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Abstract

We introduce methods to quantify how Large
Language Models (LLMs) encode and store
contextual information, revealing that tokens
often seen as minor (e.g., determiners, punctua-
tion) carry surprisingly high context. Notably,
removing these tokens — especially stopwords,
articles, and commas — consistently degrades
performance on MMLU and BABILong-4k,
even if removing only irrelevant tokens. Our
analysis also shows a strong correlation be-
tween contextualization and linearity, where
linearity measures how closely the transforma-
tion from one layer’s embeddings to the next
can be approximated by a single linear map-
ping. These findings underscore the hidden
importance of “filler” tokens in maintaining
context. For further exploration, we present
LLM-Microscope, an open-source toolkit that
assesses token-level nonlinearity, evaluates con-
textual memory, visualizes intermediate layer
contributions (via an adapted Logit Lens), and
measures the intrinsic dimensionality of repre-
sentations. This toolkit illuminates how seem-
ingly trivial tokens can be critical for long-
range understanding1.

1 Introduction

Large Language Models (LLMs) have significantly
advanced the field of natural language process-
ing, achieving remarkable results across a wide
range of tasks. Despite their success, the internal
mechanisms by which these models operate remain
largely opaque, making it challenging to interpret
how they process and utilize contextual informa-
tion. This opacity limits our ability to enhance
model performance and to understand the reason-
ing behind their predictions. While recent studies
have begun to uncover specific patterns and mech-
anisms within LLMs (Wang et al., 2022), many
fundamental aspects — such as their handling of

1https://github.com/AIRI-Institute/
LLM-Microscope/tree/main

Figure 1: An example of token-wise non-linearity visu-
alization for Llama3-8B.

step-by-step reasoning and long-range dependen-
cies — are still not well understood. This gap in
understanding hinders the development of more
interpretable and efficient language models.

To bridge this gap, we introduce LLM-
Microscope, a comprehensive framework designed
to analyze and visualize the internal behaviors of
LLMs. Our toolkit offers a suite of methods that
enable researchers to inspect how models encode
and aggregate contextual information:

• Contextualization assessment: We present
a method for measuring contextualization, al-
lowing the identification of tokens that carry
the most contextual information.

• Token-level nonlinearity: We measure the
nonlinearity at the token level, quantifying
how closely transformations between layers
can be approximated by a single linear map-
ping.

• Intermediate layer analysis: We examine
how next-token prediction evolves across dif-
ferent layers, adapting the Logit Lens tech-
nique for multimodal LLMs.

Applying these tools to various scenarios —
ranging from multilingual prompts to knowledge-
intensive tasks — we uncover intriguing patterns
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in how LLMs process and transform information.
Notably, our analysis reveals that certain “filler”
tokens, such as punctuation marks, stopwords, and
articles, are highly contextualized and act as key
aggregators in language understanding. We also
find a strong correlation between linearity and con-
textualization scores in token representations.

Furthermore, we demonstrate the practical impli-
cations of our findings by showing that removing
these tokens degrades performance on tasks requir-
ing specialized knowledge and longer-context rea-
soning, such as MMLU and BABILong-4k. This
performance drop persists even when we carefully
remove only tokens deemed irrelevant by a strong
language model (GPT-4o). These results highlight
the hidden importance of seemingly “trivial” to-
kens in maintaining coherent context.

LLM-Microscope is designed to be accessible
for both researchers and practitioners, providing an
intuitive interface for in-depth model analysis. We
offer:

• An open-source Python package2

• A demo website on Hugging Face Spaces3

2 Related works

Interpretability There are several significant
paradigms for model interpretation, each with its
own distinct properties. Probing methods are de-
signed to train classifiers based on hidden rep-
resentations that are challenged in encoding spe-
cific knowledge (Ettinger et al., 2016; Belinkov
et al., 2017; Conneau et al., 2018; Belinkov, 2022).
While these approaches show whether specific
language features are incorporated into LLMs,
they do not analyze internal representations during
knowledge activation, leaving the model’s behavior
largely a black box.

In contrast, mechanistic interpretability intro-
duces approaches to explore the inner behavior
of models. Calderon and Reichart (2024) mention
that mechanistic interpretability aims to explore
the internal representations of deep learning mod-
els through the activations of specific neurons and
layer connections. A significant branch of research
dedicated to examining model responses involves

2https://github.com/AIRI-Institute/
LLM-Microscope/tree/main

3https://huggingface.co/spaces/AIRI-Institute/
LLM-Microscope

probing changes in behavior resulting from pertur-
bations, noise in embeddings, or masking of net-
work weights (Dai et al., 2022; Meng et al., 2022;
Olsson et al., 2022; Wang et al., 2022; Conmy et al.,
2023).

