

Repurposing Hydrocarbon Formations for Hydrogen Production costs ~\$0.50/kg.

© 2022 Trademark eSteam logo - All Rights Reserved. Future Energy LLC claims copyright ownership for all materials included. Patent pending in U.S. and international countries.

The hydrogen future is here now.

"Discoveries are often made by not following instructions, by going off the main road, by trying the untried." - Frank Tyger.

- NovelH₂Fuel's system's low-cost hydrogen gas production costs ~\$0.50/kg.
- Capital cost for eSteam technology is ~\$5 million for 10 MMBtu/hr system.
- Transformative downhole eSteam technology produces hydrogen gas from repurposed, hydrocarbon formations.
- eSteam technology generates high-temperature steam not less than 930°F to thermally crack the hydrocarbon chain to release hydrogen gas produced from an insitu underground reaction vessel created in the hydrocarbon formations.
- No competition first-of-its-kind downhole eSteam technology for hydrogen gas production from hydrocarbon formations, e.g., coal, heavy oil, oil sands, light oil, and shale oil.
- Equipment includes proven downhole steam technology, skid-mounted plant with separation membranes to deliver 99% pure hydrogen gas to the storage tanks.
- Inflation Reduction Act hydrogen tax credit of \$3.00/kg offsets taxable income.
- California's Low-Carbon Fuel Standard (LCFS) tax credit for hydrogen gas is worth about \$0.65/kg.
- Generates carbon credit and/or Emissions Reduction Credit (ERC) revenue from emission offset buyers.
- Canadian operators costly per barrel carbon tax is avoided.

SOLUTION – DOWNHOLE STEAM TECHNOLOGY PRODUCES HYDROGEN GAS

 \bigtriangledown

 \checkmark

Low-cost hydrogen gas production costs ~\$0.50/kg.

- 70% efficient electrolytic technology cost ~\$7.20 kWh per kg of hydrogen. Requires about 48.3 kWh of grid electricity to produce 1 kg of hydrogen. \$0.15 kWh x 48.3 kWh of grid electricity.
- Viable alternative to expensive electrolytic technology cost as high as ~\$16.80/kg hydrogen from renewable solar and/or wind energy according to a report from S&P Global Commodity Insights in July 2022.
- The thermal cracking hydrocarbons does not present the emissions of polluting gases achieving a high degree of H₂ purity.

eSteam technology is capable to produce hydrogen gas at a very large-scale. Calculations for a hypothetical hydrocarbon formations with 32 million tonnes of remaining oil show that the production of 125+ tonnes of hydrogen gas per day could be possible.

Capital cost for the 10 MMBtu/hr eSteam H₂ system is \$5 million.

- Produces low-carbon hydrogen gas and eliminates the threat of stranded hydrocarbon assets.
- eSteam produces hydrogen gas produced from an underground reaction vessel created by a minimum 930°F temperature steam in the formations.
- Hydrocarbon formations can be repurposed to produce low-cost hydrogen gas for ~\$0.50/kg.
- Canadian operators costly carbon tax is avoided.
- Green hydrogen gas operates the eSteam system that avoids CO2 emissions.
- Minimal maintenance that helps reduce costly downtime – no moving parts downhole.
- Thermal fluid heater is scalable up to 120 MMBtu/hr.

eSteam is a transformational hydrogen gas production technology that is in a "class by itself" and therefore "unique and innovative"

From the oil age to carbon neutrality ... eSteam hydrogen technology's aim is to inspire oil and gas companies to repurpose hydrocarbons for hydrogen gas production to help them achieve decarbonization and reach net-zero emissions by 2050.

eSteam technology is a novel, simple, and transformative proven downhole steam technology to repurpose hydrocarbons for hydrogen gas production.

Getting to NET-ZERO EMISSIONS by 2050

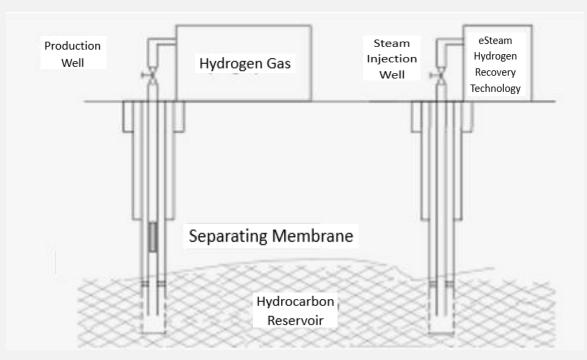
SOLUTION – Transformative eSteam technology produces low-cost hydrogen gas

Introduction

eSteam low-carbon hydrogen gas production technology generates 930° F high-quality steam that thermally cracks the hydrocarbon chain releases H₂ and simultaneously stores CO2 in the formation.

eSteam is a state-of-the-art clean energy technology for in-situ hydrogen gas production that meets Paris climate targets for net-zero emissions by 2050 and eliminates risk of 'stranded hydrocarbons.'

Existing Hydrogen Processes


- Steam-Methane Reforming is a well-established technology producing hydrogen;
- Expensive electrolytic technology from renewable energy, i.e., solar and wind energy.

eSteam technology Process Summary

- Requires injection/production wells (can be one well huff & puff);
- Steam injection phase begins;
- Continuous steam injection of 930°F temperature causing thermal cracking of the hydrocarbon chain in hydrogen-rich formations;
- Steam injection is stopped;
- · Production well is opened, and hydrogen gas is allowed to produce;
- Production well has unique semi-permeable membrane (SPM) for CO2 sequestered in-situ and only allows hydrogen gas production;
- Steam cycle is repeated.

eSteam Technology Advantages

- · Produces pure low-carbon hydrogen gas from hydrocarbons;
- Sequesters CO2 in the formations;
- Eliminates the threat of stranded hydrocarbon assets.

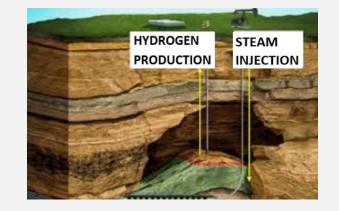
VALUE PROPOSITION

eSteam low-cost hydrogen gas will be extremely profitable.

