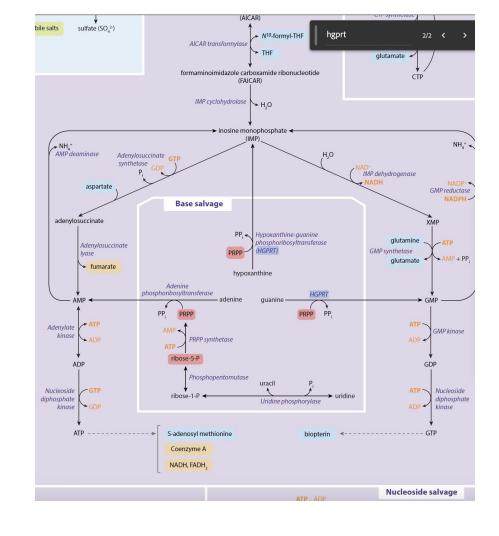
Pathophysiology review

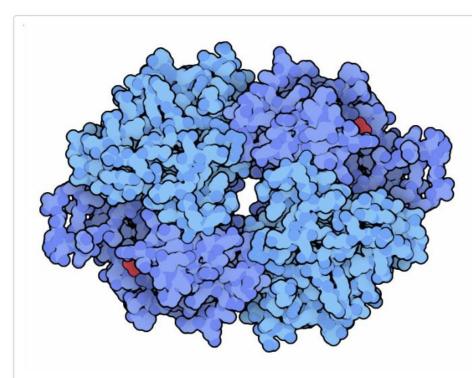

Lesch Nyhan

Mechanism: Absent HGPRT \rightarrow increased de novo purine synthesis \rightarrow increased uric acid production Page: 35

HGPRT:

-

Hyperuricemia Gout Pissed off (aggression, self-mutilation) Red/orange crystals in urine Tense muscles (dystonia)



Purine Salvage

The enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is one of the central enzymes that recycle the building blocks of RNA and DNA. It attaches a purine base (either guanine or hypoxanthine, a modified form of adenine) to a sugar, creating a nucleotide. The structure shown here (PDB entry 1hmp) is the human enzyme, which is composed of four identical subunits, each with its own active site. This structure includes the nucleotide product, guanine monophosphate, just before it is ready to be released for use by the cell.

Perils of Purines

As with all metabolic pathways, serious problems occur if steps in the pathway are blocked. Some people inherit a rare defective version of HGPRT, which leads to a serious illness termed Lesch-Nyhan syndrome. Since the enzyme is not active, purine bases build up causing severe neurological problems, including a dangerous compulsion for self-injury. In other cases, people with partially active HGPRT have problems with gout, as the pathways for discarding excess purines are overloaded and the waste products build up in the joints.

Human hypoxanthine-guanine phosphoribosyltransferase.

Download high quality TIFF image

Purine Salvage Lesch Nyhan UWQID 2067

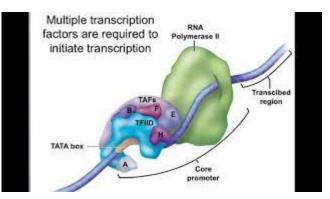
2067

Lesch-Nyhan syndrome (eg, dystonia, self-mutilation, hyperuricemia) is caused by a mutation in the gene encoding hypoxanthine-guanine phosphoribosyltransferase (HGPRT). Reduced HGPRT activity leads to impaired purine salvage and increased de novo purine synthesis, a process necessitating increased phosphoribosyl pyrophosphate amidotransferase activity.

UW 2067 Lesch-Nyhan Syndrome DE NOVO SYNTHESIS Ribose-5-P ATP ADP PRPP PRPP amidotransferase SALVAGE SYNTHESIS AMP GMP GMP IMP APRT ADA Guanosine Inosine Adenosine Deficiency Guanosine PRPP Inosine Guanine Hypoxanthine Adenine Lesch-Nyha PRPP Xanthine oxidase Syndrome Xanthine Xanthine oxidase PRPP Uric Acid PRPP Hypoxanthine Guanine anthine Oxidase anthin Allopurinol Xanthine Oxidase Febuxostat Uric

Play at 1:35

AMP


Adenosine

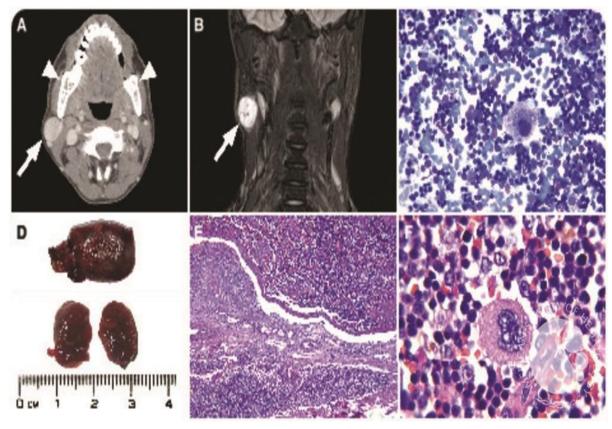
Adenine

Acid

β-thalassemia

Mechanism: Mutation at splice site or promoter sequences \rightarrow retained intron in mRNA **Page:** 38, 424

33. SPICES:


mutation to the BETA globin gene can cause a mRNA splicing defect \rightarrow fewer subunits produced

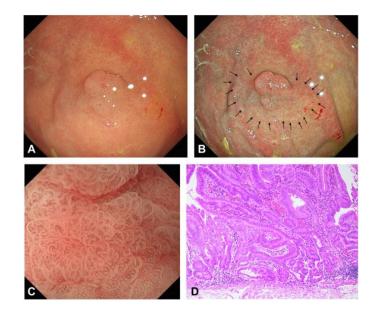
34. Corked CODON bottles:

mutation to the BETA globin gene can cause a premature stop codon \rightarrow no subunits produced

A 24-year-old regularly transfused patient with β-thalassemia major presented with a lateral neck mass. Computed tomography and magnetic resonance imaging showed an enhanced mass 2.3 × 2 × 2.2 cm in the right parotid gland (panels A-B, arrows) with expansion and coarsening of the bony parts (panel A, arrowheads). Differential diagnosis included salivary gland tumors, metastases, hematomas, hemangioma, and extramedullary hematopoiesis (EMH). Fine-needle aspiration of the mass showed normal bone marrow elements (panel C), and EMH was suggested. Pathology showed a soft, dark red, clot-like mass (panel D) that was confirmed as nodal EMH (panels E-F). EMH and bone changes are well established in β -thalassemia. EMH is primarily seen in untreated or inadequately treated patients with thalassemia major or thalassemia intermedia and may not be prevented even by hypertransfusion regimens, whereas it is very rare in patients with thalassemia major who have received the appropriate treatment. Although EMH is usually primarily restricted to the liver or spleen, soft-tissue masses of EMH are rare. Biopsy is indicated when EMH occurs in very rare and unusual locations to exclude other differential diagnoses. If EMH is in a typical location and is not causing clinical problems, close monitoring without biopsy, in addition to attempts to suppress ineffective erythropoiesis or increase its efficacy. may suffice.

