

HL: Complex Numbers-Argand planes introduction

Worksheet # 6.1

Topics Covered

- 1. HL: Argand diagrams intro with basic complex numbers operations with problems related to polynomials
- 2. HL: De Moivre's theorem introduction and Drill questions

(Really important to convert one form of complex number to another quickly using fast trignonometry concepts)

(Refer to worksheet # 2.5 for more Basic introduction)

Made and compiled for students of Chemyst Tuition Centre 5 tank road Singapore ibmath.sg

1 Forms of complex numbers and Argand plane questions

- 1. Find the following complex numbers in polar form and check your answers by GDC.
- a) 2 + 2i
- b) $\frac{3}{2}i$
- c) -4 3i
- d) 21 20i
- e) $-1 + \sqrt{3}i$
- f) $-\frac{4}{3}i$
- g) $\frac{\sqrt{2}}{3} \frac{\sqrt{2}}{4}i$
- 2. Given the complex number $z = \frac{7}{12} e^{i\frac{\pi}{9}}$, find n polar form:
- a)-z b) z^* c) $-z^*$
- 3. Multiply the following complex numbers in Euler's form and polar form.
- a) $z_1 = 3e^{i\frac{2\pi}{3}}$ and $z_2 = 5e^{i\frac{3\pi}{4}}$
- b) $z_3 = 11 \operatorname{cis} 210^{\circ}$ and $z_4 = 23 \operatorname{cis} 315^{\circ}$
- 4. Given the numbers $z_1 = 4 \text{ cis } 120^{\circ} \text{ and } z_2 = 3 + 3i, \text{ find:}$
- a) z_1 in Cartesian form
- b) z_2 in polar form
- c) $z_1 \times z_2$ in both forms.
- Hence, find the exact value of:
- d) $\cos 165^{\circ}$
- e) $\tan 165^{\circ}$.

- 5. Given the numbers $z_1 = \operatorname{cis} \frac{3\pi}{4}$ and $z_2 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, find:
- a) z_1 in Cartesian form
- b) z_2 in polar form
- c) $z_1 \times z_2$ in both forms.

Hence find the exact values of:

- d) $\sin \frac{17\pi}{12}$
- e) $\tan \frac{17\pi}{12}$.
- 6. Given the number $z = re^{i\theta}$, find the values of r and θ so that:
- a) $z(\sqrt{3}-i)$ is a real number less than 3
- b) z(-1+i) is an imaginary number with a modulus greater than 4.
- 7. Calculate the following product:

$$\left(\sin\frac{\pi}{12} + i\cos\frac{\pi}{12}\right) \left(\sin\frac{\pi}{6} + i\cos\frac{\pi}{6}\right) \\ \times \left(\sin\frac{\pi}{4} + i\cos\frac{\pi}{4}\right)$$

8. Let $z_1 = 1 + i$ and $z_2 = 1 - \sqrt{3}i$.

Find the following in Euler's form:

- a) $\frac{z_1}{z_2}$

- c) $\frac{1}{z_1 z_2}$ d) $\frac{-z_1 *}{(z_1 z_2) *}$

Express, in polar form:

- a) $\frac{3}{2+2i}$
- b) $\frac{4-4i}{-1+\sqrt{3}i}$
- c) $\frac{\sqrt{15}-\sqrt{5}i}{\sqrt{2}+\sqrt{6}i}$
- 9. Given the numbers $z_1 = 5 \operatorname{cis} 60^\circ$ and $z_2 = 3 + 3i$, find:
- a) z_1 in Cartesian form
- b) z_2 in polar form
- c) $\frac{z_1}{z_2}$ in both forms.

Hence find the exact value of:

- d) $\cos 15^{\circ}$
- e) sin 15° & tan 15°
- 10. Write in the form a + bi where $a, b \in \mathbb{Q}$:
- a $\frac{3+4i}{1-3i}$
- b $\frac{3}{i} \left(\frac{1}{\sqrt{5}} \frac{2i}{\sqrt{5}} \right)^2$

- 11. Suppose $\frac{z+2}{z-2} = i$. Find z in the form a + bi where $a, b \in \mathbb{R}$.
- 12. Solve for z: $z^2 z + 1 + i = 0$
- 13. Find the exact values of $x, y \in \mathbb{R}$ such that:
- a) (3-2i)(x-yi) = -i
- b) $(x+yi)^2 (x-yi)^2 = x y + 16i$
- 14. Suppose $z = iz^*$ where z = x + iy and $x, y \in \mathbb{R}$.