- Low-cost hydrogen gas production costs \sim \$0.50/kg. Capital cost for eSteam's 10 MMBtu/hr H₂ system is \$5 million.
- C C
 - California's Low-Carbon Fuel Standard (LCFS) tax credit is worth about \$0.65/kg.
- Inflation Reduction Act hydrogen tax credit of \$3.00/kg.
- High-temperature 930°F steam is injected into hydrogen-rich formations causing thermal cracking of the hydrocarbon chain to release hydrogen.
- Canadian operators costly per barrel carbon tax is avoided.
- No competition First-of-its-kind steam-enhanced hydrogen gas production system from hydrocarbon formations.
- Hydrogen gas production leverages existing energy assets by repurposing orphaned or idle wells.
- California and Canadian operators have existing thermally completed wells in which to insert the eSteam technology thereby avoiding the cost of new wells.
- Very economical and environmentally-friendly compared to steam methane reforming grey hydrogen used for industry feedstock.

Lower Costs = Higher Profit Margins

eSteam technology achieves the lowest hydrogen gas production cost in the industry.


eSteam technology is committed to delivering best-in-class, low-cost hydrogen gas ~\$0.50/kg.

 \checkmark

 \checkmark

- Mission Statement: Seamlessly integrate the eSteam hydrogen recovery technology to provide cost-effective solution.
- Company's Motto: Achieve the lowest cost hydrogen gas production.

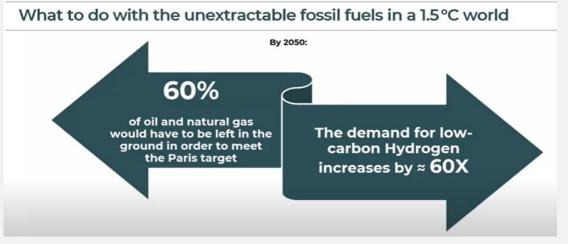
Long-Term Vision is to help the oil industry transition to a decarbonized economy with low cost, low-carbon hydrogen gas production.

- Low CapEx \$5 million for each 10 MMBtu/hr. turnkey system.
- Low-cost hydrogen gas production is ~\$0.50/kg.
- ~930°F high-quality steam delivered in hydrocarbon formation.
- In-situ thermal cracking the hydrocarbon chain releases hydrogen gas.
- Steam methane reforming alternative in underground hydrocarbon formation.
- Tolerates brackish water and reduces H2O treatment cost.
- Off-the-shelf proven equipment
- Hydrocarbons include natural gas, coal, shale oil, heavy oil, oilsands, and light oil.
- Hydrogen gas operates the zero-emission eSteam system.
- No competition producing H2 from subterranean hydrocarbon formations.
- Generates carbon credit revenue.
- IRA hydrogen tax credit is \$3/kg.
- California's Low Carbon tax credit is ~\$0.65/kg.
- Canada's hydrogen Investment Tax Credit (ITC) provides subsidies for H2 equipment.

NovelH₂Gas **Best-in-Class** System is a Transformative Green Hydrogen Technology for ~\$0.50/kg.

What to do with the unextractable fossil fuels in a 1.5 °C world By 2050: 60% of oil and natural gas would have to be left in the ground in order to meet the Paris target The demand for lowcarbon Hydrogen increases by ≈ 60X

The hydrogen future is here now.


BENEFITS of Downhole eSteam Technology for Hydrogen Gas Production

- Low CapEx \$5 million per 10 MMBtu/hr system.
- Low-cost hydrogen gas production is ~\$0.50/kg.
- 930°F temperature high-quality steam delivered in hydrocarbon formation.
- In-situ thermal cracking the hydrocarbon chain releases hydrogen gas.
- Steam methane reforming alternative in underground hydrocarbon formation.
- Tolerates brackish produced water and eliminates H2O treatment cost.
- Hydrocarbons include natural gas, coal, shale oil, heavy oil, oil sands, and light oil.
- Hydrogen gas operates the zero-emission eSteam system.
- No competition for proven downhole steam technology producing H2 from subterranean hydrocarbon formations.
- Generates carbon credit revenue.
- IRA hydrogen tax credit is \$3/kg.
- California's Low Carbon tax credit is ~\$0.65/kg.
- Canada's Clean Hydrogen Investment Tax Credit (ITC) provides direct subsidies for capital costs associated with equipment purchase to produce green hydrogen.

eSteam technology is a novel, simple, and transformative proven downhole steam technology for hydrogen gas production in hydrogen-rich hydrocarbon formations. NovelH₂Fuel's transformative downhole eSteam technology extracts low-cost hydrogen gas in hydrogen-rich hydrocarbon formations for a cost of ~\$0.50/kg.

An alternative use of hydrocarbon reserves is to convert them into a source of clean hydrogen gas.

The hydrogen future is here now.

eSteam is a low-cost hydrogen gas production technology for hydrocarbon formations.

There are four main sources for the commercial production of hydrogen: natural gas, oil, coal, and electrolysis; which account for 48%, 30%, 18% and 4% of the world's hydrogen production, respectively.

As public pressure is rising to limit global warming to 1.5 degrees Celsius, global leaders are grappling with how to best take on this unprecedented challenge, which has spurred renewed interest in hydrogen. One novel approach is to extract hydrogen from hydrogen-rich oil formations.

eSteam is a low-cost hydrogen gas production technology from hydrogen-rich hydrocarbon formations costs ~\$0.50/kg.

eSteam is an extremely low-cost hydrogen gas production technology compared to a 70% efficient electrolytic technology which cost about \$7.20 kWh per kg of hydrogen.

Hydrogen gas is produced from hydrocarbon formations by thermally cracking the hydrocarbon chain.

The hydrocarbon reservoir acts as the underground reaction vessel dramatically reducing the capital for surface equipment.

Oil companies are looking to transition their business, and hydrogen gas production in hydrocarbon formations is a natural fit.

Steam injection produces hydrogen gas in hydrocarbon formations.

