EDR Case Studies

Intersection Crash

Presented by Richard R. Ruth, P.E.
At 2017 IPTM Special Problems rick@ruthconsulting.com

313-910-5809

Case Description 1

- Criminal Prosecution Case - Reckless Driving resulting in Death
- Charged V1 driver is in 25 mph residential area, comes over top of small hill at 48 mph (per EDR), sees stop sign at intersection at bottom of hill.
- Driver may slow but enters intersection, pickup crossing from right gets hit in rear axle (Pickup had no traffic control device)
- V1 knocks axle out front under V2 pickup, goes under pickup and lifts pickup rear off the ground and rotates it clockwise

Case Description Cont'd

- V3 approaches from right
- Airborne pickup rear end crashes through windshield of V3, killing front seat passenger (a child)
- V2 rotates back counterclockwise and comes to rest behind V3
- After V1 goes under pickup it continues forward and right into yard

Crash Scenario

- V1 hits pickup in rear axle, knocks axle out, dives under pickup lifting it. Pickup rotates CW while airborne, hits V3 in windshield.

Crash Scene - note tire marks on police diagram are not very visible

Scene

Defendant's car at rest
 Went underneath pickup rear end

Pickup at Rest (V3 to right)

Other Facts of Interest

- 18 year old with no Driver's License
- Buying car from his dad with payments, has been driving 11 months with no license and no driver training
- Girl friend in front pass seat, two kids in the back seat
- Pickup Driver sees V1 is going to blow stop sign, tries to speed up to get through ahead of him
- Victim V3 is just in the wrong place at the wrong time - what are the odds a pickup truck rear end will come airborne thru your windshield on a residential street??????
- No Alcohol involved

BOSCH EXAMINE CDR REPORT

MPORTANT NOTICE: Robeit Bosch LLC and the manufacturers whose vehicles are accessible using the CDR System urge end users to use the latest production release of the Crash Data Retrieval system software when viewing, printing or exporting any retrieved data from within the CDR program. Using the latest version of the CDR software is the best way to ensure that retrieved data has been translated using the most current information provided by the manufacturers of the vehicles supported by this product.

CDR File Information

User Entered VIN	1 G27H578764183735
User	Hedlund, J. 5070
Case Number	20160027805
EDR Data Imaging Date	$09 / 09 / 2016$
Crash Date	$09 / 08 / 2016$
Filename	$16-27805$ PONTIAC G6.CDRX
Saved on	Friday, September 92016 at 18:36:51
Collected with CDR version	Grash Data Retrieval Tool 16.6
Reported with CDR version	Grash Data Retrieval Tool 16.6
EDR Device Type	Airbag Control Module
Event(s) recovered	Deployment

Comments

No comments entered.

Data Limitations

Recorded Crash Events:

There are two types of recorded crash events. The first is the Non-Deployment Event. A Non-Deployment Event records data but does not deploy the air bag(s). The minimum SDM Recorded Vehicle Velocity Change, that is needed to record a Non-Deployment Event, is five MPH. A Non-Deployment Event may contain Pre-Crash and Crash data. The SDM can store up to one Non-Deployment Event. This event can be overwritten by an event that has a greater SDM recorded vehicle velocity change. This event will be cleared by the SDM, after approximately 250 ignition cycles. This event can be overwritten by a second Deployment Event, referred to as Deployment Event \#2, if the Non-Deployment Event is not locked. The data in the Non-Deployment Event file will be locked, if the Non-Deployment Event occurred within five seconds of a Deployment Event. A locked Non Deployment Event cannot be overwritten or cleared by the SDM.
The second type of SDM recorded crash event is the Deployment Event. It also may contain Pre-Crash and Crash data. The SDM can store up to two different Deployment Events. If a second Deployment Event occurs any time after the Deployment Event, the

Svstem Status At Deplovment

Ignition Cycles At Investigation
SIR Warning Lamo Status

SIR Warning Lamp Status KEY CYCLES MATCH

| SIR Warning Lamp ON/OFF Time (seconds) | 655200 |
| :--- | ---: | ---: |
| Number of Ignition Cycles SIR Warning Lamp was ON/OFF Continuously | 1362 |
| lanition Cycles At Event | 20585 |

