
Arbitrum: Scalable, private smart contracts

Harry Kalodner
Princeton University

Steven Goldfeder
Princeton University

Xiaoqi Chen
Princeton University

S. Matthew Weinberg
Princeton University

Edward W. Felten
Princeton University

Abstract
We present Arbitrum, a cryptocurrency system that sup-
ports smart contracts without the scalability and privacy
limitations of previous systems such as Ethereum. Arbi-
trum, like Ethereum, allows parties to create smart con-
tracts by using code to specify the behavior of a virtual
machine (VM) that implements the contract’s functional-
ity. Arbitrum uses mechanism design to incentivize par-
ties to agree off-chain on what a VM would do, so that
the Arbitrum miners need only verify digital signatures
to confirm that parties have agreed on a VM’s behav-
ior. In the event that the parties cannot reach unanimous
agreement off-chain, Arbitrum still allows honest parties
to advance the VM state on-chain. If a party tries to lie
about a VM’s behavior, the verifier (or miners) will iden-
tify and penalize the dishonest party by using a highly-
efficient challenge-based protocol that exploits features
of the Arbitrum virtual machine architecture. Moving
the verification of VMs’ behavior off-chain in this way
provides dramatic improvements in scalability and pri-
vacy. We describe Arbitrum’s protocol and virtual ma-
chine architecture, and we present a working prototype
implementation.

1 Introduction

The combination of digital currencies and smart con-
tracts is a natural marriage. Cryptocurrencies allow par-
ties to transfer digital currency directly, relying on dis-
tributed protocols, cryptography, and incentives to en-
force basic rules. Smart contracts allow parties to cre-
ate virtual trusted third parties that will behave according
to arbitrary agreed-upon rules, allowing the creation of
complex multi-way protocols with very low counterparty
risk. By running smart contracts on top of a cryptocur-
rency, one can encode monetary conditions and penalties
inside the contract, and these will be enforced by the un-
derlying consensus mechanism.

Ethereum [31] was the first cryptocurrency to support
Turing-complete stateful smart contracts, but it suffers
from limits on scalability and privacy. Ethereum requires
every miner to emulate every step of execution of every
contract, which is expensive and severely limits scalabil-
ity. It also requires the code and data of every contract
to be public, absent some type of privacy overlay feature
which would impose costs of its own.

1.1 Arbitrum

We present the design and implementation of Arbitrum,
a new approach to smart contracts which addresses these
shortcomings. Arbitrum contracts are very cheap for ver-
ifiers to manage. (As explained below, we use the term
verifiers generically to refer to the underlying consensus
mechanism. For example, in the Bitcoin protocol, Bit-
coin miners are the verifiers.) If parties behave according
to incentives, Arbitrum verifiers need only verify a few
digital signatures for each contract. Even if parties be-
have counter to their incentives, Arbitrum verifiers can
efficiently adjudicate disputes about contract behavior
without needing to examine the execution of more than
one instruction by the contract. Arbitrum also allows
contracts to execute privately, publishing only (saltable)
hashes of contract states.

In Arbitrum, parties can implement a smart contract as
a Virtual Machine (VM) that encodes the rules of a con-
tract. The creator of a VM designates a set of managers
for the VM. The Arbitrum protocol provides an any-trust
guarantee: any one honest manager can force the VM to
behave according to the VM’s code. The parties that are
interested in the VM’s outcome can themselves serve as
managers or appoint someone they trust to manage the
VM on their behalf. For many contracts, the natural set
of managers will be quite small in practice.

Relying on managers, rather than requiring every ver-
ifier to emulate every VM’s execution, allows a VM’s
managers to advance the VM’s state at a much lower cost

1

to the verifiers. Verifiers track only the hash of the VM’s
state, rather than the full state. Arbitrum creates incen-
tives for the managers to agree out-of-band on what the
VM will do. Any state change that is endorsed by all of
the managers (and does not overspend the VM’s funds)
will be accepted by the verifiers. If, contrary to incen-
tives, two managers disagree about what the VM will do,
the verifiers employ a bisection protocol to narrow the
disagreement down to the execution of a single instruc-
tion, and then one manager submits a simple proof of that
one-instruction execution which the verifiers can check
very efficiently. The manager who was wrong pays a
substantial financial penalty to the verifiers, which serves
to deter disagreements.

Parties can send messages and currency to a VM, and a
VM can itself send messages and currency to other VMs
or other parties. VMs may take actions based on the mes-
sages they receive. The Verifier tracks the hash of the
VM’s inbox.

The architecture of the Arbitrum VM and protocol are
designed to make the task of resolving disputes as fast
and simple for the verifiers as possible. Details of the
design appear later in the paper.

Arbitrum dramatically reduces the cost of smart con-
tracts. If participants behave according to their incen-
tives, then verifiers will never have to emulate or verify
the behavior of any VM. The only responsibility of ver-
ifiers in this case is to do simple bookkeeping to track
the currency holdings, the hash of a message inbox, and
a single hashed state value for each VM. If a participant
behaves irrationally, it may require the verifiers to do a
modest amount of extra work, but the verifiers will be
(over-)compensated for this work at the expense of the
irrational party.

As a corollary of the previous principle, Arbitrum
VMs can be private, in the sense that a VM can be created
and execute to completion without revealing the VM’s
code or its execution except for the content and timing
of the messages and payments it sends, and (saltable)
hashes of its state. Any manager of a VM will neces-
sarily have the ability to reveal information about that
VM, but if managers want to maintain a VM’s privacy
they can do so.

Arbitrum is consensus-agnostic, meaning that it as-
sumes the existence of a consensus mechanism that
publishes transactions, but the Arbitrum design works
equally well with any consensus mechanism, including a
single centralized publisher, a quorum-based consensus
system, or Nakamoto consensus as used in Bitcoin [26].
Additionally, an existing smart contract system can serve
as this consensus mechanism assuming it can encode Ar-
bitrum’s rules as a smart contract. In this paper, we refer
to the consensus entity or system as the Verifier (and the
participants in the said consensus system as the verifiers).

1.2 Structure of the paper

The remainder of the paper is structured as follows. In
section 2 we discuss the difficulties of implementing
smart contracts efficiently, and we present the Participa-
tion Dilemma, a new theoretical result on participation
games showing that one approach to incentivize smart
contract verification may not work. In section 3 we de-
scribe Arbitrum’s approach, and in section 4 we provide
more details of Arbitrum’s protocol and virtual machine
architecture, which together allow much more efficient
and privacy-friendly verification of the operations of vir-
tual machines implementing smart contracts. Section 5
describes our implementation of Arbitrum and provides
some benchmarks of performance and the sizes of proofs
and blockchain transactions. Section 6 surveys related
work, and section 7 concludes the paper.

2 Why Scaling Smart Contracts is Difficult

Supporting smart contracts in a general and efficient way
is a difficult problem. In this section we survey the draw-
backs of some existing approaches.

2.1 The Verifier’s Dilemma

The most obvious way to implement smart contract VMs
is to have every miner in a cryptocurrency system emu-
late every step of execution of every VM. This has the
advantage of simplicity, but it imposes severe limits on
scalability.

The high cost of verifying VM execution may mani-
fest as the Verifier’s Dilemma [22]. Because transactions
involving code execution by a VM are expensive to ver-
ify, a party that is supposed to verify these transactions
has an incentive to free-ride by accepting the transactions
without verifying them, in the hope that either (1) misbe-
havior is deterred by other parties’ doing verification, or
(2) any discrepancies will not be detected by other po-
tential verifiers because they also do not perform verifi-
cation. This can lead to an equilibrium in which some
transactions are accepted with little or no verification.
Conversely, in a scenario in which all miners are hon-
estly doing the verification, a miner can exploit this by
including a time-consuming computation that will take
the other miners a significant amount of time to verify.
While all of the other miners are doing the verification,
the miner that included this computationally heavy trans-
action can get a head-start on mining the next block, giv-
ing it a disproportionate chance of collecting the next
block reward. This dilemma exists because of the high
cost of verifying VM execution.

2

2.2 The Participation Dilemma
One approach to scaling verification (as used in, e.g.,
TrueBit [30]) relies on participation games, a mecha-
nism design approach that aims to induce a limited but
sufficient number of parties to verify each VM’s execu-
tion. These systems face what we call the Participation
Dilemma, of how to prevent Sybil attacks in which a sin-
gle verifier, who may or may not be honest, claims to be
multiple verifiers, and in doing so can drive other veri-
fiers out of the system.

2.3 Participation Games
In this section we prove new formal barriers to ap-
proaches based on participation games. The idea is that
players will “participate” in a costly process. Consider
the following game:

• There are n players, who may pay 1 to participate.

• Participating player i chooses a number of Sybils
si ≥ 1. Non-participating players set si = 0.

• Player i receives reward si · f (∑ j s j), where f : N→
R+ is a reward function.

In the context of this paper, think of participating as
“verifying a computation.” It costs something to ver-
ify the computation, but once you’ve verified it, you can
claim to have verified it from any number of additional
Sybils for free, and these Sybils are indistinguishable
from “real” verifiers. The goal would then be to design
a participation game (i.e. a reward function f (·)) such
that in equilibrium, no player has any incentive to Sybil,
and a desired number of players participate, so that the
apparent number of verifiers equals the actual number of
separate players who were verifiers.

The authors of TrueBit correctly observe that the fam-
ily of functions fc(m) = c · 2−m make great candidates
for participation games. Specifically, for any target k
of participating players, the participation game with re-
ward function f (m) = (2k + 0.5) · 2−m has a unique (up
to symmetry) pure Nash equilibrium where every player
has si ∈ {0,1}, and exactly k players participate. In fact,
an even stronger property holds: it is always a best re-
sponse for any player to set si ≤ 1!1 We call such reward
functions One-Shot Sybil-Proof (formal definition in Ap-
pendix A). This initially makes participation games seem
like a promising avenue for verifiable smart contracts, as
One-Shot Sybil-proof reward functions exist.