TECHNOLOGY METRICS AND CO₂ ABATEMENT

Summary of Features Hydrogen Production Technologies	Novel H ₂ Fuel	Competitor #1 Electrolysis with Renewable Solar Energy	Competitor #2 Electrolysis with kWh Electricity From the Grid	Competitor #3 Steam Methane Reforming
Hydrogen cost/kg	~\$0.50/kg	As high as \$16.80/kg	~\$7.20/kg	~\$1.80/kg
CapEx and OpEx	Very Low	High	Extremely High	Extremely High
System Efficiency	~95%	~70%	~70%	~74%
Fuel Source	Hydrogen Gas	Electricity from Solar Energy	Electricity from the Grid	Natural Gas and Electricity
CO ₂	No	No	No	Yes

DOE launches \$1B plan to drive demand for clean hydrogen

7/06/2023

The Biden administration's broader plans for hydrogen — which include making lowcarbon versions of the fuel as cheap as emissions-intensive, natural-gas-derived types [Steam Methane Reforming] as soon as 2031 — still face significant challenges.

https://www.eenews.net/articles/doe-launches-1b-plan-to-drive-demand-for-cleanhydrogen

					i	
CO2 Comparison for Hydrogen Gas Production Technologies						
	NovelH2Fuel			[]		
l	using			1	1	
l	produced H2	Electrolysis using	Electrolysis using Grid	1	1	
CO2 Comparison	Gas	Solar Energy	Electricity	Steam Methane Reforming		
Energy Used	0	0	49 kwh	MMBtu		
Factor	N/A	N/A	0.533606 lb/kWh	53.02 kg CO2/MMBtu		
CO2 Emissions (mt)	0	0	0.0576	0.0090		
				4.5 cubic meter gas to produce		
lb	26.146694			1 kg Hydrogen Gas		
kg	57.64300159			1 MMBtu=26.8 cubic meters		
mt	0.057643002			0.17 MMBtu/kg Hydrogen Gas		
				9.0134	kg CO	
				0.0090134	CO2 r	

The hydrogen future is here now.

EQUIPMENT SITE PLAN



USE OF FUNDS

Novel B Fuel Hydrogen Recovery in Hydrocarbon Reservoir	
Technology Budget	
Total Use of Funds	\$ 5,000,000
Hard Costs	\$ 4,172,500
Soft Costs Engineering and Design	244,000
Petroleum Engineer	90,000
Oil field service company	143,000
Legal	25,000
Insurance	25,500
Future Energy LLC	300,000
Total Use of Funds	\$ 5,000,000