Ignition Cycles At Event
20585
Ignition Cycles Since DTCs Were Last Cleared
Driver's Belt Switch Circuit Status
BUCKLED
Passenger Belt Switch Circuit Status (If Equipped) BUCKLED

Diagnostic Trouble Code at Event Enable, fault number:	N/A
Diagnostic Trouble Code at Event Enable, fault number: 2	N/A

Diagnosfic Trouble Code at Event Enable, fault number: 3 _ N/A
Diagnostic Trouble Code at Event Enable, fault number: 4 \quad N/A
Diagnostic Trouble Code at Event Enable, fault number: 5 _ N/A
Diagnostic Trouble Code at Event Enable, fault number: $6 \ldots$ N/A

| Automatic Passenger SIR Suppression System Validity Status at AE | Valid |
| :--- | :--- | :--- |

Automatic Passenger SIR Suppression System Status at AE

Air Bag Not
Automatic Passenger SIR Suppression System Validity Status at First Deployment Command
Automatic Passenger SIR Suppression System Status at First Deployment Command Suppressed

Driver 1st Stage Time From Algorithm Enable to Dep	Sumoressed	
Driver 2nd Stage Time From Algorithm Enable to De	BAGS DEPLOYED	36
Passenger 1st Stage Time From Algorithm Enable te	36	
Passenger 2nd Stage Time From Algorithm Enable to Deployment command Cntena Mer (msec)	36	

Passenger 2nd Stage Time From Algorithm Enable to Deployment Command Cntenalmer (msec)	38
Driver Side or Roof Rail/Head Curtain Time From Algorithm Enable to Deployment Command	N / A

Criteria Met (msec)
Passenger Side or Roof Rail/Head Curtain Time From Algorithm Enable to Deployment
Command Criteria Met (msec)

Command Criteria Met (msec)
Time Between Events (sec)

| Driver First Stage Deployment Loop Commanded |
| :--- | :--- |

Hassenger 2nd Stage Deployment Loop Commanded tor Disposal
Crash Record Locked \quad Yes

Vehicle Event Data (Pre-Crash) Associated With This Event Yes
Event Recording Complete

Multiple Event Data

Ascoclated Events Not Recorded	SINGLE EVENT
An Event(s) Preceded the Recorded Event(s)	No
An Event(s) was in Betveen the Recorded Event(s)	No
An Evenl(s) Followed the Recorded Event(s)	No
The Event(s) Not Recorded was a Deployment Event(s)	No
The Event(s) Not Recorded was a Non Deployment Event(s)	No

System Status At AE

Vericle Identification Number
Low Tire Pressure Warning Lamp (lf Equippod) Vehicle Power Mode Status
Remole Start Status (If Equipped)
KEY ON OFF Run/Crark Lgrition Svilch Logic Lovel Active
Brake Systam Warning Lamp (If Equipped)

System Status At 1 second

Transmission Range (If Equipped)		Fourth Ge
Transmission Selector Position (If Equipped)		
Traction Contral System Active (If Equlpped)		No
Service Engine Soon (Non-Emission Related) Lamp		OFF
Service Vehicle Soon Lamp		OFF
Outside Air Temperatire (degrees F) (If Equipped)		86
Left Front Door Status (If Equipped)		Closed
Right Front Door Status (ff Equipped)		Closed
Left Rear Door Status (If Equipped)		Unused
Right Rear Door Status (If Equipped)		Unusad
Rear Door(s) Status (If Equipped)		Close

Pre-crash data

Parameter	-2 sec	-1 sec
Reduced Engine Power Mode	OFF	OFF
Cruise ControlActive (If Equipped)	No	No
Cruise Control Resume Switch	No	No
Active (If Equipped)	Cruise Control Set	
Switch Active (If		
Equipped)		

Defendant was at 100\% throttle climbing blind hill

Pre-Crash Data

ANALYSIS - IS THIS RECORDING FROM MY CRASH??

