Evelyn De La Rosa

6.1210 Problem Set 7

November 1, 2024

Problem 1 (Collaborators: Mechanical)

Given a directed, weighted graph G = (V, E,w) with nonnegative edge weights,

perform the following tasks:

(a) Run both DAG Relaxation and Dijkstra’s algorithm on G, starting from vertex
a. For each algorithm, provide a list of the edges that the algorithm relaxes, in
the order they are relaxed. If there is any ambiguity in which node to process
next, use alphabetical order to break the tie.

(b) In no more than two sentences, explain how DAG Relaxation relates to the
Bellman-Ford algorithm.

The graph G is represented as follows:

graph = {
‘a’:
‘b
‘¢t
‘4q’:
‘e’
‘£
lg):

{b’:
{q’:
{‘b’:
{‘g’:
{‘f’:

{1,

{f’:

: 1},
: 6},
: 2},

Evelyn De La Rosa 6.1210 Problem Set 7
3 4 3
(DD
1

(a) Relaxation Order for DAG Relaxation and Dijkstra’s Al-
gorithm

Solution

DAG Relaxation

Algorithm Overview: In a Directed Acyclic Graph (DAG), the shortest paths can
be efficiently found by performing a topological sort of the vertices and then relaxing
the edges in the order determined by this sort.

Steps:

Step 1. Topological Sort: Determine a linear ordering of the vertices such that for
every directed edge u — v, vertex u comes before v in the ordering.

Step 2. Edge Relaxation: Iterate through the vertices in the topological order and
relax all outgoing edges of each vertex.

Topological Order: One possible topological ordering for the given graph is:

a—c—b—e—=>d—=>g—f

Relaxation Order: Following the topological order, the edges are relaxed in the
following sequence:

Evelyn De La Rosa 6.1210 Problem Set 7

Justification: By processing the vertices in topological order, each edge is relaxed
exactly once, ensuring that all dependencies are respected and the shortest paths are
correctly computed without the need for multiple passes.

Dijkstra’s Algorithm

Algorithm Overview: Dijkstra’s algorithm finds the shortest paths from a source
vertex to all other vertices in a graph with nonnegative edge weights. It repeatedly
selects the vertex with the smallest tentative distance, relaxes its outgoing edges,
and marks it as processed.

Steps:
Step 1. Initialization: Set the distance to the source vertex a as 0 and all other
vertices as oQ.

Step 2. Priority Queue: Use a priority queue to select the vertex with the smallest
tentative distance. If there is a tie, select the vertex that comes first alphabet-
ically.

Step 3. Edge Relaxation: For the selected vertex, relax all its outgoing edges.

Evelyn De La Rosa 6.1210 Problem Set 7

Step 4. Repeat: Continue until all vertices have been processed.

Relaxation Order: Following the execution of Dijkstra’s algorithm, the edges are
relaxed in the following sequence:

8

N—

(Updates d(f

SN—

1. Relax (a,c¢) (Updates d(c) =1)
2. Relax (a,b) (Updates d(b) = 3)
3. Relax (¢,b) (Updates d(b) =2)
4. Relax (c,e) (Updates d(e) = 3)
d(d) =6)

)

)

(Updates d(f) =5

9)

(
(
(
(
5. Relax (b,d) (Updates
(
(
(
((No update, d(f) =5 remains)

)
)
) (Updates d(g)
)

Justification: Dijkstra’s algorithm processes vertices in order of increasing tentative
distance, ensuring that once a vertex is processed, its shortest path is finalized. The
alphabetical tie-breaker ensures a deterministic order when multiple vertices have
the same tentative distance.

(b) Relation between DAG Relaxation and Bellman-Ford Al-
gorithm

DAG Relaxation and the Bellman-Ford algorithm both utilize edge relaxation to
compute shortest paths. However, while Bellman-Ford repeatedly relaxes all edges up
to |V|—1 times to handle graphs with cycles, DAG Relaxation leverages a topological
ordering to relax each edge exactly once, making it more efficient for acyclic graphs.

