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Abstract

Confidential transactions are used in distributed digital assets to demonstrate the balance of values
hidden in commitments, while retaining signer ambiguity. Previous work describes a signer-ambiguous
proof of knowledge of the opening of commitments to zero at the same index across multiple public
commitment sets and the evaluation of a verifiable random function used as a linking tag, and uses this
to build a linkable ring signature called Triptych that can be used as a building block for a confidential
transaction model. In this work, we extend Triptych to build Arcturus, a proving system that proves
knowledge of openings of multiple commitments to zero within a single set, correct construction of
a verifiable random function evaluated at each opening, and value balance across a separate list of
commitments within a single proof. While soundness depends on a novel dual discrete-logarithm hardness
assumption, we use data from the Monero blockchain to show that Arcturus can be used in a confidential
transaction model to provide faster total batch verification time than other state-of-the-art constructions
without a trusted setup.

1 Introduction

Distributed digital assets, starting with Bitcoin, rely on digital signatures to authorize transactions and
transfer the spend authority of funds. While early protocols based on the model established by Bitcoin have
the advantage of simplicity, they lack desirable properties relating to privacy and indistinguishability. In
particular, the address and signature graph formed by the blockchain in such assets is trivially traceable,
and the amounts a signature authorizes in a transaction are visible.

To protect users of distributed assets and permit better indistinguishability of transactions for fungibil-
ity, several methods have been proposed and deployed toward confidential transactions. The CryptoNote
protocol, an early proposal for obscuring transaction graphs, relies on linkable ring signatures on transaction
outputs with denominated amounts [17]; a transaction includes a separate signature for each such amount,
yielding poor scaling. A later advancement to the RingCT protocol [13] used Pedersen commitments to
amounts associated with transaction outputs and extended a ring signature construction by Liu et al. [10] to
support parallel signatures in a matrix arrangement, removing the need for denominated transaction outputs
altogether. However, both of these constructions use linkable ring signatures that scale linearly in size with
the size of the anonymity set used in each signature.

More recent methods of maintaining transaction privacy use accumulators to represent a given state of
transaction outputs. Zerocoin [11] relied on RSA accumulators and associated proofs to assert the validity
of transactions, but amounts were fixed, the protocol used very large and inefficient proofs, transactions
were limited to a simple burn-mint operation on a transparent chain, and the use of RSA groups required
a trusted setup process. Later work produced Zerocash [15], which replaced RSA accumulators and related
proofs with succinct proofs relating to Merkle tree accumulators, enabling arbitrary amounts and direct
anonymous transfers. However, like Zerocoin, Zerocash used a proving system requiring a trusted setup
process; this was eventually used as the basis for the Zcash protocols.

Until recently, transaction protocols desiring robust signer ambiguity and flexible direct anonymous
transfers of arbitrary amounts faced a tradeoff between a trust-free construction and efficiency in proof sizes
and verification complexity. Recent work in this area generally relies on one of two novel proving systems to
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build transactions that scale in size logarithmically with the size of the prover-specified anonymity set, while
requiring no trusted setup. A one-of-many commitment-to-zero proving system of Groth and Kohlweiss [7]
was used to build simple ring signatures and Zerocoin-style transactions, and was later extended to support
accountable ring signatures more efficiently by Bootle [1]. This proving system forms the basis of Lelantus
[8], which extends the Zerocoin-style transaction model of [7] by using multiple-base Pedersen commitments
to incorporate amounts alongside serial numbers; a modification to the proofs shows balance, and multiple
proofs are needed for typical transactions. However, Lelantus transactions allow a transaction sender to
later identify when the recipient spends their funds; a mitigation to this solves the tracing problem, but
at the cost of eliminating a useful one-time addressing construction that ensures recipient anonymity. The
same proving system in [7] is used in Triptych [12], a multi-dimensional linkable ring signature construction
that can be used to build confidential transactions similarly to [13]; Triptych notably supports one-time
addressing and arbitrary amounts, while still requiring the use of multiple proofs for transactions spending
multiple transaction outputs. Interestingly, recent independent work extends [7] to support proofs on multiple
commitments in a single list (as we also introduce below), with a particular application to Zether [4]; however,
this uses a different approach than we take here, and seems to result in larger proofs.