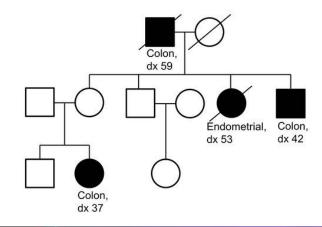
Lynch Syndrome

Mechanism: Failure of mismatch repair during the S phase \rightarrow microsatellite instability **Page:** 37, 395


A 66-year-old woman with a diagnosis of Lynch syndrome with *MSH2* mutation was referred to surveillance EGD. Her medical history included multiple cancers: 3 gastric, a duodenal, 4 colorectal, an endometrial, and a bladder cancer. EGD showed a pale-colored, 2-tier raised lesion without a clear demarcation line in the upper part of the remnant stomach (A). Texture and color enhancement imaging enabled visualization of the clear boundary (B, arrows). Magnifying endoscopy with narrow-band imaging revealed a lobular surface structure that contained looplike microvessels, with a demarcation line (C). The results of serology and urea breath test for Helicobacter pylori were negative. These endoscopic findings suggested an early gastric cancer, which was extending laterally, measuring ≥10 mm. The lesion was subsequently resected en bloc by endoscopic submucosal dissection. On histologic examination, the tumor, 22 × 15 mm, showed monotonous proliferation of foveolar-like atypical tubules having enlarged nuclei and an irregular structure (D). The horizontal and vertical margins were free of tumor cells. Immunohistochemically, the tumor cells were positive for MUC5AC and MUC6 and negative for MUC2, CD10, pepsinogen I, and proton pump. Ki-67-positive cells were located at the whole mucosal layer. MLH1 and PMS2 were preserved, and MSH2 and MSH6 were lost. The final diagnosis was early gastric cancer of a gastric phenotype restricted to the mucosal layer, in Lynch syndrome, without lymphovascular invasion.

18. Mismatched clothing pattern: Mismatch repair (MMR) identifies and replaces mispaired bases that form during DNA replication; occurs during S phase of cell cycle

19. L-inchworm toy + domino-pattern: Mismatch repair is defective in Lynch syndrome (HNPCC), an autosomal dominant disorder


Lynch syndrome

UWQID 429 Hereditary nonpolyposis colon cancer (HNPCC), or Lynch syndrome, leads to occurrence of colonic adenocarcinomas at a young age (age <50) along with a predisposition for extraintestinal malignancies. Mutations of DNA mismatch repair genes are responsible for HNPCC. MSH2

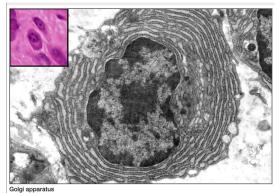
UWQID 2028 Lynch syndrome is an autosomal dominant disease caused by abnormal nucleotide mismatch repair. The mismatch repair system involves several genes, including MSH2 and MLH1, which code for components of the human MutS and MutL homologs. Mutations in these 2 genes account for around 90% of cases of Lynch syndrome.

• Typically due to mutation in an MMR gene: most commonly due to a germline mutation in *MSH2* or *MLH1*; less frequently due to germline mutations in *MSH6* or *PMS2*

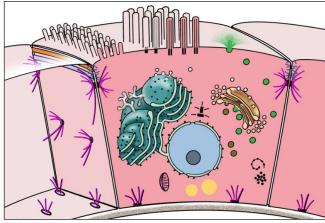
Lynch Syndrome Pedigree

- Mutation in MMR gene results in defective repair of DNA sequence mismatches, which most frequently occur in long, repetitive DNA sequences (such as seen in microsatellite regions, hence the term microsatellite instability [MSI])
- Accumulation of DNA mismatches lead to increased risk of developing malignant neoplasms

Pathologyoutlines



I-cell Disease


Mechanism:

N-acetylglucosaminyl-1-phosphotransferase defect \rightarrow Golgi-mediated mannose residues phosphorylation failure (\downarrow mannose-6-phosphate) \rightarrow increased cellular debris in lysosomes **Page:** 45


apparatus

This electron micrograph shows a plasma cell with a very large Golgi apparatus. The light microscopic appearance of a similar cell is shown in the inset. This large Golgi lies adjacent to the nucleus and is surrounded by extensive RER. 10,000x

Golgi apparatus

The Golgi, usually located near the nucleus, consists of flattened, membranous sacs. These sacs receive newly synthesized proteins from the RER via transport vesicles. The vesicles fuse with the forming face of the Golgi, and their proteins are post-transationally modified, e.g., glocosylated or phosphorylated, and packaged on the maturing face of the Golgi tor transport through the cell.

Lysosomes

This electron micrograph shows the irregular outline of a lysosome in the lower right corner of the image. The heterogeneous contents of the lysosome are breakdown products of recycled organelies and internalized materials. Note also the RER, ribosomes and mitchondria in this image. 30,000x

Osteogenesis Imperfecta

Mechanism: Type 1 collagen defect due to inability to form triple helices; mutation in COL1A1 and COL1A2 genes **Page:** 49

Osteogenesis imperfecta

Genetic bone disorder (brittle bone disease) caused by a variety of gene defects (most commonly COLIA1 and COLIA2). Most common form is autosomal dominant with 4 production of otherwise normal type I collagen (altered triple helix formation). Manifestations include:

- Multiple fractures and bone deformities (arrows in A) after minimal trauma (eg, during birth)
- Blue sclerae B due to thin, translucent scleral collagen revealing choroidal veins
- Some forms have tooth abnormalities, including opalescent teeth that wear easily due to lack of dentin (dentinogenesis imperfecta)
- Hearing loss (abnormal ossicles)

May be confused with child abuse. Treat with bisphosphonates to \downarrow fracture Patients can't **BITE**: **B**ones = multiple fractures **I** (eye) = blue sclerae Teeth = dental imperfections Ear = hearing loss

7. Brittle bone oar:

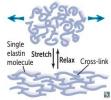
Type 1 collagen defects seen in osteogenesis imperfecta (OI)

Menkes Disease

Mechanism: Defective ATP7A protein \rightarrow impaired copper absorption and transport \rightarrow decreased lysyl oxidase activity \rightarrow decreased collagen cross-linking **Page:** 49

<u>Medscape</u>

21. Monkey removing copper rings:


Collagen cross-linking defects are seen in Menkes disease

Marfan Syndrome

Mechanism: FBN1 mutation on chromosome $15 \rightarrow$ defective fibrillin-1 (normally forms sheath around elastin) **Page:** 50 Elastin

Stretchy protein within skin, lungs, large arteries, elastic ligaments, vocal cords, epiglottis, ligamenta flava (connect vertebrae – relaxed and stretched conformations).

Rich in nonhydroxylated proline, glycine, and lysine residues, vs the hydroxylated residues of collagen.

Tropoelastin with fibrillin scaffolding.

Cross-linking occurs extracellularly via lysyl oxidase and gives elastin its elastic properties. Broken down by elastase, which is normally inhibited by α_{l} -antitrypsin. α_{l} -Antitrypsin deficiency results in unopposed elastase activity, which can cause COPD.

aff det Fin pec mod det

Marfan syndrome—autosomal dominant (with variable expression) connective tissue disorder affecting skeleton, heart, and eyes. *FBN1* gene mutation on chromosome 15 (fifteen) results in defective fibrillin-1, a glycoprotein that forms a sheath around elastin and sequesters TGF-β. Findings: tall with long extremities; chest wall deformity (pectus carinatum [pigeon chest] or pectus excavatum (A); hypermobile joints; long, tapering fingers and toes (arachnodactyly); cystic medial necrosis of aorta; aortic root aneurysm rupture or dissection (most common cause of death); mitral valve prolapse; † risk of spontaneous pneumothorax.