Evelyn De La Rosa 6.1210 Problem Set 7

Problem 2 (Collaborators: PEST Scheduling)

As a busy MIT student, you're hoping to schedule n problem sets to complete in the
coming week by determining a start time s; at which you will start each assignment.
Due to some assignments depending on each other, some restrictions will require
you to start some assignments a certain amount before or after another assignment.
These restrictions take the form s; — s; < ¢; for some time t;, and there are m of
them. Note that the times, both the start times s; and restriction times ¢;, may be
negative.

For example, if s; —s; < —2, it means the assignment s; must be started at least two
time steps after starting s;. However, it might be impossible to schedule your problem
sets. Consider the following example with 4 classes and 4 restrictions. Summing up
the 4 inequalities, we find that the left side simplifies to 0 while the right side sums
to -2; 0 < —2 is a contradiction, so this is impossible.

s1— 859 <7
Sg — 83 < —2
s3— 854 < —10
Sqa—51 <3

(a) Finding a Feasible Assignment of Start Times

Given:

S9g— 851 < —4
s3— 81 < —15
s1—854 <7
sS4 — 53 <10
S3— 89 < —8

Approach: Start by assigning s; = 0. Then, determine the upper and lower bounds

Evelyn De La Rosa 6.1210 Problem Set 7

for the other s; based on the given inequalities.
Step-by-Step Solution:
Step 1. Assign s; = 0:
S1 — 0

Step 2. From s, — 51 < —4:
S$9—0< -4 = s5,< 4

Upper Bound: s, < —4
Step 3. From s3 — s; < —15:
53— 0< —-15 = s3 < —15
Upper Bound: s3 < —15
Step 4. From s; — s, < 7:
0—54 <7 —= —54 <7 = 54> —7
Lower Bound: s, > —7
Step 5. From s; — s3 < 10:
Sy —53<10 = 54 <s3+10

Given s3 < —15:
5, < —=154+10= -5

Upper Bound: s, < —5

Step 6. Combining the bounds for s4:
-7 S Sq S -5
Choose s, = —5 (within bounds):

54:—5

Evelyn De La Rosa 6.1210 Problem Set 7

Step 7. From s3 — s < —8:
83— 8 < —8 = 53 <8 —8

Given sy < —4:
s53< —4—-8=-12

But previously, s3 < —15, so the tighter bound is s3 < —15. Assign s3 = —15
(within bounds):
S3 = —15
Step 8. Determine s, from s3 < sy — 8:
—15 <59 -8 — 359 > —15+8=-7

Combining with s, < —4:

—7 S S9 S —4
Choose sy = —4 (within bounds):
S = —4
Final Assignment:
S1 —
SS9 = —4
S3 = —15
S4 = -5

Verification:

Sg—8 =—4—0=—-4< -4 (Satisfied)

53— =—15—0=—15< —15 (Satisfied)
s1—83=0—(=b)=5<7 (Satisfied)

sy —83=—5—(—15) =10 <10 (Satisfied)
S3— 8y =—15—(—4) = —11 < -8 (Satisfied)

All restrictions are satisfied with the assigned start times.

7

Evelyn De La Rosa 6.1210 Problem Set 7

(b) Representing Assignments and Restrictions Using a Graph

Graph Representation:
Assignments and their restrictions can be represented using a directed graph,

where:

e Vertices represent the assignments sq, o, ..., Sy,.

e Edges represent the restrictions s; — s; < t;. Specifically, an edge from vertex
J to vertex ¢ with weight ¢ corresponds to the inequality s; — s; < 1.
Explanation:

This representation aligns with the concept of constraint graphs used in scheduling
and systems of inequalities. An edge j — ¢ with weight ¢; ensures that the start
time s; does not exceed s; + i, thereby encoding the restriction s; — s; < ¢.