- Complete Recording
- Key Cycles Match 20585 vs 20585
- Delta V magnitude 11.51@ 28 degrees fits damage
- Last reported speed of 42 and slowing seems consistent with lifting pickup into air
- It's a deployment, deployments are rare

MAKE YOUR SKETCH

- Draw Vehicles at Max Engagement and Draw PDOF Line

Prosecution Dilemma

- In this jurisdiction, you cannot get Reckless Homicide by SPEED Alone
- + Limited sightline due to hill enough???
- Defense is prepared to concede 48 mph EDR speed, but will argue Defendant reacted appropriately by braking after seeing stop sign and that prosecution ONLY has speed
-But did he????

Defense Expert Calculations

Speedatlmpatmethod 3 Spped from astedrrepotete speed data

	MN	MaX
Lastspedreporededin EDR	42	42
Changes ince latreporet speed	-18.2	0
Whees Slipadiustment	0	0
Speedometer Erior	1.168	1.68
Speedalimad	22.1	43.7 mph

Defense Logic

- 3 seconds from when stop sign was first visible
- 48 mph at first visibility
- Perception Reaction time 1.5 seconds
- Speed loss $1.5 \mathrm{sec} * 18 \mathrm{mph} / \mathrm{sec}=27 \mathrm{mph}$
- $48 \mathrm{mph}-27 \mathrm{mph}=21$ at impact
- Speed at impact calc from last speed data point of 42 yields $22 \mathrm{mph}=$ Reacted Normally
- Defense further says momentum, while not impossible, would be very difficult due to airborne truck and $3^{\text {rd }}$ vehicle, range on answer would be wide.

Defense Stopped There

Stop sign visible at 200 feet (3 sec)

Note Limited Visibility Left due to mound

Tour Guide

Prosecution Working Theory

- Defendant did NOT begin braking in response to seeing stop sign- he PLANNED to blow thru it.
- Defendant braked when he saw the pickup coming from the right side.
- Tire marks indicate onset of braking

Speed@impact from speed loss due to braking from start of tire mark

- Energy equivalent speed loss $=\sqrt{30 * D * f}$
- $\mathrm{S}=\sqrt{30 * 27.9 \mathrm{ft} * 0.80 \mathrm{~g}}=25.92 \mathrm{mph}$
- Combined Speed Formula - start from last speed before onset of braking 46 mph
- $\mathrm{S}=\sqrt{46^{2}-25.92^{2}}=38.0 \mathrm{mph}$
- Do sensitivity with drag factor - get range 37.5-38.5

Other Methods of Getting Speed at Impact in intersection collisions using Delta V "Tools in your tool bag"

- Angled Departure - Postcrash speed - Delta V $+\operatorname{Cos} \boldsymbol{\theta}$ postcrash
- 90 Degree Intersection - Inline approx. CS

Effective mass ratio adjustments closing speed

- Angular - triangular velocity vectors ?????
(DON’T KNOW ENOUGH ABOUT PICKUP)

Tool in Our Tool Bag:

Longitudinal DeltaV and Angled Departure

Equation 13

Speed at Impact $=\left|V_{3}\right| \operatorname{Cos}(\beta)-\Delta V x$

0** Assumes vehicle came to an uncontrolled rest - will underestimate if controlled rest**
31 Estimated post crash travel distance based on diagram approx 86 feet
2 departure angle from tire mark post impact at 12 degrees. Cosine 12 degrees $=0.978$ (almost 1)

34 Estimate drag factor based on two front tires not rolling after crash, 0.74 drag factor times 50% of weight on front $=0.37$
35 (ASK troopers to verify the front tires are pinched and not rolling freely).
360.37 for two fronts plus 015 times two for rear tires rolling $=0.40 \mathrm{~g}$ total drag factor

37 Consider part of path was off roadway on grass at a lower drag factor - use range
Distance scaled as 81 feet - check fror 2

46 Minimum slide to stop with greater precision
7 Breaks slide to stop into smaller pieces, grass, tire marks With two locked whls \square
48 Last 20 ft at 0.2
7.7
14.9