The Bulletproofs [2] proving system uses an inner-product compression method to build range and cir-
cuit satisfiability proofs with logarithmic size scaling. Besides an increasingly widespread deployment for
commitment range proofs, the underlying structure of Bulletproofs is used to construct more specialized
proving systems for confidential transactions. Omniring [9] uses this method to build transactions that
demonstrate spend authorization for multiple signer-ambiguous transaction inputs within a single proof,
while directly integrating range proving. The result is very small proofs; however, verification is slower than
other approaches, and requirements for unique group generators mean such proofs cannot be verified in effi-
cient batches. RingCT 3.0 [18] also uses a Bulletproof-style construction. In an early version, transactions
required separate proofs for multiple inputs; while an update incorporates a single proof for all inputs to a
transaction, it also requires that the number of inputs be padded to a power of two, which can yield poor
verification complexity.

1.1 Our contribution

We extend the proving system in Triptych [12] in two significant ways, which we call Arcturus. First,
we enable the prover to show knowledge of multiple signing keys in a single proof simultaneously using
one set of combined proof elements; unlike [18], our modification admits any number of transaction inputs
without limitations. We retain the verifiable random function evaluation that produces linking tags, which
are required for the detection of repeat signing with the same commitment opening across proofs. Second,
we show Pedersen commitment value balance directly within the same proof; in particular, we show that a
particular combination of input and output commitments sums to a commitment to zero. We note that the
soundness of the resulting proving system depends on a novel dual discrete-logarithm hardness assumption
that we are not able to reduce to a standard hardness assumption; while we consider this novel assumption
reasonable, it is untested.

Taken together, these changes have application to a transaction protocol for efficient use in blockchain
confidential transactions that does not require any trusted setup process. A transaction can sign for multiple
signer-ambiguous inputs and prove that the transaction balances using a single proof, a major improvement
to currently-deployed constructions that require multiple proofs and separate auxiliary Pedersen amount
commitments. Further, we use actual blockchain data from the Monero digital asset project to directly
compare the overall size and verification time of Arcturus to that of Triptych and two separate RingCT 3.0
constructions. We find that Arcturus provides superior verification performance compared to other trust-free
confidential transaction constructions, with competitive size scaling.

2 Preliminaries

2.1 Public parameters

Let G be a cyclic group in which the discrete logarithm problem is hard, and let F be its scalar field.
Let H : {0, 1}∗ → F and H : {0, 1}∗ → G be cryptographic hash functions. Let N = nm be a positive
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integer, where m > 1 (for our construction, we will use n = 2). Assume that G, H, U , and any point of
the form Gi or Hi (possibly with multiple indices) are uniformly random generators of G whose discrete
logarithm relationship to each other is unknown. Note that all such generators may be produced using public
randomness; for example, the use of a suitable hash function with domain separation may be appropriate. All
such public parameters are assumed to comprise a global reference string known to all players; in particular,
we generally exclude explicit reference to public parameters from algorithm definitions and Fiat-Shamir
transcript hashes for readability.

2.2 Tensor commitment

Let Com be an additively homomorphic commitment scheme that is perfectly hiding and (at least) compu-
tationally binding. In this work, we assume use of a simple extension to the Pedersen commitment scheme:
for x, r ∈ F, define Com(x, r) ≡ rG+ xH to be the commitment of the value x with randomness r.

For a three-dimensional tensor f ≡ (fi,j,k) ⊂ F and blinding factor r ∈ F, define the Pedersen tensor
commitment

Com(f, r) ≡ rG+
∑
i,j,k

fi,j,kGi,j,k

using fixed independent generators as described above.
Operations on tensors are assumed to be performed componentwise; for example, if f ≡ (fi,j,k) and

g ≡ (gi,j,k) are such tensors over F, then f + g ≡ (fi,j,k + gi,j,k), and so forth.

2.3 Other notation

For integers or field elements i, j, the Kronecker delta function δ(i, j) evaluates to 1 if i = j and 0 otherwise,
where the output is taken to be in the appropriate set.

We sometimes use index subscript notation of the form ij to indicate the j digit of i, where such a
decomposition of i is taken base n with padded length m:

m−1∑
j=0

ijn
j = i

This notation will be specified explicitly where confusion may occur.

2.4 Sigma protocols

For a given relation R, a sigma protocol for R is an interactive challenge-response protocol between a prover
and verifier, where the prover wishes to convince the verifier it knows a witness corresponding to a statement
in R.

A sigma protocol is complete, sound, and zero-knowledge. These definitions are well known and found,
for example, in [7]. Essentially, these properties are:

• Perfectly complete: For a witness to a statement in R, an honest prover always convinces an honest
verifier of the validity.

