## Calculus Test 2

Test number 2: Calculus

## Topics Covered

## 1. Calculus AA SL syllabus

Made and compiled for students of Chemyst Tuition Centre
5 tank road Singapore ibmath.sg

## 1 GDC questions are with *

1. Consider the function $f(x)=\frac{e^{3 x}}{k x}, k \neq 0$.
a) Find the $x$-coordinate of the stationary point. [3]
b) For what values of $k$ is the stationary point:[2]
i) a local minimum....[2]
ii) a local maximum?....[2]
c) Given that the stationary point has $y$-coordinate $-\frac{e}{2}$, find $k$ and determine the nature of the stationary point....[3]
d) State the location and nature of the stationary point of $g(x)=-f(2 x) \ldots$...[2]
2. The curve in the diagram has equation $y=3 e^{-x}-1$.

a) Find the exact coordinates of $A$.[2]
b) Find the shaded area.[3]

3*. Let $f(x)=\frac{\ln (4 x)}{x}$, for $0<x \leq 5$.

Points $\mathrm{P}(0.25,0)$ and Q are on the curve of $f$. The tangent to the curve of $f$ at P is perpendicular to the tangent at $Q$. Find the coordinates of $Q$. [5]
4.* Consider a function $f$, for $0 \leq x \leq 10$. The following diagram shows the graph of $f^{\prime}$, the derivative of $f$.

(a) The graph of $f$ has a local maximum point when $x=p$. State the value of $p$, and justify your answer..
(b) Write down $f^{\prime}(2)$......[1]

Let $g(x)=\ln (f(x))$ and $f(2)=3$.
(c) Find $g^{\prime}(2)$
(d) Verify that $\ln 3+\int_{2}^{a} g^{\prime}(x) \mathrm{d} x=g(a)$, where $0 \leq a \leq 10$
(e) The following diagram shows the graph of $g^{\prime}$, the derivative of $g$.


The shaded region $A$ is enclosed by the curve, the $x$-axis and the line $x=2$, and has area 0.66 units ${ }^{2}$.

The shaded region $B$ is enclosed by the curve, the $x$-axis and the line $x=5$, and has area 0.21 units ${ }^{2}$. Find $g(5)$. [4marks]
5. A function $f$ has its derivative given by $f^{\prime}(x)=3 x^{2}-2 k x-9$, where $k$ is a constant. [14 marks]
(a) Find $f^{\prime \prime}(x)$.

The graph of $f$ has a point of inflexion when $x=1$.
(b) Show that $k=3$.
(c) Find $f^{\prime}(-2)$.
(d) Find the equation of the tangent to the curve of $f$ at $(-2,1)$, giving your answer in the form $y=a x+b$.
(e) Given that $f^{\prime}(-1)=0$, explain why the graph of $f$ has a local maximum when $x=-1$.