Deduce that x = y.

- 15. Prove that $(zw)^* = z^*w^*$.
- 16. Show that, for any complex number $z \neq 0$, $\frac{z}{z^*} + \frac{z^*}{z}$ is always real.
- 17. Simplify the expression $(w+3z^*)+(z-w^*)^*$ using the properties of conjugates.
- 18. z and w are complex numbers such that $\frac{w}{z} = 1 + i$ and $w 2z^* = -1 5i$. Find z and w.
- 19. Find $\sum_{n=0}^{\infty} \left(\frac{i}{2}\right)^n$.
- 20. Suppose z = 2 + i and w = 3 2i. Find:
- a) 2z + w
- b) $w^* z$ c) $z^* + 2w + 2i$.

Illustrate your answers on separate Argand diagrams.

21. Find the complex number z that satisfies the equation $\frac{10}{z} + \frac{15}{z^*} = 5 + 2i$ given $|z| = \sqrt{5}$.

z is a complex number where |z| = 1 and $\arg z \in \left[0, \frac{\pi}{2}\right]$.

- 22. Given that $\arg\left(\frac{z}{z+2}\right) = \frac{\pi}{4}$, find |z+2|.
- 23 .On an Argand plane, points P, Q, and R represent the complex numbers z_1, z_2 , and z_3 respectively.

If $i(z_3 - z_2) = z_1 - z_2$, what can be deduced about triangle PQR?

- 24. Illustrate on an Argand diagram the complex numbers z satisfying:
- a) |z+3-2i|=2
- b) |z i| > 1
- c) $\arg(z+1) = -\frac{\pi}{4}$ d) $\frac{\pi}{4} \le \arg(z-i) < \frac{\pi}{2}$
- 25. If $z = r \operatorname{cis} \theta$, write $z^4, \frac{1}{z}$, and iz^* in polar form.
- 26. Use the properties of cis to simplify the following. Convert your answer to exact Cartesian form if possible.
- a) $2 \operatorname{cis} \frac{\pi}{7} \operatorname{cis} \frac{6\pi}{7}$
- b) $(\cos \frac{5\pi}{12})^2$
- C) $\frac{\sqrt{8}\operatorname{cis}\frac{3\pi}{16}}{\sqrt{2}\operatorname{cis}\left(-\frac{5\pi}{16}\right)}$
- d) $cis(\theta + 15\pi)$

27. Suppose

$$z = \sqrt{3} + i$$

and

$$w = 2 - 2i$$

a) Write z and w in polar form.

- b) Hence find zw in polar form.
- c) Describe the transformation to z when it is multiplied by w.
- 28. Let $z = \frac{-1 + i\sqrt{3}}{4}$ and $w = \frac{\sqrt{2} + i\sqrt{2}}{4}$.
- a) Write z and w in the form $r \operatorname{cis} \theta$ where r > 0 and $-\pi < \theta \le \pi$.

- b) Show that $zw = \frac{1}{4} (\cos \frac{11\pi}{12} + i \sin \frac{11\pi}{12})$.
- c) Hence find the exact values of $\cos \frac{11\pi}{12}$ and $\sin \frac{11\pi}{12}$.
- 29. If $z = \cos \theta + i \sin \theta$ where $0 < \theta < \frac{\pi}{4}$, find the modulus and argument of $1 z^2$.

30.

Points O, A, B, and C lie on a circle. Suppose z_1 represents \overrightarrow{OA} , z_2 represents \overrightarrow{OB} , and z_3 represents \overrightarrow{OC}

- a) What vectors are represented by $z_1 z_2$ and $z_3 z_2$?
- b) Hence find the value of $\arg\left(\frac{z_3}{z_1}\right) + \arg\left(\frac{z_1-z_2}{z_3-z_2}\right)$.

31.

Using the sum and product of roots, find the real quadratic equations with roots $3 \operatorname{cis} \frac{5\pi}{6}$ and $3 \operatorname{cis} \frac{7\pi}{6}$.