• Special sound : Given a statement in R, if the prover can produce valid proof transcripts in response
to multiple verifier challenges, then it is possible to extract a witness for the statement from the
transcripts.

• Special honest-verifier zero knowledge: Given a statement and known verifier challenge, it is possible
to produce a simulated transcript without knowledge of a corresponding valid witness.

Sigma protocols can be made non-interactive by replacing random verifier challenges with hash-based tran-
script challenges under the random oracle model; this approach is called the Fiat-Shamir heuristic [6].
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2.5 Hardness assumption

We now define a novel cryptographic hardness assumption that is used later to show the soundness of our
construction.

Definition 1 (Dual-target discrete logarithm problem). Let G be a group in which the discrete logarithm
problem is hard, and let F be its scalar field. Let n > 0. Consider the following game between a challenger
and a probabilistic polynomial-time player A:

• The challenger chooses G,H ∈ G uniformly at random and sends both to A.

• A chooses and returns sets {Gi}n−1i=0 , {Hi}n−1i=0 ⊂ G to the challenger.

• The challenger chooses a set {µi}n−1i=0 ⊂ F uniformly at random and sends it to A.

• A chooses and returns a set {xi}n−1i=0 ⊂ F to the challenger.

We say thatA wins the (n, ε, t)-dual-target discrete logarithm game if, in time less than t and with probability
at least ε, the following are true:

•
∑n−1

i=0 µ
i (Gi − xiG) = 0

•
∑n−1

i=0 µ
i (H − xiHi) = 0

• There exists an index 0 ≤ i < n such that either xiG 6= Gi or xiHi 6= H.

3 Proving system

We now present a sigma protocol for the following relation:

R ≡

{
{Mi}N−1i=0 , {Pi}N−1i=0 , {J

(u)}w−1u=0 , {Qj}T−1j=0 ⊂ G ;
(
{l(u)}w−1u=0 , {r(u)}

w−1
u=0 , y

)
:

Ml(u) = r(u)G ∀ u ∈ [0, w) and r(u)J (u) = U ∀ u ∈ [0, w) and

w−1∑
u=0

Pl(u) −
T−1∑
j=0

Qj = yG

}

This captures the necessary elements for transaction authorization, which we describe later; knowledge of
signing keys {r(u)} will show that the prover has signing authority for inputs to a transaction, and knowledge
of the secret key y to an amount commitment difference will show that the transaction amounts balance.
Finally, comparison of the verifiable random function used to produce {J (u)} will be used to prevent attempts
to sign for the same secret key without revealing the corresponding public key, which is important for signer
ambiguity and double-spend protection within or between proofs.

Figures 1 and 2 describe the prover and verifier interaction. Next, we prove that the prover and verifer
routines constitute a sigma protocol that is perfectly correct, special sound, and special honest-verifier zero
knowledge.

4 Security

Theorem 1. The sigma protocol in Figures 1 and 2 reflects the relation R and is perfectly correct, (m+ 1)-
special sound, and special honest-verifier zero knowledge.

Proof. The proof proceeds similarly to that of [12], which in turn follows the methods in [7, 1].
To show the protocol is perfectly complete, suppose a verifier receives an honest proof. We wish to show

that all verifier equations hold.
To show that Equation 1 holds, observe that since

A+ ξB = Com(a+ ξσ, rA + ξrB)

= Com(a+ ξσ, zA),
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P :

• Select random rA ∈ F and
{
a
(u)
j,i

}n−1,m−1,w−1

i=1,j,u=0
⊂ F. Set

{a(u)j,0 }
m−1,w−1
j,u=0 ≡ −

n−1∑
i=1

a
(u)
j,0

and define A ≡ Com(a, rA).

• Define
{
σ
(u)
j,i

}n−1,m−1,w−1

i,j,u=0
⊂ F such that σ

(u)
j,i ≡ δ

(
l
(u)
j , i

)
(using our decomposition notation),

and choose random rB ∈ F. Define B ≡ Com(σ, rB).

• Select random rC ∈ F, and define C ≡ Com(a(1− 2σ), rC).

• Select random rD ∈ F, and define D ≡ Com(−a2, rD).

• For 0 ≤ u < w, define coefficients
{
p
(u)
k,j

}N−1,m−1

k,j=0
such that

p
(u)
k (x) ≡

m−1∏
j=0

(
σ
(u)
j,k x+ a

(u)
j,k

)
= δ

(
l(u), k

)
xm +

m−1∑
j=0

p
(u)
k,jx

j

(using our decomposition notation). Then define pk,j ≡
∑w−1

u=0 p
(u)
k,j and pk(x) ≡

∑w−1
u=0 p

(u)
k (x)

accordingly.

