2023 Annual Drinking Water Quality Report

Kensington Fire District

Kensington, CT PWSID# CT00700II

We are pleased to present to you our Annual Drinking Water Quality Report, also known as the Consumer Confidence Report. This report, a requirement of the 1996 amendments to the Safe Drinking Water Act, is designed to inform you about the quality of the water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

Water Source

Our water source consists of a consecutive supply from the New Britain Water Department in New Britain, CT. Out daily water purchases average around **730,000 gallons**, with an estimated yearly withdrawal of **266,450,000 gallons**. We maintain approximately 44 miles of water mains and our system serves an estimated 9,180 residents and maintains 3,300 service connections. Our certified lab is Northeast Laboratories, Inc.

Since we purchase our water from the New Britain Water Department, we are not required to treat our water. In the future, we plan to replace 480 feet of $1 \frac{1}{2}$ " copper water main with ductile iron pipe and replace a looping system with 500 feet of ductile iron pipe water main.

We have meetings every second and fourth Monday of each month at 4pm at 947 Farmington Ave. (rear), Kensington, CT 06037. If you have any questions about this report or concerning your water system, please contact Daniel McKeon, Superintendent, at mailing address PO Box 2, Kensington, CT 06037 or telephone (860)828-9781. We want our valued customers to be informed about their water system.

Source Water Protection

Source water is untreated water from streams, rivers, lakes, or underground aquifers that is used to supply public drinking water. Preventing drinking water contamination at the source makes good public health sense, good economic sense, and good environmental sense. You can be aware of the challenges of keeping drinking water safe and take an active role in protecting drinking water. There are many ways that you can get involved in drinking water protection activities to prevent the contamination of the groundwater source. Dispose properly of household chemicals, help clean up the watershed that is the source of your community's water, attend public meetings to ensure that the community's need for safe drinking water is considered in making decisions about land use. Contact our office for more information on source water protection, or contact the Environmental Protection Agency (EPA) at 1 (800) 426website EPA's the find information on also mcy 4791. https://www.epa.gcv/sourcewaterprotection

A source water assessment report was completed by the Connecticut Department of Public Health Drinking Water Section. The completed assessment report is available for access on the DPH's website: https://portal.ct.gov/DPH/Drinking-Water/DWS/Source-Water-Assessment-Program-SWAP-Reports. The assessment found that our public drinking water source has a **high** susceptibility to potential sources of contamination. Additional source water assessment information can be found at the EPA's website: https://www.epa.gov/sourcewaterprotection.

Water Quality

Kensington Fire District routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table shows any detection resulting from our monitoring for the period January 1st to December 31st, 2023. It is important to remember that the presence of these contaminants does not necessarily pose a health risk.

The sources of drinking water include rivers, lakes, ponds, and wells. As water travels over the surface of the lanc or through the ground, it dissolves naturally occurring minerals and radioactive material and can pick up byproducts from human or animal activity. All sources of drinking water are subject to potential contamination by either manmade or natural substances. Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, can come from wastewater treatment plants, septic systems, agricultural operations, and wildlife.

Inorganic contaminarts, such as salts and metals, can be naturally occurring or a result of urban stormwater runoff, incustrial or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides may come from a variety of sources such as agriculture, runoff, and residential uses.

Organic chemical cortaminants, including synthetic and volatile organic chemicals, are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive contaminants can be either naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (EPA) prescribes regulations which limit the amount of certain contaminants in a public water system's water supply. U.S. Food and Drug Administration (FDA) regulations establishes limits for contaminants in bottled water which must provide the same protection for public health.

The table below lists all of the drinking water contaminants that were detected through our monitoring and testing, as reported by Northeast Laboratories, Inc.. As a reminder, the presence of contaminants in the water does **not** directly indicate a health risk.