However, a problem that prior work fails to resolve is
that smart contract verification is a repeated game. In
repeated games, there are numerous other equilibria that

1That is, no matter what the other players do, player i is strictly
happier to set si = 1 than si > 1.

don’t project onto Nash equilibria of their one-shot vari-
ants. For intuition, recall the classic prisoner’s dilemma:2

if the game is only played once, then the unique Nash
equilibrium is for both players to defect (and defecting
is even a strictly dominant strategy). However, in the
repeated prisoner’s dilemma, there are numerous other
equilibria including the famous Tit-For-Tat, and Grim
Trigger strategies [29].

We discuss the formal model for repeated games
(which is standard, but not the focus of this paper) in
Appendix A. But the point is that repeated games allow
for players to sacrifice the present in order to save for the
future. For example, the following is an equilibrium of
the repeated participation game with f (m) = (4.5) ·2−m.
Player one uses the strategy: set s1 = 2 in all rounds.
Player i > 2 sets si = 0 in all rounds. Player 2 uses
the strategy: if in either of the previous two rounds,
∑ j 6=2 s j ≤ 1, set s2 = 1. Otherwise, set s2 = 0.

Note that all players aside from player 1 are certainly
best responding. They currently get utility zero (because
player 1 sets s1 = 2 every round, and they therefore all
set si = 0). If they instead participated in any round,
they would get negative utility. Player 1 on the other
hand, is also best responding! This is because if they
decreased their number of Sybils in any round, it would
cause player 2 to participate in the next two rounds (for-
mal proof in appendix).

Note that this equilibrium is not at all unnatural: play-
ers > 1 are simply reacting to what the market looked
like in the previous rounds. Player 1 is staying one step
ahead of the game and realizing that no matter what,
there are going to be two participants in equilibrium, so
player 1 might as well be all of them rather than share
the reward. In fact, this is not a property specific to the
reward function c ·2i, but any reward function.

Theorem 1. Every One-Shot Sybil-Proof participation
game admits a Nash equilibrium where only one player
participates.

In Appendix A, we provide a proof of Theorem 1, as
well as a discussion of possible outside-the-box defenses.
These defenses seem technically challenging (perhaps
impossible) to implement, but we are are not claiming
this provably. However, simulations do indicate that the
cost to implement these defenses scales linearly with the
computational power of a single player, which may ren-
der them impractical (if they are indeed even possible).

As a result, approaches based on this type of partici-
pation game, including those proposed in prior work [30,
32], appear to be unable to prevent Sybil attacks that un-
dermine confidence in the verification of smart contracts.

2There are two players. Both get payoff 1 if they both defect, and
payoff 2 if they both cooperate. If one cooperates and the other defects,
the defector gets 4 and the cooperator gets 0.

3

3 Arbitrum System Overview

In this section we give an overview of the design of Ar-
bitrum.

3.1 Roles
There are four types of roles in the Arbitrum protocol
and system.

The Verifier is the global entity or distributed proto-
col that verifies the validity of transactions and publishes
accepted transactions. The Verifier might be a central en-
tity or a distributed multiparty consensus system such as
a distributed quorum system, a worldwide collection of
miners as in the Nakamoto consensus protocol [26], or
itself a smart contract on an existing cryptocurrency. Be-
cause the Arbitrum design is agnostic as to which type of
consensus system is used, for brevity we use the singular
term Verifier for whatever consensus system is operating.

A key is a participant in the protocol that can own cur-
rency and propose transactions. A key is identified by
(the hash of) a public key. It can propose transactions by
signing them with the corresponding private key.

A VM (Virtual Machine) is a virtual participant in
the protocol. Every VM has code and data that define
its behavior, according to the Arbitrum Virtual Machine
(AVM) Specification,which is included in the extended
version of this paper. Like keys, VMs can own currency
and send and receive currency and messages. A VM is
created by a special transaction type.

A manager of a VM is a party that monitors the
progress of a particular VM and ensures the VM’s cor-
rect behavior. When a VM is created, the transaction that
creates the VM specifies a set of managers for the VM.
A manager is identified by (the hash of) its public key.

3.2 Lifecycle of a VM
An Arbitrum VM is created using a special transaction,
which specifies the initial state hash of the VM, a list
of managers for the VM, and some parameters. As de-
scribed below, the state hash represents a cryptographic
commitment to the VM’s state (i.e., its code and initial
data). Any number of VMs can exist at the same time,
typically with different managers.

Once a VM is created, managers can take action to
cause that VM’s state to change. The Arbitrum protocol
provides an any-trust guarantee: any one honest manager
can force the VM’s state changes to be consistent with
the VM’s code and state, that is, to be a valid execution
according to the AVM Specification.

An assertion states that if certain preconditions hold,
the VM’s state will change in a certain way. An assertion
about a VM is said to be eligible if (1) the assertion’s

preconditions hold, (2) the VM is not in a halted state,
and (3) the assertion does not spend more funds than the
VM owns. The assertion contains the hash of the VM’s
new state and a set of actions taken by the VM, such as
sending messages or currency.

Unanimous assertions are signed by all managers of
that VM. If a unanimous assertion is eligible, it is imme-
diately accepted by the Verifier as the new state of the
VM.

Disputable assertions are signed by only a single man-
ager, and that manager attaches a currency deposit to the
assertion. If a disputable assertion is eligible, the asser-
tion is published by the Verifier as pending. If a time-
out period passes without any other manager challenging
the pending assertion, the assertion is accepted by the
Verifier and the asserter gets its deposit back. If another
manager challenges the pending assertion, the challenger
puts down a currency deposit, and the two managers en-
gage in the bisection protocol, which determines which
of them is lying. The liar will lose its deposit.

A VM continues to advance its state as described
above, until the VM reaches a halted state. At this point
no further state changes are possible, and the Verifier and
managers can forget about the VM.

3.3 The Bisection Protocol

The bisection protocol begins when a manager has made
a disputable assertion and another manager has chal-
lenged that assertion. Both managers will have put down
a currency deposit.

At each step of the bisection protocol, the asserter bi-
sects the assertion into two assertions, each involving
half as many steps of computation by the VM, and the
challenger chooses which half it would like to challenge.
They continue this bisection protocol until an assertion
about a single step (i.e., the execution of one instruc-
tion by the VM) is challenged, at which point the asserter
must provide a one-step proof that the Verifier can check.
The asserter wins if they provide a correct proof; other-
wise the challenger wins. The winner gets their deposit
back and also takes half of the loser’s deposit. The other
half of the loser’s deposit goes to the Verifier.

The bisection protocol is carried out via a series of
blockchain transactions made by the asserter and chal-
lenger. At each point in the protocol a party has a lim-
ited time interval to make their next move, and that party
loses if they fail to make a valid move by the deadline.
The Verifier only needs to check the facial validity of the
moves, for example, checking that a bisection of an as-
sertion into two half-sized assertions is valid in the sense
that the two resulting assertions do indeed compose to
yield the original assertion.

4

3.4 The Verifier’s Role

Recall that the Verifier is the mechanism, which may
be a distributed protocol with multiple participants, that
verifies transactions and publishes verified transactions.
In addition to storing a few parameters about each VM
such as a list of its managers, the Verifier tracks three
pieces of information about each VM that change over
time: the hash of the VM’s state, the amount of currency
held by the VM, and the hash of the VM’s inbox which
holds messages sent to the VM. The state of a VM is
advanced, corresponding to execution of the VM’s pro-
gram, by the Verifier’s acceptance of assertions made by
the VM’s managers.

An assertion that is challenged cannot be accepted
by the Verifier, even if the asserter wins the challenge
game. Instead, an assertion is “orphaned” when it is
challenged.3 After the challenge game is over, the as-
serter has the option of resubmitting the same assertion,
although this would obviously be foolish if the assertion
is incorrect.

The protocol design ensures that a single honest man-
ager can always prevent an incorrect assertion from be-
ing accepted, by challenging it. (If somebody else chal-
lenges the assertion before the honest manager can do so,
the assertion is still prevented from being accepted, even
if the challenger is malicious.) An honest manager can
also ensure that the VM makes progress, by making dis-
putable assertions, except that a malicious manager can
delay progress for the duration of one bisection proto-
col at the cost of half of a deposit, by forcing a bisection
protocol that it knows it will lose.

3.5 Key Assumptions and Tradeoffs

Arbitrum allows the party who creates a VM to specify
that VM’s code, initial data, and set of managers. The
Verifier ensures that a VM cannot create currency but can
only spend currency that was sent to it. Thus a party who
does not know a VM’s state or who does not like a VM’s
code, initial data, or set of managers can safely ignore
that VM. It is assumed that parties will only pay atten-
tion to a VM if they agree that the VM was initialized
correctly and they have some stake in its correct execu-
tion. Any party is free to create a VM that is obscure or
unfair; and other parties are free to ignore it.

By Arbitrum’s any-trust assumption, parties should

3We rejected the alternative of allowing an assertion to be accepted
and executed if the asserter wins the challenge game, in order to prevent
attacks where a malicious challenger deliberately loses the challenge
game in order to get a false assertion accepted. The design we chose
ensures that a challenger who deliberately loses will lose half their de-
posit to the miners (and the other half to the asserter with whom the
challenger might be colluding), but a malicious challenger will not be
able to force the acceptance of an invalid assertion.

only rely on the correct behavior of a VM if they trust at
least one of the VM’s managers. One way to have a man-
ager you trust is to serve as a manager yourself. We also
expect that a mature Arbitrum ecosystem would include
manager-as-a-service businesses that have incentives to
maintain a reputation for honesty, and may additionally
accept legal liability for failure to carry out an honest
manager’s duties.