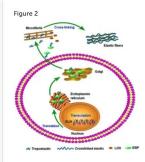
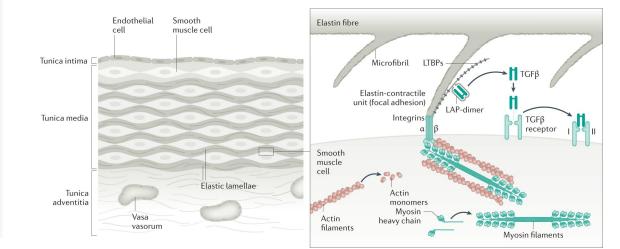
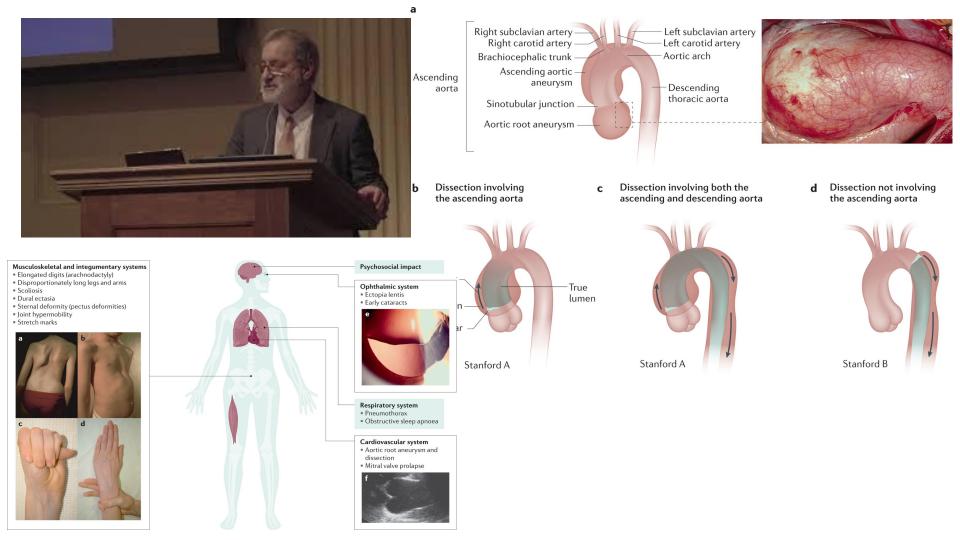



Figure 2. Tropoelastin secretory/assembly pathway. The synthesis of tropoelastin begins with the transcription of the ELN gene in the nucleus. In the endoplasmic reticulum, tropoelastin interacts with EBP and folds in structure. After the storage and transport of Golgi, the complex of EBP and tropoelastin is secreted to the cell surface for selfassembly. Then, tropoelastin dissociates from EBP and deposits onto the microfibril scaffold. In the presence of LOX, tropoelastin crosslinks and eventually forms mature elastic fibers.



A 27-year-old woman with a diagnosis of Marfan's syndrome presented with worsening vision and glare in each eye for 1 month. On examination, visual acuity was 20/30 in each eye. Superotemporal partial subluxation of the lens was noted in each eye. On close inspection of the right eye, a decrease in the overall number of zonules was observed as widened spaces between zonules (arrows). Intraocular pressure was normal. Ectopia lentis is an ocular finding in Marfan's syndrome and typically develops between birth and 30 years of age. The lens subluxation is typically bilateral, symmetric, and in the superotemporal direction, although it may occur in other directions Zonular fibers of the lens are few and are often attenuated and broken. Surgical intervention may be required if the refractive error cannot be managed conservatively or if uncontrolled glaucoma develops. Our patient was treated conservatively, and visual acuity improved with new prescription eyeglasses. The patient's condition has remained stable over a 2-year follow-up period.

Mechanism: Uniparental disomy or imprinting leading to silencing of maternal gene. Disease expressed when paternal allele is deleted or mutated Page: 56

Angelman Syndrome

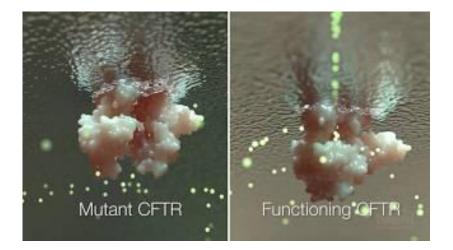
Mechanism: Silenced paternal gene leading to mutation, lack of expression, or deletion of UBE3A on maternal chromosome 15 **Page:** 56

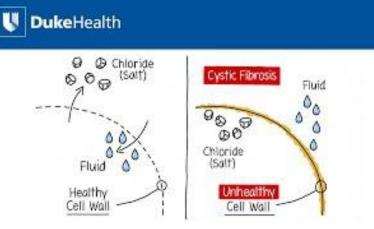
14. Angel:

Angelman syndrome (AS) is a genetic disorder of imprinting caused by mutations or microdeletions in the maternal UBE3A gene, or any pertaining segments on chromosome 15 (q11-13)

15. Ube:

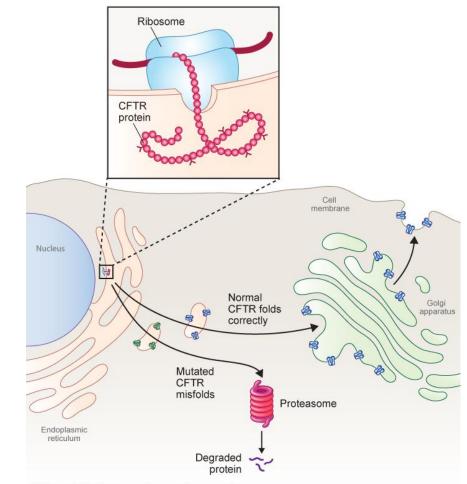
Angelman syndrome (AS) is a genetic disorder of imprinting caused by mutations or microdeletions in the maternal **UBE3A** gene, or any pertaining segments on chromosome 15 (q11-13)




~ ~~~

Cystic Fibrosis

Mechanism: Autosomal recessive Δ F508 deletion in CFTR gene on chromosome 7 \rightarrow impaired ATP-gated Cl⁻ channel (secretes Cl⁻ in lungs and Gl tract and reabsorbs Cl⁻ in sweat glands) **Page:** 58

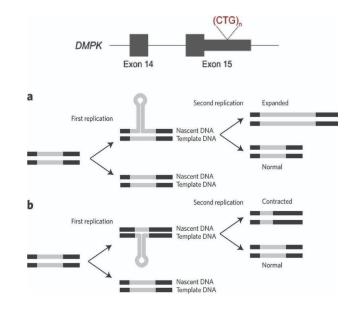


CFTR mutation

802 Cystic fibrosis (CF) is most commonly due to a 3-base pair deletion in the CF transmembrane conductance regulator (CFTR) gene at amino acid position 508 (Δ F508). This mutation impairs post-translational processing of CFTR, resulting in shunting of CFTR toward the proteasome, with complete absence of the protein on the cell surface. Elevated sweat chloride concentrations are found in most patients with CF.