BUDGET - \$5 MILLION

Tejas Tubular, Houston Concentric tubulars 90,000 Two 1.33" U-shaped corrosion resistant alloy for thermal fluid 90,000 Vallourec S.A. Vacuum Insulated Tubing (VIT) 275,000 GENERON or Air Liquide On-site skid-mounted membrane H2 separation plant 400,000 Hydrogen tanks Hydrogen tank storage 300,000 Pipe & Supply Pipes, Valves, and Flanges 40,000 Concrete Slab for Pad Site 80 ft. x 50 ft. pad site for heater, fluid filter & pumps 62,000 Electric Hook up heater, control panel, pumps, and electric line 114,000 Enverson Company Flow meters for thermal fluid, gas and water 32,000 Dwyer Instruments Inc. Sensors for gas and water 32,000 Thermal Fluid fluid filter Thermal Fluid heat transfer fluid, gas and water 32,000 Thermal Fluid fluid filter Thermal Fluid heat transfer fluid, gas and water 32,000 Thermal Fluid fluid filter Thermal Fluid heat transfer fluid, gas and water 32,000 Thermal Fluid fluid filter Thermal Fluid heat transfer fluid, gas and water 32,000 Thermal Fluid fluid filter Thermal Fluid heat transfer fluid, beater & filter 32,000 Thermal Fluid de	Novel S Fuel		eSteam
Sigma Thermal 10 MMBtu/hr. Thermal Fluid Heater and associated equipment 1,200,000 Tejas Tubular, Houston Concentric tubulars 90,000 3.5" corrosion resistant alloy for steam injection 90,000 Vallourec S.A. Vacuum Insulated Tubing (VIT) 275,000 GENERON or Air Liquide On-site skid-mounted membrane H2 separation plant 400,000 Hydrogen tanks Hydrogen tank storage 300,000 Pipe & Supply Pipes, Valves, and Flanges 400,000 Concrete Stab for Pad Site 80 ft. x 50 ft. pad site for heater, fluid filter & pumps, and electric line 114,000 Emerson Company Flow meters for thermal fluid, gas and water 32,000 Thermal Fluid 2,000 gallons of non-toxic thermal fluid fluid 38,000 Dwyer Instruments Inc. Sensors for gas and water 32,000 Flow Control Devices Thermal Fluid fluid filter and cartridges 38,000 Crane Crane to lift the thermal fluid heater as filter 32,2000 Thermal Products Inc. Heat Exchanger to heat the feedwater on the surface 36,000 Water and Gas line Purchase and install water and gas lines to the pad site 38,500 On-site Construction Construction C		eSteam Hydrogen Technology	
Tejas Tubular, Houston Concentric tubulars 90,000 Two 1.33" U-shaped corrosion resistant alloy for thermal fluid 110,000 Vallourec S.A. Vacuum Insulated Tubing (VIT) 275,000 GENERON or Air Liquide On-site skid-mounted membrane H2 separation plant 400,000 Hydrogen tank storage 300,000 Pipe & Supply Pipes, Valves, and Flanges 40,000 Concrete Slab for Pad Site 80 ft. x 50 ft. pad site for heater, fluid filter & pumps 62,000 Electric Hook up heater, control panel, pumps, and electric line 114,000 Dwyer Instruments Inc. Sensors for gas and water 32,000 Flow Control Devices Thermal Fluid fluid fliter and cartridges 38,500 Dwyer Instruments Inc. Sensors for gas and water 32,000 Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater on to pad site 5,500 Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater & filter 38,000 Water and Gas line Purchase and install water and gas lines to the pad site 38,000 On-Site Construction Construction 16,500 On-Site Construction Purchase and install water and gas lines to the pad site </td <td></td> <td></td> <td></td>			
3.5° corrosion resistant alloy for steam injection 90,000 Two 1.33° U-shaped corrosion resistant alloy for thermal fluid 110,000 GENERON or Air Liquide On-site skid-mounted membrane H2 separation plant 400,000 Hydrogen tanks Hydrogen tank storage 300,000 Pipe & Supply Pipes, Valves, and Flanges 400,000 Concrete Slab for Pad Site B0 ft. x 50 ft. pad site for heater, fluid filter & pumps 62,000 Electric Hook up heater, control panel, pumps, and electric line 114,000 Emerson Company Flow meetrs for thermal fluid, gas and water 32,000 Row Control Devices Thermal Fluid fluit runsifier fluid, gas and water 32,000 Row Control Devices Thermal Fluid fluit runsifier fluid, gas and water 32,000 Thermal Fluid fluit Thermal Fluid fluit runsifier fluid, gas and water 32,000 Thermal Fluid fluit Thermal Fluid fluit runsifier fluid, gas and water 32,000 Thermal Fluid fluit Thermal Fluid fluit runsifier fluid, gas and water 32,000 Thermal Fluid fluit runsifier fluid heater on to pad site 5,500 7500 Program Logic Controller Allen-Fadley PLC to operate thermal fluid heater & filter 32,000 <td< td=""><td></td><td></td><td>1,200,000</td></td<>			1,200,000
Two 1.33" U-shaped corrosion resistant alloy for thermal fluid 110,000 Vallourec S.A. Vacuum Insulated Tubing (VIT) 275,000 GENERON or Air Liquide On-site skid-mounted membrane H2 separation plant 400,000 Hydrogen tanks Hydrogen tank storage 300,000 Pipe & Supply Pipes, Valves, and Flanges 40,000 Concrete Slab for Pad Site 80 ft. x 50 ft. pad Site for heater, fluid filter & pumps 62,000 Electric Hook up heater, control panel, pumps, and electric line 114,000 Concrete Slab for Pad Site 9,000 gallons of non-toxic thermal fluid fluid 38,000 Dwyer Instruments Inc. Sensors for gas and water 12,000 Thermal Fluid fluid fluiter Thermal Fluid fluid fluid gas and water 32,000 Thermal Fluid flu	Tejas Tubular, Houston		
Vallourec S.A. Vacuum Insulated Tubing (VIT) 275,000 GENERON or Air Liquide On-site skid-mounted membrane H2 separation plant 400,000 Hydrogen tanks Hydrogen tank storage 300,000 Pipe & Supply Pipes, Valves, and Flanges 40,000 Concrete Slab for Pad Site B0 ft. x 50 ft. pad site for heater, fluid filter & pumps 62,000 Electric Hook up heater, control panel, pumps, and electric line 114,000 Emerson Company Flow meters for thermal fluid, gas and water 32,000 Thermal Fluid 2,000 gallons of non-toxic thermal fluid fluid 38,000 Dwyer Instruments Inc. Sensors for gas and water 32,000 Thermal Fluid fluid filter Thermal Fluid fluid filter and cartridges 38,500 Crane Crane to lift the thermal fluid heater onto pad site 5,500 Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater & filter 32,000 Mater and Gas line Purchase and install water and gas lines to the pad site 38,000 On-site Construction Meellhead fabrication 16,500 On-site Construction Electricity for pumps, controls, etc. 12,000 Construction Company Asse			
GENERON or Air Liquide On-site skid-mounted membrane H2 separation plant 400,000 Hydrogen tanks Hydrogen tank storage 300,000 Pipe & Supply Pipes, Valves, and Flanges 400,000 Concrete Slab for Pad Site 80 ft. x 50 ft. pad site for heater, fluid filter & pumps 62,000 Electric Hook up heater, control panel, pumps, and electric line 114,000 Concrete Slab for Pad Site 2,000 gallons of non-toxic thermal fluid fluid 38,000 Diversite Thermal Fluid 2,000 gallons of non-toxic thermal fluid fluid 38,000 Diversite Thermal Fluid Aud filter and cartridges 32,000 Crane Crane to lift the thermal fluid neater onto pad site 5,500 Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater 8,1500 On-Site Construction Melhead flabrication 16,500 On-Site Construction Kasemble surface pipes, flanges, valves, pumps, & HEX 140,000 Electricity Electricity for pumps, controls, etc. 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Neterh			110,000
Hydrogen tanks Hydrogen tank storage 300,000 Pipe & Supply Pipes, Valves, and Flanges 40,000 Concrete Slab for Pad Site B0 ft. x 50 ft. pad site for heater, fluid filter & pumps 62,000 Electric Hook up heater, control panel, pumps, and electric line 114,000 Emerson Company Flow meters for thermal fluid, gas and water 32,000 Thermal Fluid 2,000 gallons of non-toxic thermal fluid fluid 38,000 Dwyrer Instruments Inc. Sensors for gas and water 32,000 Flow Control Devices Thermal Fluid huid filter and cartridges 38,500 Crane Crane to lift the thermal fluid heater onto pad site 5,500 Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater & filter 32,000 Metra and Gas line Purchase and install water and gas lines to the pad site 38,000 Welhead Wellhead fabrication 16,500 140,000 On-Site Construction Electricity for pumps, controls, etc. 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Thermal Fluid Heater Set up and start-up Thermal Fluid heater 13,000 Wellhead Install			