One key assumption that Arbitrum makes is that a
manager will be able to send a challenge or response
to the Verifier within the specified time window. In a
blockchain setting, this means the ability get a transac-
tion included in the blockchain within that time. While
critical, this assumption is standard in cryptocurrencies,
and risk can be mitigated by extending the challenge in-
terval (which is a configurable parameter of each VM).

Two factors help to reduce the attractiveness of denial
of service attacks against honest managers. First, if a
DoS attacker cannot be certain of preventing an honest
manager from submitting a challenge, but can only re-
duce the probability of a challenge to p, the risk of incur-
ring a penalty may still be enough to deter a false asser-
tion, especially if the deposit amount is increased. Sec-
ond, because each manager is identified only by a public
key, a manager can use replication to improve its avail-
ability, including the use of “undercover” replicas whose
existence or location is not known to the attacker in ad-
vance.

Lastly, a motivated malicious manager can indefinitely
stall a VM by continuously challenging all assertions
about its behavior. The attacker will lose at least half of
every deposit, and each such loss will delay the progress
of the VM only for the time required to run the bisection
protocol once. We assume that the creators of a VM will
set the deposit amount for the VM to be large enough to
deter this attack.

3.6 Benefits

Scalability. Perhaps the key feature of Arbitrum is its
scalability. Managers can execute a machine indefinitely,
paying only negligible transaction fees that are small
and independent of the complexity of the code they are
running. If participants follow incentives, all assertions
should be unanimous and disputes should never occur,
but even if a dispute does occur, the Verifier can effi-
ciently resolve it at little cost to honest parties (but sub-
stantial cost to a dishonest party).
Privacy. Arbitrum’s model is well-suited for private
smart contracts. Absent a dispute, no internal state of
a VM is revealed to the Verifier. Further, disputes should
not occur if all parties execute the protocol according to
their incentives. Even in the case of a dispute, the Verifier
is only given information about a single step of the ma-

5

chine’s execution but the vast majority of the machine’s
state remains opaque to the Verifier. In section 4.4, we
show that we can even eliminate this leak by doing the
one step verification in a privacy-preserving manner.

Arbitrum’s privacy is no coincidence, but rather a di-
rect result of its model. Since the Arbitrum Verifier (e.g.,
the miners in a Nakamoto consensus model) do not run
a VM’s code, they do not need to see it. By contrast, in
Ethereum, or any system that attempts to achieve “global
correctness,” all code and state has to be public so that
anyone can verify it, and this model is fundamentally at
odds with private execution.
Flexibility. Unanimous assertions provide a great deal
of flexibility as managers can choose to reset a machine
to any state that they wish and take any actions that they
want (provided that the machine has the funds) – even if
they are invalid by the machine’s code. This requires
unanimous agreement by the managers, so if any one
manager is honest, this will only be done when the re-
sult is one that an honest manager would accept–such as
winding down a VM that has gotten into a bad state due
to a software bug.

4 Arbitrum Design Details

This section describes the Arbitrum protocol and virtual
machine design in more detail. The protocol governs
the public process that manages and advances the pub-
lic state of the overall system and each VM. The VM ar-
chitecture governs the syntax and semantics of Arbitrum
programs that run within a VM.

4.1 The Arbitrum Protocol

Arbitrum uses a simple cryptocurrency design, aug-
mented with features to allow the creation and use of
Virtual Machines (VMs), which can embody arbitrary
functionality. VMs are programs running on the Arbi-
trum Virtual Machine Architecture, which is described
below.

The Arbitrum protocol recognizes two kinds of actors:
keys and VMs. A key is identified by (the cryptographic
hash of) a public key, and the actor is deemed to have
taken an action if that action is signed by the correspond-
ing private key. The other kind of actor is a VM, which
takes actions by executing code. Any actor can own cur-
rency. Arbitrum tracks how much currency is owned by
each actor.

A VM is created using a special transaction type. The
VM-creation transaction specifies a cryptographic hash
of the initial state of the VM, along with some parameters
of the VM, such as the length of the challenge period, the
amounts of various payments and deposits that parties

Waiting
(or halted)

Pending

ChallengedBisected

Proof
Offered

Challenge

Bisect

One Step Proof

Assertion

Challenge

Confirmation

Timeout
Timeout

Verdict

Unanimous Assertion
VM Creation

Figure 1: Overview of the state machine that governs
the status of each VM in the Arbitrum protocol.

will make as the protocol executes further, as well as a
list of the VM’s managers.

For each VM, the Verifier tracks the hashed state of
that VM, along with the amount of currency held by
the VM, and a hash of its inbox. A VM’s state can be
changed via assertions about the VM’s execution, which
specify (1) the number of instructions executed by the
VM, (2) the hash of the VM’s state after the execution,
and (3) any actions taken by the VM such as making pay-
ments. Further, the assertion states a set of preconditions
that must be true before the assertion which specify (1)
the hash of the VM’s state before the execution, (2) an
upper and lower bound on the time that the assertion is
included in a block, (3) a lower bound on the balance
held by the VM, and (4) a hash of the VM’s inbox. The
rules of Arbitrum dictate under which conditions an as-
sertion is accepted. If an assertion is accepted, then the
VM is deemed to have changed its state, and taken pub-
licly visible actions, as specified by the assertion.

In the simplest case, an assertion is signed by all of the
VM’s managers. In this case, the assertion is accepted
by the miners if the assertion is eligible, that is, if (1)
the assertion’s precondition matches the current state of
the VM, (2) the VM is not in a halted state, and (3) the
VM has enough funds to make any payments specified by
the assertion. Unanimous assertions are relatively cheap

6

for verifiers to verify, requiring only checking eligibility
and verifying the managers’ signatures, so they require a
small transaction fee.

In a more complicated case, an assertion is signed by
just one of the managers–a “disputable assertion.” Along
with the assertion, the asserting manager must escrow a
deposit. Such a disputable assertion is not accepted im-
mediately, but rather, if it is eligible, it is published as
pending, and other managers are given a pre-specified
time interval in which they can challenge the assertion.
(The number of steps allowed in a disputable assertion
is limited to a maximum value that is set as a parame-
ter when the VM is created, to ensure that other man-
agers have enough time to emulate the declared number
of steps of execution before the challenge interval ex-
pires.) If no challenge occurs during the interval, then
the assertion is accepted, the VM is deemed to have made
the asserted state change and taken the asserted actions,
and the asserting manager gets its deposit back.

4.2 The Bisection Protocol

If a manager challenges an assertion, the challenger must
escrow a deposit. Now the asserter and the challenger en-
gage in a game, via a public protocol, to determine who
is incorrect. The party who wins the game will recover
its own deposit, and will take half of the losing party’s
deposit. The other half of the loser’s deposit will go to
the Verifier, as compensation for the work required to
referee the game.

The game is played in alternating steps. After a chal-
lenge is lodged, the asserter is given a pre-specified time
interval to bisect its previous assertion. If the previous
assertion involved N steps of execution in the VM, then
the two new assertions must involve bN/2c and dN/2e
steps, respectively, and the two assertions must combine
to be equivalent to the previous assertion. If no valid
bisection is offered within the time limit, the challenger
wins the game. After a bisection is offered, the chal-
lenger must challenge one of the two new assertions,
within a pre-specified time interval.

The two players alternate moves. At each step, a
player must move within a specified time interval, or
lose the game. Each move requires the player making
the move to make a small additional deposit, which is
added to the stakes of the game.

After a logarithmic number of bisections, the chal-
lenger will challenge an assertion that covers a single
step of execution. At this point the asserter must offer
a one-step proof, which establishes that in the asserted
initial state, and assuming the preconditions, executing a
single instruction in the VM will reach the asserted final
state and take the asserted publicly visible actions, if any.
This one-step proof is verified by the Verifier. See Figure

1 for an overview of the state machine implementing this
protocol.

4.3 The Arbitrum VM Architecture

The Arbitrum VM has been designed to make the Veri-
fier’s task of checking one-step proofs as fast and simple
as possible. In particular, the VM design guarantees that
the space to represent a one-step proof and the time to
generate and verify such a proof are bounded by small
constants, independent of the size and contents of the
program’s code and data.

As an example of an architectural choice to support
constant-bounded proofs, the AVM does not offer a
large, flat memory space. Providing an efficiently up-
datable hash of a large flat memory space would re-
quire the space to be hashed in Merkle Tree style, with
a prover needing to provide Merkle proofs of memory
state, which requires logarithmic proof space and loga-
rithmic time to prove and verify. Instead, the Arbitrum
VM provides a tuple data type that can store up to eight
values, which can contain other tuples recursively. This
allows the same type of tree representation to be built, but
it is built and managed by Arbitrum code running in an
application within the VM. With this design, reading or
writing a memory location requires a logarithmic number
of constant-time-provable Arbitrum instructions (instead
of a single logarithmic-time provable instruction). The
Arbitrum standard library provides a large flat memory
abstraction for programmers’ convenience.

We provide an overview of the VM architecture here.
For a more detailed specification, see the extended ver-
sion of this paper.

Types The Arbitrum VM’s optimized operation is fun-
damentally dependent on its type system. In our proto-
type, types include: a special null value None, booleans,
characters (i.e., UTF-8 code points), 64-bit signed inte-
gers, 64-bit IEEE floating point numbers, byte arrays of
length up to 32, and tuples. A tuple is an array of up to 8
Arbitrum values. The slots of a tuple may hold any value,
including other tuples, recursively, so that a single tuple
might contain an arbitrarily complex tree data structure.
All values are immutable, and the implementation com-
putes the hash of each tuple when it is created, so that
the hash of any value can be (re-)computed in constant
time.4

VM State The state of a VM is organized hierarchi-
cally. This allows a hash of a VM’s state to be computed

4Tuples, and by extension types, are a fundamental aspect of our
VM design. Other non-crucial elements may change. For example,
fewer types might be supported, such as only tuple and integer types.

