

Γ(1) (−1)� 
Res(Γ, −�) = lim (� + �)Γ(�) = = . 

�→−� (−1)(−2) … (−�) �! 

We’ll leave the proofs of Properties 5-8 to another class! 
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