49 Prior 33 ftat . $5 * .36$
50 Prior 22 ft one tire locked 0.24
12.7

51 Prior 11 ft all 4 rolling . 06
52 Combined speed formula4.4
$21.2 \mathrm{mph} \quad+10.17 \mathrm{DV}=\quad 31.4$
33 ft at 0.45 (road), 53 ft at 0.23 (grass)

	N	
	75.03	55.155
Ref	26.2	-8.5

Speed from Delta V and Postcrash Travel (Estimate Drag Factor by Segment)

- Break Slide to stop into 4 segments - MINIMUM speed loss
- Grass no mark $=\sqrt{30 * 20 f t * 0.10 g}=7.4 \mathrm{mph}$
- Grass w mark $=\sqrt{30 * 33 f t * 0.23 g}=14.9 \mathrm{mph}$
- Pavement 1 mark $=\sqrt{30 * 22 f t * 0.245}=12.7 \mathrm{mph}$
- Pavement no mark $=\sqrt{30 * 11 f t * 0.06 g}=4.4 \mathrm{mph}$
- Combined speed $\sqrt{7.42+14.92+12.72+4.42}=21.2$ Speed at Impact $=\left|V_{3}\right| \operatorname{Cos}(\beta)-\Delta V x$
- $\mathrm{SAI}=21.2 \mathrm{mph}^{*} \cos 12-(-10.17) \mathrm{DVx}=31 \mathrm{mph} \mathrm{min}$

Speed from Delta V and Postcrash Travel (Estimate Drag Factor by Segment)

- Break Slide to stop into 2 segments - MAXIMUM speed loss
- For Max, use 2 front wheels locked post crash
- For grass $0.36 g^{*} 0.5$ (two wheels sliding) + . 05 (two rolling)
- Grass $=\sqrt{30 * 53 f t * 0.23 g}=19.1 \mathrm{mph}$
- Pavement $=\sqrt{30 * 33 f t * 0.45 g}=21.1 \mathrm{mph}$
- Combined speed $\sqrt{19.12+21.12}=28.5 \mathrm{mph}$

Speed at Impact $=\left|V_{3}\right| \operatorname{Cos}(\beta)-\Delta V x$

- $\mathrm{SAI}=28.5 \mathrm{mph}^{*} \cos 12-(-10.17) \mathrm{DVx}=38.0 \mathrm{mph}$ MAX

RANGE OF SPEED AT IMPACT IS 31 MIIN TO 38 MAX BY THIS METHOD

CLOSING SPEED METHOD

- INLINE COLLISIONS CAN BE EASILY ANALYIZED USING DELTA V, VEHICLE WEIGHTS AND RESTITIUTION
- FOR CENTRAL COLLISIONS THE FORMULA IS

$$
\text { Closing Speed }=\left[\frac{1}{1+e}\right]\left[\left|\Delta V_{1}\right|+\left|\Delta V_{2}\right|\right]
$$

IT IS NORMALLY APPLIED IN INLINE COLLISIONS
THE INVERSELY PROPORTIONAL TO WEIGHT FORMULA IS USED TO CALCULATE THE $2^{\text {ND }}$ DELTA \vee

CLOSING SPEED METHOD

- FOR OFFSET COLLISIONS, THE FORMULA IS MORE COMPLICATED.
- FOR OFFSET COLLISIONS WE MUST USE THE EFFECTIVE MASS RATIO (EMR) ADJUSTMENT
- We take the delta v at the center of mass and ADJUST IT TO THE DAMAGE CENTROID, WHERE THE CLOSING SPEED IS ACTUALLY TAKING PLACE
- THE FORMULA IS

ClosingSpeed $=\left[\frac{1}{1+e}\right]\left[\frac{\left|\Delta V_{1}\right|}{\gamma_{1}}+\frac{\left|\Delta V_{2}\right|}{\gamma_{2}}\right]$
WHERE GAMMA IS THE EFFECTIVE MASS RATIO (EMR) IT IS NORMALLY APPLIED IN INLINE COLLISIONS