7

in Merkle Tree fashion, and to be updated incrementally.
The state hash can be updated efficiently as the machine’s
state changes, because the VM architecture ensures that
instructions can only modify items near the root of the
state tree and that each node of the state tree has a degree
of no more than eight.

The state of a VM contains the following elements:

• an instruction stack, which encodes the current pro-
gram counter and instructions (as described below);

• a data stack5 of values;

• a call stack, used to store the return information for
procedure calls;

• a static constant, which is immutable; and

• a single mutable register which holds one value.

When a VM is initialized, the instruction stack and static
constant are initialized from the Arbitrum executable file;
the data and call stacks are both empty; and the register
is None. Note that because a single value can hold an
arbitrary amount of data through recursive inclusion of
tuples, the static constant can hold arbitrary amounts of
constant data for use in a program, and the single regis-
ter can be used to manage a mutable structure contain-
ing an arbitrary amount of data. Many programmers will
choose to use a flat memory abstraction, built on top of
such a mutable structure, such as the one provided in the
Arbitrum standard library.

Instructions The VM uses a stack-based architecture.
VM instructions exist to manipulate the top of the stack,
push small integers onto the stack, perform arithmetic
and logic operations at the top of the stack, convert be-
tween types, compute the hash of a value, compute a sub-
sequence of a byte array, and concatenate byte arrays.
Control flow instructions include conditional jump, pro-
cedure call, and return. Instructions to operate on tuples
include an instruction to a create new tuple filled with
None, to read a slot from a tuple, and to copy a tuple
while modifying the value of one slot. Finally, there are
instructions to interact with other parties, which are de-
scribed below.

The Instruction Stack Rather than using a conven-
tional program counter, Arbitrum maintains an “instruc-
tion stack” which holds the instructions in the remain-
der of the program. Rather than advancing the program
counter through a list of instructions, the Arbitrum VM
pops the instruction stack to get the next instruction to

5A stack is represented as either None, representing an empty stack,
or a 2-tuple (top, rest) where top is the value on top of the stack and
rest is the rest of the stack, in the same format.

execute. (If the instruction stack is empty, the VM halts.)
Jump and procedure call instructions change the instruc-
tion stack, with procedure call storing the old instruction
stack (pushing a copy of the instruction stack onto the
call stack) so that it can be restored on procedure return.

This approach allows a one-step proof to use constant
space and allows verification of the current instruction
and the next instruction stack value in constant time. 6

Because a stack can be represented as a linked list,
AVM implementations will likely follow our prototype
implementation by arranging all of the instructions in a
program into a single linked list and maintaining the in-
struction stack value as a pointer into that linked list.

The Assembler and Loader The Arbitrum assembler
takes a program written in Arbitrum assembly language
and translates it into an Arbitrum executable. The assem-
bler provides various forms of syntactic sugar that make
programming somewhat easier, including control struc-
tures such as if/else statements, while loops, and clo-
sures. The assembler also supports inclusion of library
files, such as those in the standard library.

The Standard Library The standard library is a set of
useful facilities written in Arbitrum assembly code. It
contains about 3000 lines of Arbitrum assembly code,
and supports useful data structures such as vectors of
arbitrary size, key-value stores, an abstraction of a flat
memory space on top of the register, and handling of time
and incoming messages.

Interacting with other VMs or keys A VM interacts
with other parties by sending and receiving messages. A
message consists of a value, an amount of currency, and
the identity of the sender and receiver. The send instruc-
tion takes values from the top of the stack and sends them
as a message. If the message is not valid, for example be-
cause it tries to send more currency than the VM owns,
the invalid message will be discarded rather than sent.
A program uses the inbox instruction to copy the ma-
chine’s message inbox to the stack. The standard library
contains code to help manage incoming messages includ-
ing tracking when new messages arrive and serving them
one by one to the application.

The balance instruction allows a VM to determine
how much currency it owns, and the time instruction al-

6A more conventional approach would keep an integer program
counter, a linear array of instructions, and a pre-computed Merkle tree
hash over the instruction array. Then a one-step proof would use a
Merkle-tree proof to prove which instruction was under the current
program counter. This would require logarithmic (in the number of
instructions) space and logarithmic checking time for a one-step proof.
By contrast our approach requires constant time and space.

8

State Root

 Data Stack Call StackInstruction Stack Static Register

5

3 ?

? ? ?

Add ?

Top Rest
Top Rest

Top Rest

Figure 2: Information revealed in a one step proof of an add instruction. Outer boxes rounded represent value
hashes and inner square boxes represent the values themselves. Gray boxes are values that are sent by the asserter to
the verifier in the one-step proof.

lows a VM to get upper and lower bounds on the current
time.

Preconditions, Assertions, and One-Step Proofs As
described above, an assertion is a claim about an interval
of a VM’s execution. Each assertion is accompanied by
a set of preconditions consisting of: a hash of the VM’s
state before the asserted execution, a hash of the VM’s in-
box contents, an optional lower bound on the VM’s cur-
rency balance, and optional lower and upper bounds on
the time (measured in block height). An assertion will be
ignored as ineligible unless all of it preconditions hold.
(Parties may choose to store an ineligible assertion in the
hope that it becomes eligible later.)

In addition to preconditions, an assertion contains the
following components: the hash of the machine state af-
ter the execution, the number of instructions executed,
and the sequence of messages emitted by the VM.

The Arbitrum protocol may require a party to provide
a one-step proof, which is a proof of correctness, assum-
ing a set of preconditions, for an assertion covering the
execution of a single instruction. A one-step proof must
provide enough information, beyond the preconditions,
to enable the Verifier to emulate the single instruction
that will be executed. Because the state of the VM is
organized as a Merkle Tree, and the starting state hash
of the VM, which is just the root hash of that Merkle
Tree, is given as a precondition, the proof need only ex-
pand out enough of the initial state Merkle tree to enable
the Verifier to emulate execution of the single instruction,
compute the unique assertion that results from executing
that one instruction given the preconditions, and verify
that it matches the claimed assertion.

A one-step proof expands out any parts of the state
tree that are needed by the Verifier. For example, sup-

pose that the instruction to be executed pops an item off
the stack. Recall that the stack is represented as None
for the empty stack, and otherwise as a 2-tuple (top, rest)
where top is the top item on the stack and rest is the rest
of the stack. In this example, if the stack hash is equal
to the hash of None, then the Verifier will know that the
stack is empty. Otherwise the prover will need to provide
the hashes of top and rest, allowing the Verifier to check
that those two hashes combine to yield the expected stack
hash. Similarly, if the instruction is supposed to add two
values, and the Verifier only has the hashes of the values,
the proof must include the two values. In all cases the
prover provides values that the Verifier will need to emu-
late the specified instruction, and the Verifier checks that
the provided values are consistent with the hashes that
the Verifier has already received. The Arbitrum VM em-
ulator used by the prover automatically determines which
elements must be provided in the proof. See Figure 2 for
an illustration of the information revealed to a Verifier
during a one step proof of an add instruction.

Messages and the Inbox Messages can be sent to a
VM in two ways: a key can send a message by putting a
special message delivery transaction on the blockchain;
and another VM can send a message by using the send
instruction. A message logically has four fields: data,
which is an AVM value (marshaled into a byte array
on the blockchain); a non-negative amount of currency,
which is to be transferred from the sender to the receiver;
and the identities of the sender and receiver of the mes-
sage.

Every VM has an inbox whose hash is tracked by the
Verifier. An empty inbox is represented as the AVM
value None. A new message M can be appended to a
VM’s inbox by setting the inbox to a 2-tuple (prev, M),

9

where prev is the previous state of the inbox. A VM can
execute the inbox instruction which pushes the current
value of the VM’s inbox onto the VM’s stack.

A VM’s managers track the state of its inbox, but the
Verifier only needs to track the hash of the inbox, be-
cause that is all that will be needed to verify a one-step
proof of the VM receiving the inbox contents. If the VM
later processes the inbox contents, and a one-step proof
of some step of that processing is needed, the managers
will be able to provide any values needed.

Because the inbox instruction gives the VM an inbox
state that may be a linked list of multiple messages, pro-
grammers may wish to buffer those messages inside the
VM to provide an abstraction of receiving one message
at a time. The Arbitrum standard library provides code to
do this as well as track when new messages have arrived
in the inbox.

4.4 Extensions
In this section, we describe extensions to Arbitrum’s de-
sign that may prove useful, particularly when the Arbi-
trum Verifier is implemented as a public blockchain.

Off-chain progress Arbitrum allows VMs to perform
orders of magnitude more computation than existing sys-
tems at the same on-chain cost. However, usage of VMs
frequently depends on communication between a VM’s
managers and the VM itself. In our prior description of
Arbitrum’s protocol, this communication had to be on-
chain and thus was limited by the speed of the consensus
mechanism. Arbitrum is compatible with state-channel
and sidechain techniques, and there are several construc-
tions that allow managers to communicate with a VM
and unanimously advance a VM’s state off-chain. We
present details of one such construction in the extended
version of this paper.

Zero Knowledge one step proofs While Arbitrum has
good privacy properties, there is one scenario in which a
small privacy leak is possible. A manager submitting a
one step proof will be forced to reveal some of the state
as part of the proof. While only a small portion of the
state will be revealed for each challenge, and only if the
managers fail to agree on a unanimous assertion, this can
potentially be sensitive data.

We can instead implement the one step proof as a
zero-knowledge protocol using Bulletproofs [7]. To do
so will require encoding a one step VM transition as an
arithmetic circuit and proving that the transition is valid.
While we could use SNARKs [4, 16, 27], Bulletproofs
have the benefit that they do not require a trusted setup.
Although verification time for Bulletproofs is linear in
the circuit, considering that a one-step transition circuit

will be small, and that one-step proofs will be infrequent
events, this should not be a problem in practice.