Pipe & Supply Pipes, Valves, and Flanges 40,000 Concrete Slab for Pad Site 80 ft. x 50 ft. pad site for heater, fluid filter & pumps 62,000 Electric Hook up heater, control panel, pumps, and electric line 114,000 Emerson Company Flow meters for thermal fluid, gas and water 32,000 Thermal Fluid 2,000 gallons of non-toxic thermal fluid fluid 38,000 Dwyer Instruments Inc. Sensors for gas and water 12,000 Flow Control Devices Thermal Fluid fluid filter and cartridges 38,500 Crane Crane to lift the thermal fluid heater onto pad site 5,500 Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater & filter 32,000 Thermal Products Inc. Heat Exchanger to heat the feedwater on the surface 36,000 Water and Gas line Purchase and install water and gas lines to the pad site 38,000 On-Site Construction Construction Company Assemble surface pipes, flanges, valves, pumps, & HEX 140,000 Celectricity Electricity for pumps, controls, etc. 12,000 144,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Thermal Fluid Heater Set up and start-			400,000
Concrete Slab for Pad Site 80 ft. x 50 ft. pad site for heater, fluid filter & pumps 62,000 Electric Hook up heater, control panel, pumps, and electric line 114,000 Emerson Company Flow meters for thermal fluid, gas and water 32,000 Thermal Fluid 2,000 gallons of non-toxic thermal fluid fluid 38,000 Dwyer Instruments Inc. Sensors for gas and water 12,000 Flow Control Devices Thermal Fluid fluid filter and cartridges 38,500 Crane Crane to lift the thermal fluid heater onto pad site 5,500 Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater & filter 32,000 Water and Gas line Purchase and install water and gas lines to the pad site 38,000 Welhead Wellhead fabrication 16,500 On-Site Construction Iectricity for pumps, controls, etc. 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Thermal Fluid Heater Set up and start-up Thermal Fluid heater 13,000 Wellhead Install the wellhead 8,000 Thermal Fluid Heater Set up and start-up Thermal Fluid heater 13,000 Wellhead Install the wellhee			300,000
Electric Hook up heater, control panel, pumps, and electric line 114,000 Emerson Company Flow meters for thermal fluid, gas and water 32,000 Thermal Fluid 2,000 gallons of non-toxic thermal fluid fluid 38,000 Dwyer Instruments Inc. Sensors for gas and water 12,000 Flow Control Devices Thermal Fluid heat transfer fluid, gas and water 32,000 Thermal Fluid fluid filter Thermal Fluid fluid fliter and cartridges 38,500 Crane Crane to lift the thermal fluid heater onto pad site 5,500 Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater & filter 32,000 Water and Gas line Purchase and install water and gas lines to the pad site 38,000 On-Site Construction Construction 16,500 On-Site Construction Construction Company Assemble surface pipes, flanges, valves, pumps, & HEX 140,000 Electricity Electricity for pumps, controls, etc. 12,000 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Water for steam injection Zero hardness fresh water 13,000 Water for steam injection Install the wellhead 8,000 <			40,000
Emerson Company Flow meters for thermal fluid, gas and water 32,000 Thermal Fluid 2,000 gallons of non-toxic thermal fluid fluid 38,000 Dwyer Instruments Inc. Sensors for gas and water 12,000 Flow Control Devices Thermal Fluid heat transfer fluid, gas and water 32,000 Thermal Fluid fluid filter Thermal Fluid heat transfer fluid, gas and water 32,000 Crane Crane to lift the thermal fluid heater onto pad site 5,500 Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater & filter 32,000 Water and Gas line Purchase and install water and gas lines to the pad site 38,000 Water and Gas line Purchase and install water and gas lines to the pad site 38,000 On-Site Construction 16,500 16,500 On-Site Construction 12,000 140,000 Electricity Electricity for pumps, controls, etc. 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Thermal Fluid Heater Set up and start-up Thermal Fluid heater 13,000 Water for steam injection Zero hardness fresh water 13,000 Wellhead Install the wellhead			62,000
Thermal Fluid 2,000 gallons of non-toxic thermal fluid fluid 38,000 Dwyer Instruments Inc. Sensors for gas and water 12,000 Flow Control Devices Thermal Fluid heat transfer fluid, gas and water 32,000 Thermal Fluid fluid filter Thermal Fluid fluid filter and cartridges 38,500 Crane Crane to lift the thermal fluid heater onto pad site 5,500 Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater & filter 32,000 Water and Gas line Purchase and install water and gas lines to the pad site 38,000 On-Site Construction Mellhead fabrication 16,500 On-Site Construction Assemble surface pipes, flanges, valves, pumps, & HEX 140,000 Electricity Electricity for pumps, controls, etc. 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Wellhead Install the wellhead 8,000 Wellhead Install the wellhead 8,000 Wellhead Install the wellhead 8,000 Water for steam injection Install the wellhead 8,000 Wellhead Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 <	Electric		114,000
Dwyer Instruments Inc. Sensors for gas and water 12,000 Flow Control Devices Thermal Fluid heat transfer fluid, gas and water 32,000 Thermal Fluid fluid filter Thermal Fluid fluid filter and cartridges 38,500 Crane Crane to lift the thermal fluid heater onto pad site 5,500 Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater & filter 32,000 Thermal Products Inc. Heat Exchanger to heat the feedwater on the surface 36,000 Water and Gas line Purchase and install water and gas lines to the pad site 38,000 On-Site Construction Construction Company Assemble surface pipes, flanges, valves, pumps, & HEX 140,000 Electricity Electricity for pumps, controls, etc. 12,000 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Thermal Fluid Heater Set up and start-up Thermal Fluid heater 13,000 Wellbead Install the wellhead 8,000 Wellbere Installation Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 Contingency Engineer system design for equipment assembly 244,000 Oli Field Services Company Equipment preparation and i	Emerson Company	Flow meters for thermal fluid, gas and water	32,000
Flow Control Devices Thermal Fluid heat transfer fluid, gas and water 32,000 Thermal Fluid fluid filter Thermal Fluid fluid filter and cartridges 38,500 Crane Crane to lift the thermal fluid heater onto pad site 5,500 Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater & filter 32,000 Water and Gas line Purchase and install water and gas lines to the pad site 38,000 Welhead Wellhead fabrication 16,500 On-Site Construction 12,000 Construction Company Assemble surface pipes, flanges, valves, pumps, & HEX 140,000 Electricity Electricity for pumps, controls, etc. 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Thermal Fluid Heater Set up and start-up Thermal Fluid heater 135,000 Wellhead Install the wellhead 8,000 Wellhead Install the wellhead 8,000 Wellhead Install the wellhead 8,000 Wellhead Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 Contingency Total Hard Costs \$ 4,172,500 Soft Costs Engineer s	Thermal Fluid		38,000
Thermal Fluid fluid filter Thermal Fluid fluid filter and cartridges 38,500 Crane Crane to lift the thermal fluid heater onto pad site 5,500 Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater & filter 32,000 Thermal Products Inc. Heat Exchanger to heat the feedwater on the surface 36,000 Water and Gas line Purchase and install water and gas lines to the pad site 38,000 Welhead Wellhead fabrication 16,500 On-Site Construction Electricity for pumps, controls, etc. 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Wellhead Install the wellhead 8,000 Wellhead Install 3,5° & two 1.33° U-shaped tubulars downhole 95,000 Contingency Total Hard Costs \$ 4,172,500 <	Dwyer Instruments Inc.	Sensors for gas and water	12,000
Crane Crane to lift the thermal fluid heater onto pad site 5,500 Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater & filter 32,000 Thermal Products Inc. Heat Exchanger to heat the feedwater on the surface 36,000 Water and Gas line Purchase and install water and gas lines to the pad site 38,000 Welhead Wellhead fabrication 16,500 On-Site Construction Construction Company Assemble surface pipes, flanges, valves, pumps, & HEX 140,000 Electricity Electricity for pumps, controls, etc. 12,000 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Thermal Fluid Heater Set up and start-up Thermal Fluid heater 13,000 Wellhead Install the wellhead 8,000 Wellhead Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 Contingency 850,000 Soft Costs 850,000 Engineering and Design Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Lice	Flow Control Devices	Thermal Fluid heat transfer fluid, gas and water	32,000
