
∆: Solving the Bridging Trilemma

Ryan Zarick Bryan Pellegrino Caleb Banister

Abstract

Despite continuously growing demand to transfer assets
between blockchains, there still does not exist an ade-
quate solution for bridging native assets between chains.
Existing cross-chain bridges have three key problems:
(1) they rely on intermediate or wrapped tokens, (2) they
can only support a small, limited network of chains, and
(3) they cannot be composed with smart contracts on
the destination chain. The use of intermediate tokens
necessitates an additional swap on the destination chain
to exchange those intermediate tokens for native tokens,
and the limited scale causes inconvenience to users who
must often bridge assets multiple times across different
bridges to reach their final destination chain. To make
matters worse, the additional swap on the destination
chain cannot be composed with the original transfer, cre-
ating unnecessary work for users who must initiate the
final swap manually. In this paper, we present the Delta
(∆) algorithm, a novel resource balancing algorithm that
leverages cross-chain liquidity to enable a new class of
cross-chain bridge (∆Bridge) that deals purely in native
assets while still maintaining instant guaranteed finality.
With ∆, large networks of blockchains connect to enable
the quick and easy transfer of native assets from chain to
chain.

1 Introduction

Transferring liquidity between chains is a common and
important task in today’s blockchain ecosystem, with
users constantly moving liquidity to take advantage of
opportunities on different chains. This movement of liq-
uidity is made possible by bridges, services that facil-
itate cross-chain token swaps [3]. Unfortunately, prior
work in cross-chain bridging must make a compromise
in functionality due to the bridging trilemma, giving up
one of the following: Instant guaranteed finality (Sec-
tion 2.1), unified liquidity (Section 2.3), or native as-

set transactions. In practice, currently available bridges
choose to forego native asset transactions, instead rely-
ing on lock-and-mint semantics where they lock assets
on the source chain and mint a synthetic asset on the des-
tination chain [8]. This ultimately results in a poor user
experience, as users are forced to manually swap the in-
termediate tokens for native assets in a separate transac-
tion on the destination chain.

However, the advent of omnichain communication
protocols such as LayerZero [4] offers the opportunity
to solve the bridging trilemma. Omnichain communi-
cation protocols enable reliable bidirectional inter-chain
communication in densely connected networks of chains,
making it possible to directly bridge native assets with-
out sacrificing instant guaranteed finality. In this pa-
per, we present the Delta (∆) algorithm, a novel re-
source balancing algorithm which, in conjunction with
omnichain communication, solves the bridging trilemma
by enabling unified liquidity without compromising in-
stant guaranteed finality. Bridges built on the ∆ algo-
rithm (∆Bridges) conduct native asset transfers through
unified pools of liquidity while achieving instant guar-
anteed finality, the combination of which enables cross-
chain composability (Section 2.2), and scalability. By
eliminating overheads associated with lock-and-mint,
∆Bridges provide benefit to both users and liquidity
providers (LPs)–users no longer have to bridge assets
multiple times to acquire native assets on the destina-
tion chain, and LPs can achieve high capital efficiency
by staking into a single-sided asset pool while collect-
ing fees from all incoming transfers regardless of the
source chain. In addition to this, unified liquidity allows
∆Bridges to easily scale to vast networks of chains, over-
coming a key limitation of existing bridges. All of these
features are enabled by the ∆ algorithm, described in Sec-
tion 3.

1

2 Background

In this paper, we refer to a network or chain network
as the collection of chains that participate in the cross-
chain asset exchange protocol. All chains in a network
are connected to all other chains in the network via a pair
of unidirectional “connections”, over which native assets
can be transferred directly. Each connection is backed
by liquidity on the receiving end to facilitate withdrawals
by the user as part of the transfer protocol–the amount of
available liquidity on the receiving chain can be thought
of as the “bandwidth” of the connection.

2.1 Instant guaranteed finality

Instant guaranteed finality is the guarantee that any trans-
fer request that is committed on the source chain will be
successfully committed on the destination chain as well,
with the key implication being that enough liquidity is
available on the destination chain to facilitate the trans-
fer. Most existing bridges, such as Avalanche Bridge [2]
and AnySwap [9], achieve instant guaranteed finality by
locking the user’s asset on the source chain and mint-
ing a corresponding synthetic asset on the destination
chain–this mechanism is functionally equivalent to an
unbounded liquidity pool, eliminating the possibility of
insufficient liquidity on the destination chain. It is es-
sential that a bridge provides instant guaranteed finality,
as the absence of any guarantees of finality necessitates
a transaction reversion mechanism which will negatively
affect the user experience or profitability of the service.
If a transaction must be reverted, the bridge has to either
(1) let the user manually revert, (2) collect sufficient gas
for reversion from the user upfront, or (3) finance the re-
version costs itself. Pushing the responsibility of revert-
ing the transaction onto the user is cumbersome and ex-
pensive, and collecting enough gas to conduct and revert
the transaction upfront is not only inefficient, but also
difficult to predict accurately due to gas price fluctua-
tions. Financing the reversion costs as part of the service
does provide a seamless user experience, but exposes the
provider to an attack vector of spammed transactions to
an endpoint with an empty liquidity pool.