While zero-knowledge proofs can in theory be used to
prove the correctness of the entire state transition (and
not just a single step), doing this for complex computa-
tions is not feasible with current tools. Combining the
challenge and bisection protocol with a zero-knowledge
proof only at the last step allows us to simultaneously
achieve scalability and full privacy. This takes advantage
of the fact that the Arbitrum VM is designed to simplify
one-step proofs.

Reading the Blockchain In our current design, Arbi-
trum VMs do not have the ability to directly read the
blockchain.

If launched as a public blockchain, we could easily
extend the VM instruction set to allow a VM to read the
blockchain directly. To do so, we would create a canon-
ical encoding of a block as an Arbitrum tuple, with one
field of that tuple containing the tuple representing the
previous block in the blockchain. This would allow a
VM that had the tuple for the current block to read earlier
blocks. The precondition of an assertion would specify
a recent block height, and the VM would have a special
instruction that pushes the associated block tuple to the
stack. In order to be able to verify a one-step proof of
this instruction, the Verifier just needs to keep track of
the Arbitrum tuple hash of each block (just a single hash
per block).

We stress that reading the blockchain does not require
putting lots of data on a VM’s data stack. A blockchain
read consists of putting just the top-level tuple of the
specified block on the stack. To read deeper into the
blockchain, this tuple can be lazily expanded, providing
the VM with just the data that it needs to read the desired
location.7

7Note that reading the blockchain in this manner supports oblivious
reads compatible with zero-knowledge proofs, as the Verifier does not
need to know what position (if any) in the blockchain is being read.
The Verifier need only verify the top-level tuple hash, which is the hash
of a recent block. If the tuple was expanded to read deeper into the
blockchain, this all happens inside Arbitrum application code and the
location of the read will not be published on-chain. In this manner,
blockchain reads are fully compatible with zero-knowledge one-step
proofs. In particular, the Verifier would always provide the specified
block tuple hash as an input to the zero-knowledge proof. If indeed
the one-step proof is on a read-blockchain instruction, the proof would
verify that the correct hash was put on the stack. The zero knowledge
proof would not leak information as to whether the blockchain was ac-
tually read (as the block hash is always an input to the proof even if no
read occurred) or where on the blockchain a read occurred (since the
current block tuple could have been expanded inside Arbitrum applica-
tion code to read anywhere in the blockchain).

10

5 Implementation and Benchmarks

In order to refine and evaluate Arbitrum, we produced
a full implementation of the Arbitrum system. This in-
cludes code to represent all parties involved: a central-
ized Verifier, a VM, an honest manager, and a key-based
actor. These parties are fully capable of performing
all parts of the Arbitrum protocol. Our implementation
comprises about 6800 lines of Go code, including about
3400 lines for the VM emulator, 1350 lines for the as-
sembler and loader, 650 lines for the honest manager,
550 lines for the Verifier, and the remainder for various
shared code.

In order to ease the coding of more powerful smart
contract VMs, we implemented the Arbitrum standard
library which contains about 3000 lines of Arbitrum
assembly code, supporting useful data structures such
as large tuples, key-value stores, queues, and character
strings; and utilities for handling messages, currency, and
time.

We demonstrate the power and versatility of this im-
plementation by implementing two smart contracts.

5.1 Escrow Contract

We first discuss a simple escrow contract. The escrow
code first waits for a message containing the identities
of three parties (Alice, Bob, and Trent) and an integer
deadline, along with some amount of currency that the
VM will hold. The VM then waits for a message from
Trent, ignoring messages that arrive from anybody else.
If the message from Trent contains an even integer, the
VM sends the currency to Alice and halts. If the mes-
sage from Trent contains something else, the VM sends
the currency to Bob and halts. If the current time exceeds
the deadline, the VM sends half of the currency to Alice,
the remaining currency to Bob, and then halts. This re-
quires 59 lines of Arbitrum assembly code, which makes
significant use of the standard library. The executable file
produced by the assembler contains 4016 instructions.

Executing the contract requires 5 total transactions to
be added to the blockchain. The initial create VM trans-
action is 309 bytes. After that a 310 byte message is sent
to the VM communicating the identities of the parties in-
volved and the deadline, and giving currency to the VM.
Next, Trent indicates his verdict by sending a 178 byte
message to the VM.

Next, the VM must be executed to actually cause the
payouts. First a 350 byte assertion is broadcast, assert-
ing the execution of 2897 AVM instructions, leaving the
VM in the halted state. Next after the challenge win-
dow has passed, a confirmation transaction of 113 bytes
is broadcast confirming and accepting the asserted exe-
cution. The entire process requires a total of 1,260 bytes

to be written to the blockchain.

5.2 Iterated Hashing
One area where Arbitrum shines is the efficiency with
which it can carry out VM computation. To demonstrate
this, we measured the throughput of an Arbitrum VM
which performs iterative SHA-256 hashing. The code for
this VM is an infinite loop where the VM hashes 1000
times and then jumps back to the beginning. The VM
code makes use of the AVM’s hash instruction, which is
implemented in native code.

We evaluated operating performance of this VM on
an early 2013 Apple MacBook Pro, 2.7GHz Intel Core
i7. As a baseline, using native code on the same ma-
chine, we were able to perform 1,700,000 hashes per
second. Running the VM continuously we were able to
advance the VM by 970,000 hashes per second. Our im-
plementation was able to achieve over half of the raw
performance of native code. This stands in compari-
son to Ethereum, which is capable of processing a to-
tal of approximately 1600 hashes per second (limited by
Ethereum’s global gas limit, which is required due to the
Verifier’s Dilemma).

Arbitrum’s performance advantage extends further.
While we demonstrated the current limit on execution in-
side a single VM, the Verifier is capable of handling large
numbers of VMs simultaneously. Instantiating many
copies of the Iterated Hashing VM, we measured that
the Verifier node running on our machine was capable of
processing over 5000 disputable assertions per second.
This brings the total possible network throughput up to
over 4 billion hashes per second, compared to 1600 for
Ethereum.

6 Background and related work

6.1 Refereed Delegation
The problem of delegating computation involves a
resource-bounded client outsourcing computation to a
more powerful server. The server should provide a proof
that it correctly carried out the computation, and check-
ing the proof should be far more efficient for the verifier
than performing the computation itself [17].

Refereed-delegation (RDoC) is a two-server protocol
for the problem of delegating computation [10, 11]. The
computation is delegated to multiple servers that inde-
pendently report the result to the client. If they agree,
the client accepts the result. If the servers disagree, how-
ever, they undergo a bisection protocol to identify a one-
step disagreement. The client can then efficiently eval-
uate the single step to determine which server was ly-
ing. Aspects of Arbitrum’s bisection protocol are very

11

similar to RDoC. In Arbitrum, it is as if the Verifier is
outsourcing a VM’s computation back to the VM’s man-
agers, who in many cases are the parties interested in the
VM’s computation. Arbitrum’s VM architecture makes
dispute resolution very efficient.

6.2 Bitcoin
Bitcoin is a decentralized digital currency [26].

Bitcoin natively supports only a simple scripting lan-
guage that is not Turing Complete and is mainly used for
signature validation. Many techniques have been devel-
oped to allow more complex scripting on top of Bitcoin’s
scripting language. These generally fall into two cate-
gories: (1) protocols that use cryptographic tools to en-
able more complex functionality while restricting them-
selves to Bitcoin’s scripting language, and (2) protocols
that use Bitcoin as a consensus layer, including raw data
on the blockchain with additional validation rules known
by nodes running the protocol, but not validated by the
Bitcoin miners.

The first variety of scripting enhancements include
zero-knowledge contingent payments [3, 9, 23] that are
able to realize a fair exchange of digital goods. While
powerful and efficient, zero-knowledge contingent pay-
ments are limited and unable to realize general smart
contracts. The latter variety, which includes Counter-
party [1] and Open Assets [12], pushes the entire effort
of validation onto every wallet. In these overlay proto-
cols, every node must validate every transaction (even
those that they are not a part of) in order to have confi-
dence in correctness. Contrast this to Arbitrum in which
miners guarantee the correctness of all monetary transac-
tions, and nodes must only monitor the internal state of
the VMs they care about.

6.3 Ethereum
Ethereum [31] is a digital currency that supports state-
ful, Turing-complete smart contracts. Miners emulate a
contract’s code and update the state accordingly. In or-
der for an Ethereum block to be valid, miners must cor-
rectly emulate all of the contract computations that they
include in their block and correctly update the state (in-
cluding monetary balances) to reflect those changes. If
a miner does not update the state correctly, other miners
will reject that block.

Ethereum aims for “global correctness,” or the ability
of every participant in the system to trust that every con-
tract has been correctly executed contingent only on the
mining consensus process working as intended. In con-
trast, Arbitrum does not try to provide correctness guar-
antees for a VM to parties who are not interested in that
VM, and this enables Arbitrum to reap large advantages

in scalability and privacy. In Arbitrum, parties can safely
ignore VMs that they are not interested in.

Limitations of Ethereum style smart contracts

Ethereum’s approach to smart contracts has several
drawbacks.

Scalability. It has long been known that Ethereum’s
model cannot scale. Requiring miners to emulate every
smart contract is expensive, and this work must be dupli-
cated by every miner. While Ethereum does require the
parties who are interested in a computation to compen-
sate miners (with “gas”) for the cost of executing, this
does not lower the cost – it only shifts it.

Ethereum copes with the Verifier’s Dilemma by hav-
ing a “global gas limit” that severely limits the amount
of computation that can be included in each block.8

Ethereum’s global gas limit is a significant limitation that
makes many computations – that would take just sec-
onds to execute on a modern CPU – unachievable [8, 24].
Even for computations which are below the gas limit,
Ethereum’s pay-per-instruction model can become pro-
hibitively expensive.