Program Logic Controller Allen-Bradley PLC to operate thermal fluid heater & filter 32,000 Thermal Products Inc. Heat Exchanger to heat the feedwater on the surface 36,000 Water and Gas line Purchase and install water and gas lines to the pad site 38,000 Welhead Wellhead fabrication 16,500 On-Site Construction 16,500 Construction Company Assemble surface pipes, flanges, valves, pumps, & HEX 140,000 Electricity Electricity for pumps, controls, etc. 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Thermal Fluid Heater Set up and start-up Thermal Fluid heater 13,000 Wellhead Install the wellhead 8,000 Wellbore Installation Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 Contingency 850,000 850,000 Soft Costs Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance Gen	Thermal Fluid fluid filter	Thermal Fluid fluid filter and cartridges	38,500
Thermal Products Inc. Heat Exchanger to heat the feedwater on the surface 36,000 Water and Gas line Purchase and install water and gas lines to the pad site 38,000 Welhead Wellhead fabrication 16,500 On-Site Construction 16,500 Construction Company Assemble surface pipes, flanges, valves, pumps, & HEX 140,000 Electricity Electricity for pumps, controls, etc. 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Thermal Fluid Heater Set up and start-up Thermal Fluid heater 135,000 Water for steam injection Zero hardness fresh water 13,000 Wellbead Install the wellhead 8,000 Wellbore Installation Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 Contingency 850,000 Total Hard Costs \$ 4,172,500 Soft Costs Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,500 Insurance General liabil	Crane	Crane to lift the thermal fluid heater onto pad site	5,500
Water and Gas line Purchase and install water and gas lines to the pad site 38,000 Welhead Wellhead fabrication 16,500 On-Site Construction 16,500 Construction Company Assemble surface pipes, flanges, valves, pumps, & HEX 140,000 Electricity Electricity for pumps, controls, etc. 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Thermal Fluid Heater Set up and start-up Thermal Fluid heater 135,000 Water for steam injection Zero hardness fresh water 13,000 Wellbead Install the wellhead 8,000 Wellbore Installation Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 Contingency Soft Costs 44,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000	Program Logic Controller	Allen-Bradley PLC to operate thermal fluid heater & filter	32,000
Welhead Wellhead fabrication 16,500 On-Site Construction 16,500 Construction Company Assemble surface pipes, flanges, valves, pumps, & HEX 140,000 Electricity Electricity for pumps, controls, etc. 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Thermal Fluid Heater Set up and start-up Thermal Fluid heater 135,000 Water for steam injection Zero hardness fresh water 13,000 Wellhead Install the wellhead 8,000 Wellbore Installation Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 Contingency 850,000 Total Hard Costs \$ 4,172,500 Soft Costs Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000	Thermal Products Inc.	Heat Exchanger to heat the feedwater on the surface	36,000
On-Site Construction Image: Non-Site Construction Company Assemble surface pipes, flanges, valves, pumps, & HEX 140,000 Electricity Electricity for pumps, controls, etc. 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Thermal Fluid Heater Set up and start-up Thermal Fluid heater 135,000 Water for steam injection Zero hardness fresh water 13,000 Wellhead Install the wellhead 8,000 Wellbore Installation Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 Contingency 850,000 850,000 Contingency 850,000 90,000 Contingency Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,000 Future Energy LLC Equipment preparation 300,000	Water and Gas line	Purchase and install water and gas lines to the pad site	38,000
Construction CompanyAssemble surface pipes, flanges, valves, pumps, & HEX140,000ElectricityElectricity for pumps, controls, etc.12,000Natural GasGas for each steam cycle before use of hydrogen gas48,000Thermal Fluid HeaterSet up and start-up Thermal Fluid heater135,000Water for steam injectionZero hardness fresh water13,000WellheadInstall the wellhead8,000Wellbore InstallationInstall 3.5" & two 1.33" U-shaped tubulars downhole95,000ContingencyTotal Hard Costs\$ 4,172,500Soft CostsEngineer system design for equipment assembly244,000Petroleum EngineerReservoir engineering90,000Oil Field Services CompanyEquipment preparation and installation143,000LegalLicense Agreement25,000InsuranceGeneral liability insurance and workmans comp25,500Future Energy LLCEquipment preparation300,000Subtotal Soft Costs827,500	Welhead	Wellhead fabrication	16,500
Electricity Electricity for pumps, controls, etc. 12,000 Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Thermal Fluid Heater Set up and start-up Thermal Fluid heater 135,000 Water for steam injection Zero hardness fresh water 13,000 Wellhead Install the wellhead 8,000 Wellbore Installation Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 Contingency Total Hard Costs \$ 4,172,500 Soft Costs Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000	On-Site Construction		
Natural Gas Gas for each steam cycle before use of hydrogen gas 48,000 Thermal Fluid Heater Set up and start-up Thermal Fluid heater 135,000 Water for steam injection Zero hardness fresh water 13,000 Wellhead Install the wellhead 8,000 Wellbore Installation Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 Contingency Total Hard Costs \$ 4,172,500 Soft Costs Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000	Construction Company	Assemble surface pipes, flanges, valves, pumps, & HEX	140,000
Thermal Fluid Heater Set up and start-up Thermal Fluid heater 135,000 Water for steam injection Zero hardness fresh water 13,000 Wellhead Install the wellhead 8,000 Wellbore Installation Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 Contingency Total Hard Costs \$ 4,172,500 Soft Costs Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000	Electricity	Electricity for pumps, controls, etc.	12,000
Water for steam injection Zero hardness fresh water 13,000 Wellhead Install the wellhead 8,000 Wellbore Installation Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 Contingency 850,000 850,000 Total Hard Costs \$ 4,172,500 Soft Costs Engineering and Design Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000	Natural Gas	Gas for each steam cycle before use of hydrogen gas	48,000
Wellhead Install the wellhead 8,000 Wellhore Installation Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 Contingency 8500,000 Total Hard Costs \$ 4,172,500 Soft Costs Engineering and Design Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000	Thermal Fluid Heater	Set up and start-up Thermal Fluid heater	135,000
Wellbore Installation Install 3.5" & two 1.33" U-shaped tubulars downhole 95,000 Contingency Total Hard Costs \$ 4,172,500 Soft Costs Engineering and Design Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000	Water for steam injection	Zero hardness fresh water	13,000
Contingency 850,000 Total Hard Costs \$ 4,172,500 Soft Costs Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000		Install the wellhead	8,000
Total Hard Costs \$ 4,172,500 Soft Costs Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000	Wellbore Installation	Install 3.5" & two 1.33" U-shaped tubulars downhole	95,000
Soft Costs Costs Engineering and Design Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000 Subtotal Soft Costs 827,500	Contingency		850,000
Soft Costs Costs Engineering and Design Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000 Subtotal Soft Costs 827,500		Total Hard Costs	\$ 4,172,500
Engineering and Design Engineer system design for equipment assembly 244,000 Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000	Soft Costs		
Petroleum Engineer Reservoir engineering 90,000 Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000 Subtotal Soft Costs 827,500		Engineer system design for equipment assembly	244,000
Oil Field Services Company Equipment preparation and installation 143,000 Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000 Subtotal Soft Costs 827,500			90,000
Legal License Agreement 25,000 Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000 Subtotal Soft Costs 827,500			143,000
Insurance General liability insurance and workmans comp 25,500 Future Energy LLC Equipment preparation 300,000 Subtotal Soft Costs 827,500			25,000
Future Energy LLC Equipment preparation 300,000 Subtotal Soft Costs 827,500			25,500
Subtotal Soft Costs 827,500			300,000
			827,500
		Total Hard & Soft Costs	