32.

OABCD is a regular pentagon with side length 1 . Let $z_1 \equiv \overrightarrow{OA}, z_2 \equiv \overrightarrow{OB} \ z_3 \equiv \overrightarrow{OC}$, and $z_4 \equiv \overrightarrow{OD}$

a Write in polar form:

- i) *z*₁
- ii) $z_2 z_1$
- iii) z₃

b) Find the smallest positive integer n such that z_2^n is a real number.

- c) Show that $z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0$.
- 33. Write:
- a) $\sqrt{3} + i$ in polar form and Euler form
- b) $2 cis \frac{5\pi}{6}$ in Cartesian form and Euler form
- c) $5e^{-i\frac{\pi}{4}}$ in Cartesian form and polar form.
- 34. a) Express 1 + i and $\sqrt{3} i$ in the form $re^{i\theta}$
- b) Hence write $z = \frac{-1-i}{\sqrt{3}-i}$ in the form $re^{i\theta}$.
- c) Find the smallest positive integer n such that z^n is a real number.
- 35. a) Write $z = \frac{1+i\sqrt{3}}{1+i}$ in the form $r \operatorname{cis} \theta, r > 0$.
- b) Hence find the smallest positive value of n such that z^n is:
- i) real
- ii) purely imaginary.

- 36. Write $z = \frac{-1+5i}{2+3i}$ in polar form. Hence show that $z^{12} = -64$.
- 37. Use De Moivre's theorem to find the exact value of:

$$a\left(\sqrt{5}\operatorname{cis}\frac{\pi}{8}\right)^6$$

$$b (\sqrt{3} - i)^5$$

$$c(\sqrt{2}+i\sqrt{6})^{\frac{1}{2}}$$

- 38. a) Find the cube roots of -27i and display them on an Argand diagram, labelling them z_1, z_2 , and z_3 .
- b) Show that $z_2z_3=z_1^2$, where z_1 is any of the cube roots found in **a**.
- c) What is the value of $z_1z_2z_3$?
- 39. a) Find the cube roots of -2-2i, and display them on an Argand diagram.
- b) By considering the sum of the cube roots, show that $\cos \frac{\pi}{4} + \cos \frac{5\pi}{12} + \cos \frac{13\pi}{12} = 0$.

40.

$$2z^3+pz^2+qz+16=0, p\in\mathbb{R}, q\in\mathbb{R}$$

The above cubic equation has roots α, β and γ , where γ is real.

It is given that $\alpha = 2(1 + i\sqrt{3})$.

- a) Find the other two roots, β and γ .
- b) Determine the values of p and q.
- 41. Solve the equation

$$2z^4 - 14z^3 + 33z^2 - 26z + 10 = 0, z \in \mathbb{C}$$

given that one of its roots is 3 + i.

42. The following complex numbers are given.

$$z_1 = 2 - 2i$$
, $z_2 = \sqrt{3} + i$ and $z_3 = a + bi$ where $a \in \mathbb{R}, b \in \mathbb{R}$.

- a) If $|z_1z_3| = 16$, find the modulus z_3 .
- b) Given further that $\arg\left(\frac{z_3}{z_2}\right) = \frac{7\pi}{12}$, determine the argument of z_3 .
- c) Find the values of a and b, and hence show $\frac{z_3}{z_1} = -2$.
- 43. The following cubic equation is given

$$z^3 + 2z^2 + az + b = 0$$

where $a \in \mathbb{R}, b \in \mathbb{R}$.

One of the roots of the above cubic equation is 1+i.

- a) Find the real root of the equation.
- b) Find the value of a and the value of b.
- 44. The complex conjugate of z is denoted by \bar{z} . Solve the equation

$$\frac{2z + 3i(\bar{z} + 2)}{1 + i} = 13 + 4i$$

giving the answer in the form x + iy, where x and y are real numbers.

45. Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}, y \in \mathbb{R}$.

$$\frac{x}{1+i} = \frac{1-5i}{3-2i} + \frac{y}{2-i}$$

46. It is given that

$$z + 2i = iz + k, k \in \mathbb{R}$$
 and $\frac{w}{z} = 2 + 2i, \operatorname{Im} w = 8$

Determine the value of k.