				T RESUL			
			Unless otherwise no	oted, testing v	was done in 2	2023	
Contaminant	Violation Y/N	Level Detected	Unit Measurement	MCLG	MCL	Likely Source of Contamination	
Microbiolo	gical Cor	taminant	:s				
Total Coliform Bacteria	N	Absent	per 100 mL	Absent	1 Positive	Naturally present in the environment	
Turbidity	N	1.1	NTU	N/A	5	Soil runoff	
Inorganic C	ontamin	ants					
Copper*	N	0.024	ppm	1.3	AL = 1.3	Corrosion of household plumbing systems	
Lead*	N	0.004	ppm	0	AL = 0.015	Corrosion of household plumbing systems	
Disinfectio Chlorine	n Byprod	ducts 2.1	mg/L	MRDLG = 4	MRDL = 4	Water additive used to control microbes	
Initial Distribution System Evaluation (ISDE) Data**							
Initial Distribution 3		Level	Unit Measurement		Likely Source of Contamination		
Contam		Cetected					
HAA5 [Total Haloacetic Acids] Farmington Ave		RAA: 0.011	mg/L	Byproduct of drinking water chlorination			
TTHM [Total Trihalomethanes]		RAA: 0.061	mg/L		Byproduct of drinking water chlorination		
Farmington Ave HAA5 [Total Haloacetic Acids] Ellwood Rd		RAA: 0.017	mg/L		Byproduct of drinking water chlorination		
TTHM [Total Trihalomethanes] Ellwood Ave		RAA: 0.055	mg/L	Byproduct of drinking water chlorination			

The EPA Stage 2 Disinfectants and Disinection Byproducts Rule (DBPR) our water system was required to conduct an Initial Distribution System Evaluation (IDSE). The IDSE is used to determine the levels of disenfection byproducts (TTHM & HAA) in the distribution system for future regulations. Disinfection byproducts are the result of the disinfection of your drinking water. They form when the disinfectants combine with naturally occurring organic matter in the water. The IDSE data was not used for compliance purposes by the CT Department of Public Health - Drinking Water Section and test results were not required to meet the MCL of 60 ppb for HAA and 80ppb gor TTHM.

Note: The state allows for some us to monitor for some contaminants less than once per year because the concentrations of the contaminants do not change frequently. Not all contaminants are tested for every year due to monitoring waivers and therefore we must use the most recent round of sampling. Some of out data is more than one year old, however, it is limited to no older than five years.

Units:

Parts per million (ppm) or Milligrams per liter (mg/L) – one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter ($\mu g/L$) – one part per billion corresponds to one minute in 2,000 years or a single penny in \$10 million.

Picocuries per liter (pCi/L; - picocuries per liter is a measure of the radioactivity of the radioactivity in water.

Micrograms per liter $(\mu g/I)$ – measure of radioactivity in water.

Millirems per year (mrem, year) – a measure of radiation absorbed by the water.

Nephelometric Turbidity Unit (NTU) – nephelometric turbidity unit is the measure of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Definitions:

Action level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (T.) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Million Fibers per liter (MFL) - million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers.

Maximum Contaminant level (MCL) - The MCL is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant I=vel Goal (MCLG) - The MCLG is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Drinking Water Equivalen level (DWEL) - A lifetime exposure concentration protective of adverse, non-cancer health effects that assumes all the exposure to a contaminant is from a drinking water source.

Maximum Residual Disinfectant level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no knom1 or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Running Annual Average (RAA) - The average of all monthly or quarterly samples for the last year at all sample locations.

Non-Detect (ND) - The contaminant was not detected.

Not Applicable, Not Established (N/A)

Not Sampled (N/S) – This contaminant was not sampled for.

Source Water Protection

<u>Lead – Major Sources in Drinking Water:</u> Corrosion of household plumbing systems; erosion of natural deposits.

<u>Health Effects Statement:</u> Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.

<u>Copper – Major Sources in Drinking Water:</u> Corrosion of "household plumbing systems; erosion of natural deposits; leaching from wood preservatives.

Health Effects Statemen: Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

Arsenic: The U.S. EPA acopted the new MCL standard of 10 ppb in October 2001. Water systems must meet this standard by January 20C6.