NORMAL APPLICATION OF EMR

- Draw Vehicles at Max Engagement and Draw PDOF Line
- Take perpendicular distance from PDOF line to Center of Gravity to get h

> PDOF $=$
> ATAN $5.42 / 10.21=$
> -28 degrees
"INLINE INTERSECTION APPROXIMATION" - PRETEND PICKUP WAS STANDING

ISOLATE V1 ΔV_{X} AND CALCULATE PICKUP ΔV_{Y}

Step 1 - Find DV at Center of Mass of Pickup using the inversely proportional mass ratio

$$
\Delta V_{1}=-\Delta V_{2} \frac{W_{2}}{W_{1}}
$$

$\Delta V x_{\text {pickup }}=-10.17{ }_{x} \frac{3820}{4586}=8.47 m p h_{\mathrm{x}}$

Offset Adjusted Closing Speed

ClosingSpeed $=\left[\frac{1}{1+e}\right]\left[\frac{\left|\Delta V_{1}\right|}{\gamma_{1}}+\frac{\left|\Delta V_{2}\right|}{\gamma_{2}}\right]$

$$
\gamma=\frac{k^{2}}{k^{2}+h^{2}}
$$

Where $\quad k^{2}=\frac{\text { Yaw Moment of Inertia }(g)}{\text { Vehicle Weight }}=\frac{I_{y} g}{W}$

$$
I_{y}=1.03 \text { (weight in lbs) }-1206
$$

FIND Effective Mass Ratio "gamma"
$I_{y}=1.03$ (weight in lbs) -1206 for pickup
$I_{y}=1.03(4586)-1206=3517$ for pickup
NOW FIND RADIUS OF GYRATION k²
FIND $\quad k^{2}=\frac{\text { Yaw Moment of Inertia }(g)}{\text { Vehicle Weight }}=\frac{I_{y} g}{W}$
$k^{2}=\frac{3517}{4586} 32.2=24.72$ for pickup
FIND $\quad \gamma=\frac{k^{2}}{k^{2}+h^{2}}$
Gamma $=\frac{24.72}{24.72+6.8 * 6.8}=0.348$

Now Find the Closing Speed

ClosingSpeed $=\left[\frac{1}{1+e}\right]\left[\frac{\left|\Delta V_{1}\right|}{\gamma_{1}}+\frac{\left|\Delta V_{2}\right|}{\gamma_{2}}\right]$

- $C S=\frac{1}{1+0}\left(\frac{-10.17}{1.0}+\frac{8.47}{0.348}\right)=34.5 \mathrm{mph}$
- Note the vehicles did not reach a common velocity so there was no restitution
- Speed V1 = Closing Speed + V2= $34.5+0=34.5$
- Applying $+/-10 \%$ to the Delta V yields a range of 31.1 to 38.0

Compare the Different Methods

Speed from Braking Last EDR speed of 42

CONSENSUS IS SPEED AT IMPACT IS NEAR 37-38

CONCLUSION

- V1 did NOT begin to brake in reaction to seeing the stop sign (or reacted very late to it)
- V1 likely intended to blow the stop sign
- V1 likely braked in response to the pickup coming from the right
- Whether the braking was late for the stop sign or for the pickup, this adds another degree of Recklessness to V1's driving in addition to speeding with limited visibility coming over the hill top unable to stop

Stopping Distance at Speed Limit vs 48 mph

- Formula for stop distance is $D=S^{2} /\left(30^{*} f\right)$ where
D is the distance in feet,
S is the speed in MPH, and
f is the drag factor in G's (how fast the car can slow down)
- At $25 \mathrm{mph}: \mathrm{D}=\frac{25 m p h * 25 m p h}{30 * 0.65 g}=32$ feet
- At $48 \mathrm{mph}, \mathrm{D}=\frac{48 \mathrm{mph} * 48 \mathrm{mph}}{30 * 0.65 \mathrm{~g}}=118$ feet
- 118/32 = 3.68 times the stopping distance

Questions??? rick@ruthconsulting.com 313-910-5809