Discovering interpretable features through train-
ing sparse autoencoders (SAEs) has become a
promising direction in the LLM interpretation
(Cunningham et al., 2023; Yu et al., 2023). Typi-
cally, SAEs focus on activations of specific LLM
components, such as attention heads or multilayer
perceptrons (MLPs). By decomposing model com-
putations into understandable circuits, we can see
how information heads, relation heads, and MLPs
encode knowledge(Yao et al., 2024).

While most research has concentrated on the
analysis of Small Language Models, such as GPT-
2 (Radford et al., 2019) and TinyLLAMA (Zhang
et al., 2024), recent work has advanced this area
by proposing modifications to improve the scalabil-
ity and sparsity of autoencoders for larger LLMs,
such as GPT-4 or Claude 3 Sonet (Gao et al., 2024;
Templeton et al., 2024).

Linearity of LLM hidden states The study of
the internal structure of transformer-based models
has been of great interest among researchers (Nos-
talgebraist, 2020; Xu et al., 2021; Belrose et al.,
2023; Din et al., 2023; Razzhigaev et al., 2024b).
Several studies, such as “Logit Lens”4, have ex-
plored projecting representations from the interme-
diate layers into the vocabulary space by observ-
ing their evolution across different layers (Nostal-
gebraist, 2020; Belrose et al., 2023). Relying on
this research, the authors also investigate the com-
plex structure of hidden representations through
linearization (Elhage et al., 2021; Razzhigaev et al.,
2024a).

Contextualization of LLM hidden states One
of the areas of research into the internal representa-
tions of Transformers is the embeddings contextual-
ization analysis. Recent studies have demonstrated
that sentence representations provided by Trans-
former decoders can contain information about the
entire previous context (Li et al., 2023; Wan et al.,
2024). Wan et al. (2024) proposed two initial meth-
ods for reconstructing original texts from model’s
hidden states, finding these methods effective for

4https://www.lesswrong.
com/posts/AcKRB8wDpdaN6v6ru/
interpreting-gpt-the-logit-lens



the embeddings from shallow layers but less effec-
tive for deeper layers, known as “Embed Parrot.”

Our work proposes a unified framework for LLM
interpretability by exploring properties such as lin-
earity, anisotropy, and intrinsic dimension of hid-
den representations. We introduce new approaches
to assess contextual memory in token representa-
tions and analyze intermediate layer contributions
to token prediction.

3 LLM-Microscope

LLM-Microscope is a framework to analyze Large
Language Models’ internal processes. To facili-
tate interactive exploration of our analysis meth-
ods, we have developed a demo system using Gra-
dio, hosted on Hugging Face. This interface al-
lows researchers and practitioners to apply LLM-
Microscope’s tools to various models and input
texts in real-time. The demo system features:

• Model selection: Users can choose from a
variety of pre-loaded language models.

• Text input: A text area for entering custom
prompts or sentences for analysis.

• Visualization dashboard: Upon submission,
the system generates and displays:

– A heatmap of token-level nonlinearity
across all layers

– A line graph showing average linearity
scores per layer

– A heatmap of layer-wise contribution to
final token prediction

– A heatmap showing the contextualization
level of each token

– Visualization of the logit lens showing
the preliminary predictions of the inter-
mediate layers

The interface of our system can be found in the
Figure 2.

For example, in Figure 1, one can observe pat-
terns of nonlinearity across layers for a logical rea-
soning task. Different colors indicate different de-
grees of nonlinearity, potentially corresponding to
key points in the model’s reasoning process.

For users requiring more in-depth analysis or
wishing to examine models not integrated into the
demo, we have published our entire codebase.

3.1 Measuring Token-level Nonlinearity

Following the methodology for quantifying the de-
gree of nonlinearity in token representations across
model layers (Razzhigaev et al., 2024a) , we ap-
ply a generalized Procrustes analysis for arbitrary
linear transformations. For each pair of adjacent
layers l and l + 1, we compute:

A∗ = min
A∈Rd×d

|Ĥ lA− Ĥ l+1|2F (1)

where A∗ is the optimal linear transformation found
during the linearity score computation, Ĥ l and
Ĥ l+1 are normalized and centered matrices of to-
ken embeddings from layers l and l+1 respectively,
and | · |F denotes the Frobenius norm. The linear
approximation error (nonlinearity score) for each
token i at layer l is then calculated as:

El
i = |A∗hli − hl+1

i |2 (2)

where hli is the embedding of token i at layer l.