${\scriptstyle \Delta}\text{F508}$ mutations & CFTR post-translational processing

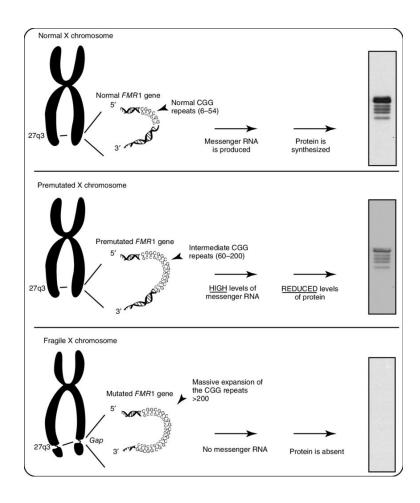

CFTR = cystic fibrosis transmembrane conductance regulator. ©UWorld

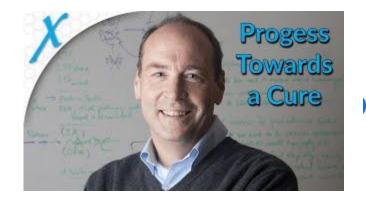
Myotonic Dystrophy

Mechanism: CTG trinucleotide repeat expansion in DMPK gene \rightarrow abnormal expression of myotonin protein kinase \rightarrow myotonia **Page:** 59

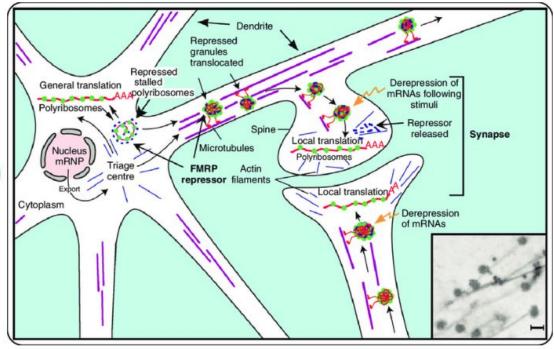
Myotonic dystrophy

Autosomal dominant. Onset 20–30 years. **CTG** trinucleotide repeat expansion in the *DMPK* gene → abnormal expression of myotonin protein kinase → percussion myotonia (eg, difficulty releasing hand from handshake), muscle wasting, cataracts, testicular atrophy, frontal balding, arrhythmia.


Onoce in addressence of early additional


Cataracts, Toupee (early balding in males), Gonadal atrophy. Muscle biopsy shows ring fibers and central nuclei.

Fragile X Syndrome


Mechanism: CGG trinucleotide repeat in FMR1 gene \rightarrow hypermethylation \rightarrow decreased expression **Page:** 60

Model proposing the involvement of FMRP (fragile X mental retardation protein) in trafficking of neuronal granules containing mRNA (messenger ribonucleic acid) that are exported from the cell body (soma) to distal locations such as dendritic spines, synapses (one dendritic spine forms half a synapse) or axons. High levels of FMRP are present in granules to repress mRNAs. Inset: granules sliding on microtubules as seen by electron microscopy. Bar represents 500 nm. Adapted from Bardoni et al. (2006) © Cambridge University Press.

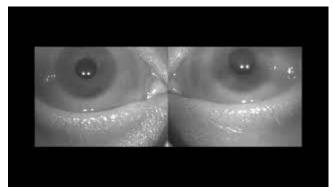

Trinucleotide repeat expansion diseases

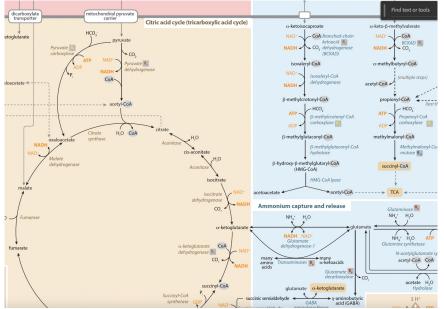
Trinucleotide repeat May show genetic anticipation (disease severity † and age of onset ↓ in successive generations). **expansion diseases**

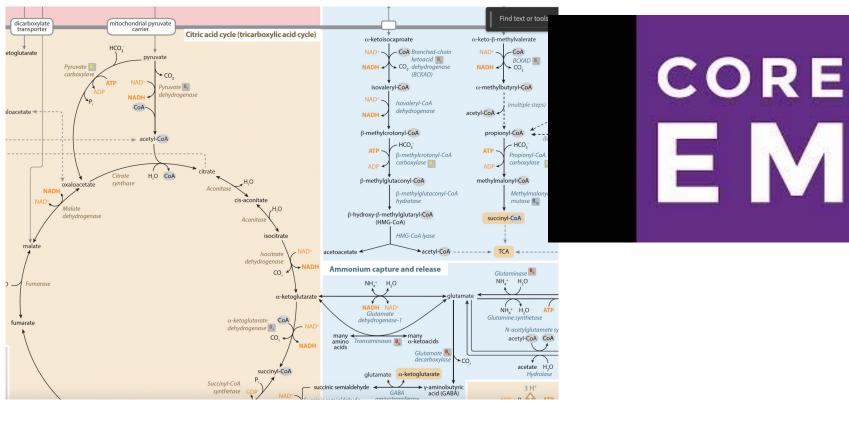
DISEASE	TRINUCLEOTIDE REPEAT	MODE OF INHERITANCE	MNEMONIC
Huntington disease	(CAG) _n	AD	Caudate has I ACh and GABA
Myotonic dystrophy	(CTG) _n	AD	Cataracts, Toupee (early balding in males), Gonadal atrophy in males, reduced fertility in females
Fragile X syndrome	(CGG) _n	XD	Chin (protruding), Giant Gonads
Friedreich ataxia	(GAA) _n	AR	Ataxic GAAit

Bitot Spots in Vitamin A Deficiency

Mechanism: Decreased differentiation of epithelial cells into specialized tissue → squamous metaplasia Page: 64


806


Recurrent sinopulmonary infections and exocrine gland fibrotic atrophy in a young patient are suggestive of cystic fibrosis (CF). CF can lead to pancreatic insufficiency, fat malabsorption, and a deficiency of vitamins A, D, E and K. Vitamin A maintains orderly differentiation of specialized epithelia, including the mucus-secreting columnar epithelia of the ocular conjunctiva, respiratory and urinary tracts, and pancreatic and other exocrine ducts. Avitaminosis A can cause squamous metaplasia of such epithelia to a keratinizing epithelium. Sketchy


Wernicke Encephalopathy in Alcoholic Patient Given Glucose

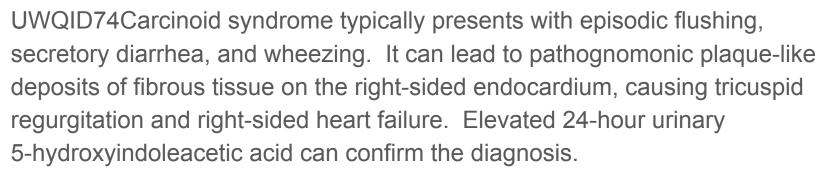
Mechanism: Thiamine deficiency \rightarrow impaired glucose breakdown \rightarrow ATP depletion worsened by glucose infusion

Vitamin B ₁	Also called thiamine.		
FUNCTION	In thiamine pyrophosphate (TPP), a cofactor for several dehydrogenase enzyme reactions (Be APT) Branched-chain ketoacid dehydrogenase α-Ketoglutarate dehydrogenase (TCA cycle) Pyruvate dehydrogenase (links glycolysis to TCA cycle) Transketolase (HMP shunt)		
DEFICIENCY	Impaired glucose breakdown \rightarrow ATP depletion worsened by glucose infusion; highly aerobic tissue: (eg, brain, heart) are affected first. In patients with chronic alcohol overuse or malnutrition, give thiamine before dextrose to \downarrow risk of precipitating Wernicke encephalopathy. Diagnosis made by \uparrow in RBC transketolase activity following vitamin B ₁ administration.		
DISORDER	CHARACTERISTICS		
Wernicke encephalopathy	Acute, reversible, life-threatening neurologic condition. Symptoms: Confusion, Ophthalmoplegia/ Nystagmus, Ataxia (CorONA beer).		
Korsakoff syndrome	Ammestic disorder due to chronic alcohol overuse; presents with confabulation, personality changes, memory loss (permanent).		
Wernicke-Korsakoff syndrome	Damage to medial dorsal nucleus of thalamus, mammillary bodies. Presentation is combination of Wernicke encephalopathy and Korsakoff syndrome.		
Dry beriberi	Polyneuropathy, symmetric muscle wasting. Spell beriberi as BerlBerl to remember		
Wet beriberi	$\begin{array}{llllllllllllllllllllllllllllllllllll$		