eSteam™ Copyright © 2020

ENVIRONMENTAL, SOCIAL, AND GOVERNANCE (ESG)

The global race for clean hydrogen means new geopolitical realities.

If the 1990s were the decade of wind, the 2000s the decade of solar, and the 2010s the decade of batteries, the 2020s could launch us toward a next frontier of the energy transition: hydrogen. Hardly a week goes by without a major new hydrogen project or breakthrough. In just the past five years, more than 30 countries have developed or started to prepare national hydrogen strategies (IEA 2022). The Paris climate goals have been a key driver to shift to greener fuels.

Hydrogen battles

The pathway for clean hydrogen growth remains contentious, however. Two primary fault lines have emerged: how to produce it and in which sectors to deploy it.

Future Energy LLC has been involved in the development of California heavy oil projects for over 30-years. We are bringing a transformative zero-emission green technology that is a first-of-its-kind carbon-neutral hydrogen production technology branded as eSteam[™].

What sets Future Energy apart is our novel green technology will help oil and companies to achieve reduced emissions. Future Energy's green technology will help oil companies diversify into carbon-neutral hydrogen production and generate carbon credit revenue to achieve higher net revenue. NovelH₂Fuel system will help Canadian operators avoid the costly carbon tax. NovelH₂Fuel system is an extremely low CapEx and OpEx. NovelH₂Fuel system helps oil companies offset their greenhouse gas emissions, to achieve decarbonization and net-zero emissions by 2050.

Future Energy is pleased to support Social Contract value and is building a purpose driven technology license business that can help operators successfully implement our green technology to enhance their objectives to help them achieve Environmental, Social and Governance (ESG) standards that safeguard the environment. We desire to help the community's citizens health and well-being to provide the societal benefits to the environment by improving air quality, reducing water consumption, and maintaining high paying jobs improving the local economy.

info@futureenergyllc.com

novelh2.com

Oil companies are looking to transition their business, and hydrogen gas production in hydrogen-rich hydrocarbon formations is a natural fit.

eSteam[™] Copyright © 2020

APPENDICES

Problem – In-Situ Combustion...... 16 Research – In-Situ Combustion 17 & 18

PROBLEMS with in-situ combustion WILL NOT be successful to produce hydrogen gas.

- The main obstacle will be achieving a temperature of 500°C or 930°F.
- Due to gravity override of the injected gases, the combustion front may not advance uniformly in the vertical direction. Hence, the sweep efficiency may be reduced by the preferential flow of the gases to one or more wells of the pattern.
 - Requires a combustion front into immobile oil, and this causes much lower oxygen injectivity rates.
- 🚫 A ch
 - A challenge is overcoming the limitations of low sweep efficiency of the combustion heat.
 - A big disadvantage is the high-cost air compressor units to create oxygen to be injected into the reservoir to maintain the fire.
 - Another big disadvantage is the high concentration of nitrogen, NOx, CO2, CO, and unreacted O2 that needs to be mitigated at the surface in high-cost separation equipment and subsequently disposed or sequestered that adds significant additional cost.
 - A stable combustion needs not only a reasonable gas injection speed but also a matching exhaust speed, otherwise, the combustion effect will inevitably be affected.
 - Low process control resulting in poor sweep efficiency and adversely affecting the ignition of the insitu fire.
 - X The question most frequently asked is where the in-situ combustion front is located.
 - X The biggest challenge is to achieve 500°C or 930°F heat to produce large amounts of hydrogen.
 - Another challenge is the yield efficiency, i.e., amount of hydrogen extracted per amount of oxygen injected.

ISC began in the early 1920s for heavy oil viscosity reduction, but its inefficiency was superseded by a once- through steam generator (OTSG) in the early 1960s that are still being used today.