• Select random {ρj}m−1,w−1j,u=0 ,
{
ρ
(u)
j

}m−1,w−1

j,u=0
⊂ F.

• Set µ ≡ H({Mk}, {Pk}, {J (u)}) (to include all public parameters as well).

• Define {Xj}m−1j=0 ⊂ G such that:

Xj ≡
N−1∑
k=0

pk,jµ
kMk +

w−1∑
u=0

ρ
(u)
j G

• Define {Yj}m−1j=0 ⊂ G such that:

Yj ≡ U
N−1∑
k=0

pk,jµ
k +

w−1∑
u=0

ρ
(u)
j J (u)

• Define {Zj}m−1j=0 ⊂ G such that:

Zj ≡
N−1∑
k=0

pk,jPk +

w−1∑
u=0

ρ
(u)
j G

P → V :
A,B,C,D, {Xj}, {Yj}, {Zj}

Figure 1: Sigma protocol for R
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V → P :
ξ ∈ {0, 1}∗

P(ξ) :

• Define
{
f
(u)
j,i

}n−1,m−1,w−1

i=1,j,u=0
such that f

(u)
j,i ≡ σ

(u)
j,i ξ + a

(u)
j,i .

• Define zA ≡ rA + ξrB and zC ≡ ξrC + rD.

• Define
{
z
(u)
R

}w−1

u=0
⊂ F such that:

z
(u)
R ≡ µl(u)

r(u)ξm −
m−1∑
j=0

ρ
(u)
j ξj

• Define:

zS ≡ ξm
w−1∑

u=0

s(u) −
T−1∑
j=0

tj

− m−1∑
j=0

(
ξj

w−1∑
u=0

ρ
(u)
j

)

P → V :

{f (u)j,i }
m−1,n−1,w−1
j=0,i=1,u=0 , zA, zC , {z(u)R }, zS

V :

• For 0 ≤ u < w and 0 ≤ j < m, set:

f
(u)
j,0 ≡ ξ −

n−1∑
i=1

f
(u)
j,i

• Accept if and only if:

A+ ξB = Com(f, zA) (1)

ξC +D = Com(f(ξ − f), zC) (2)

N−1∑
k=0

µkMk

w−1∑
u=0

m−1∏
j=0

f
(u)
j,kj

− m−1∑
j=0

ξjXj −
w−1∑
u=0

z
(u)
R G = 0 (3)

U

N−1∑
k=0

µk

w−1∑
u=0

m−1∏
j=0

f
(u)
j,kj

− m−1∑
j=0

ξjYj −
w−1∑
u=0

z
(u)
R J (u) = 0 (4)

N−1∑
k=0

Pk

w−1∑
u=0

m−1∏
j=0

f
(u)
j,kj

− m−1∑
j=0

ξjZj − ξm
T−1∑
j=0

Qj − zSG = 0 (5)

Figure 2: Sigma protocol for R (continued)
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it suffices to show that f
(u)
j,i = a

(u)
j,i + ξσ

(u)
j,i for all 0 ≤ i < n and 0 ≤ j < m and 0 ≤ u < w. If i 6= 0, then

this equation holds by definition of f
(u)
j,i . The case i = 0 proceeds differently. To show it, we will use the fact

that
n−1∑
i=0

σ
(u)
j,i = 1

for all 0 ≤ j < m and 0 ≤ u < w by construction:

f
(u)
j,0 = ξ −

n−1∑
i=1

f
(u)
j,i

= ξ −
n−1∑
i=1

(
a
(u)
j,i + ξσ

(u)
j,i

)
= ξ −

n−1∑
i=1

a
(u)
j,i − ξ

n−1∑
i=1

σ
(u)
j,i

= ξ + a
(u)
j,0 − ξ

(
1− σ(u)

j,0

)
= a

(u)
j,0 + ξσ

(u)
j,0

We now show that Equation 2 holds. Since

ξC +D = Com(ξa(1− 2σ)− a2, ξrC + rD)

= Com(ξa(1− 2σ)− a2, zC),

it suffices to show that

f
(u)
j,i

(
ξ − f (u)j,i

)
= ξa

(u)
j,i

(
1− 2σ

(u)
j,i

)
−
(
a
(u)
j,i

)2
for all 0 ≤ i < n and 0 ≤ j < m and 0 ≤ u < w. We use our previous work and the fact that each(
σ
(u)
j,i