Pellagra in Malignant Carcinoid Syndrome

Mechanism: Tryptophan is diverted towards serotonin synthesis by tumor \rightarrow B3 deficiency (B3 is derived from tryptophan) **Page:** 65

3. Pair o' ducks eating rye bread: Niacin is made from tryptophan with help from vitamin B6 (pyridoxal

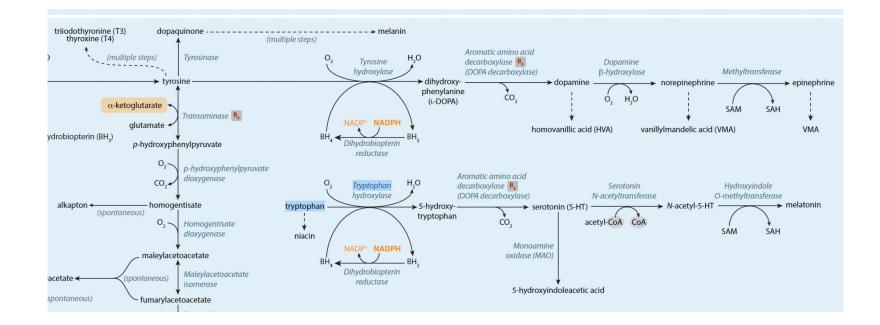

2. Holiday turkey:

phosphate) and vitamin B2 (riboflavin)

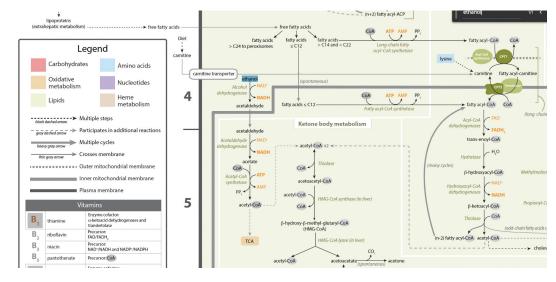
phosphate) and vitamin B2 (riboflavin)

4. Empty NAD+ bottle:

Niacin is made from tryptophan with help from vitamin B6 (pyridoxal



Kwashiorkor


Mechanism: Protein malnutrition \rightarrow decreased oncotic pressure (\rightarrow edema), decreased apolipoprotein synthesis (\rightarrow liver fatty change) **Page:** 69

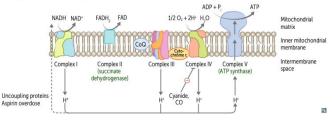
Lactic Acidosis, Fasting Hypoglycemia, Hepatic Steatosis in Alcoholism

Mechanism: Increased NADH/NAD+ ratio due to ethanol metabolism **Page:** 70

UWQID 370 The pathogenesis of alcohol-induced hepatic steatosis involves excess NADH production (via ethanol metabolism), which inhibits free fatty acid oxidation and promotes lipogenesis. Steatosis is microscopically characterized by clear cytoplasmic vacuoles within hepatocytes.

Aspirin-Induced Hyperthermia

Mechanism: Increased permeability of mitochondrial membrane \rightarrow decreased proton [H+] gradient and decreased O₂ consumption \rightarrow uncoupling **Page:** 76

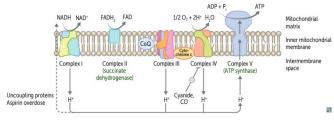

Electron transport chain and oxidative phosphorylation NADH electrons are transferred to complex I. FADH2 electrons are transferred to complex II (at a lower energy level than NADH). Oxygen acts as an electron acceptor to provide energy.

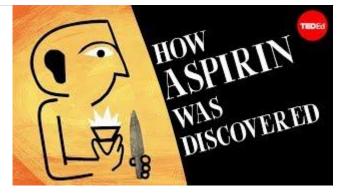
The passage of electrons results in the formation of a proton gradient that, coupled to oxidative phosphorylation, drives ATP production. ATP hydrolysis can be coupled to energetically unfavorable reactions.

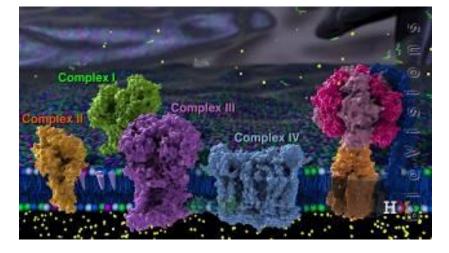
Uncoupling proteins (found in brown fat, which has more mitochondria than white fat) produce heat by † inner mitochondrial membrane permeability → 4 proton gradient. ATP synthesis stops, but electron transport continues.

 NADH → 2.5 ATP; 1 FADH₂ → 1.5 ATP
 NADH electrons from glycolysis enter mitochondria via the malate-aspartate or glycerol-3-phosphate shuttle.
 Aerobic metabolism of one glucose molecule produces 32 net ATP via malate-aspartate shuttle (heart and liver), 30 net ATP via glycerol-3-phosphate shuttle (muscle).
 Anaerobic glycolysis produces only 2 net ATP per glucose molecule.
 Aspirin overdose can also cause uncoupling

of oxidative phosphorylation resulting in hyperthermia.

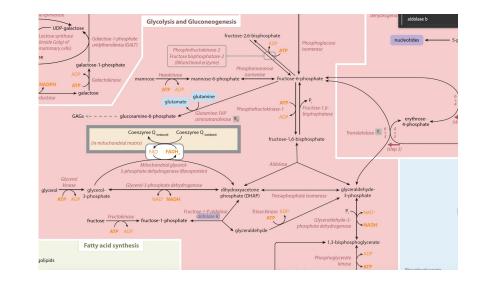

Electron transport chain and oxidative phosphorylation

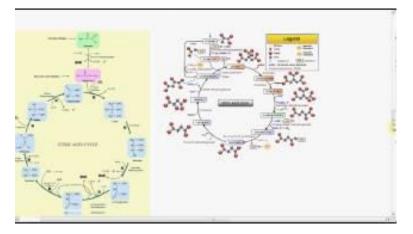

NADH electrons are transferred to complex I. FADH₂ electrons are transferred to complex II (at a lower energy level than NADH). Oxygen acts as an electron acceptor to provide energy.


The passage of electrons results in the formation of a proton gradient that, coupled to oxidative phosphorylation, drives ATP production. ATP hydrolysis can be coupled to energetically unfavorable reactions.

Uncoupling proteins (found in brown fat, which has more mitochondria than white fat) produce heat by † inner mitochondrial membrane permeability \rightarrow 4 proton gradient. ATP synthesis stops, but electron transport continues.

1 NADH → 2.5 ATP; 1 FADH₂ → 1.5 ATP NADH electrons from glycolysis enter mitochondria via the malate-aspartate or glycerol-3-phosphate shuttle. Aerobic metabolism of one glucose molecule produces 32 net ATP via malate-aspartate shuttle (heart and liver), 30 net ATP via glycerol-3-phosphate shuttle (muscle). Anaerobic glycolysis produces only 2 net ATP per glucose molecule. Aspirin overdose can also cause uncoupling of oxidative phosphorylation resulting in hyperthermia.