3.2 Assessing Contextual Memory in
Token-Level Representations

To quantify the amount of contextual information
stored in token-level representations, we propose
a simple technique that uses the model’s ability
to reconstruct prefix information from individual
token representations. This approach provides in-
sight into how different tokens encode and preserve
context across all layers of the model.

Our method (Figure 3) consists of the following
steps:

1. We first process an input sequence through the
examined language model, collecting hidden
states for each token across all layers.

2. We use a trainable linear pooling layer to com-
bine these layer-wise embeddings into a single
representation. This pooling layer is followed
by a two-layer MLP.

3. The resulting embedding is then used as in-
put to a trainable copy of the original model,
which attempts to reconstruct the prefix lead-
ing to the chosen token.

4. The described system is trained with a Cross-
Entropy loss to reconstruct random text frag-
ments. For training we use the following
datasets: TinyStories (Eldan and Li, 2023),



Figure 2: Interface LLM-Microscope demo system.

Tiny-Textbooks5, Tiny-Lessons6, Tiny-Orca-
Textbooks7, Tiny-Codes8, textbooks-are-all-
you-need-lite9.

5. We evaluate the effectiveness of this recon-
struction by computing the perplexity of the
generated prefix compared to the original in-
put.

The full pipeline is depicted in the Figure 3. The
CrossEntropy reconstruction loss score serves as
our measure of contextualization. A lower loss indi-
cates that the token’s representation contains more
information about its context, as the model is able
to reconstruct the previous text more accurately.

Formally, let hli denote the hidden state of the
i-th token at layer l. Our pooling function f and
subsequent MLP g can be expressed as:

ei = g(f([h1i , h
2
i , ..., h

L
i ])) (3)

where ei is the final embedding used for prefix
reconstruction.

The contextualization score Ci for token i is then
defined as:

5https://huggingface.co/datasets/nampdn-ai/
tiny-textbooks

6https://huggingface.co/datasets/nampdn-ai/
tiny-lessons

7https://huggingface.co/datasets/nampdn-ai/
tiny-orca-textbooks

8https://huggingface.co/datasets/nampdn-ai/
tiny-codes

9https://huggingface.co/datasets/SciPhi/
textbooks-are-all-you-need-lite

Ci = − logP (w1, ..., wi−1|ei) (4)

where P (w1, ..., wi−1|ei) is the probability of
the true prefix given the embedding ei.

This methodology allows us to:

• Identify which tokens retain the most contex-
tual information.

• Analyze how contextualization varies for dif-
ferent types of tokens (e.g., content words vs.
function words).

• Explore the relationship between contextual-
ization and other properties such as token-
level nonlinearity.

• Compare contextualization patterns across dif-
ferent model architectures and sizes.

3.3 Examining Intermediate Layers
Contribution to Token Prediction

To track the evolution of token predictions across
model’s layers, we apply the language model head
to intermediate layer representations. Our approach
consists of the following steps:

1. Collect hidden states hli for each token i at
each layer l.

2. Apply the language model head to obtain to-
ken probabilities:

pli = softmax(LMhead(hli)) (5)



Figure 3: Prefix decoding pipeline as a contextualization assessment.

3. Compute prediction error for the next token at
each layer:

El
i = − log pli[wi+1] (6)

where wi+1 is the true next token.

This analysis shows how prediction accuracy
changes across layers, indicating when the model
forms its predictions and how confidence evolves.
It highlights cases of early correct predictions com-
pared to those requiring full network depth.

3.4 Visualizing Intermediate Layer
Predictions

In addition to our custom visualization tools, we
have implemented the “Logit Lens” technique10.
This method provides an intuitive way to visualize
the evolution of token predictions across model’s
layers.

The Logit Lens applies the model’s output layer
(LM head) to the activations of intermediate lay-
ers. This process generates probability distributions
over the vocabulary at each layer, offering insight
into the model’s “beliefs” as it processes the input.

The “Logit Lens” suggests that these models
primarily “think in predictive space,” quickly trans-
forming inputs into predicted outputs and then refin-
ing those predictions over the layers. An example
of “Logit Lens” output in our framework can be
found in the Figure 6. The developed framework
also support multimodal LLM.

10https://www.lesswrong.
com/posts/AcKRB8wDpdaN6v6ru/
interpreting-gpt-the-logit-lens

3.5 Intrinsic Dimension of Representations
To evaluate the complexity and the information
content of token representations, we estimate their
intrinsic dimensionality using the method proposed
by Facco et al. (2018). This approach examines
how the volume of an n-dimensional sphere (rep-
resenting the number of embeddings) scales with
dimension d. For each token embedding, we com-
pute:

µi =
r2
r1

(7)

where r1 and r2 are distances to the two nearest
neighbors. The intrinsic dimension d is then esti-
mated using:

d ≈ − log(1− F (µ))

log(µ)
(8)

where F (µ) is the cumulative distribution function
of µi.