47. The complex numbers z and w are defined as

$$z = 3 + i$$
 and $w = 1 + 2i$.

Determine the possible values of the real constant λ if

$$\left|\frac{z}{w} + \lambda\right| = \sqrt{\lambda + 2}$$

48. The complex number z satisfies the equation

$$z^2 = 3 + 4i$$

- a) Find the possible values of ...
- i. . . . z.
- ii. ... z^3 .
- b) Hence, by showing detailed workings, find a solution of the equation

$$w^6 - 4w^3 + 125 = 0, w \in \mathbb{C},$$

49. The following complex numbers are given

$$z = \frac{1+i}{1-i} \text{ and } w = \frac{\sqrt{2}}{1-i}$$

- a) Calculate the modulus of z and the modulus of w.
- b) Find the argument of z and the argument of w.

In a standard Argand diagram, the points A, B and C represent the numbers z, z + w and w respectively. The origin of the Argand diagram is denoted by O.

c) By considering the quadrilateral OABC and the argument of z + w, show that

$$\tan\left(\frac{3\pi}{8}\right) = 1 + \sqrt{2}$$

50. The complex conjugate of z is denoted by \bar{z} .

Solve the equation

$$z+2\bar{z}=|z+2|,z\in\mathbb{C}.$$

51. It is given that

$$z = \cos \theta + i \sin \theta, 0 \le z < 2\pi$$

Show clearly that

$$\frac{2}{1+z} = 1 - i \tan\left(\frac{\theta}{2}\right)$$

52.

$$\frac{(3+4\mathrm{i})(1+2\mathrm{i})}{1+3\mathrm{i}}=q(1+\mathrm{i}),\quad q\in\mathbb{R}$$

- a) Find the value of q.
- b) Hence simplify

$$\arctan \frac{4}{3} + \arctan 2 - \arctan 3$$

giving the answer in terms of π .

53. Sketch on a standard Argand diagram the locus of the points $z = \sqrt{2}(1+i)$, $w = \sqrt{3} - i$ and z + w, and use geometry to prove that

$$\tan\left(\frac{\pi}{24}\right) = \sqrt{6} - \sqrt{3} + \sqrt{2} - 2$$

You must justify all the steps in this proof.

54. It is given that

$$z = \frac{1 + 8i}{1 - 2i}$$

- a) Express z in the form x + iy, where x and y are real numbers.
- b) Find the modulus and argument of z.
- c) Show clearly that

$$\arctan 8 + \arctan 2 + \arctan \frac{2}{3} = \pi.$$

55.

$$z = (2+3i)^{4n+2} + (3-2i)^{4n+2}, n \in \mathbb{N}$$

Show clearly that z = 0 for all $n \in \mathbb{N}$.

56. Two distinct complex numbers z_1 and z_2 are such so that

$$|z_1| = |z_2| = r \neq 0.$$

Show clearly that $\frac{z_1+z_2}{z_1-z_2}$ is purely imaginary.

You may find the result $z\overline{z} = |z|^2 = r^2$ useful.

2 De moivre's theorem Drill Questions

57.

$$z_1 = \sqrt{2} \left(\cos \frac{\pi}{3} - \cos \frac{5\pi}{6} i \right)$$

and
$$z_2 = 2 \left(\sin \frac{5\pi}{6} - \sin \frac{\pi}{3} i \right)$$

find
$$\frac{z_1^3}{z_2^5}$$

- 58. Find the Cartesian form of $\left(\frac{\sin\theta + i\cos\theta}{\cos\theta i\sin\theta}\right)^{2019}$.
- 59. geometric sequence of complex numbers is given: 2+i, 1+3i, -2+4i, ...
- a) Find the common ratio.
- b) What is the ninth term of the sequence?
- c) Find the sum of the first nine terms of the sequence.

60.

$$z^4 = -16, z \in \mathbb{C}$$

- a) Determine the solutions of the above equation, giving the answers in the form a + bi, where a and b are real numbers.
- b) Plot the roots of the equation as points in an Argand diagram.
- 61. Given that the complex number $\omega \neq 1$ is a solution of $z^3 = 1$, show that:
- a) $\omega^2 + \omega + 1 = 0$
- b) $(\omega^*)^2 + \omega^* + 1 = 0$
- c) Hence, calculate $\omega^{2019} + \omega^{2020} + \omega^{2021} + \omega^{2022}$.
- 62.