Privacy. All Ethereum contract code is public, and this
is a necessity of the model as every miner needs to be
able to emulate all of the code. Any privacy in Ethereum
must come as an overlay. There has been progress toward
using zkSNARKs [4, 16, 27] in Ethereum so that miners
can verify proofs while inputs to the contract call remain
hidden. However, the ability to do this this is severely
limited in practice as the cost to verify a SNARK is
high,9 so the throughput would be severely limited to just
a few such transactions per block. Moreover, SNARKs
impose a heavy computational cost on the prover.

Inflexibility. In legal contracts, the parties to a contract
can modify or cancel the contract by mutual agreement.
This is considered an important feature of legal contracts,
because it prevents the parties from being trapped by
an erroneous contract or unforeseen circumstances. For
Ethereum-style smart contracts, deviation from the code

8While Arbitrum does limit the number of steps of computation in
an assertion in some cases, Arbitrum’s limit is much less constraining.
The Arbitrum limit applies only to disputable assertions, not to unan-
imous assertions which can include an unlimited number steps. Also,
Arbitrum’s limit, when it applies, is per VM and assumes many VMs
can be managed in parallel, whereas Ethereum’s is a global limit on the
total computation over all VMs.

9A transaction on the Ethereum testnet
(0x15e7f5ad316807ba16fe669a07137a5148973235738ac424d5b70fk8
9ae7625e3) validated a SNARK using 1,933,895 gas. At the current
mainnet gas limit of 7,976,645, this would only allow 4 transactions
per block.

12

is not possible. In Arbitrum, a modification to a contract
VM is possible, as long all of the VM’s honest managers
will agree to it.

6.4 Other proposed solutions
We now discuss other proposed solutions for smart con-
tract scalability and/or privacy and compare them with
Arbitrum.

Zero-knowledge proofs. Hawk [18] is a proposed sys-
tem for private smart contracts using zkSNARKs [16,
27]. Hawk has strong privacy goals that include hid-
ing the amounts and transacting parties of monetary
transfers, hiding contract state from non-participants,
and supporting private inputs that are hidden even from
other participants in the contract. However, Hawk suf-
fers several drawbacks that make it infeasible in prac-
tice. Firstly, SNARKs require a per-circuit trusted setup,
which means that for every distinct program that a con-
tract implements, a new trusted setup is required. While
multi-party computation can be used to reduce trust in
the setup, this is infeasible to perform on a per-circuit
basis as is required by Hawk. Secondly, Hawk does not
improve scalability as each contract requires kilobytes of
data to be put on-chain. Finally, privacy in Hawk relies
on trusting a third-party manager who gets to see all the
private data.

Trusted Execution environments (TEEs). Several
proposals [6, 13, 20, 33] would combine blockchains
with trusted execution environments such as Intel SGX.
Ekiden [13] uses a TEE to achieve scalable and private
smart contracts. Whereas Arbitrum hides the code and
state of a smart contract from external parties, Ekiden
hides the state from external parties and also allows par-
ties of a contract to hide private inputs from one another.

The drawback of Ekiden and systems that rely on
TEEs more generally is the additional trust required for
both privacy as well as the correctness of contract exe-
cution. This includes both trusting that the hardware is
executing correctly and privately as well as trusting the
issuer of the attestation keys (e.g., Intel).

Secure Multiparty Computation. Secure multiparty
computation is a cryptographic technique that allows par-
ties to compute functions on private inputs without learn-
ing anything but their output [21]. Several works have
proposed to incorporate secure multiparty computation
onto blockchains [2, 19, 34]. This enables attaching
monetary conditions to the outcome of computations and
incentivizing fairness (by penalizing aborting parties).

Unlike Arbitrum which can make progress even when
nodes go offline, MPC based systems require the active

(and interactive) participation of all computing nodes.
Even with recent advances in the performance of secure-
multiparty computation, the cryptographic tools impose
a significant efficiency burden.

Scalability via incentivized verifiers. Several propos-
als (e.g., [30, 32]) have separate parties (other than the
miners) perform verification of computation, but depend-
ing on how verifiers are rewarded, these results may fall
victim to the Participation Dilemma.

The most popular of these systems is TrueBit [30].
Unlike Arbitrum, TrueBit is stateless and not a stan-
dalone system. TrueBit provides a mechanism for an
Ethereum contract to outsource computation and receive
the result at a cost to the contract that is lower than
Ethereum’s gas price. In TrueBit, third-party Solvers
perform computational tasks and their work is checked
by third-party Verifiers (which play a different role than
Arbitrum verifiers). TrueBit Verifiers can dispute the re-
sults given by the Solver, and disputes are settled via a
challenge-response protocol similar to the one used in
Arbitrum.

TrueBit attempts to achieve global correctness by in-
centivizing TrueBit Verifiers to check computation and
challenge incorrect assertions. To participate, TrueBit
Verifiers must put down a deposit, which they will lose if
they falsely report an error. In order to incentivize veri-
fiers to participate, the TrueBit protocol occasionally in-
troduces deliberate errors and TrueBit Verifiers collect
rewards for finding them.

If m TrueBit Verifiers find the same error, they split
the reward using a function of the form fc(m) = c ·2−m.
As shown in Section 2.3, this is One-Shot Sybil-Proof.
However, since it is a participation game, they are sus-
ceptible to the Participation Dilemma, and by Theorem
1, TrueBit admits an equilibrium in which there is only
a single TrueBit Verifier (using multiple Sybils), and if
this occurs, this verifier can cheat at will.

Although they don’t formally analyze it, TrueBit ac-
knowledges this type of attack and proposes some ad-hoc
defenses. First, they assume that a single verifier will not
have enough money to make the deposits needed to suc-
cessfully bully out all other verifiers. While this assump-
tion may be helpful, it is not clear that it holds, and in
particular multiple adversaries could pool their funds to
launch this attack. (Note that an attacker would not for-
feit these funds in order to execute this attack, but would
just need to have them on hand.)

Even if the assumption does hold, it is still possible
for an adversary to bully out all other verifiers from a
particular contract by verifying the contract with multi-
ple Sybils. To defend against this, TrueBit proposes a
“default strategy” in which verifiers choose at random
which task to verify, and do not take into account the

13

number of verifiers to previously verify a contract. This
proposal is problematic, however, as the default strategy
is dominated: instead of choosing where to verify ran-
domly, a verifier is better off if it chooses the tasks with
fewer additional verifiers. Not only is following the “de-
fault strategy” not an equilibrium, but is dominated by a
better strategy, no matter what the others do.

TrueBit also does not provide privacy as it allows any-
body to join the system as a verifier, and thus anybody
must be able to learn the full state of any VM.

Another key difference between TrueBit and Arbitrum
is that in TrueBit, the cost for computation is linear in the
number of steps executed. For every computational task
performed in TrueBit, the party must pay a tax to fund the
solving and verification of that task. The TrueBit paper
estimates that this tax is between 500%-5000% of the ac-
tual cost of the computation. Although the cost of com-
putation in TrueBit is lower than the cost in Ethereum, it
still suffers from a linear cost.

TrueBit proposes to use Web Assembly for the VM
architecture. However, unlike the Arbitrum Virtual Ma-
chine which ensures that one-step proofs will be of small
constant size, Web Assembly has no such guarantee.

Plasma. Plasma [28] attempts to achieve scaling on
top of Ethereum by introducing the concept of child-
chains. Child-chains use their own consensus mecha-
nism to choose which transactions to publish. This con-
sensus mechanism enforces rules which are encoded in
a smart contract placed in Ethereum. If a user on the
child-chain believes that the child-chain has behaved in-
correctly or maliciously, they can submit a fraud proof to
the contract on the main chain in order to exit the child-
chain with their funds.

This approach suffers from a number of problems.
Firstly, similarly to sharding, Plasma child-chains each
exist in their own isolated world, so interaction between
people on different child-chains is cumbersome. Sec-
ondly, the details of how complex fraud proofs could ac-
tually be constructed inside a Plasma contract are lack-
ing. Plasma contracts need to somehow specify all of the
consensus rules and ways to prove fraud on a newly de-
fined blockchain which is a complex and currently un-
solved problem inside an Ethereum contract. Finally,
moving data out of the main blockchain creates data
availability challenges since in order to generate a fraud
proof you must have access to the data in a Plasma block
and there is no guaranteed mechanism for accessing this
data. Because of this issue, Plasma includes many miti-
gations which involve users exiting a Plasma blockchain
if anything goes wrong.

Due to the complexities of implementing Plasma
child-chains with smart contract capabilities like
Ethereum, all current efforts to implement Plasma use

simple UTxO based systems without scripting in order
allow simple proofs. Plasma proposes using TrueBit
as a sub-component for efficient fraud proofs in child
chains with smart contracts, but as mentioned TrueBit
uses an off-the-shelf VM which does not give guarantees
on proof size or efficiency. Indeed, Plasma may benefit
from using the Arbitrum Virtual Machine.

State Channels. State channels are a general class of
techniques which improve the scalability of smart con-
tracts between a small fixed set of participants. Previous
state channel research [5, 14, 15, 25] has mainly focused
on a different type of scaling than Arbitrum has achieved.
Arbitrum allows on-chain transactions with a very large
amount of computation and state, with low cost. State
channels allow a set of parties to mutually agree to a se-
quence of messages off-chain and only post a single ag-
gregate transaction after processing them all.

State channel constructions focus on the optimistic
case where all parties are honest and available, but fail to
work smoothly and efficiently in other situations. Specif-
ically, state channels must be prepared to resolve on-
chain if any member of the channel refuses or is unable
to continue participating. This on-chain resolution mech-
anism requires the execution of an entire state transition
on-chain. Thus, state channels are limited to only doing
computation that the parties could afford to do on-chain,
since otherwise dispute resolution will be infeasible. Ar-
bitrum is still efficient even if managers are not all active
at all times, or if there are disputes.