4 Examples and Observations

4.1 The Most Memory Retentive Tokens
To analyze how different types of tokens retain and
encode contextual information, we processed ran-
dom fragments of Wikipedia articles through our
pipeline from Section 3.2, collecting contextual-
ization scores (C) for all tokens while preserving
information about the original words before tok-
enization.

Surprisingly, we found out that the tokens that
are easiest to use for context (prefix) reconstruction
correspond to what are typically considered the
least semantically significant elements of language:
determiners, prepositions, and punctuation marks.
In contrast, nouns and adjectives proved to be the
most challenging tokens to reconstruct the prefix.
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Figure 4: Contextualization score distribution for different parts of speech.

This counterintuitive finding suggests that lan-
guage models may use these seemingly less im-
portant words as aggregators of memory or overall
meaning.

Across all models examined, including different
sizes of OPT, Phi, and Llama model families, deter-
miners (DT) and punctuation consistently emerge
as the most contextualized tokens with the lowest
average reconstruction loss values C.

On the other hand, nouns (NN, NNS) appear
universally among the least contextualized tokens,
with significantly higher reconstruction loss val-
ues C. Detailed histograms can be found in the
Figure 4.

4.2 Examining the Impact of Removing
“Filler” Tokens

While our earlier analysis focused on identifying
which tokens carry the most contextual informa-
tion, we also investigated how removing seemingly
“minor” or “irrelevant” tokens affects LLM perfor-
mance on tasks requiring domain knowledge or
extended context. Instead of discarding highly con-
textualized tokens, we selectively removed punctu-
ation, stopwords, and articles in two distinct modes:
(1) a naive, rule-based removal that targets all such
tokens, and (2) a more nuanced approach using
GPT-4o.

Benchmarks. We evaluated these removal strate-
gies on two benchmarks:

• MMLU (Hendrycks et al., 2021): A widely
used multiple-choice benchmark spanning var-
ious academic subjects, testing both factual
recall and general reasoning. MMLU was
evaluated in a zero-shot setting.

• BABILong-4k (Kuratov et al., 2024): A long-
context reasoning benchmark combining facts
(from the bAbI dataset (Weston et al., 2015))
and large amounts of distractor text (from
PG19 (Rae et al., 2019)), where crucial de-
tails may be scattered across up to 4k tokens.

Removal Conditions. We examined several re-
moval strategies:

1. No Stopwords: Delete common English func-
tion words (e.g., the, an, and).

2. No Punctuation: Remove punctuation marks
(commas, periods, quotes, etc.).

3. No Articles: Remove only English articles (a,
an, the).

4. No Stopwords & Punct: Remove both stop-
words and punctuation.



Table 1: Performance on MMLU and BABILong-4k after partial removal of various token classes, with GPT-4-based
removal comparison.

Model Original No Stop Words No Punctuation No Stops & Punct No Articles GPT-4 Removal

MMLU

Llama-3.2-3B 0.398 0.347 0.391 0.342 0.386 0.377
Mistral-7B-v0.1 0.423 0.359 0.411 0.350 0.413 0.392
meta-llama-3-8B 0.430 0.365 0.419 0.351 0.415 0.403
Qwen2.5-1.5B 0.362 0.332 0.348 0.322 0.356 0.346

BABILong 4k

Llama-3.2-3B 0.420 0.334 0.377 0.322 0.386 0.387
Mistral-7B-v0.1 0.373 0.324 0.322 0.314 0.368 0.312
meta-llama-3-8B 0.388 0.331 0.359 0.307 0.389 0.360
Qwen2.5-1.5B 0.366 0.326 0.333 0.322 0.348 0.308

5. GPT-4o Removal: Prompt GPT-4 to remove
only those stopwords or punctuation marks
that it deems safe to delete without chang-
ing the meaning. Below is the exact system
prompt used for GPT-4o when removing to-
kens:

system_message = """
You are an expert in natural language processing.

Your task is to remove stop words and punctuation from the user's text
only when their removal does not alter the meaning of the text.
Stop words are common words that add little meaning to the text
(e.g., 'and', 'the', 'in', 'on', 'at', etc.).

If removing all stop words and punctuation would change the meaning,
remove only those that contribute the least to the meaning
while preserving readability.
Do not rephrase or change the order of words.
Return only the modified text, without extra commentary.

