

Calculus Test 2

Test number 2: Calculus

Topics Covered

1. Entire calculus AA HL syllabus

2. Paper 3 practice test

Made and compiled for students of Chemyst Tuition Centre 5 tank road Singapore ibmath.sg

1 Paper 1 and paper 2 questions

- 1. a Write $\frac{2x+5}{x^2-x-2}$ in the form $\frac{A}{x-2} \frac{B}{x+1}$.
- b) Hence find the exact value of

$$\int_{3}^{9} \frac{2x+5}{x^2-x-2} dx$$

- c) Use the substitution $x = 2 \sec u$ to find $\int \frac{1}{x\sqrt{x^2-4}} dx$.
- 2. a) Show that the substitution y = vx transforms the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + \sqrt{\frac{y}{x}}$$

into the equation

$$x\frac{\mathrm{d}v}{\mathrm{d}x} = \sqrt{v}.$$

b) Hence solve the equation $\frac{dy}{dx} = \frac{y}{x} + \sqrt{\frac{y}{x}}$ given that y = 0 when x = 1.

Write y in terms of x.

3. Variables x and y satisfy the differential equation $\frac{dy}{dx} = x + 2y$, and y(0) = A.

Write
$$y = \sum_{k=0}^{\infty} a_k x^k$$
.

- a) Express a_1 and a_2 in terms of A and show that, for $k \ge 2$, $a_{k+1} = \frac{2}{k+1}a_k$.
- b) Hence find the Maclaurin series expansion of y.
- 4. a) Use l'Hôpital's rule to evaluate

$$\lim_{x \to 0} \frac{e^x - 1}{\sin(2x)}$$

- b) Show that $\frac{\ln(x-2)}{\tan(\frac{\pi x}{4})}$ diverges to infinity when $x \to 2$.
- c) Use Maclaurin series to evaluate

$$\lim_{x \to 0} \frac{\cos(3x) - 1}{2x^2}$$

- 5*. A particle moves such that its velocity $v \text{ ms}^{-1}$ is related to its displacement s m, by the equation $v(s) = \arctan(\sin s), 0 \le s \le 1$. The particle's acceleration is $a \text{ ms}^{-2}$.
- (a) Find the particle's acceleration in terms of s.
- (b) Using an appropriate sketch graph, find the particle's displacement when its acceleration is $0.25~\mathrm{ms}^{-2}$.
- 6*. The functions f and g are defined by

$$f(x) = \frac{e^x + e^{-x}}{2}, x \in \mathbb{R}$$

$$g(x) = \frac{e^x - e^{-x}}{2}, x \in \mathbb{R}$$

- (a) (i) Show that $\frac{1}{4f(x)-2g(x)} = \frac{e^x}{e^{2x}+3}$.
- (ii) Use the substitution $u = e^x$ to find $\int_0^{\ln 3} \frac{1}{4f(x) 2g(x)} dx$. Give your answer in the form $\frac{\pi\sqrt{a}}{b}$ where $a, b \in \mathbb{Z}^+$.

Let
$$h(x) = nf(x) + g(x)$$
 where $n \in \mathbb{R}, n > 1$.

- (b) (i) By forming a quadratic equation in e^x , solve the equation h(x) = k, where $k \in \mathbb{R}^+$.
- (ii) Hence or otherwise show that the equation h(x) = k has two real solutions provided that $k > \sqrt{n^2 1}$ and $k \in \mathbb{R}^+$.

Let
$$t(x) = \frac{g(x)}{f(x)}$$

- (c) (i) Show that $t'(x) = \frac{[f(x)]^2 [g(x)]^2}{[f(x)]^2}$ for $x \in \mathbb{R}$.
- (ii) Hence show that t'(x) > 0 for $x \in \mathbb{R}$.

Mr. Ejaz: +65 97124269

2 Paper 3- GDC allowed

- 7. In this question we consider series of the form $\sum_{n=1}^{N} nr^n$.
- a) Evaluate $\sum_{n=1}^{4} n \times 3^n$.
- b) Find the derivative with respect to r of $\sum_{n=1}^{5} r^n$.
- c) i) Show that $\sum_{n=1}^{N} nr^n r \sum_{n=1}^{N} nr^n = \sum_{n=1}^{N} r^n Nr^{N+1}$.
- ii) Hence or otherwise, show that $\sum_{n=1}^{N} nr^n = \frac{r (N+1)r^{N+1} + Nr^{N+2}}{(1-r)^2}.$
- iii) Use this formula to verify your answer to a.
- d) i) Show that $\frac{d}{dr} \left(\sum_{n=1}^{N} r^n \right) = \sum_{n=1}^{N} n r^{n-1}$.
- ii) Explain why $\sum_{n=1}^{N} nr^n = r \frac{d}{dr} \left(\frac{r r^{N+1}}{1 r} \right)$.
- iii) Hence establish the formula for $\sum_{n=1}^{N} nr^n$ found in c(ii).
- e) Use mathematical induction to show that $\sum_{n=1}^{N} nr^n = \frac{r (N+1)r^{N+1} + Nr^{N+2}}{(1-r)^2}$ for all $N \in \mathbb{Z}^+$.
- f) Use l'Hôpital's rule to find $\lim_{r\to 1} \left(\frac{r-(N+1)r^{N+1}+Nr^{N+2}}{(1-r)^2}\right)$.

Verify that this result is consistent with the value of $\sum_{n=1}^{N} n^n$

- g) Now consider the infinite series $\sum_{n=1}^{\infty} nr^n$.
- i) Show that $\sum_{n=1}^{\infty} nr^n$ can be written as the sum of the infinite geometric series

$$(r+r^2+r^3+r^4+r^5+\ldots)+(r^2+r^3+r^4+r^5+r^6+\ldots)+(r^3+r^4+r^5+r^6+r^7+\ldots)+\ldots$$

- ii) Hence show that, for $|r| < 1, \sum_{n=1}^{\infty} nr^n = \frac{r}{(1-r)^2}$.
- iii) Evaluate $\frac{1}{\sqrt{2}} + \frac{2}{2} + \frac{3}{2\sqrt{2}} + \frac{4}{4} + \frac{5}{4\sqrt{2}} + \dots$ Write your answer in the form $a + b\sqrt{2}$, where $a, b \in \mathbb{Z}$.
- iv) Suppose the third term of $\sum_{n=1}^{\infty} nr^n$ is the largest in the series.

Find the range of possible values that $\sum_{n=1}^{\infty} nr^n$ can take.