Graphical Representation:

Interpretation of the Graph:

e The edge sy — s1 with weight —4 represents s; — so < —4.
e The edge s3 — s; with weight —15 represents s; — s3 < —15.

e The edge s; — s4 with weight 7 represents s, — s1 < 7.

Evelyn De La Rosa 6.1210 Problem Set 7

e The edge s4 — s3 with weight 10 represents s3 — s4 < 10.

e The edge sy — s3 with weight —8 represents s3 — so < —8.

(c) Algorithm to Determine Feasibility of Start Times

Objective: Provide an algorithm that either finds a feasible assignment of start
times s; for all assignments or states that no such assignment exists. The algorithm
should run in O(mn) time.

Approach: Model the problem as a system of difference constraints and rep-
resent it using a constraint graph as described in part (b). Utilize the Bellman-
Ford algorithm to detect negative-weight cycles, which correspond to infeasible
schedules.

Algorithm Steps:

Step 1. Construct the Constraint Graph:

e Create a vertex for each assignment sq, s, ..., s,.
e Add a dummy vertex sy to serve as the source.

e For each constraint s; — s; < 5, add a directed edge from s; to s; with
weight .

e Add edges from sy to every other vertex with weight 0 to initialize the
distances.

Step 2. Initialize Distances:
d(So) =0

d(s;) =00 Vie{l,2,...,n}
Step 3. Relax Edges Using Bellman-Ford:
e Repeat n times:
For each edge u — v with weight w, update d(v) = min(d(v), d(u) + w)

Step 4. Check for Negative-Weight Cycles:

9

Evelyn De La Rosa 6.1210 Problem Set 7

e For each edge u — v with weight w:
If d(v) > d(u) +w, then a negative-weight cycle exists.

Step 5. Determine Feasibility:

e If no negative-weight cycles are detected, the distances d(s;) provide fea-
sible start times.

e If a negative-weight cycle is detected, no feasible assignment exists.

10

Evelyn De La Rosa 6.1210 Problem Set 7

Algorithm Implementation:

Input: Number of assignments n, number of constraints m, list of constraints
(i,7,tx) representing s; — s; < ty,

Output: Feasible start times or report infeasibility
1. Construct the Constraint Graph:;
Initialize adjacency list with n + 1 vertices (including sg);
for each constraint (i, j,tx) in constraints do

‘ Add edge from s; to s; with weight #;
end
for each vertex i from 1 to n do

‘ Add edge from sq to s; with weight 0;
end
2. Initialize Distances:;
Initialize d(sg) = 0;
for each vertex s; where i =1 ton do

| Set d(s;) = oo
end
3. Relax Edges Repeatedly (Bellman-Ford):;
for each vertex v from 1 ton do
for each edge u — v with weight w do

if d(u) +w < d(v) then
| Set d(v) = d(u) + w;
end

end
end
4. Check for Negative-Weight Cycles:;
for each edge u — v with weight w do
if d(u)+w < d(v) then
‘ return “No feasible assignment exists.”;
end
end
5. Assign Start Times:;
for each vertex s; where i =1 to n do
| Assign s; = d(s;);
end

return Start times sq, Sa, ..., Sp;
Algorithm 1: PEST Scheduling Algorithm

11

Evelyn De La Rosa 6.1210 Problem Set 7

Explanation of Correctness:

e Constraint Graph: Each constraint s; — s; < t; is represented as an edge
s; — s; with weight ¢,. This ensures that s; does not exceed s; + 1.

e Bellman-Ford Algorithm: By initializing a dummy vertex s, and adding
zero-weight edges to all other vertices, we ensure that all vertices are reachable.
The Bellman-Ford algorithm computes the shortest paths from sy to all other
vertices while detecting negative-weight cycles.

o Negative-Weight Cycles: The presence of a negative-weight cycle implies
that there is a sequence of constraints that cannot be satisfied simultaneously,
rendering the scheduling impossible.

e Feasibility: If no negative-weight cycles are detected, the shortest path dis-
tances d(s;) correspond to feasible start times that satisfy all constraints.