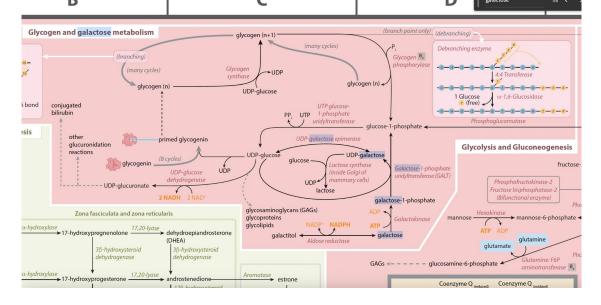



Hereditary Fructose Intolerance

Mechanism: Aldolase B deficiency \rightarrow Fructose-1-phosphate accumulates \rightarrow decreased available phosphate \rightarrow inhibition of glycogenolysis and gluconeogenesis **Page:** 78

UWQID 1069 Aldolase B deficiency causes hereditary fructose intolerance. This disease manifests after introduction of fructose into the diet with vomiting and hypoglycemia about 20-30 minutes after fructose ingestion. These infants can present with failure to thrive, jaundice, and hepatomegaly.

-Acumulation of F1P depletes intracellular phosphate and inhibits activation of hepatic phosphorylase, and gluconeogeneis.



<u>BB</u>

Classic Galactosemia

Mechanism: Galactose-1-phosphate uridyltransferase deficiency \rightarrow accumulation of toxic substances (e.g., galactitol in eyes) **Page:** 78

UWQID 1071 Classic galactosemia results from deficiency of galactose-1-phosphate uridyl transferase. Clinical features include vomiting, lethargy, jaundice, and *Escherichia coli* sepsis. Cessation of breastfeeding and switching to soy milk-based formula is recommended.

-Caract can be the only sign in galactokinase deficiency. -Classic galactosemia enz def : Galactose 1 phosphate uridyltransferase

Cataracts, retinopathy, peripheral neuropathy in DM

Lens, retina, Schwann cells lack sorbitol dehydrogenase -> intracellular sorbitol accumulation -> osmotic damage

Recurrent Neisseria bacteremia

Terminal complement deficiencies (C5–C9) □ failure of MAC formation

Hereditary angioedema

C1 esterase inhibitor deficiency
unregulated activation of kallikrein
bradykinin

Paroxysmal nocturnal hemoglobinuria

PIGA gene mutation □ □ GPI anchors for complement inhibitors (DAF/ CD55, MIRL/CD59) □ complement-mediated intravascular hemolysis

Type 1 hypersensitivity

Immediate (minutes): antigen cross links IgE on mast cells
degranulation
release of histamine and tryptase

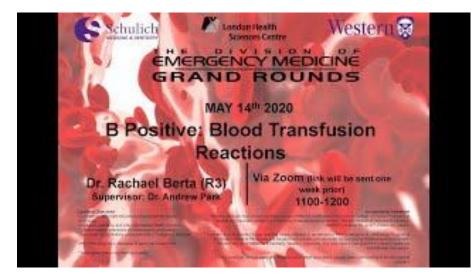
Late (hours): mast cells secrete chemokines (attract eosinophils) and leukotrienes \Box inflammation, tissue damage

Type 2 hypersensitivity

Antibodies bind to cell-surface antigens \Box cellular destruction, inflammation, cellular dysfunction

Type 3 hypersensitivity

Antigen-antibody complexes
activate complement
attracts neutrophils


Type 4 hypersensitivity

T cell-mediated (no antibodies involved). CD8+ directly kills target cells,

CD4+ releases cytokines

Acute hemolytic transfusion reaction

Type II hypersensitivity reaction against donor RBCs (usually ABO antigens)

Adaptive Immune Arm

X-linked (Bruton) agammaglobulinemia

Defect in BTK gene (tyrosine kinase) □ no B-cell maturation □ absent B cells in peripheral blood, □ Ig of all classes

DiGeorge syndrome

22q11 microdeletion □failure to develop 3rd and4th branchial (pharyngeal)pouches

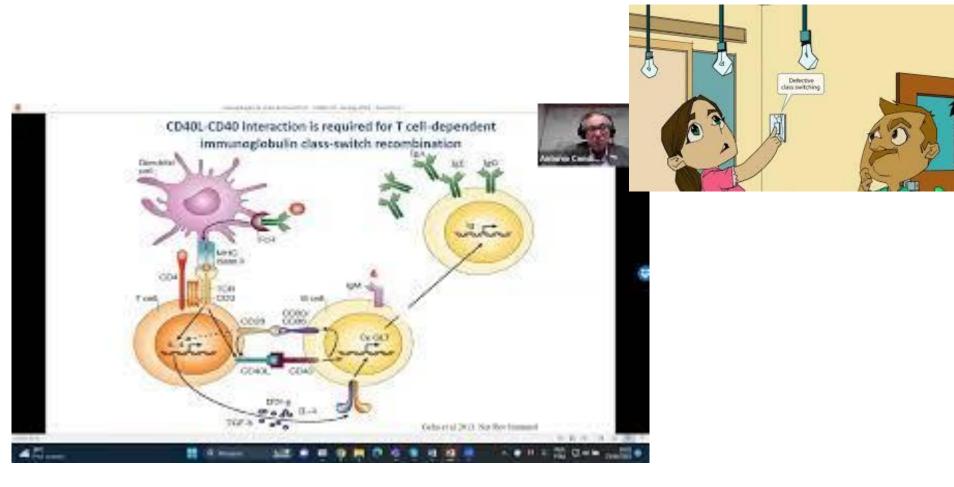
Pharyngeal pouch derivativesEar, tonsils, bottom-to-top: 1 (ear), 2 (tonsils), 3 dorsal (bottom = inferior parathyro (to = thymus), 4 (top = superior parathyroids).		lorsal (bottom = inferior parathyroids), 3 ventral
POUCH	DERIVATIVES	NOTES
1st pharyngeal pouch	Middle ear cavity, eustachian tube, mastoid air cells	lst pouch contributes to endoderm-lined structures of ear
2nd pharyngeal pouch	Epithelial lining of palatine tonsil	
3rd pharyngeal pouch	Dorsal wings → inferior parathyroids Ventral wings → thymus	Third pouch contributes to thymus and both inferior parathyroids. Structures from 3rd pouch end up below those from 4th pouch
4th pharyngeal pouch	Dorsal wings → superior parathyroids Ventral wings → ultimopharyngeal body → parafollicular (C) cells of thyroid	4th pharyngeal pouch forms para"4"llicular cells

Hyper IgM syndrome

Defective CD40L on Th cells
class switching defect

15. Cracked glass over "40 thieves" poster:

Hyper-IgM syndrome is caused by a mutation in the gene encoding CD40 LIGAND on helper T cells \rightarrow B cells unable to bind helper T cells (requires CD40) \rightarrow no B cell isotype switching


16. Boy receding behind "X" door: Hyper-IgM syndrome is X-linked recessive

17. "X-GERM" hand sanitizer:

in Hyper-IgM syndrome, lymphoid tissue lacks GERMINAL centers (normally the site of mature B cell proliferation, differentiation, and isotype switching)

Leukocyte adhesion deficiency (type 1)