However, instant guaranteed finality by itself is insuf-
ficient. For example, AnySwap can provide instant guar-
anteed finality by minting ANY tokens on the destination
chain in response to a user request to transfer assets. At
first glance, this may seem reasonable, but it does not in-
clude the actual swap from ANY to the final desired to-
ken, instead relying on the user to conduct another swap
on the destination chain. ∆Bridges, eliminate the use of
this intermediate token and provide instant guaranteed fi-
nality of the entire end-to-end transfer of the native asset
from the source chain to the destination chain.

2.2 Cross-chain composability

Traditionally, “composability” has described the ability
to combine multiple smart contracts in a single transac-
tion on a single chain. However, this term is insufficient
to describe the capabilities of ∆; ∆Bridges are cross-
chain composable, which allows a cross-chain transfer
to be composed with smart contracts on the destination
chain, a feature not present on any existing bridge. Cur-
rently, bridges can only provide traditional composabil-
ity, allowing composition with other smart contracts on
the source chain but not the destination chain. However,
a cross-chain asset transfer through a ∆Bridge can be
composed with other smart contracts on both the source
chain and the destination chain, maximizing the degree
of flexibility. For example, an asset can be swapped on
the source chain, bridged to the destination chain us-
ing a ∆Bridge, then swapped on the destination chain,
all within the same cross-chain transaction. Cross-chain
composability provides a level of convenience far ex-
ceeding any existing solution, and opens up a multitude
of new opportunities for cross-chain applications.

2.3 Unified liquidity

In contrast to existing cross-chain bridges which mint
their own tokens on the destination chain in response to
the user locking up assets on the source chain, ∆Bridges
conduct transfers without involving any intermediate to-
kens. This direct use of native assets is what enables
∆Bridges to scale better than other cross-chain bridges,
and is made possible by a pool of liquidity maintained on
every chain in the ∆ network. Users “deposit” their as-
sets into the liquidity pool on the source chain and “with-
draw” the corresponding assets from the liquidity pool on
the destination chain. All deposits and withdrawals oc-
cur purely with native assets, and no intermediate tokens
are minted at any point during the bridging process.

The simplest way to manage this liquidity would be to
keep a wholly separate pool for each pairwise connec-
tion, eliminating the possibility of race conditions and
thus trivially providing guaranteed finality. We term this
approach fractured liquidity, with each connection given
exclusive access to deposit and withdraw from its as-
signed pool of liquidity. However, the fractured approach
to liquidity requires that when a new chain is added to
the network, a new liquidity pool must be created on ev-
ery existing chain. In other words, the required num-
ber of liquidity pools scales quadratically in relation to
the number of chains in the network. Due to this rapid
growth in total required liquidity, fractured liquidity is
undesirable and impractical for networks of any non-
trivial size, and the scalability of any bridge that uses
fractured liquidity is severely limited. In addition to this,

2

Connections

Fractured Liquidity

Dest: A
$1mm

Dest: B
$1mm

Dest: C
$1mm

Dest: D
$1mm

Uni�ed Liquidity

Connections
Dest: A, B, C, D

$4mm

Figure 1: Fractured versus unified liquidity.
∆Bridges use unified liquidity to provide high scala-
bility and reduced overhead for LPs.

fractured liquidity requires LPs to stake into each con-
nection’s liquidity pool separately, requiring LPs to sep-
arately fund multiple liquidity pools to collect fees for
the corresponding connections.

To solve these problems, it is necessary to use uni-
fied liquidity, where all connections deposit and with-
draw from a single pool of liquidity. We illustrate the
difference between fractured and unified liquidity in Fig-
ure 1: in a fractured scheme, each chain maintains a sep-
arate liquidity pool per connection, whereas in a unified
scheme, all connections share a single pool. Unified liq-
uidity does not come free, however, as it creates an ad-
ditional challenge to providing instant guaranteed final-
ity: if multiple concurrent transactions withdraw from
the same liquidity pool, care must be taken to ensure that
the liquidity pool is never exhausted before all transac-
tions can complete. The ∆ algorithm solves this prob-
lem, enabling unified liquidity while maintaining instant
guaranteed finality.