Fluoride: Fluoride levels must be maintained between 1-2ppm, for those water systems that fluoridate the water. Lead/Copper: Action levels are measured at the consumer's tap. 90% of the tests must be equal to or below action level; therefore, the listed results above have been calculated and are listed as the 90th percentile.

<u>Total Coliform Bacteria:</u> Reported as the highest monthly number of positive samples, for water systems that take <40 samples per month. Coliforms are bacteria which are naturally present in the environment and are used as an indicator that other, potentially harmful bacteria may be present. Our tests have all been negative.

TTHM/HAA5: Total Trihalomethanes (TTHM) and Haloacetic Acids (HAA5) are formed as a byproduct of drinking water chlorination. This chemical reaction occurs when chlorine combines with naturally occurring organic matter in water.

<u>Turbidity:</u> Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.

As you can see from the table above, our system had no water quality violations. There were no traces of coliform bacteria and the levels of the other detected contaminants were well below the allowable contaminant thresholds. We are proud that your drinking water meets all Federal and State requirements. The EPA has determined that your water is safe at these levels.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some containments. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at 1 (800) 426-4791.

For most people, the health benefits of drinking plenty of water outweigh any possible health risks from these contaminants. However, some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons can be particularly at risk from infections. These people should seek professional advice about drinking water from a healthcare provider. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1 (800)426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and in-home plumbing. We are responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for thirty (30) seconds to two (2) minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Water Conservation Tips

Water conservation measures are an important first step in protecting our water supply. Such measures not only save the supply of our source water, but can also save you money by reducing your water bill. Water is a limited resource so it is vital that we all work together to maintain it and use i- wisely. Here are a few tips you can follow to help conserve. Additional information on water conservation may be obtained by accessing the EPA's Water Use Efficiency Program at http://epa.gov/owm/water-efficiency/index

- Check for leaky toilets (put a drop of food coloring in the tank, let it sit and if the water in the bowl turns color without flushing, you have a leak). A leaking faucet or toilet can slowly drip away thousands of gallons of water a year.
- Consider replacing your 5-gallon per flush toilet with a more efficient, low water 1.6 gallon per flush unit. This will permanently cut your water consumption by 25%.
- Run only full leads in dishwashers and washing machines. Rinse all hand-washed dishes at once.
- Turn off the faucet while brushing teeth or shaving.
- Store a jug of ice water I the refrigerator for a cold drink.
- Water lawn and plants in the early morning or evening hours to avoid excess evaporation. Don't water on a windy, rainy, or very hot day.
- Water shrubs and gardens using a slow trickle around the roots. Slow soaking
 encourages ceep root growth, reduces leaf burn or mildew, and prevents water loss.
 Select low water demanding plants that provide year-round greenery.
- Be sure that your hose has a shutoff nozzle. Hoses without a nozzle can spout 10 gallons of water more per minute.
- When washing your car, wet it quickly, turn on the spray, wash it with soapy water from a bucket, rinse quickly.
- Be sure sprinklers water only your lawn and not the pavement.
- Never use the hose to clean debris off your driveway or sidewalk. Use a hard bristled broom.
- Rinse other items, such as bicycles or trash, on the lawn to give your grass an extra drink.

Future Plans

Kensington Fire District plans to:

• Replace 480' of copper pipe with ductile iron pipe, and replace a looping system with 500' of ductile iron pipe.

The Kensington Fire District applied for and obtained a new, individual DEEP Water Diversion Permit which allows for an increased water demand of up to 1.61 million gallons per day (mgd). This permit is in effect through 2042.

We at Kensington Fire District work hard to provide top quality water to every household. Water is a limited resource, so it is vital that we all work together to maintain it and use it wisely. We ask that all our customers help us protect and preserve our drinking water resources, which are the heart of our community, our way of life, and our children's future. We invite you all to come forth with any questions you may have regarding your drinking water. Let us move into the new year with safe drinking water at the top of our priorities.