Time Complexity Analysis:

e Graph Construction: O(m + n)
e Bellman-Ford Execution: O(mn) (since it relaxes all m edges n times)

e Cycle Detection and Assignment: O(m)

Thus, the overall time complexity is O(mn), satisfying the problem requirements.

Graphical Illustration of Constraints:

12

Evelyn De La Rosa 6.1210 Problem Set 7

Interpretation:

e The dummy vertex sg ensures that all assignments are reachable.

e The edges represent the constraints, with their respective weights indicating
the maximum allowable difference between start times.

o A feasible assignment exists if and only if there are no negative-weight cycles
in this graph.

Conclusion:

By modeling the scheduling problem as a constraint graph and utilizing the Bellman-
Ford algorithm, we can efficiently determine whether a feasible assignment of start
times exists. If the algorithm detects a negative-weight cycle, it conclusively indicates
that no such assignment is possible.

13

Evelyn De La Rosa 6.1210 Problem Set 7

Problem 3 (Collaborators: Pilfering Purrloin [35 points])

Purrloin is exploring the Unova Region. There are n cities connected by O(n) di-
rected roads. Each road from city u to city v has a cost ¢(u, v), which can be positive
(tolls) or negative (coins stolen). Every city is reachable from every other city. Some
cities are designated as Pokemon Centers, and Purrloin starts at the Nimbasa City
Pokemon Center. He must start each day at a Pokemon Center and cannot lose
(net loss) more than & coins in a single day.

(a) [20 points| Purrloin wants to explore as many cities as possible (possibly over
many days) and then end up back at the Nimbasa City Pokemon Center. De-
scribe an O(n?logn) algorithm to find all cities that Purrloin can explore.
Briefly analyze its runtime and justify correctness.

Solution:

Objective: Identify all cities Purrloin can explore and return to the Nimbasa
City Pokemon Center without incurring a net loss exceeding k coins on any
single day.

Approach: Since the graph may contain negative edge weights (coins stolen),
and Dijkstra’s algorithm cannot handle negative edge weights, we need to ad-
just our approach. We can use Johnson’s algorithm to reweight the graph,
eliminating negative edge weights, and then use Dijkstra’s algorithm to com-
pute shortest paths efficiently.

Algorithm Steps:

Step 1. Graph Representation: Represent the cities as vertices V' and roads as
directed edges E with associated costs c¢(u, v).

Step 2. Add Super Node and Run Bellman-Ford: Introduce a super node s
connected to all nodes in V' with edges of cost 0. Run the Bellman-Ford
algorithm from s’ to compute the potential h(v) for all v € V.

Step 3. Reweight Edges: For each edge (u,v) € E, set the new cost ¢(u,v) =
c(u,v) + h(u) — h(v). This ensures all ¢ (u,v) > 0.

Step 4. Run Dijkstra’s Algorithm: Run Dijkstra’s algorithm from the Nim-
basa City Pokemon Center s to compute the shortest paths d'(s,v) in the
reweighted graph.

14

Evelyn De La Rosa 6.1210 Problem Set 7

Step 5. Adjust Distances: Convert the reweighted distances back to original
costs:
d(s,v) = d'(s,v) — h(s) + h(v)

Step 6. Compute Return Paths: Run Dijkstra’s algorithm from each city v
back to s in the reweighted graph to compute d'(v,s). Adjust distances
back:

d(v,s) =d(v,s) — h(v) + h(s)

Step 7. Determine Reachable Cities: For each city v, if d(s,v) + d(v,s) < k,
then Purrloin can explore v and return to s within the daily loss limit.