)2
= σ

(u)
j,i since σ

(u)
j,i ∈ {0, 1}:

f
(u)
j,i

(
ξ − f (u)j,i

)
=

(
a
(u)
j,i + ξσ

(u)
j,i

)(
ξ − a(u)j,i − ξσ

(u)
j,i

)
= a

(u)
j,i ξ −

(
a
(u)
j,i

)2
− 2a

(u)
j,i ξσ

(u)
j,i +

(
ξ2σ

(u)
j,i − ξ

2
(
σ
(u)
j,i

)2)
= a

(u)
j,i ξ −

(
a
(u)
j,i

)2
− 2a

(u)
j,i ξσ

(u)
j,i +

(
ξ2
(
σ
(u)
j,i

)2
− ξ2

(
σ
(u)
j,i

)2)
= ξa

(u)
j,i

(
1− 2σ

(u)
j,i

)
−
(
a
(u)
j,i

)2
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Next, we show that Equation 3 holds:

N−1∑
k=0

µkMk

w−1∑
u=0

m−1∏
j=0

f
(u)
j,kj

− m−1∑
j=0

ξjXj −
w−1∑
u=0

z
(u)
R G

=

N−1∑
k=0

µkMkpk(ξ)−
m−1∑
j=0

ξj

(
N−1∑
k=0

pk,jµ
kMk +

w−1∑
u=0

ρ
(u)
j G

)
−

w−1∑
u=0

z
(u)
R G

=

N−1∑
k=0

µkMk

pk(ξ)−
m−1∑
j=0

ξjpk,j

− m−1∑
j=0

ξj
w−1∑
u=0

ρ
(u)
j G−

w−1∑
u=0

z
(u)
R G

=

N−1∑
k=0

µkMk

[
ξm

w−1∑
u=0

δ
(
l(u), k

)]
−

m−1∑
j=0

ξj
w−1∑
u=0

ρ
(u)
j G−

w−1∑
u=0

µl(u)

r(u)ξm −
m−1∑
j=0

ρ
(u)
j ξj

G
= ξm

w−1∑
u=0

µl(u)

r(u)G−
m−1∑
j=0

ξj
w−1∑
u=0

ρ
(u)
j G− ξm

w−1∑
u=0

µl(u)

r(u)G+

m−1∑
j=0

ξj
w−1∑
u=0

ρ
(u)
j G

= 0

Equation 4 holds with similar algebra:

N−1∑
k=0

µkU

w−1∑
u=0

m−1∏
j=0

f
(u)
j,kj

− m−1∑
j=0

ξjYj −
w−1∑
u=0

z
(u)
R J (u)

=

N−1∑
k=0

µkUpk(ξ)−
m−1∑
j=0

ξj

(
N−1∑
k=0

pk,jµ
kU +

w−1∑
u=0

ρ
(u)
j J (u)

)
−

w−1∑
u=0

z
(u)
R J (u)

=

N−1∑
k=0

µkU

pk(ξ)−
m−1∑
j=0

ξjpk,j

− m−1∑
j=0

ξj
w−1∑
u=0

ρ
(u)
j J (u) −

w−1∑
u=0

z
(u)
R J (u)

=

N−1∑
k=0

µkU

[
ξm

w−1∑
u=0

δ
(
l(u), k

)]
−

m−1∑
j=0

ξj
w−1∑
u=0

ρ
(u)
j (r(u))−1U −

w−1∑
u=0

µl(u)

r(u)ξm −
m−1∑
j=0

ρ
(u)
j ξj

 (r(u))−1U

= xm
w−1∑
u=0

µl(u)

U −
m−1∑
j=0

ξj
w−1∑
u=0

ρ
(u)
j (r(u))−1U − ξm

w−1∑
u=0

µl(u)

U +

m−1∑
j=0

ξj
w−1∑
u=0

ρ
(u)
j (r(u))−1U

= 0
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Finally, we show that Equation 5 holds:

