
v0.1 — 12/2015

DTB001: Decred Technical Brief
Christina Jepson1*

Abstract
Distributed, token-incentivized timestamping systems ledgers such as Bitcoin have become a mainstay of modern
finance. We have implemented a platform combining elements of proof-of-work (PoW) and proof-of-stake (PoS)
blockchains in an attempt to garner the benefits of both systems. Less major change to our consensus network
include additional elliptic curve signature suites, refinement and modification of the existing scripting language,
added extensibility in multiple areas to support future changes to the protocol, and distributed stake pooling.

Keywords
hybrid PoW/PoS — PoA

1Company 0, Chicago, Illinois
*Correspondence: cjepson@decred.org

Contents

Introduction 1

1 Hybrid PoW/PoS Design 1

2 Decentralized Stake Pooling 2

3 Minor Design Elements 2
3.1 Elliptic curve signature algorithms . . . . . . . . . . . 2
3.2 Hash function . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3 Script extensions . . . . . . . . . . . . . . . . . . . . . . . 3
3.4 Signature script isolation and fraud proofs . . . . . 3
3.5 Transaction extensions . . . . . . . . . . . . . . . . . . . 3
3.6 Miscellaneous improvements . . . . . . . . . . . . . . 3

References 4

Appendix A: Schnorr Multisig 5

Introduction

Distributed timestamping protocols were first applied to
decentralizing a financial network in the ground-breaking
paper on Bitcoin by Nakamoto [1]. The field has seen ex-
plosive research follow-up from both amateurs and pro-
fessionals, competing to offer extensions, adjustments,
improvements, and refinements of the existing protocol.
Notable implementations of new ideas include Ethereum
[2], which extended scripting, CryptoNote [3], which re-
fined privacy, and Sidechains [4], which investigated
two-way pegs with 1:1 Bitcoin tokens. These protocols
all utilize proof-of-work (PoW) as originally described in
the Bitcoin whitepaper.

A common extension to the Bitcoin protocol modifies
the consensus mechanism to either completely or par-
tially use proof-of-stake (PoS), or the use of one’s stake

(tokens) rather than one’s computational power to par-
ticipate in the timestamping process. The first proof-
of-stake blockchain based on the Bitcoin protocol was
implemented in 2012 by King and Nadal [5], and in-
cludes both PoW and PoS that gradually skew towards
complete PoS over time. Criticisms of pure PoS consen-
sus systems have themselves been abundant [6][7], with
the most vehement opposition coming from those work-
ing with purely PoW blockchains. The most common
argument against PoS for distributed timestamping is
“nothing-at-stake” or “costless simulation”, describing the
systematic instability resulting from stakeholders being
able to generate alternatively timestamped histories with
no cost to themselves.

Despite the controversy, it is apparent that systems who
have a PoS overlay dependent on a PoW timestamping
system may be able to independently achieve consen-
sus. This is mathematically explored by Bentov and col-
leagues [8] in a paper on their scheme, proof-of-activity
(PoA), and appears to be a viable extension to the PoW
protocols that may enable some interesting new proper-
ties. A similar design called MC2 was earlier proposed
by Mackenzie in 2013 [9]. Here we describe the con-
struction and implementation of a similar consensus
system that we have named “Decred”.

1. Hybrid PoW/PoS Design

The major contrast to the follow-the-satoshi scheme pre-
viously described [8] is a new lottery system in which
tickets must be purchased and then wait on a maturity
period before they can be selected and spent. Selec-
tion of tickets for a block is performed lexicographically
from a mature ticket pool based on pseudorandomness



DTB001: Decred Technical Brief — 2/5

contained in the block header. Because manipulation
of this pseudorandomness is difficult in a PoW system,
manipulation of ticket selection is associated with a fun-
damental cost to the PoW miner. The selection of tickets
over a time period can be described by a probability
density function similar to the probability of obtaining
a block in PoW at a constant hash rate over time at a
constant difficulty [1], yielding a probability distribution
with a mode approximately equal to half the ticket pool
size. The price to purchase a ticket is regulated by a new
stake difficulty that is determined by the exponentially
weight average number of tickets purchased and the
size of the mature ticket pool in prior blocks.