7 Conclusion

We have presented Arbitrum, a new platform for smart
contracts with significantly better scalability and privacy
than previous solutions. Our solution is consensus ag-
nostic and is pluggable with any existing mechanism for
achieving consensus over a blockchain. Arbitrum is ele-
gant in its simplicity, and its straightforward and intuitive
incentive structure avoids many pitfalls that affect other
proposed systems.

Arbitrum creates incentives for parties to agree off-
chain on what smart contract VMs will do, and even if
parties act contrary to incentives the cost to miners or
other verifiers is low. Arbitrum additionally uses a virtual
machine architecture that is custom-designed to reduce
the cost of on-chain dispute resolution. Moving the en-
forcement of VM behavior mostly off-chain, and reduc-
ing the cost of on-chain resolution, leads to Arbitrum’s
advantages in scalability and privacy.

14

8 Acknowledgements

Steven Goldfeder is supported by an NSF Graduate
Research Fellowship under grant DGE 1148900. S.
Matthew Weinberg is supported by NSF grant CCF-
1717899.

References

[1] Counterparty protocol specification. https:

//counterparty.io/docs/protocol_

specification/, accessed: 2018-01-01

[2] Andrychowicz, M., Dziembowski, S., Malinowski,
D., Mazurek, L.: Secure multiparty computations
on bitcoin. In: Security and Privacy (SP), 2014
IEEE Symposium on

[3] Banasik, W., Dziembowski, S., Malinowski, D.:
Efficient zero-knowledge contingent payments in
cryptocurrencies without scripts. In: European
Symposium on Research in Computer Security. pp.
261–280. Springer (2016)

[4] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.,
Virza, M.: SNARKs for C: Verifying program exe-
cutions succinctly and in zero knowledge. In: Ad-
vances in Cryptology–CRYPTO 2013, pp. 90–108.
Springer (2013)

[5] Bentov, I., Kumaresan, R., Miller, A.: Instanta-
neous decentralized poker. In: International Con-
ference on the Theory and Application of Cryp-
tology and Information Security. pp. 410–440.
Springer (2017)

[6] Brandenburger, M., Cachin, C., Kapitza, R.,
Sorniotti, A.: Blockchain and trusted computing:
Problems, pitfalls, and a solution for hyperledger
fabric. arXiv preprint arXiv:1805.08541 (2018)

[7] Bünz, B., Bootle, J., Boneh, D., Poelstra, A.,
Wuille, P., Maxwell, G.: Bulletproofs: Efficient
range proofs for confidential transactions. Tech.
rep.

[8] Bunz, B., Goldfeder, S., Bonneau, J.: Proofs-of-
delay and randomness beacons in Ethereum. In:
Proceedings of the 1st IEEE Security & Privacy on
the Blockchain Workshop (April 2017)

[9] Campanelli, M., Gennaro, R., Goldfeder, S., Niz-
zardo, L.: Zero-knowledge contingent payments re-
visited: Attacks and payments for services. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. pp. 229–
243. ACM (2017)

[10] Canetti, R., Riva, B., Rothblum, G.N.: Practical
delegation of computation using multiple servers.
In: Proceedings of the 18th ACM conference on
Computer and communications security. pp. 445–
454. ACM (2011)

[11] Canetti, R., Riva, B., Rothblum, G.N.: Refereed
delegation of computation. Information and Com-
putation 226, 16–36 (2013)

[12] Charlon, F.: Open assets protocol (oap/1.0). On-
line, https://github.com/OpenAssets/open-assets-
protocol/blob/master/specification.mediawiki
(2013)

[13] Cheng, R., Zhang, F., Kos, J., He, W., Hynes,
N., Johnson, N., Juels, A., Miller, A., Song, D.:
Ekiden: A platform for confidentiality-preserving,
trustworthy, and performant smart contract execu-
tion. arXiv preprint arXiv:1804.05141 (2018)

[14] Coleman, J.: State channels (2015)

[15] Dziembowski, S., Eckey, L., Faust, S., Malinowski,
D.: Perun: Virtual payment channels over cryp-
tographic currencies. Tech. rep., IACR Cryptology
ePrint Archive, 2017: 635 (2017)

[16] Gennaro, R., Gentry, C., Parno, B., Raykova,
M.: Quadratic span programs and succinct nizks
without pcps. In: Annual International Conference
on the Theory and Applications of Cryptographic
Techniques. Springer (2013)

[17] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Dele-
gating computation: interactive proofs for muggles.
In: Proceedings of the fortieth annual ACM sympo-
sium on Theory of computing. pp. 113–122. ACM
(2008)

[18] Kosba, A., Miller, A., Shi, E., Wen, Z., Papaman-
thou, C.: Hawk: The blockchain model of cryptog-
raphy and privacy-preserving smart contracts. In:
Security and Privacy (SP), 2016 IEEE Symposium
on. pp. 839–858. IEEE (2016)

[19] Kumaresan, R., Moran, T., Bentov, I.: How to use
bitcoin to play decentralized poker. In: CCS

[20] Lind, J., Eyal, I., Kelbert, F., Naor, O., Pietzuch,
P., Sirer, E.G.: Teechain: Scalable blockchain pay-
ments using trusted execution environments. arXiv
preprint arXiv:1707.05454 (2017)

[21] Lindell, Y., Pinkas, B.: Privacy preserving data
mining. In: Annual International Cryptology Con-
ference. pp. 36–54. Springer (2000)

15

https://counterparty.io/docs/protocol_specification/
https://counterparty.io/docs/protocol_specification/
https://counterparty.io/docs/protocol_specification/

[22] Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: De-
mystifying incentives in the consensus computer.
In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security.
pp. 706–719. ACM (2015)

[23] Maxwell, G.: Zero knowledge contingent pay-
ments. URl: https://en.bitcoin.it/wiki/

Zero_Knowledge_Contingent_Payment (2011)

[24] McCorry, P., Shahandashti, S.F., Hao, F.: A smart
contract for boardroom voting with maximum voter
privacy. IACR Cryptology ePrint Archive 2017,
110 (2017)

[25] Miller, A., Bentov, I., Kumaresan, R., Cordi, C.,
McCorry, P.: Sprites and state channels: Payment
networks that go faster than lightning

[26] Nakamoto, S.: Bitcoin: A peer-to-peer electronic
cash system (2008)

[27] Parno, B., Howell, J., Gentry, C., Raykova, M.:
Pinocchio: Nearly practical verifiable computation.
In: IEEE Symposium on Security and Privacy,
2013

[28] Poon, J., Buterin, V.: Plasma: Scalable autonomous
smart contracts. White paper (2017)

[29] Roughgarden, T.: Lecture #5: Incentives in peer-to-
peer networks. http://theory.stanford.edu/
~tim/f16/l/l5.pdf (October 2016)

[30] Teutsch, J., Reitwiener, C.: A scalable verification
solution for blockchains (2017)

[31] Wood, G.: Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum Project Yel-
low Paper 151, 1–32 (2014)

[32] Wood, G.: Polkadot: Vision for a heterogeneous
multi-chain framework (2017)

[33] Zhang, F., Daian, P., Kaptchuk, G., Bentov, I.,
Miers, I., Juels, A.: Paralysis proofs: Secure dy-
namic access structures for cryptocurrencies and
more

[34] Zyskind, G., Nathan, O., Pentland, A.: Enigma:
Decentralized computation platform with guaran-
teed privacy. arXiv preprint arXiv:1506.03471

A Participation Games: Full proof and
discussion

First, we provide a proof of Theorem 1. To do this, we
require a more formal setup than provided in Section 2.3.

Every round, a participation game is played. Players
have time-discounted utilities for some discounting pa-
rameter γ < 1. That is, the utility of round r is discounted
at a rate of γr times the payoffs in the first round. Note
that this is necessary in order for payoffs to be finite and
the notion of best-responding to make sense. We will
take γ→ 1. That is, the game is played for a fixed γ < 1,
but we will consider the case where γ is very close to 1.

Definition 1 (One-Shot Sybil-Proof). We say that a par-
ticipation game f (·) is One-Shot Sybil-Proof if for all
k, ` · f (k+ `) ≤ f (k+ 1). Note that this is equivalent to
saying the strategy si = 1 is always a best response.

Observation 1. Every One-Shot Sybil-Proof participa-
tion game has f (n+1)≤ f (n)/2.

Proof. Consider ` = 2 in the definition of One-Shot
Sybil-Proof. The claim immediately follows.

Definition 2 (Participation Parameter). Define the par-
ticipation parameter of a Sybil-proof participation game
to be the maximum k such that f (k)> 1.

Proof of Theorem 1. Let k be the participation parameter
of the participation game. If k = 1, then it is trivially
an equilibrium for player one to participate with s1 = 1
every round, and all other players to not participate, and
the theorem is proved.

If k > 1, we will consider any 1 > γ ≥ 1− 1
3k f (1) . Con-

sider the following equilibrium:

• Player one participates and sets s1 = k in every
round.

• Player i ∈ [2,k] uses the following strategy: if
during any of the previous R = 12k f (1)2 rounds,
∑ j 6=i s j < k− i−1, set si = 1. Otherwise, set si = 0.

• Players i > k set si = 0.

First, observe that all players i > 1 are best-
responding, by definition of the participation parame-
ter. Player one will set s1 = k every round no matter
what, so all other players will set s j = 0. Therefore,
in any round the decisions faced by player i is simply
whether to set s j = ` and get reward ` · f (k+ `), without
affecting anyone’s strategies in any future rounds. By
the fact that f (·) is One-Shot Sybil-Proof, we have that
` · f (k+ `)≤ f (k+1). By definition of the participation
parameter, f (k+ 1) ≤ 1. So player i would get reward
at most 1 by participating, and have to pay cost 1, giving
them non-positive utility by participating. Therefore, all
players i > 1 are best responding (getting zero utility, but
with no options that give higher utility).