LFA-1 integrin (CD18) defect □ impaired phagocyte migration and chemotaxis

6. "Open 5a" sign + PAMPelmousse → Integral hook + 18+ barrels

Neutrophil migration = 1. Inciting injury = Macrophage recognizes invader and secretes IL-1 and TNF \rightarrow endothelial cells express selectin 2. Rolling = SEL<>SLIG (on neutrophils) have low-affinity adhesion \rightarrow rolling \rightarrow PMNs detect C5a and LPS and express integrin (ex. CD18) 3. Adhesion/Crawling = INT<>ICAM (on endothelial cells) have high-affinity adhesions \rightarrow stops PMN 4. Transmigration = PMNs squeeze out of vascular space using PECAM-1 5. Migrate to infection = IL-8 triggers PMNs to migrate to site of infection and signals for increased phagocytosis

Chediak-Higashi syndrome

LYST mutation \Box microtubule dysfunction \Box phagosome-lysosome fusion defect

Chronic granulomatous disease

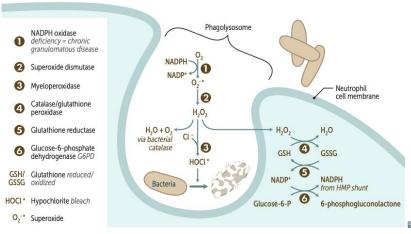
NADPH oxidase defect $\Box \Box ROS$, \Box respiratory burst in neutrophils

Candida infection in immunodeficiency

 \Box granulocytes (systemic), \Box T cells (local)

Graft-versus-host-disease

Type IV hypersensitivity reaction; HLA mismatch donor T cells attack host cells



Recurrent S aureus, Serratia, B cepacia infections in CGD

Respiratory burst

Also called oxidative burst. Involves the activation of the phagocyte NADPH oxidase complex (eg, in neutrophils, monocytes), which utilizes O_2 as a substrate. Plays an important role in the immune response \rightarrow rapid release of reactive oxygen species (ROS). NADPH plays a role in both the creation and neutralization of ROS. Myeloperoxidase contains a blue-green, heme-containing pigment that gives sputum its color. NO Safe Microbe (NADPH Oxidase \rightarrow Superoxide dismutase \rightarrow Myeloperoxidase).

Phagocytes of patients with CGD can utilize H_2O_2 generated by invading organisms and convert it to ROS. Patients are at \uparrow risk for infection by catalase \oplus species (eg, S *aureus, Aspergillus*) capable of neutralizing their own H_2O_2 , leaving phagocytes without ROS for fighting infections. Pyocyanin of *P aeruginosa* generates ROS to kill competing pathogens. Oxidative burst leads to release of lysosomal enzymes.

Hemolytic uremic syndrome

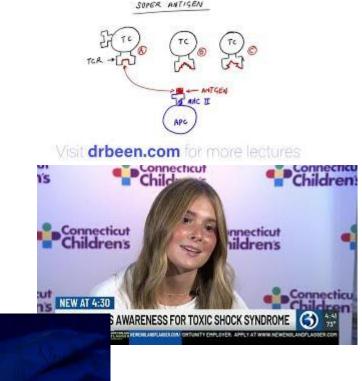
Shiga/Shiga-like toxins inactivate 60S ribosome 🗆 🗆 cytokine release

Characteristic manifestations include pallor, petechia, edema, decreased urine output, and neurological symptoms (e.g., somnolence, seizures).
 It is usually preceded by a gastrointestinal prodrome (e.g., diarrhea): order a stool culture/assay but do NOT treat with antibiotics or anti-motility agents.
 Lab tests reveal a microangiopathic hemolytic anemia (e.g., schistocytes, low haptoglobin), thrombocytopenia, uremia, and hematuria/proteinuria.

Tetanus

Tetanospasmin prevents release of inhibitory neurotransmitters (GABA and glycine) from Renshaw cells

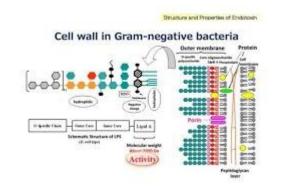
Botulism

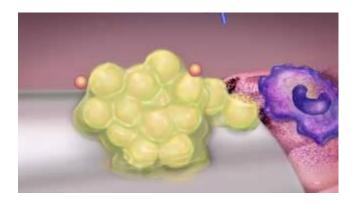

Toxin (protease) cleaves SNARE neurotransmitter (ACh) release at NMJ

Gas gangrene

Alpha toxin (phospholipase/lecithinase) degrades phospholipids myonecrosis

Toxic shock syndrome, scarlet fever

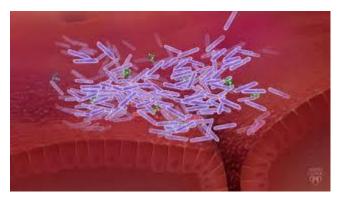

TSST-1 and erythrogenic exotoxin A (scarlet) cross-link β region of TCR to MHC class II on APCs outside of antigen binding site $\Box \Box \Box$ IL-1, IL-2, IFN- γ , TNF- α


Shock and DIC by gram negative bacteria

Lipid A of LPS □ macrophage activation (TLR4/CD14), complement activation, tissue factor activation

Prosthetic device infection by S epidermidis

Biofilm production

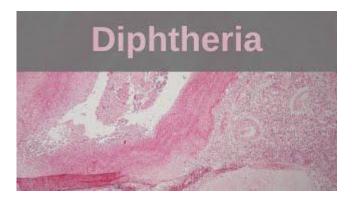


Endocarditis secondary to S sanguinis

Dextrans (biofilm) production that bind to fibrin-platelet aggregates on damaged heart valves

Pseudomembranous colitis 2 to C difficile

Toxins A and B damage enterocytes
arrhea

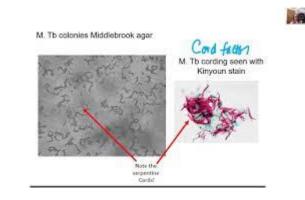

Guidelines on Management of Clostridioides difficile Infection in Adults

Cynthia A. Mayer, DO, FACOI Infectious Disease Associates of Tampa Bay

August 31, 2022

Diphteria

Exotoxin inhibits protein synthesis via ADP-ribosylation of EF-2



Virulence of M tuberculosis

Cord factor activates macrophages (promoting granuloma formation), induces release of TNF-α; sulfatides (surface glycolipids) inhibit phagolysosomal fusion

Tuberculoid leprosy

Th1 immune response □ mild symptoms

6. Jail cell 1:

Tuberculoid leprosy elicits a **Th1 cell-mediated immune response**, resulting in macrophage activation and containment of the bacteria

7. Prisoner in jail cell 1:

A strong Th1 cell-mediated immune response induces **macrophage phagocytosis** of *Mycobacterium leprae* bacteria, resulting in the tuberculoid variant of leprosy

8. Bald prisoner:

Tuberculoid leprosy typically presents with a small number of skin lesions that are flat or mildly elevated, often **lacking hair**

No effective vaccine for N gonorrhea

Antigenic variation of pilus proteins

Cystitis and pyelonephritis by E coli

Fimbriae (P pili)

Pneumonia, neonatal meningitis by E coli

K capsule

Chlamydia resistance to B-lactam antibiotics

Lack of classic peptidoglycan due to reduced muramic acid

Influenza pandemics

RNA segment reassortment
antigenic shift

Influenza epidemics

Mutations in hemagglutinin, neuraminidase

antigenic drift

CNS invasion by rabies

Binds to ACh receptors \Box retrograde transport (dynein)

HIV infection

Virus binds CD4 along with CCR5 on macrophages (early), or CXCR4 on T cells (late)