The validation of PoW blocks is explained by the follow-
ing steps:

i. A block is mined by a PoW miner, who selects the
transactions to put inside it. Stake system related
transactions are inserted into the UTXO set.

ii. PoS miners vote on the block by producing a vote
transaction from their ticket. The vote both enables
a block to be built on top of the previous block and
selects whether or not the previous regular trans-
action tree (containing the coinbase and non-stake
related transactions) is valid.

iii. Another PoW miner begins building a block, inserting
the PoS miners’ votes. A majority of the votes cast
must be included in the following block for that block
to be accepted by the network. Of the vote transac-
tions in this new block, the PoW miner checks a flag
to see if the PoS miner indicated if the block’s regular
transaction tree was valid. These voting flags are
tallied and, based on majority vote, a bit flag is set
in this block to indicate if the previous block’s regular
transaction tree is valid.

iv. A nonce is found that satisfies the network difficulty,
and the block is inserted into the blockchain. If the
previous block’s regular transaction tree was vali-
dated, insert these transactions into the UTXO set.
Go to (i.).

To discourage manipulation of the included votes, a lin-
ear subsidy penalty is applied to the current block if they
fail to include all the voting transactions into their block.
The ‘soft’ penalty of invalidating the previous transaction
tree helps prevent the discarding of work, which is nec-
essary to secure the system, and makes the assumption
that the next block will be obtained by a miner who is
disinterested in preserving the subsidy of the former
block in favour of their own. Even in the case that this
is not true, a malicious miner with a high hash rate will
still need at least (number for majority/2)+ 1 votes in

favour of their previous block’s transaction tree in order
to produce a block that gives them any subsidy from the
previous block.

Bit flags are explicitly added to both the block header
and votes so that either miner can easily vote in new
hard or soft forks.

2. Decentralized Stake Pooling

One issue arising from previous PoS designs is how to
perform pooling in PoS mining analogous to PoW mining
pooling. This is advantageous to PoW miner pooling as
PoS miner pooling does not require dedicated hardware
to mine beyond simply running a node, and, unlike PoW
mining, it’s unlikely that the centralization-promoting sce-
nario will arise in which capital costs to mine increase as
profit decreases. Decred solves this problem by allow-
ing multiple inputs into a ticket purchase transaction and
committing to the UTXO subsidy amount for each input
proportionally, while also committing to a new output
public key or script for these proportional rewards. The
subsidy is then given to those generating the ticket in
a trustless manner, and the ticket can be signed round
robin before submission to the network. Importantly,
control over the production of the vote itself is given to
another public key or script which can not manipulate
the subsidy given to the recipients. Production of the
vote in a distributed manner can be achieved by using a
script in the ticket that allows for multiple signers.

3. Minor Design Elements

3.1 Elliptic curve signature algorithms

Although secp256k1 is widely considered to have a se-
cure choice of elliptic curve parameters, some ques-
tions about the origin of the curve remain. For exam-
ple, the selection of the Koblitz curve (y2 + xy = x3 +
ax2 +b and a = a2, b = b2; a = 1 or 2, b! = 0) is typically
done by enumerating the binary extension Galois fields
GF(2m) where m is a prime in the range {0, ..., higher
limit} and x,y ∈ GF(2m) [10]. For 128-bit security, m is
required to be > 257 and typically the smallest prime
possible in this range to facilitate fast calculation. In this
case, the obvious choice for m is 277, a = 0; despite the
existence of this appropriate m value being known by
the curators of the curve parameters [11] and the fact
that it was the most computationally efficient solution,
the parameters m = 283 and a = 0 were selected out
of three possible options (m = 277, a = 0; m = 283, a =
0; m = 283, a = 1). For all other Koblitz curve specifica-
tions, the most obvious m value is selected. Although



DTB001: Decred Technical Brief — 3/5

this is curious, there are no known attacks that can be
applied by using a slightly larger m value for the Ga-
lois field. Other objections to the parameters used by
secp256k1 have also been raised [12].

