Calculus Test 2

Test number 2: Calculus

Topics Covered

1. Entire calculus AA HL syllabus

2. Paper 3 practice test

Made and compiled for students of Chemyst Tuition Centre
5 tank road Singapore ibmath.sg

1 Paper 1 and paper 2 questions

1. a Write $\frac{2 x+5}{x^{2}-x-2}$ in the form $\frac{A}{x-2}-\frac{B}{x+1}$.
b) Hence find the exact value of

$$
\int_{3}^{9} \frac{2 x+5}{x^{2}-x-2} d x
$$

c) Use the substitution $x=2 \sec u$ to find $\int \frac{1}{x \sqrt{x^{2}-4}} \mathrm{~d} x$.
2. a) Show that the substitution $y=v x$ transforms the differential equation
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x}+\sqrt{\frac{y}{x}}$
into the equation
$x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\sqrt{v}$.
b) Hence solve the equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x}+\sqrt{\frac{y}{x}}$ given that $y=0$ when $x=1$.

Write y in terms of x.
3. Variables x and y satisfy the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=x+2 y$, and $y(0)=A$.

Write $y=\sum_{k=0}^{\infty} a_{k} x^{k}$.
a) Express a_{1} and a_{2} in terms of A and show that, for $k \geq 2, a_{k+1}=\frac{2}{k+1} a_{k}$.
b) Hence find the Maclaurin series expansion of y.
4. a) Use l'Hôpital's rule to evaluate

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin (2 x)}
$$

b) Show that $\frac{\ln (x-2)}{\tan \left(\frac{\pi x}{4}\right)}$ diverges to infinity when $x \rightarrow 2$.
c) Use Maclaurin series to evaluate

$$
\lim _{x \rightarrow 0} \frac{\cos (3 x)-1}{2 x^{2}}
$$

5*. A particle moves such that its velocity $v \mathrm{~ms}^{-1}$ is related to its displacement $s \mathrm{~m}$, by the equation $v(s)=$ $\arctan (\sin s), 0 \leq s \leq 1$. The particle's acceleration is $a \mathrm{~ms}^{-2}$.
(a) Find the particle's acceleration in terms of s.
(b) Using an appropriate sketch graph, find the particle's displacement when its acceleration is $0.25 \mathrm{~ms}^{-2}$.

6*. The functions f and g are defined by

$$
\begin{aligned}
& f(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}, x \in \mathbb{R} \\
& g(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}, x \in \mathbb{R}
\end{aligned}
$$

(a) (i) Show that $\frac{1}{4 f(x)-2 g(x)}=\frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}+3}$.
(ii) Use the substitution $u=\mathrm{e}^{x}$ to find $\int_{0}^{\ln 3} \frac{1}{4 f(x)-2 g(x)} \mathrm{d} x$. Give your answer in the form $\frac{\pi \sqrt{a}}{b}$ where $a, b \in \mathbb{Z}^{+}$.

Let $h(x)=n f(x)+g(x)$ where $n \in \mathbb{R}, n>1$.
(b) (i) By forming a quadratic equation in e^{x}, solve the equation $h(x)=k$, where $k \in \mathbb{R}^{+}$.
(ii) Hence or otherwise show that the equation $h(x)=k$ has two real solutions provided that $k>\sqrt{n^{2}-1}$ and $k \in \mathbb{R}^{+}$.

Let $t(x)=\frac{g(x)}{f(x)}$
(c) (i) Show that $t^{\prime}(x)=\frac{[f(x)]^{2}-[g(x)]^{2}}{[f(x)]^{2}}$ for $x \in \mathbb{R}$.
(ii) Hence show that $t^{\prime}(x)>0$ for $x \in \mathbb{R}$.

2 Paper 3- GDC allowed

7. In this question we consider series of the form $\sum_{n=1}^{N} n r^{n}$.
a) Evaluate $\sum_{n=1}^{4} n \times 3^{n}$.
b) Find the derivative with respect to r of $\sum_{n=1}^{5} r^{n}$.
c) i) Show that $\sum_{n=1}^{N} n r^{n}-r \sum_{n=1}^{N} n r^{n}=\sum_{n=1}^{N} r^{n}-N r^{N+1}$.
ii) Hence or otherwise, show that $\sum_{n=1}^{N} n r^{n}=\frac{r-(N+1) r^{N+1}+N r^{N+2}}{(1-r)^{2}}$.
iii) Use this formula to verify your answer to \mathbf{a}.
d) i) Show that $\frac{d}{d r}\left(\sum_{n=1}^{N} r^{n}\right)=\sum_{n=1}^{N} n r^{n-1}$.
ii) Explain why $\sum_{n=1}^{N} n r^{n}=r \frac{d}{d r}\left(\frac{r-r^{N+1}}{1-r}\right)$.
iii) Hence establish the formula for $\sum_{n=1}^{N} n r^{n}$ found in $\mathrm{c}(\mathrm{ii})$.
e) Use mathematical induction to show that $\sum_{n=1}^{N} n r^{n}=\frac{r-(N+1) r^{N+1}+N r^{N+2}}{(1-r)^{2}}$ for all $N \in \mathbb{Z}^{+}$.
f) Use l'Hôpital's rule to find $\lim _{r \rightarrow 1}\left(\frac{r-(N+1) r^{N+1}+N r^{N+2}}{(1-r)^{2}}\right)$.

Verify that this result is consistent with the value of $\sum_{n=1}^{N} n$
g) Now consider the infinite series $\sum_{n=1}^{\infty} n r^{n}$.
i) Show that $\sum_{n=1}^{\infty} n r^{n}$ can be written as the sum of the infinite geometric series

$$
\left(r+r^{2}+r^{3}+r^{4}+r^{5}+\ldots\right)+\left(r^{2}+r^{3}+r^{4}+r^{5}+r^{6}+\ldots\right)+\left(r^{3}+r^{4}+r^{5}+r^{6}+r^{7}+\ldots\right)+\ldots
$$

ii) Hence show that, for $|r|<1, \sum_{n=1}^{\infty} n r^{n}=\frac{r}{(1-r)^{2}}$.
iii) Evaluate $\frac{1}{\sqrt{2}}+\frac{2}{2}+\frac{3}{2 \sqrt{2}}+\frac{4}{4}+\frac{5}{4 \sqrt{2}}+\ldots$. Write your answer in the form $a+b \sqrt{2}$, where $a, b \in \mathbb{Z}$.
iv) Suppose the third term of $\sum_{n=1}^{\infty} n r^{n}$ is the largest in the series.

Find the range of possible values that $\sum_{n=1}^{\infty} n r^{n}$ can take.

