

SUPPORTING GUT FUNCTION THROUGH DIETARY INTERVENTIONS

Gemma González-Ortiz & Rob ten Doeschate

17th Turkey Science and Production Conference Carden Park Hotel and Golf Resort, Chester, United Kingdom 20th March 2025

INTRODUCTION

The most important additive is intelligence

-)) Genetic improvements have been significant for turkey production.
-)) Weight gain and FCR have significantly improved over the years
-)) Liveability, however, has not improved (eg. reduced antibiotic use, heat stress, infectious diseases...)

	Hens ♀			Toms 👌		
	2003	2020	2023	2003	2020	2023
Age (days)	94	94	90	131	137	137
Average BW (kg)	6.68	7.52	7.56	14.45	18.63	21.17
ADG (g/bird/day)	71.1	80	84	110	136	155
FCR	2.22	2.27	2.10	2.57	2.57	2.29
Liveability (%)	93.3	91.2	92.5	87.8	87.1	85.5

HEALTH ISSUES IN TURKEYS BY AGE

Early brooding period	Later rearing period	Growing period		
(0-14 days)	(2-6 weeks)	(6-20 weeks)		
 Poor feed intake/starvation Colibacillosis Avian metapneumovirus Rotavirus Other enteric viruses Aspergillosis 	 Rotavirus Colibacillosis Coccidiosis Haemorrhagic enteritis Wet litter Poult enteritis and mortality syndrom (PEMS) 	 Ornithobacterium rhinotracheale Pasteurellosis Erysipelas Histomoniasis (blackhead) Mycoplasmosis Necrotic enteritis Intestinal parasites (worms) Neoplasic disease (Marek's) Leg problems Septic arthritis Aortic rupture and renal haemorrhage 		

Adapted from Jennison (2021)

<u>Underlined the gastrointestinal disorders</u>

DEALING WITH SOLUTIONS IN TURKEYS

DIGESTIVE DISORDERS

Infectious origin

DIGESTIVE DISORDERS

Wet litter

Poor nutrient digestibility

GOAL IS TO MAXIMIZE GUT HEALTH & FUNCTION

GUT DEVELOPMENT STAGES

DEVELOPMENT

Gut tissues

Gut immunity

Gut microbiota

Setting up the gut for the life of the bird

Bacterial colonisation & tissue development

TRANSITION

Feed changes

Vaccinations

Environmental

Handling

Prevent reduction in nutrient absorption and overgrowth of less favourable bacteria

Malabsorption & bacterial overgrowth risk

MAINTENANCE

Gut has developed

Stable microbiota

Promote integrity

Ensure gut is supported to conserve homeostasis

Stability

FUNCTION & SUPPORT

The most important additive is intelligence

UPPER GUT

Crop

- Feed storage
- Lactobacillus species
- Partially fermentation CHO

Proventriculus

- Acid
- Pepsin

Gizzard

Mechanical grinder

UPPER GUT

Gonzalez-Ortiz et al., 2022

FUNCTION & SUPPORT

The most important additive is intelligence

Intestinal epithelium

- > Absorption of nutrients
- Gut barrier function
 - Commensal microbiota
 - Mucus
 - > Tight junctions
 - > Immunological functions
 - Endocrine functions
- Host-microbiota interaction

- ➢ Block pathogen invasion
- VFA production
- Cell differentiation

Intestinal epithelium is constantly challenged

Pathogenic bacteria

Dysbiosis

Coccidiosis

Toxins

Heat stress

Weakened gut barrier

Inflammatory processes

Leaky gut syndrome

Collagen & Metalloproteinases (MMPs) & Epithelial Integrity

- > Resin from coniferous trees and processed by thermal distillation
 - ➤ Blend of fatty acids, resin acid & antioxidants → RESIN ACID
- Interesting properties supporting the small intestine gut function

Resin acids reduce the density of inflammation-associated CD3+ T-lymphocytes (immune cells) in the small intestinal tissue of broiler chickens

Figures from Prof. Van Immerseel's presentation at the virtual Progres seminar, October 16, 2020

RESIN ACID SUPPORTS EPITHELIAL CELL LINE

RESIN ACID INLUENCES BACTERIAL COMPOSITION OF ILEAL DIGESTA OF BROILER CHICKENS

Relaitve abundance (%)					
	Taxa	Resin Acid	Control		
Ileum	Lactobacillus	76.45	66.04		
	Corynebacterium	7.89	12.82		
	Brachybacterium	1.98	4.45		
	Staphylococcus	1.61	3.56		
	Enterococcaceae	0.74	2.88		
	Weissella	0.12	0.02		
	Ruminococcaceae	0.09	0.03		

The most abundant bacteria that were statistically different between the treatments

RESIN ACID INHIBITS GROWTH OF GRAM + BACTERIA IN PURE CULTURES

BENEFITS OF RESIN ACID IN TURKEYS

600 BIG 6 ♀

3 treatments (10 reps x 20 birds)

- CONTROL
- Low RA (0.5 kg/t)
- High RA (1.0 kg/t)

Trial duration 105 days (15 weeks)

Footpad dermatitis

Litter quality

adapted from Lipiński et al., 2020

Gizzard lesions	CONTROL	RESIN ACID
Lesions	27	0
No lesions	26	50
Total	53	50

P < 0.0001

FUNCTION & SUPPORT

The most important additive is intelligence

> All nutrients not digested and absorbed in the small intestine will reach the caeca

Cross-feeding interactions

Hindgut microbiota training

Anaerostipes butyraticus

Lactobacillaceae

Total bacteria
Butyryl-CoA:acetate-CoA transferase
Longer villous height ileum

"Any product able to stimulate a fibre-degrading microbiome to increase fibre fermentability without becoming the substrate for this microbiome growth"

González-Ortiz et al., 2019

> Stimbiotic supplementation increases fibre utilisation in a) broiler chickens and b) piglets

-)) CQR (USA, 20-2T)
-)) Turkey hen performance \mathcal{P}
-)) 0 to 12 weeks of age (84-days old)
-)) Crumble & pellet feeds (corn-SBM)
-)) 4 feeding phases
-)) 2 treatments
- Control
- Signis
-)) 9 pens/treatment
-)) 20 birds/pen
-)) 360 birds in total

6 points improvement on cFCR driven by lower FI

	0-28	28-42	42-56	56-84	0-84
	Phase 1	Phase 2	Phase 3	Phase 4	Overall
Control	1.67%	0.56%	0.00%	0.00%	2.23%
Stimbiotic	0.56%	0.00%	0.00%	0.00%	0.56%
δ Mortality	-1.11	-0.56	0.00	0.00	-1.68

FINAL CONSIDERATIONS

The most important additive is intelligence

FINAL CONSIDERATIONS

- 1. There are many factors to consider to support gut function depending on the age of birds and/or on the specific region of the gastrointestinal tract. There is not a unique solution.
- 2. Promoting a higher acidic environment in the upper gut will ease the digestion and absorption of protein and minerals.
- 3. It is important to keep the integrity of the epithelium in the best conditions in a challenge situation.
- 4. Stimbiotics increase fibre utilisation than otherwise would be excreted in the manure.
- 5. Effective feed additives are a complement to other management strategies.