Another extremely popular digital signature algorithm
(DSA) with 128-bits of security is Ed25519 [13]. This
uses the EdDSA signing algorithm over a curve bira-
tionally equivalent to Curve25519 and is widely em-
ployed today. Unlike secp256k1’s ECDSA, Ed25519
uses simpler Schnorr signatures that are provably se-
cure in a random oracle model [Appendix A].

Schnorr signatures have also been proposed for Bitcoin
[14]. However, instead of using an OP code exclusive
to Schnorr signatures utilizing the curve parameters
for secp256k1, Decred instead uses a new OP code
OP CHECKSIGALT to verify an unlimited number of
new signature schemes. In the current implementation,
both secp256k1 Schnorr signatures and Ed25519 sig-
natures are available to supplement secp256k1 ECDSA
signatures. In the future, it is trivial to add new signature
schemes in a soft fork, such as those that are quan-
tum secure. Having these two Schnorr suites available
also allows for the generation of simple group signatures
occupying the same space of a normal signature [15],
which for both is implemented. In the future, thresh-
old signatures using dealerless secret sharing will also
enable t-of-n threshold signatures occupying the same
amount of space [16].

3.2 Hash function

SHA256, used in Bitcoin, has a number of technical
shortcomings due to its Merkle–Damgård construction.
These vulnerabilities led to the SHA3 competition for
a new hash function based on a different fundamen-
tal construction. Decred has chosen BLAKE256 as its
hash function, a finalist for the competition [17][18]. The
hash function is based around a HAIFA construction that
incorporates a variation of the ChaCha stream cipher
by Bernstein. The hash function is notable for its high
performance on x86-64 microarchitecture, being faster
for short messages than SHA256 [19] despite being
considered to have a much higher security margin at
14-rounds.

3.3 Script extensions

Aside from the previously mentioned OP CHECKSIGALT
and OP CHECKSIGALTVERIFY, other modifications to
Bitcoin scripting have been made. A version byte has
been added to output scripts to enable simple soft fork-
ing to new scripting languages, as first suggested by

Wuille [20]. All math and logic related OP codes have
been re-enabled and now operate on int32 registers.
Various byte string manipulation OP codes have also
been implemented and re-enabled. The remaining un-
used Bitcoin OP codes have been repurposed for future
soft forks. Some longstanding bugs in the Bitcoin script-
ing language have been also been fixed [21][22].

3.4 Signature script isolation and fraud proofs

To prevent transaction malleability, the ability to generate
a transaction with the same input references and outputs
and yet a different transaction ID, input scripts have been
removed from the calculation of the transaction hash.
The origins of this modification have been controversial,
although it appears to have been implemented in both
CryptoNote coins and sidechains in the past [3][23]. It
is now being proposed for Bitcoin as a soft fork referred
to as “Segregated Witness” [20]. As in the Elements
sidechains implementation, commitments to the witness
data are included in the merkle tree of the block [23].
In addition, fraud proofs, as suggested for Bitcoin’s soft
fork [20], are set by miners and also committed to as
part of the data in the merkle tree.

3.5 Transaction extensions

Transaction expiry has been added, which allows one to
prune transactions from the memory pool if the blockchain
has reached a certain height [24]. Previously the only
way to remove a transaction from the mempool was to
double spend it.

3.6 Miscellaneous improvements

As in Bitcoin, subsidy decays exponentially with block
height. However, Decred’s algorithm, though also ex-
tremely simple, better interpolates this decay over time
so as not to produce market shock with steep sub-
sidy drops similar to CryptoNote [2]. Like PeerCoin
[5], the PoW difficulty is calculated from the exponen-
tially weighted average of differences in previous block
times. However, this calculation is also interpolated into
Bitcoin-like difficulty window periods. The “timewarp”
bug in Bitcoin is corrected [25], by ensuring that every
difference in block time in incorporated into the difficulty
calculation.

It should also be noted that many well known mining
attacks, such as selfish mining [26] and stubborn mining
[27], will no longer function advantageously in a system
where there is effective decentralization of stake min-
ing and no PoW-PoS miner collusion. This is simply
because it is impossible to generate secret extensions
to blockchains without the assistance of stake miners.