N−1∑
k=0

Pk

w−1∑
u=0

m−1∏
j=0

f
(u)
j,kj

− m−1∑
j=0

ξjZj − ξm
T−1∑
j=0

Qj − zSG

=

N−1∑
k=0

Pkpk(ξ)−
m−1∑
j=0

ξj

(
N−1∑
k=0

pk,jPk +

w−1∑
u=0

ρ
(u)
j G

)
− ξm

T−1∑
j=0

Qj − zSG

=

N−1∑
k=0

Pk

pk(ξ)−
m−1∑
j=0

ξjpk,j

− m−1∑
j=0

ξj
w−1∑
u=0

ρ
(u)
j G− ξm

T−1∑
j=0

Qj − zSG

= ξm
w−1∑
u=0

(s(u)G+ auH)−
m−1∑
j=0

ξj
w−1∑
u=0

ρ
(u)
j G− ξm

T−1∑
j=0

(tjG+ bjH)− ξm
w−1∑

u=0

s(u) −
T−1∑
j=0

tj

G+

m−1∑
j=0

ξj
w−1∑
u=0

ρ
(u)
j G

=

w−1∑
u=0

au −
T−1∑
j=0

bj

H

= 0

Hence, the protocol is perfectly complete.
Next, we show that the sigma protocol is special honest-verifier zero knowledge. To do so, we construct

a simulator that, when given a random verifier challenge ξ, can construct a proof transcript with identical
distribution to a valid proof.

Observe first that the simulator presented in the proof of Lemma 1 in [1] translates nearly identically to
our setting, since we can flatten tensor commitments to a matrix structure with the required sum property.
The simulator first chooses B ∈ G uniformly at random; then, the cited lemma assures a valid simulation

of the proof elements A,C,D, zA, zC , {f (u)j,i 6=0}, and from this we may compute {f (u)j,0 }. In a valid proof, B is
also uniformly distributed.

The proof elements {Xj}m−1j=1 , {Yj}
m−1
j=1 , {Zj}m−1j=1 are independent and uniformly distributed in a valid

proof since the elements of {ρj}, {ρj} are uniformly distributed and the discrete logarithm problem in G
is hard; hence, the simulator chooses them uniformly at random. Since the verification checks require that
X0, Y0, Z0 be uniquely determined by the other elements in the respective sets, they are selected by the
simulator in this manner.

Finally, the elements {z(u)R }
w−1
u=0 and zS are independent and uniformly distributed in valid proofs given

a random verifier challenge ξ, so the simulator may choose them uniformly at random. Hence the protocol
is special honest verifier zero-knowledge.

We claim that the protocol is (m + 1)-special sound, where m > 1. To show this, we construct an
extractor that, when given m + 1 valid responses to m + 1 distinct verifier challenges for the same initial
statement, produces a valid witness for the statement. In particular, we produce a modified witness for the
following relation that is based on the information presented in the prover algorithm, where we define µ as
before:

R′ ≡

{
{Mk}N−1k=0 , {Pk}N−1k=0 , {J

(u)}w−1u=0 , {Qj}T−1j=0 ⊂ G ;
(
{l(u)}w−1u=0 , {r(u)}

w−1
u=0 , y

)
:

w−1∑
u=0

µl(u)

Ml(u) =

w−1∑
u=0

µl(u)

r(u)G and

w−1∑
u=0

µl(u)

r(u)J (u) =

w−1∑
u=0

µl(u)

U and

w−1∑
u=0

Pl(u) −
T−1∑
j=0

Qj = yG

}

Observe that if we assume that the dual-target discrete logarithm problem is hard in G and H is modeled
as a random oracle, a witness for R′ produced by the extractor must also be a witness for R using the same
statement. This means that extraction of a witness for R′ is sufficient to establish the desired soundness.
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Suppose that for a given statement, we have a set of (m + 1) distinct verifier challenges {ξe}me=0 corre-
sponding to distinct valid responses of this form:{

{ef (u)j,i }, {ez
(u)
R }, ezS

}m

e=0

From the 3-special soundness in [1] and m > 1 we have valid extractions {σ(u)
j,i }

w−1
u=0 and {a(u)j,i }

w−1
u=0 , and the

Pedersen binding property ensures that (with high probability) we have:

ef
(u)
j,i = σ

(u)
j,i ξe + a

(u)
j,i ∀ e ∈ [0,m]

Using the extracted values, compute the polynomial

pk(x) ≡
w−1∑
u=0

m−1∏
j=0

(
σ
(u)
j,k x+ a

(u)
j,k

)
for all k ∈ [0, N). Extraction of {σ(u)

j,i }
w−1
u=0 immediately yields the signing index set {l(u)}w−1u=0 .