RESEARCHER'S HYDROGEN FOCUS IS IN-SITU COMBUSTION

In-situ combustion WILL NOT be successful to produce hydrogen gas from hydrocarbon formations.

How much hydrogen can be produced using this process?

What key factors control hydrogen production using this process?

How do you model in-situ hydrogen production from oil and gas reservoirs?

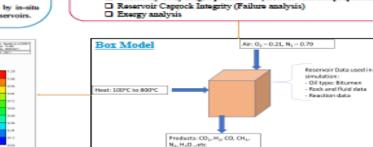
1. Conceptualize the process. Modified existing oil and gas production process

Chemistry of hydrogen production (thermal reaction properties)

Repurposing Oil and Gas Reservoirs for Blue Hydrogen Production

Princewill Ikpeka

Supervised by: Johnson Ugwu, Gobind Pillai, Paul Russell

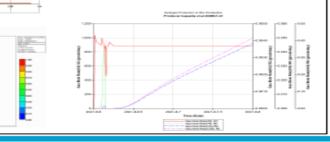

What we know

Hydrogen is critical to achieving the NetZero Target set by the UK government in 2050.

- There has been concerted efforts to produce more hydrogen from renewable sources (green hydrogen) to reduce the impact on the environment. The arguments have been that hydrogen produced from hydrocarbon sources contribute largely to CO₂ emission in the atmosphere therefore causing global warming.
- While this is true, the reality however is that with the increasing demand projections for Hydrogen cannot be met by Green Hydrogen. At present, nearby all industrial hydrogen are produced from hydrocarbon sources (Maradov 2017).
- CO₂ emission is a major by-product of blue hydrogen production. However, there is a need to reverse engineer the hydrogen process from hydrocarbons, explore hydrogen production directly from the reservoir and retain the accompanying CO₂ from being released into the surface.

Using a depleted reservoir as feedstock, one method of doing this, is by in-situ hydrogen production through thermal combustion of the hydrocarbon reservoirs.

What we want to know


Steps we are taking

to accommodate hydrogen

2. Identify key areas of technical safety concern:

Key Results

- Hydrogen is produced and is quickly consumed during the simulation
- Hydrogen production varied with cell location.
 Thermal cracking, Partial oxidation reactions observed during simulation

Conclusion and Further Work

- Box model was built to simulate laboratory conditions.
- Preliminary results from Box model simulation show that at reservoir temperatures of about 500°C, hydrogen forming reactions are activated
- Injection of oxygen for in-situ combustion of hydrocarbon increases the reservoir temperature, but not to hydrogen forming range.
- Hydrogen produced quickly reacted with injected oxygen to form steam at reservoir conditions
- Parametric studies needed to understand the key factors affecting in-situ hydrogen production

References

Murative K. Dar Io near-zero CC2 production of hydrogen from load furth: Nature and pengenthes. Int. J. Hydrogen Rearge (Internet), Rearier Uol. 2017;02(0):4504–45. Available from Holgy/Muchaniza(2010), Springers 2017.04.103.

RESEARCH FOR IN-SITU COMBUSTION TECHNOLOGY

In-Situ Combustion WILL NOT be successful to produce hydrogen gas from hydrocarbon formations.

Published: October 6, 2022 - Department of Physical Chemistry, Alexander Butlerov Chemistry Institute, Kazan Federal University, Kazan Russia

Abstract

The generation of hydrogen from unconventional oil is expected to increase significantly during the next decade. It is commonly known that hydrogen is an environmentally friendly alternative fuel, and its production would partially cover the gap in energy market requirements. However, developing new cheap catalysts for its production from crude oil is still a challenging area in the field of petroleum and the petrochemical industry. This study presents a new approach to synthesizing and applying promising catalysts based on Ni, Co, and Ni-Co alloys that are supported by aluminum oxide in the production of hydrogen from extra-heavy crude oil in the Tahe Oil Field (China), in the presence of supercritical water (SCW), it was shown that it can be realized in the presence of core and ex-situ prepared Ni-based catalyst, under high pressure up to 207 atm, but at temperatures not lower than 450C.

Published: June 6, 2011 - Science Direct - Volume 90, Issue 6, Pages 2254-2265 Abstract

The volume of heavy oil and bitumen in Alberta, Canada is estimated to be about 1.7 trillion barrels. The potential for in-situ combustion (ISC) of hydrogen by gasification of bitumen reservoirs offers an attractive alternative, which can also have both economic and environmental benefits. For example, hydrogen generated from bitumen gasification can also be used for in-situ upgrading as well as feedstock for ammonia and other chemicals. The water–gas shift reaction also generates carbon dioxide which could be potentially sequestered in an in-situ gasification process so that emissions to the atmosphere are reduced. This in-situ combustion technology provides a potential clean method to produce hydrogen fuel from bitumen.

Published: March 27, 1985 - Paper presented at the SPE California Regional Meeting, Bakersfield, California.

Abstract

BP Resources Canada Ltd. is operating an oxygen in-situ oil recovery pilot at Marguerite Lake, part of the Cold Lake heavy-oil deposit in part of the Cold Lake heavy oil deposit in eastern Alberta. The pilot consists of two principal areas: a three-well, wet air principal areas: a three-well, wet air combustion test and an infill-drilled, four five-spot, wet oxygen combustion project on five (5) acres. All the wells were initially steam fractured and operated through several cycles. The present study was undertaken in order to better understand the flow and reaction processes that generate hydrogen in-situ and thereby to suggest ways of influencing its production. The results are interpreted in hydrogen production.

Published: Science Direct - 23 September 2022

Abstract

GTI Energy's Sub-surface Technologies for the Generation and Production of Low-carbon Hydrogen from Hydrocarbon Resources. The research intends to inform and stimulate stakeholder thoughts around the future research needs on underground generation and production of hydrogen by addressing techno-economic challenges, societal and regulatory barriers to deployment. The project is expected to kick off in 3Q 2022. A Review and Techno-economic Analysis of Subsurface Technologies for Hydrogen Production from Fossil Fuel Resources. Conversion of depleted hydrocarbon reservoirs into underground energy conversion systems that are accessible through available well infrastructure offers a promising pathway to leverage existing fossil fuel assets for low-carbon energy.