Now, we wish to prove that player 1 is also best re-
sponding. Note that it is certainly possible for player 1

16

https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
http://theory.stanford.edu/~tim/f16/l/l5.pdf
http://theory.stanford.edu/~tim/f16/l/l5.pdf

to improve their payoff in one round: they can achieve
` · f (`) for any ` immediately after a round where they
set si = k. Immediately from the definition of One-Shot
Sybil-Proof, we see that player 1 would make more profit
in this round by setting si = 1. However, this would cost
them in future rounds, and it causes other players to par-
ticipate.

Specifically, observe first that player 1 is strictly bet-
ter off setting s1 = k in any round than s1 > k. This is
because all other players behave the same in every future
round regardless of whether s1 = k or s1 > k, and s1 = k
yields strictly higher reward in the present round. So we
need only consider deviations where s1 < k.

Now consider the payoff of player 1 if they set s1 =
k in every round. Each round they will get exactly k ·
f (k)−1 := A. So player 1 gets reward ≥ A/(1− γ).

Consider instead the maximum payoff if player 1 if
they set s1 = ` < k in some round. In this round, player
1 will get payoff ` · f (`)− 1 > ε . But now consider the
subsequent R rounds, and call this set of rounds R. In
at most k of these rounds is it possible that ∑ j s j < k.
This is because ∑ j 6=1 s j ≥ k−X , where X is the mini-
mum s1 played over the previous rounds of R. This is
because if in any prior round in R we had s1 = X , then
players 2, . . . ,k−X+1 will all participate for the remain-
ing rounds in R. So the only way we can possibly have
∑ j s j < k is if si < X . As there are only k possible values
to report, X can only decrease up to k times, meaning that
there are at most k rounds where ∑ j s j < k. Intuitively,
what’s going on is that every time player 1 lowers their
Sybil count from the previous minimum, they get one
awesome round where the total number of participants is
< k. But all future rounds in R have increased participa-
tion from others, so the total participation will be at least
k until player 1 further lowers their on Sybil count.

In each of these k rounds, player 1 might get a payoff
of up to f (1)−1 =C (this is a very loose upper bound).
However, in each of the other rounds, player 1 gets a pay-
off of at most (k− 1) f (k)− 1 ≤ A− 1. This is because
there are at least k total participants in all other rounds, at
least one of which is not player 1. So if player 1 is partic-
ipating, the best case for them is that they are k−1 of the
participants with only one other participant. So player
1’s total payoff during these R rounds is upper bounded
by:

R−1

∑
r=0

(A−1)γr + k f (1) = (A−1)(1− γ
R)/(1− γ)+ k f (1)

= A(1− γ
R)/(1− γ)+ k f (1)− (1− γ

R)/(1− γ).

Finally, observe that the total payoff for the entire re-
mainder of the game from R+ 1 until it terminates is at

most γR · f (1)/(1− γ). This is because the most value
that can possibly be earned in round r is γr f (1), so sum-
ming from r = R to ∞ yields the above. This means that
if the player deviates from s1 = k in round one, their total
payoff is at most:

A/(1− γ)+ k f (1)− (1− γ
R)/(1− γ)+ γ

R f (1)/(1− γ).

Observe that the first term is exactly the reward
achieved by setting s1 = k in every round. The added
term can be made arbitrarily negative by setting γ,R ap-
propriately. In particular, setting γ = 1− 1

3k f (1) , R =

12k f (1)2 yields:

k f (1)− (1− γ
R)/(1− γ)+ γ

R f (1)/(1− γ)

= k f (1)−3k f (1) · (1− γ
R)+ γ

R ·3k f (1)2

= k f (1) ·
(
−2+3(f (1)+1)γR)< 0.

The final inequality follows because R is sufficiently
large.

A quick comment on Theorem 1 is warranted. First,
observe that our constants γ and R are really wasteful in
order to keep the proof as simple as possible. Certainly
we could optimize the constants, but this is not the point
of the theorem. In addition, we of course are not claim-
ing to predict that this is how players will behave in a
participation game. There are numerous equilibria. The
point we are making is that there are provably bad equi-
libria in the repeated game, despite the sound logic for
one-shot reasoning, and these equilibria are quite (qual-
itatively) natural: most players react to the market, and
one player cleverly stays one step ahead. Given this, and
the very plausible existence of other undesirable equilib-
ria, we would not predict that the one-shot sybil-proof
equilibrium arises in the repeated game.

A.1 Discussion of possible defenses
In this section, we overview some “outside-the-box” de-
fenses against the participator’s dilemma. These de-
fenses seem a) technically challenging (perhaps impos-
sible) and b) costly - scaling linearly with the computa-
tional power of a possible adversary. The main idea is
that our analysis of participation games considered one
task in isolation where it was feasible for every player to
participate in every round.

Consider instead a set of T participation games played
in parallel, with the constraint that any player can simul-
taneously enter at most A of them. The bound A may
come from limits on computational power, or required

17

monetary deposits. The “natural” state of affairs, how-
ever, would have A > T , reducing us back to the original
participation game. That is, one should expect a single
verifier (or conglomerate of verifiers) to have the com-
putational power to process all contracts. Similarly, as-
suming that any ordinary participant can amass the funds
for a deposit, a single wealthy verifier (or conglomerate)
should certainly be able to amass the funds to deposit ev-
erywhere. So this approach initially doesn’t seem to buy
anything.

One potential avenue for defense is to introduce
dummy contracts that are indistinguishable from the rest,
to artificially inflate T > A. The downside to this is that
if dummy contracts are to be indistinguishable from the
rest, they must also reward verifiers, and therefore the
cost of the system will blow up. Even if one is willing to
pay the cost, this solution has some pitfalls:

• It’s unclear how to design dummy transactions that
are truly indistinguishable from the rest.

• Even if dummy transactions are indistinguishable
from the rest, an adversary could still try to flood
verification of a specific contract they’re invested
in, encouraging others to spend their limited de-
posits/computational power verifying elsewhere.

If somehow one is able to bypass the above problems,
the cost of implementing dummy contracts grows lin-
early with the ratio A/T (where T is the natural desired
throughput). We include the results of some simulations
confirming this below.

With enough dummy transactions, the game becomes
the following: each player simultaneously chooses a
number of Sybils si. Then, A participation games are
chosen uniformly at random, and player i enters si Sybils
in each (note that it is without loss of generality that each
player chooses the same number of Sybils per game by
symmetry). If A/T ′ (T ′ includes the dummy contracts)
is small, then even if one player introduces many Sybils,
there will still be a decent chance of winding up in a
contract where they don’t participate at all, which will
still yield reasonable reward. However, we certainly need
T ′ > A in order to accomplish this, and the dummy trans-
actions require payment as well.

The plots below describe the following: Assume an
initial ratio of A/T (called ‘A’ in the plots - one can alter-
natively think of T as being normalized to 1). Then, pick
a ratio of dummy contracts to increase T to T ′ > A, and a
reward function f (·) of the form f (m) = c ·2−m. Player
1 will then pick s1 to enter in A participation games per
round, knowing that all other players will best respond
to this, in order to maximize their own payoff. Finally
for a given k (desired number of distinct participators per
contract), we optimize over all choices of T ′,c to find the

0 2 4 6 8 10
Security Threshold #user

0

10

20

30

40

50

60

Av
er

ag
e

Pa
ym

en
t P

er
 R

ea
l-U

se
r g

ua
ra

nt
ee

d

A=1
A=2
A=3
A=4
A=5
Ideal Minimum

Figure 3: Plot of total required cost to guarantee x
distinct participators in expectation, when one user
does optimal Sybil attacks for various initial ratio of
A/T .

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Computation Capability per user

0

20

40

60

80

100

120

To
ta

l S
ys

te
m

 P
ay

m
en

t

SecThres=2
SecThres=3
SecThres=4
SecThres=5

Figure 4: Plot of total required cost to guarantee
{2,3,4,5} distinct participators in expectation, when
one user does optimal Sybil attacks as a function of
initial ratio A/T .

minimum cost solution that guarantees k distinct partic-
ipators per contract in expectation (in the above form of
equilibrium). We include two plots below.

Both figures have the total cost on the y-axis. Figure 3
has the desired number of distinct participators on the x-
axis. The dotted line plots the ideal cost: how much we
have to pay per contract to get x distinct verifiers (this is
just x). The solid lines plot the cost of the optimal solu-
tion using dummy contracts for various initial values of
A/T . The takeaway from the first plot is just that there’s
a noticeable separation between ideal and the necessary
cost if A > T .

Figure 4 has A on the y-axis, and the solid lines plot the
cost of the optimal solution using dummy contracts as a
function of A. Here, it is easy to see that the cost is linear
in A for all desired number of distinct verifiers. Note that
this blowup will come on top of whatever blowups are
already identified in works based on participation games
due to other concerns.

18

	Introduction
	Arbitrum
	Structure of the paper

	Why Scaling Smart Contracts is Difficult
	The Verifier's Dilemma
	The Participation Dilemma
	Participation Games

	Arbitrum System Overview
	Roles
	Lifecycle of a VM
	The Bisection Protocol
	The Verifier's Role
	Key Assumptions and Tradeoffs
	Benefits

	Arbitrum Design Details
	The Arbitrum Protocol
	The Bisection Protocol
	The Arbitrum VM Architecture
	Extensions

	Implementation and Benchmarks
	Escrow Contract
	Iterated Hashing

	Background and related work
	Refereed Delegation
	Bitcoin
	Ethereum
	Other proposed solutions

	Conclusion
	Acknowledgements
	Participation Games: Full proof and discussion
	Discussion of possible defenses