We have seen that pk is of degree m only when k ∈ {l(u)}w−1u=0 . Hence there exist sets of coefficients
{Xj , Y j , Zj}m−1j=0 , computed uniquely from the statement and extracted values, such that Equations 3, 4,
and 5 are of the following form:

ξm
w−1∑
u=0

µl(u)

Ml(u) +

m−1∑
j=0

ξjXj =

(
w−1∑
u=0

z
(u)
R

)
G

ξm
w−1∑
u=0

µl(u)

U +

m−1∑
j=0

ξjY j =

w−1∑
u=0

z
(u)
R J (u)

ξm
w−1∑
u=0

Pl(u) +

m−1∑
j=0

ξjZj − ξm
T−1∑
j=0

Qj = zSG

Construct a Vandermonde matrix V where the e row is the vector (1, ξe, . . . , ξ
m
e ). Since all ξe are distinct,

the rows of V span Fm+1; hence there exist weights {θe}me=0 such that the resulting linear combination of
rows produces the vector (0, . . . , 0, 1). That is,

∑m
e=0 θeξ

j
e = δ(j,m).

For each of the previous three equations, we can therefore build a linear combination over e. For the
first:

w−1∑
u=0

µl(u)

Ml(u) =

m∑
e=0

θeξ
m
e

(
w−1∑
u=0

µl(u)

Ml(u)

)
+

m∑
e=0

θe

m−1∑
j=0

ξjeXj

 =

w−1∑
u=0

(
m∑
e=0

θeez
(u)
R

)
G

We therefore can define extractions for each r(u):

r(u) ≡ 1

µl(u)

m∑
e=0

θeez
(u)
R

Observe that the same witnesses appear in the second:

w−1∑
u=0

µl(u)

U =

m∑
e=0

θeξ
m
e

(
w−1∑
u=0

µl(u)

U

)
+

m∑
e=0

θe

m−1∑
j=0

ξjeY j

 =

w−1∑
u=0

(
m∑
e=0

θeez
(u)
R

)
J (u)

This means the requirements on each r(u) are satisfied. The third equation proceeds similarly.

w−1∑
u=0

Pl(u) −
T−1∑
j=0

Qj =

m∑
e=0

θeξ
m
e

w−1∑
u=0

Pl(u) −
T−1∑
j=0

Qj

+

m∑
e=0

θe

m−1∑
j=0

ξjeZj

 =

(
m∑
e=0

θeezS

)
G

Hence we have y ≡
∑m

e=0 θeezS .
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5 Transaction model

We now describe how to apply the sigma protocol for R in a confidential transaction model. In such a model,
a transaction consumes so-called outputs generated in previous transactions, and produces new outputs for
use in later transactions. Notably, in a confidential transaction model, we wish to introduce ambiguity as to
which transaction inputs are being consumed, as well as the corresponding values represented by them.

Outputs are constructed as Pedersen commitments to zero, such that an output public key is of the form
M ≡ rG with signing key r. We do not consider here the method by which output keys are generated, but
assume this is offloaded to another part of the transaction model. Each output comes equipped with a value
commitment P ≡ sG+ aH, where a is the amount and s a blinding factor.

A user of the protocol forms an anonymity set {Mi}N−1i=0 of outputs from previous transactions. Of these,
suppose that the set {l(u)}w−1u=0 represents the indices of the w outputs for which the user wishes to sign; that
is, the user knows {r(u)}w−1u=0 such that r(u)G = Ml(u) for all 0 ≤ u < w. To help ensure ambiguity of the
signing indices, assume the user has shuffled the anonymity set. Each element of the anonymity set has a
corresponding value commitment {Pi ≡ siG+ aiH}N−1i=0 .

Further, the user generates a set of new outputs produced by the transaction, with corresponding value
commitments of the form {Qj ≡ tjG+ bjH}T−1j=0 . Because the transaction value must balance, the following
must hold:

w−1∑
u=0

al(u) =

T−1∑
j=0

bj

Note that there is no anonymity set for outputs generated by the transaction.
These terms are used to form a statement tuple for the relation R:{Mi}N−1i=0 , {Pi}N−1i=0 , {(r

(u))−1U}w−1u=0 , {Qj}T−1j=0 ;

{l(u)}w−1u=0 , {r(u)}
w−1
u=0 ,

w−1∑
u=0

al(u) −
T−1∑
j=0

bj


The user generates a proof showing the validity of this statement with the corresponding secret values as a
witness set; the proof demonstrates knowledge of the signing keys {r(u)}w−1u=0 , and the witness y formed by the
commitment differences demonstrates that the input and output values balance. Provided the commitment
scheme used for value representation is (at least computationally) binding, the user cannot produce such a
value y unless the values balance correctly; in our case, Pedersen commitments satisfy this requirement.