Pseudocode:

Input: Number of cities n, number of roads m, list of roads as tuples
(u, v, c(u,v)), set of Pokemon Centers P, daily loss limit k
Output: Set of reachable cities
1. Construct the Graph:;
Initialize adjacency list adj for all n 4 1 vertices (including super node s');
for each road (u,v,c(u,v)) in roads do
| Add edge from u to v with cost ¢(u, v);
end
for each Pokemon Center p in P do
‘ Add edge from super node s’ to p with cost 0;
end
2. Run Bellman-Ford from ¢':;
Initialize d[s'] = 0 and d[v] = oo for all v # §;
for each vertex k =1 ton do
for each edge (u,v,c(u,v)) in E do
if d[u] + c(u,v) < d[v] then
| Set d[v] = d[u] + c(u, v);
end

end
end
3. Reweight Edges:;
for each edge (u,v,c(u,v)) in E do
| Set ¢(u,v) = c(u,v) + d[u] — d[v];
end

15

Evelyn De La Rosa 6.1210 Problem Set 7

4. Run Dijkstra’s Algorithm from s:;
Initialize priority queue @) and distance array D[s][v] = oo for all v;
Set D[s][s] = 0;
Insert s into () with priority 0;
while (@ is not empty do
Extract vertex u with minimum D[s][u] from @Q;
for each edge (u,v,d (u,v)) in adju] do
if D[s][u] + ¢ (u,v) < Dl[s|[v] then
Set D[s][v] = DI[s][u] + ¢ (u,v);
Insert v into) with priority D][s][v];
end

end
end
5. Adjust Distances Back to Original Weights:;
for each city v do
| d(s,v) = Disv] — h(s) + h(v);
end
6. Run Dijkstra’s Algorithm from Each v to s:;
for each city v where d(s,v) < k do
Initialize priority queue @, and distance array D|v][s] = oo;
Set D[v][v] = 0;
Insert v into @), with priority 0;
while (@, is not empty do
Extract vertex v with minimum Dlv][u] from Q,;
for each edge (u,s,d(u,s)) in adju] do
if D[v][u] + ¢ (u,s) < D[v][s] then
Set D[v][s] = D[v][u] + ¢ (u, s);
Insert s into @, with priority D[v][s];
end
end

end
d(v,s) = D[v][s] = h(v) + h(s);
end
7. Determine Reachable Cities:;
Reachable_Cities = {};
for each city v do

if d(s,v)+d(v,s) <k then

| Add v to {Reachable_Cities};

end
end 16
return Reachable_Cities;
Algorithm 2: Purrloin’s Reachable Cities Algorithm

Evelyn De La Rosa 6.1210 Problem Set 7

Runtime Analysis:

Bellman-Ford Execution : O(n x m) = O(n*) (since m = O(n))

Dijkstra’s Execution : O(n*logn) (running Dijkstra’s from s and each v)
Total Runtime : O(n?logn)

Correctness Justification:

Graph Representation: Properly models the cities and roads with as-
sociated costs.

Super Node Addition and Bellman-Ford: Ensures that all vertices
are considered for potential reweighting and detects any negative cycles
that would invalidate the path computations.

Reweighting Edges: Ensures all edge weights are non-negative, allowing
Dijkstra’s algorithm to function correctly.

Dijkstra’s Algorithm: Accurately computes the shortest paths from
the Nimbasa City Pokemon Center to all other cities and from each city
back to the center.

Distance Adjustment: Converts the reweighted distances back to their
original values, preserving the correctness of the shortest paths.

Reachable Cities Determination: Correctly identifies all cities that
can be explored and returned from within the daily loss constraint k.

17

Evelyn De La Rosa 6.1210 Problem Set 7

(b) [15 points] Purrloin is now planning to steal from the Castelia City Pokemon
Center. Describe an O(n?) algorithm to find the cost of the cheapest path that
Purrloin can take from the Nimbasa City Pokemon Center to Castelia City
Pokemon Center and back. Briefly analyze its runtime and prove correctness.