DTB001: Decred Technical Brief — 4/5

Resilience to previously described mining attacks, and
newly conceived mining attacks specific to our system,
will be a fruitful area for future research.

References

[1] Nakamoto N. 2008. Bitcoin: A Peer-to-Peer Elec-
tronic Cash System. Self-published.
https://decred.org/research/nakamoto2008.pdf

[2] Buterin V. 2014. A Next-Generation Smart Contract
and Decentralized Application Platform. Self-published.
https://decred.org/research/buterin2014.pdf

[3] von Saberhagen N. 2013. CryptoNote v 2.0. Self-
published.
https://decred.org/research/saberhagen2013.pdf

[4] Back A., Corallo M., Dashjr L., Friedenbach M.,
Maxwell G., Miller A., Poelstra A., Timon A., Wuille P.
2014. Enabling Bitcoin Innovations with Pegged Sidechains.
BlockStream.
https://decred.org/research/back2014.pdf

[5] King S. and Nadal S. 2012. PPCoin: Peer-to-Peer
Crypto-Currency with Proof-of-Stake. Self-published.
https://decred.org/research/king2012.pdf

[6] Bentov I., Gabizon A., Mizrahi A. 2015. Cryptocur-
rencies without Proof of Work. arXiv Cryptography and
Security.
https://decred.org/research/bentov2015.pdf

[7] Poelstra A. 2015. On Stake and Consensus. Self-
published.
https://decred.org/research/poelstra2015.pdf

[8] Bentov I., Lee C., Mizrahi A., Rosenfeld M. 2014.
Proof-of-Activity: Extending Bitcoin’s Proof of Work via
Proof of Stake. Proceedings of the ACM SIGMETRICS
2014 Workshop on Economics of Networked Systems,
NetEcon.
https://decred.org/research/bentov2014.pdf

[9] Mackenzie A. 2013. MEMCOIN2: A Hybrid Proof-of-
Work, Proof-of-Stake Crypto-currency. Self-published.
https://decred.org/research/mackenzie2013.pdf

[10] Pornin T. 2013. StackExchange Cryptography: Should
we trust the NIST-recommended ECC parameters?
https://decred.org/research/pornin2013.pdf

[11] Solinas J. 2000. Efficient Arithmetic on Koblitz
Curves. Designs, Codes and Cryptography. 19(2):195-
249.
https://decred.org/research/solinas2000.pdf

[12] Bernstein D. and Lange T. 2014. SafeCurves: choos-
ing safe curves for elliptic-curve cryptography.
http://safecurves.cr.yp.to

[13] Bernstein D., Duif N., Lange T., Schwabe P., Yang
B. 2012. High-speed high-security signatures. Journal
of Cryptographic Engineering. 2:77-89.
https://decred.org/research/bernstein2012.pdf

[14] Osuntokun O. 2015. OP SCHNORRCHECKSIG:
Exploring Schnorr Signatures as an Alternative to ECDSA
for Bitcoin. Self-published.
https://decred.org/research/osuntokun2015.pdf

[15] Petersen T. 1992. Distributed Provers and Verifiable
Secret Sharing Based on the Discrete Logarithm Prob-
lem. Aarhus University Ph.D. Thesis. 55-57.
https://decred.org/research/petersen1992.pdf

[16] Stinson D. and Strobl R. 2001. Provably Secure
Distributed Schnorr Signatures and a (t,n) Threshold
Scheme for Implicit Certificates. Certicom Corporation.

[17] Aumasson J., Henzen L., Meier W., Phan R. 2010.
SHA-3 Proposal BLAKE. Self-published.
https://decred.org/research/aumasson2010.pdf

[18] Aumasson J., Henzen L., Meier W., Phan R. 2014.
The Hash Function BLAKE. Springer-Verlag Berlin Hei-
delberg.

[19] Bernstein D. and Lange T. eBACS: ECRYPT Bench-
marking of Cryptographic Systems.
http://bench.cr.yp.to

[20] Wuille P. 2015. Segregated Witness for Bitcoin.
Scaling Bitcoin Hong Kong.
https://prezi.com/lyghixkrguao/segregated-witness-and-
deploying-it-for-bitcoin/

[21] Todd P. The difficulty of writing consensus critical
code: the SIGHASH SINGLE bug. Bitcoin-development
mailing list.
https://decred.org/research/todd2014.pdf

[22] Franco P. Understanding Bitoin, 6.3: Multisignature
(M-of-N) Transactions. John Wiley Sons Inc. p. 84.