We call the elements of the set {J (u)}w−1u=0 the linking tags for the transaction. Similar to their use in link-
able ring signatures, they are used by the verifier to detect attempts to sign with a secret key multiple times,
either within the same transaction or between multiple transactions. The map r(u) 7→ J (u) ≡ (r(u))−1U is
an injective one-way pseudorandom function [5]; if the verifier sees the same linking tag used elsewhere, it
knows that the (unknown) secret key was used again. In our confidential transaction model, this corresponds
to an attempt to double-spend funds that would be rejected by the verifier.

Since the sigma protocol is special honest-verifier zero knowledge, it is witness indistinguishable [3]. Note,
however, that an observer who sees an input anonymity set containing a commitment for which the observer
knows the opening can trivially test linking tags using its own secret keys to determine if they were used in
the proof. Therefore, witness indistinguishability is assumed to apply among input commitments for which
an observer does not know a corresponding opening.

6 Efficiency

Observe that all group operations involved in verification occur in multiscalar multiplication operations that
must evaluate to zero; methods such as those in [16, 14] provide efficient evaluation of these operations.
Further, many group elements in these operations are globally-fixed generators that appear in all proofs. As
a result, verification of many separate independent proofs may be batched similarly to the method described
in [2] and elsewhere, where random weighting of verification equations is performed and common generators
are used only once. The result is that a batch of independent proofs can be more efficiently verified using a
single multiscalar multiplication operation, lowering the marginal cost per proof to verify.
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Protocol Size (proof elements)
RingCT 3.0 (original) [18] w(2 lgN + 18) + w + 2
RingCT 3.0 (updated) [18] 2dlg(Nw)e+ w + 17
Triptych [12] w(3 lgN + 8) + w
Arcturus (this work) (w + 3) lgN + w + 7

Table 1: Proof size (in group/field elements) with varying anonymity set size N and signing keys w

Protocol Verification complexity
RingCT 3.0 (original) [18] w(2 lgN + 11) + 4N +M + T + 7
RingCT 3.0 (updated) [18] 2dlg(Nw)e+N(w + 3) +M + T + 13
Triptych [12] (2 + 2w) lgN + 2N + 4w + T + 2
Arcturus (this work) (3 + 2w) lgN + 2N +M + T

Table 2: Verification complexity with varying anonymity set size N , signing keys w, and outputs T

We follow the same notation as before: N = 2m is the size of the input anonymity set for varying m > 1,
w is the number of signing indices, and T is the number of output commitments used in the balance check.
Assuming that both elements of G and F occupy 32 bytes of storage (as is the case for common elliptic curve
groups using compressed point representations), we compare the size of proofs for RingCT 3.0 (two variants)
[18], Triptych [12], and this work. Note that we make some assumptions in order to produce fair comparisons
here. In Triptych and the original version of RingCT 3.0, certain commitment offsets are required as part
of balance testing, which we consider, along with the multiple proofs needed in a transaction that wishes to
sign for multiple inputs. However, we ignore input set representation (which depends on implementation),
range proofs (which are required for all protocols and not part of the proving systems), and any auxiliary
data that would otherwise appear as part of transactions. Table 1 shows the results.

We also examine the verification complexity of these protocols. To do so, we examine the size of all
multiscalar multiplication operations needed to verify one or more proofs in a transaction, along with balance
proofs. Table 2 shows the results for various transaction parameters.

Since each compared protocol scales differently with the transaction parameters, it is instructive to
examine the overall size effects under real-world conditions. To do this, we examine data from the Monero
blockchain; in particular, for each transaction from 18 October 2018 to 14 February 2020, we extract the
number of consumed outputs and the number of newly-generated outputs. Coinbase transactions, where
new assets are generated by mining on a per-block basis, are ignored since they do not require this type of
proof. Figure 3 shows this data run against the values in Table 1 with additional transaction auxiliary data
(including range proofs and recipient-specific data) for increasing anonymity set size N . Since verification
complexity in all the protocols scales approximately linearly with N , overall verification time based on this
parameter is an important bounding factor.

While the updated RingCT 3.0 protocol from [18] yields superior space scaling, its requirement that w
be a power of two (padded to reach such a value) results in poor verification time scaling. Comparatively,
our construction results in lower overall verification complexity at the expense of overall size scaling.
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