Solution:

Objective: Find the cost of the cheapest round-trip path from the Nimbasa
City Pokemon Center (s) to the Castelia City Pokemon Center (¢) and back.

Approach: Utilize the Floyd-Warshall algorithm to compute all-pairs
shortest paths, then sum the shortest path from s to ¢t and from ¢ to s to
obtain the total round-trip cost.

Algorithm Steps:

Step 1. Graph Representation: Represent the cities as vertices V' and roads as
directed edges F with associated costs c(u,v).

Step 2. Identify Source and Destination: Let s denote Nimbasa City Poke-
mon Center and ¢ denote Castelia City Pokemon Center.

Step 3. Initialize Distance Matrix: Create a distance matrix D where:

D[i][j] = { ¢ (4,)if there is a road from i to j, cootherwise,

and DIi][i] = 0 for all .
(a) Floyd-Warshall Algorithm: For each intermediate vertex k from 1 to n:
Step 1. For each pair of vertices (i, 7):

D[il[j] = min(D[i][j], Dli][k] + D[k][5])
(b) Retrieve Round-Trip Cost:

Total Cost = D[s|[t] + D[t][s]

18

Evelyn De La Rosa 6.1210 Problem Set 7

Pseudocode:

Input: Number of cities n, number of roads m, list of roads as tuples
(u, v, c(u,v)), source s, destination ¢
Output: Cheapest round-trip cost from s to t and back
1. Initialize Distance Matrix:;
Initialize D[n|[n] with DIi][j] = oo for all 4, j;
for each city i =1 ton do
| Set DI[i][i] = 0;
end
for each road (u,v,c(u,v)) do
| Set Dlu][v] = min(Du][v], c(u,v));
end
2. Execute Floyd-Warshall:;
for each intermediate city k =1 ton do
for each source city i =1 to n do
for each destination city j =1 ton do
if Dli][k] + DIk][j] < DJi][j] then
| Set D[i][j] = Dlil[k] + DIk][s];
end

end
end

end

3. Calculate Round-Trip Cost:;

if D[s][t] = oo or DIt][s] = co then

‘ return “No feasible round-trip path exists.”;
end
else

| Set Total Cost = D[s][t] + DI[t][s];
end
return Total_Cost;

Algorithm 3: Cheapest Round-Trip Path Algorithm

19

Evelyn De La Rosa 6.1210 Problem Set 7

Runtime Analysis:

Initialization : O(
Floyd-Warshall Execution : O(
Round-Trip Calculation : O(
Total Runtime : O(

Correctness Justification:

e Floyd-Warshall Algorithm: Correctly computes the shortest paths between
all pairs of cities, handling negative edge weights as long as there are no negative
cycles.

e Round-Trip Cost Retrieval: Summing the shortest path from s to ¢ and
from t to s yields the minimum total cost for the round-trip.

e Feasibility Check: Ensures that a path exists in both directions before sum-
ming the costs.

20

Evelyn De La Rosa 6.1210 Problem Set 7

(c) Modify the algorithm for part (b) to take O(n*logn) time.
Solution:
Objective: Optimize the round-trip cost computation from O(n?) to O(n?logn).

Approach: Utilize Johnson’s Algorithm to reweight the graph, allowing the
use of Dijkstra’s algorithm for efficient shortest path computations on graphs with
negative edge weights but no negative cycles. This reduces the overall runtime by
avoiding the O(n3) complexity of Floyd-Warshall.

Algorithm Steps:

Step 1. Graph Representation: As in part (b), represent the cities as vertices V' and
roads as directed edges E with associated costs c¢(u,v).

Step 2. Add Super Node: Introduce a super node s’ connected to all nodes in V' with
edges of cost 0.

Step 3. Run Bellman-Ford from Super Node: Compute potential h(v) forallv € V
to reweight the edges and eliminate negative weights.

Step 4. Reweight Edges: For each edge (u,v) € F, set the new cost ¢ (u,v) = c¢(u,v)+
h(u) — h(v). This ensures all ¢/(u,v) > 0.