[23] Maxwell G. 2015. Bringing New Elements to Bitcoin
with Sidechains. SF Bitcoin Devs Meetup.
https://decred.org/research/maxwell2015.pdf

[24] ByteCoin. 2010. Need OP BLOCKNUMBER to
allow “time” limited transactions.
https://decred.org/research/bytecoin2010.pdf

[25] ArtForz. 2011. Re: Possible way to make a very
profitable 50 plus ish attack for pools? Bitcointalk Bitcoin
Forums.
https://decred.org/research/artforz2011.pdf

[26] Eyal I. 2015. The Miner‘s Dilemma. In IEEE Sym-
posium on Security and Privacy, 2015.
https://decred.org/research/eyal2015.pdf



DTB001: Decred Technical Brief — 5/5

[27] Nayak K., Kumar S., Miller A., Shi E. 2015. Stub-
born Mining: Generalizing Selfish Mining and Combining
withan Eclipse Attack. Cryptology 2015/796.
https://decred.org/research/nayak2015.pdf

[28] Wuille P. 2015. Tree Signatures: Multisig on steroids
using tree signatures.
https://decred.org/research/wuille2015.pdf

Appendix A: Schnorr Multisig

Schnorr signatures have been proposed for Bitcoin. They
have also been used extensively in other cryptocurren-
cies, such as Nxt and CryptoNote coins. In the simplest
case, a Schnorr signature ECDSA cryptosystem can be
described as follows:

• y = xG where y is the public key point on the curve,
x is the private scalar, G is the curve generator.

• r = kG where r is the point on the curve resulting
from the multiplication of k, the nonce scalar, by
the generator.

• h = H(M||r) where H is a secure hash function, M
is the message (usually a 32 byte hash), and r is
the encoded point previously described. || denotes
concatenation.

• s = k−hx where s is the scalar denoted from k−hx.

• The signature is (r,s), and verification is simply
H(M||r) == hQ+ sG.

In the above, multiplications by a capital letter (e.g., kG)
are point multiplications by a scalar, and so always result
in a point on the curve. Addition of these points results
in another point. Additions and multiplications of scalars
amongst themselves is the same as regular multiplica-
tion you would do with any integer. It’s important to note
that multiplying a point by a scalar is considered an irre-
versible step, because the calculation of the scalar from
the new point defaults to the discrete logarithm problem.

From the above it is clear that r is a point on the curve,
while s is a scalar. Consider the group of signers rep-
resented by x sum = x1 + ...+ xn with nonces k sum =
k 1+ ...+ k n. The public key for the private scalar sum
would be: y = x sumG. The signature for these sums
(from all group participants) would be: r′ = k sumGs′ =
k sum− hx sum. To generate this signature all partici-
pants would have to share their private key and nonces
beforehand. We want to obviously avoid this, so instead
let us have each participant create a partial signature.
r n = k 1G+ ...+ k nG = r′ (the sum of the public nonce

points, which the participants may freely individually pub-
lish) s n = k n−hx n. Substituting this into the general
formulas for signatures and using point or scalar ad-
dition: r = r n = r′(thesameasabove)s = s 1+ ...+ s n = s′

(simple scalar addition; it must be true that (k 1−hx 1)+
...+(k n− hx n) = s1 + ...+ s n = s′). Doing an m-of-n
signature is non-trivial. It has been suggested that a
merkle tree containing all possible public key sums for m
participants be used for these cases, generating a log(n)
sized signature [28].


	Introduction
	Hybrid PoW/PoS Design
	Decentralized Stake Pooling
	Minor Design Elements
	Elliptic curve signature algorithms
	Hash function
	Script extensions
	Signature script isolation and fraud proofs
	Transaction extensions
	Miscellaneous improvements

	References
	Appendix A: Schnorr Multisig