"""

Table 1 summarizes the accuracy of several
LLMs on MMLU and BABILong-4k under these
token-removal schemes. Notably, the deletion of
punctuation and basic function words yields a con-
sistent drop in performance. On BABILong-4k,
where capturing subtle facts within a large con-
text is crucial, the accuracy losses are especially
pronounced.

These results are in line with our earlier find-
ings: LLMs often store key contextual signals
in “filler” tokens (stopwords, punctuation) that
might be seemed unimportant for semantic mean-
ing. Even a carefully controlled removal policy via
GPT-4o shows that seemingly trivial tokens play
an outsized role in preserving the chain of context
— particularly when handling long sequences or
academic questions.

4.3 Correlation Between Nonlinearity and
Context Memory

We observed a significant correlation between
layer-averaged linearity and contextualization
scores for individual tokens. Tokens with high
contextualization tend to correspond to the most

Figure 5: The distribution of Cotextuality C and non-
linearity scores for random fragments of text on English
Wikipedia articles.

Table 2: Correlation coefficient.

Model Corr

Opt-6.7b 0.482
Opt-1.3b 0.406
Opt-13b 0.359
Opt-2.7b 0.401
Gemma-2-9b 0.561
Gemma-2-2b 0.515
Llama-3.2-3B 0.367
Llama-3 8B 0.050
Llama-3 8B Instruct 0.328
Llama-2 7Bfp16 0.239
Phi-3-mini 128k instruct 0.410
Qwen2.5 1.5B 0.199
Mistral-7B-v0.1 0.152
*p-value less than 0.05 in all measurements

linear transformations across layers. Figure 5 il-
lustrates this relationship for the OPT-6.7B model,
showing the distribution of linearity versus contex-
tualization scores. This correlation is consistent
across different model architectures and sizes, as
evidenced by the Pearson correlation coefficients
presented in Table 2.

These findings suggest a potential link between
the model’s ability to retain contextual information
and the linearity of its internal representations.



4.4 Multilingual Reasoning

Figure 6: Logit lens visualisation for Llama3-8B. Input
text in German: “eins zwei drei vier fünf sechs sieben,”
which translates into English: “one two three four five
six seven.”

Using the “Logit Lens” technique, we studied
how language models process non-English input.
Our analysis shows that intermediate layer repre-
sentations predominantly correspond to English
tokens, even when the input is in another language.
Figure 6 demonstrates this behavior. The heatmap
displays token predictions across layers, with each
row representing a layer and each column a token
position. The color intensity indicates the model’s
confidence in its top-1 token prediction.

Correct non-English tokens corresponding to the
translated version of the input gradually emerge
in later layers. These observation suggests that
the models may perform implicit translation into
English before generating the final output.

5 Conclusion

In this work, we introduced methods to quantify
how Large Language Models (LLMs) encode and
store contextual information, revealing the surpris-
ing importance of seemingly “minor” tokens —
such as determiners, punctuation, and stopwords —
in maintaining coherence and context. Our analy-
sis showed a strong correlation between a token’s
contextualization level and how linearly one layer’s
representation can be mapped onto the next, sug-
gesting a close relationship between model archi-
tecture and the retention of contextual cues.

Through empirical evaluations on MMLU and
BABILong 4k, we demonstrated that removing
high-context tokens — even if they appear triv-
ial — consistently degrades performance. Notably,
this effect remains even when a strong language
model (GPT-4o) is used to selectively remove only
those tokens deemed least relevant. These find-
ings highlight that “filler” tokens can carry critical

context, underscoring the need for more refined
interpretability approaches.

To facilitate further research in this area, we pre-
sented LLM-Microscope, an open-source toolkit
that offers: Token-level nonlinearity analysis,
Methods for assessing contextual memory, Visual-
izations of intermediate layer contributions through
an adapted Logit Lens, Intrinsic dimensionality
measurements of internal representations.

6 Limitations

• LM-head application: Using a pre-trained
LM-head on intermediate embeddings with-
out fine-tuning may not accurately reflect the
actual functionality of these layers.

• Contextual memory assessment: The adapter-
based method’s accuracy may be influenced
by the adapter’s architecture, training data,
and optimization process.

• Generalizability: The results may not be
equally applicable to all model architectures,
sizes, or training paradigms.

7 Ethical Statement

This research aims to improve LLM transparency
and interpretability, potentially improving AI safety
and reliability. Our tools are designed for analy-
sis only and cannot modify model behavior. We
acknowledge the dual-use potential of interpretabil-
ity research and advocate for responsible use. All
experiments were conducted on publicly available
pre-trained models without access to personal data
or its generation.

This work advances our understanding of LLM
internals, contributing to the development of more
transparent and reliable natural language process-
ing systems.
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