Step 5. Run Dijkstra’s Algorithm:

Step 1. Run Dijkstra’s algorithm from s to compute the shortest path d'(s,t).
Step 2. Run Dijkstra’s algorithm from ¢ to compute the shortest path d'(¢, s).

Step 6. Adjust Distances: Convert the reweighted distances back to original weights:
d(s,t) =d'(s,t) — h(s) + h(t)
d(t,s) =d'(t,s) — h(t) + h(s)

Step 7. Compute Round-Trip Cost:

Total Cost = d(s,t) + d(t, s)

21

Evelyn De La Rosa 6.1210 Problem Set 7

Pseudocode:

Input: Number of cities n, number of roads m, list of roads as tuples
(u, v, c(u,v)), source s, destination ¢

Output: Cheapest round-trip cost from s to t and back

1. Construct the Graph:;
Initialize adjacency list adj for all n + 1 vertices (including super node s');
for each road (u,v,c(u,v)) in roads do

‘ Add edge from u to v with cost c(u,v);
end
for each city v in V do

‘ Add edge from super node s’ to v with cost 0;
end
2. Run Bellman-Ford from Super Node s':;
Initialize d[s'] = 0 and d[v] = oo for all v # §';
for each vertex k =1 ton do
for each edge (u,v,c(u,v)) in E do

if dlu] + c(u,v) < dv] then
| Set d[v] = d[u] + c(u, v);
end

end
end
for each edge (u,v,c(u,v)) in E do
if dlu] + c(u,v) < d[v] then

‘ return “Negative-weight cycle detected. Algorithm aborted.”;
end

end

3. Reweight Edges:;

for each edge (u,v,c(u,v)) in E do

| Set ¢(u,v) = c(u,v) + d[u] — d[v];
end

22

Evelyn De La Rosa 6.1210 Problem Set 7

4. Run Dijkstra’s Algorithm from s and t:;
for each source src in {s,t} do
Initialize distance array D[src][v] = oo for all v;
Set Dl[src|[src] = 0;
Initialize priority queue) and insert src with priority 0;
while @ is not empty do
Extract vertex u with minimum D[src][u] from @Q;
for each edge (u,v,d(u,v)) in adjju] do
if Disrc][u] + ¢ (u,v) < D[src][v] then
Set D[src][v] = D[src][u] + ¢ (u, v);
Insert v into @ with priority D[src|[v];
end

end
end
end
5. Adjust Distances Back to Original Weights:;
Set d(s,t) = D[s][t] — h(s) + h(t);
Set d(t,s) = D[t][s] — h(t) + h(s);
6. Compute Round-Trip Cost:;
if d(s,t) = o0 ord(t,s) = co then

‘ return “No feasible round-trip path exists.”;
end
else

| Set Total_Cost = d(s, t) + d(t, s);
end

return Total_Cost;
Algorithm 4: Optimized Round-Trip Path Algorithm

Runtime Analysis:

Bellman-Ford Execution : O(n x m) = O(n®) (since m = O(n))
Dijkstra’s Execution (twice) : 2 x O(m 4+ nlogn) = O(n?logn)
Total Runtime : O(n?) + O(n*logn) = O(n?)

23

Evelyn De La Rosa 6.1210 Problem Set 7

Correctness Justification:

e Bellman-Ford Algorithm: Correctly detects any negative-weight cycles and
computes potentials h(v) to reweight the graph.

e Reweighting Edges: Ensures all new edge weights ¢/(u,v) > 0, making Dijk-
stra’s algorithm applicable.

e Dijkstra’s Algorithm: Efficiently computes the shortest paths from s to ¢
and from t to s using the reweighted graph.

e Distance Adjustment: Converts the reweighted distances back to the original
cost metrics.

e Round-Trip Cost Calculation: Accurately sums the shortest paths in both
directions to determine the total round-trip cost.

24