Granuloma

Macrophages present antigens to CD4+ and secrete IL-12 \square CD4+ differentiation into Th1 which secrete IFN- $\gamma \square$ macrophage activation

Limitless replicative potential of cancer cells

Reactivation of telomerase
maintains and lengthens telomeres
prevention of chromosome shortening and aging

Tissue invasion by cancer

□ E-cadherin function □ □ intercellular junctions □ basement membrane and ECM degradation by metalloproteinases □ cell attachment to ECM proteins (laminin, fibronectin) □ locomotion □ vascular dissemination

Persistent truncus arteriosus

Failure of aorticopulmonary septum formation

D-transposition of great arteries

Failure of the aorticopulmonary septum to spiral

Tet spells in tetralogy of fallot

Crying, fever, exercise
RV outflow obstruction
right-to-left flow across
VSD; squatting
SVR
right-to-left shunt
right-to-left shunt
right-to-left shunt
RV outflow across

Eisenmenger syndrome

Uncorrected left-to-right shunt □ □ pulmonary blood flow □ remodeling of vasculature □ pulmonary hypertension □ RVH □ right to left shunting

Atherosclerosis

Endothelial cell dysfunction
and macrophage and LDL accumulation
by foam cell formation
by fatty streaks
by smooth muscle cell migration, extracellular matrix
by deposition
by fibrous plaque
by complex atheromas

Thoracic aortic aneurysm

Cystic medial degeneration Rupture of coronary artery atherosclerotic plaque acute thrombosis

Myocardial infarction

Rupture of coronary artery atherosclerotic plaque
acute thrombosis

Non-ST segment elevation MI

Subendocardial infarcts (subendocardium vulnerable to ischemia)

ST-segmenet elevation MI

Transmural infarcts

Death within 0-24

Ventricular arrhythmia

Death or shock within 3-14 days post MI

Macrophage-mediated ruptures: papillary muscle (2-7 days), interventricular septum (3-5 days), free wall (5-14 days)

Wolff-Parkinson-White

Abnormal accessory pathway from atria to ventricle bypasses the AV node ventricles begin to partially depolarize earlier delta wave. Reentrant circuit supraventricular tachycardia

Hypertrophic obstructive cardiomyopathy

Sarcomeric proteins gene mutations (myosin binding protein C and β -myosin heavy chain) \Box concentric hypertrophy (sarcomeres added in parallel). Death due to arrhythmia

Syncope, dyspnea in HOCM

Asymmetric septal hypertrophy, systolic anterior motion of mitral valve \Box outflow obstruction

Hypovolemic shock

preload \square \square CO

Cardiogenic shock

CO due to left heart dysfunction $\hfill\square$

Distributive shock

SVR (afterload)

Rheumatic fever

Antibodies against M protein cross react with self antigens; type II hypersensitivity reaction

Most common form of congenital adrenal hyperplasia

21-hydroxylase deficiency □ □ mineralocorticoids, □ cortisol, □ sex hormones, □ 17-hydroxyprogesterone

Heat intolerance, weight loss in hyperthyroidism

Na+-K+ ATPase □ □ basal metabolic rate □ □ calorigenesis □ GAGs in interstitial space □ □ osmotic pressure □ □ water retention

Graves ophtalmopathy

Lymphocytic infiltration, fibroblast secretion of GAGs $\Box \ \Box$ osmotic muscle swelling, inflammation

Primary hyperparathyroidism

Parathyroid adenoma or hyperplasia \Box \Box PTH \Box

Secondary hyperparathyroidism

Ca2+

and/or
PO4 3–
parathyroid hyperplasia
PTH,
ALP

Euvolemic hyponatremia in SIADH

ADH □ water retention □ □ aldosterone, □ ANB, □ BNP □ □ urinary Na+ secretion

Small/large vessel disease in DM

Nonenzymatic glycation of proteins; small vessels
hyaline arteriosclerosis; large vessels
atherosclerosis

Diabetic ketoacidosis

Insulin or □ insulin requirement □ □ fat breakdown □ □ free fatty acids □ □ ketogenesis

Hyperosmolar hyperglycemic state

Hyperglycemia

Gradient

Serum osmolality, excessive osmotic diuresis

Zollinger-Ellison syndrome

Gastrin-secreting tumor (gastrinoma) of pancreas or duodenum in duodenum/jejunum and malabsorption

Duodenal atresia

Failure to recanalize

Jejunal/ileal atresia

Disruption of SMA \square ischemic necrosis of fetal intestine

Superior mesenteric artery syndrome

Diminished mesenteric fat □ compression of transverse (third) portion of duodenum by SMA and aorta

Achalasia

Loss of postganglionic inhibitory neurons (contain NO and VIP) in myenteric plexus \Box failure of LES relaxation

Barret esophagus

Chronic GERD
replacement (metaplasia) of nonkeratinized stratified squamous epithelium with intestinal epithelium (nonciliated columnar with goblet cells)

Acute gastritis secondary to nsaids

PGE2

gastric protection

Celiac disease

Autoimmune-mediated intolerance of gliadin (found in wheat)
and malabsorption (distal duodenum, proximal jejunum), steatorrhea Transmural inflammation

Fistula formation inCrohn

Persistence of the vitelline (omphalomesenteric) duct

Meckel diverticulum

Loss of function mutation in RET
failure of neural crest migration
lack of ganglion cells/enteric nervous plexuses in distal colon

Hirschprung diseae

Loss of APC (\Box intercellular adhesion, \Box proliferation) \Box KRAS mutation (unregulated intracellular signaling) \Box loss of tumor suppressor genes (TP53, DCC)

Fibrosis in cirrhosis

Stellate cells

Aspirin \Box β -oxidation by reversible inhibition of mitochondrial enzymes

Cirrhosis
portosystemic shunts
NH3
metabolism

Misfolded proteins aggregate in hepatocellular ER □ cirrhosis. In lungs, □ α1 -antitrypsin □ uninhibited elastase in alveoli □ panacinar emphysema Mutated hepatocyte copper-transporting ATPase (ATP7B on chromosome 13) \Box copper incorporation into apoceruloplasmin, excretion into bile \Box serum ceruloplasmin, \Box copper in tissues and urine

HFE mutation on chromosome 6 □ □ hepcidin production, □ intestinal absorption □ iron overload (□ ferritin, □ iron, □ TIBC □ □ transferrin saturation)

Fistula between gallbladder and GI tract □ stone enters GI lumen □ obstructing ileocecal valve (narrowest point)

Biliary tree obstruction

stasis/bacterial overgrowth

Autodigestion of pancreas by pancreatic enzymes

Rh hemolytic disease of the newborn Rh ⊖ mother form antibodies (maternal anti-D IgG) against RBCs of Rh ⊕ fetus

Lead inhibits ferrochelatase and ALA dehydratase $\Box \Box$ heme synthesis, $\Box RBC$ protoporphyrin.

Inflammation \Box \Box hepcidin \Box \Box release of iron from macrophages, \Box iron absorption from gut

Defect in G6PD

NADPH

reduced glutathione
RBC susceptibility to oxidant stress

Point mutation \Box substitution of glutamic acid with valine in β chain \Box low O2, high altitude, acidosis precipitates sickling (deoxygenated HbS

polymerizes) \Box anemia, vaso-occlusive disease \Box

Gplb \Box \Box platelet-to-vWF adhesion

ADAMTS13 (a vWF metalloprotease) $\Box \Box$ degradation of vWF multimers $\Box \Box$ platelet adhesion and aggregation (microthrombi formation)