Solve the equation $z^4 = -8 + 8\sqrt{3}i$. Draw the solutions on the Argand diagram.

- 63. The complex number $z = -4\sqrt{2} + 4\sqrt{2}i$ is given.
- a) Write the number in Euler's form.
- b) Show that the real part of the complex number $\sqrt[6]{z}$ is $\frac{\sqrt{2\sqrt{2}+4}}{2}$.
- c) Find the exact form of the imaginary part of the complex number $\sqrt[6]{z}$.
- 64. Let $z = \operatorname{cis} \theta = \operatorname{cos} \theta + i \operatorname{sin} \theta$.
- a) Use the binomial theorem to find the real and imaginary part of z^3 .
- b) Use De Moivre's theorem to find the formulae for:
- i) $\cos 3\theta$
- ii) $\sin 3\theta$
- iii) $\tan 3\theta$
- 65. Let the number $z = \operatorname{cis} \theta$.
- a) Use the binomial theorem to expand $\left(z \frac{1}{z}\right)^4$.
- b) Use the formulae $z^n + \frac{1}{z^n} = 2\cos n\theta$ and $z^n \frac{1}{z^n} = 2i\sin n\theta$ to find $\sin^4 \theta$.
- c) Hence, find $\int \sin^4 x \, dx$.
- 66. The complex number is defined as $z = \cos \theta + i \sin \theta, -\pi < \theta \le \pi$.
- a) Show clearly that ...

i. ...
$$z^n + \frac{1}{z^n} = 2\cos\theta$$
.

ii. ...
$$z^n - \frac{1}{z^n} = 2i\sin\theta$$
.

iii. ...
$$8\sin^4\theta = \cos 4\theta - 4\cos 2\theta + 3$$
.

b) Hence solve the equation

$$8\sin^4\theta + 5\cos 2\theta = 3, -\pi < \theta \le \pi.$$

67*. It is given that

$$\sin 5\theta \equiv 16\sin^5\theta - 20\sin^3\theta + 5\sin\theta.$$

a) Use de Moivre's theorem to prove the validity of the above trigonometric identity.

It is further given that

$$\sin 3\theta \equiv 3\sin \theta - 4\sin^3 \theta.$$

b) Solve the equation

$$\sin 5\theta = 5\sin 3\theta$$
 for $0 \le \theta < \pi$,

giving the solutions correct to 3 decimal places.

- 68. The complex number z = -9i is given.
- a) Determine the fourth roots of z, giving the answers in the form $re^{i\theta}$, where r > 0 and $0 \le \theta < 2\pi$.
- b) Plot the points represented by these roots in Argand diagram, and join them in order of increasing argument, labelled as A, B, C and D.

The midpoints of the sides of the quadrilateral ABCD represent the 4^{th} roots of another complex number w.

- c) Find w, giving the answer in the form x + iy, where $x \in \mathbb{R}, y \in \mathbb{R}$.
- 69. The complex number z is given in polar form as

$$\cos\left(\frac{2}{5}\pi\right) + i\sin\left(\frac{2}{5}\pi\right)$$

a) Write z^2, z^3 and z^4 in polar form, each with argument θ , so that $0 \le \theta < 2\pi$.

In an Argand diagram the points A, B, C, D and E represent, in respective order, the complex numbers

- 1, 1+z, $1+z+z^2$, $1+z+z^2+z^3$, $1+z+z^2+z^3+z^4$.
- b) Sketch these points, in the sequential order given, in a standard Argand diagram.
- c) State the exact argument of

Mr. Ejaz: +65 97124269

$$1 + z + z^2$$
.

70. Let
$$z = e^{i\theta}$$
, $\theta \in \mathbb{R}$.

Show that $\frac{1}{1+z} = \frac{1}{2} \left(1 - i \tan \frac{\theta}{2} \right)$.

- 71. The equation $z^5 1 = 0$ is given.
- a) Find all the solutions in polar form.
- b) Hence, show that

$$\cos\frac{2\pi}{5} + \cos\frac{4\pi}{5} + \cos\frac{6\pi}{5} + \cos\frac{8\pi}{5} = -1$$