3 ∆ Algorithm Design

In this section, we describe the ∆ algorithm in the context
of a hypothetical ∆Bridge. We begin with a simple intu-
itive explanation of the algorithm, then present the local
state and parameters that are stored locally on each chain
in Tables 1 and 2 respectively. We then present the ∆ al-
gorithm in Figure 4, and describe in detail each step in
Section 3.2. Finally, we formally prove that the ∆ algo-
rithm provides instant guaranteed finality in Section 3.3.

To provide an intuitive explanation of the ∆ algo-

Chain X Chain Y Chain Z
Assets: $100 Balance (X): $50 Balance (X): $50

Figure 2: ∆ soft-partitions a unified liquidity pool
between remote chains, allowing ∆Bridges to take
advantage of unified liquidity without compromising
guaranteed finality.

rithm, we define the concept of cross-chain liquidity;
with cross-chain liquidity, each chain in the network
maintains a single pool of liquidity that is soft-partitioned
into slices that belong to each of the remote chains in the
network. For example, in a network consisting of chains
X , Y , and Z, $100 of liquidity available locally on chain
X would be soft-partitioned into $50 belonging to chain
Y and $50 belonging to chain Z; this is illustrated in Fig-
ure 2. Our key insight is that it is possible to borrow
and return liquidity between these soft partitions if care
is taken to prevent overdrafts or race conditions, allow-
ing the ∆ algorithm to keep these partitions balanced in
the face of imbalanced transaction volume. Each of the
partitions represents the bandwidth available on the uni-
directional channel connecting chain Y or Z to chain X ,
and we refer to the channel having a deficit if the band-
width falls below its initial value, and a surplus if it ex-
ceeds its initial value.

A transfer consists of a deposit on the source chain
and a corresponding withdrawal on the destination chain.
Upon receiving a transfer request from chain X to chain
Y , the ∆ algorithm follows the following simple rules:

1. If any channel on chain X has a deficit, distribute
all or part of the newly deposited funds to close the
deficit.

2. Any remaining funds after closing all deficits is dis-
tributed across all channels based on the associated
weight.

In addition to the above rules, the ∆ algorithm care-
fully manages local state to enable cross-chain liquid-
ity while incurring the minimum number of cross-chain
messages that must be sent–this is achieved by keep-
ing track of all distributed funds in locally stored cred-
its, which are then opportunistically piggy-backed onto
user transactions to notify the associated remote chain.
On the other side of the transaction, each source chain
lazily tracks an estimate of the channel bandwidth with
every other chain in the network, referred to as balance
in Figure 1. By ensuring that this balance never exceeds
the actual channel bandwidth, the ∆ algorithm is able to
guarantee sufficient liquidity for every transfer, and by
extension instant guaranteed finality.

3

Name Notation Function
Liquidity
provided l ps (Initial) assets deposited

Assets as
Size of liquidity pool
(on local chain S)

Balance bs,d
Local allocation of funds
for transfers from S to D

Last known
balance lkbd,s

The last known value of
bd,s observed by chain S

Credits cs,d
Funds to be sent in next
transfer from S to D

Table 1: The ∆ algorithm requires the above state
variables to be stored on each chain. s and d are the
source (i.e., local) and destination chains, respectively.
For variables that depend on d, a copy is stored for
each destination chain. See Figure 3 for an illustra-
tive example.

Name Notation Function

Weights
ws,d

0≤ ws,d ≤ 1
∑d ws,d = 1

The proportion of
liquidity on chain s to be
allocated to chain d

Table 2: In a ∆ network, each connected chain has a
single configurable weight parameter for every other
chain in the network.

3.1 Notation
This section describes the notation used throughout the
rest of this paper. For simplicity, in the case of a liquidity
transfer from a local chain to a remote chain, we refer to
the local chain as chain S (for source), and the remote
chain as chain D (for destination). Subscript s (e.g. as)
describes chain S, and subscript d (e.g. bd) describes
chain D.

Table 1 describes the state that is stored on each chain:

Liquidity provided (LP) describes the amount of liq-
uidity staked into the liquidity pool on each chain
without a corresponding withdrawal on any destination
chain, typically by the service provider. For simplic-
ity, LP can also be thought of as the initial size of the
liquidity pool on the local chain, corresponding to the
asset deposits by the service provider during initializa-
tion of a ∆Bridge. l ps is only stored on chain S.

Assets is the size of the liquidity pool on a given chain.
This changes as user deposit and withdraw liquidity as
part of transactions.

Balance describes the portion of the assets on chain
D that can be used to facilitate transfers from chain S,
essentially describing the maximum bandwidth of the

connection from S to D. In other words, the balance
bs,d stored on chain S describes the maximum amount
of funds that can be transferred from chain S to chain
D. The balance bs,d decreases when funds are trans-
ferred from chain S to chain D, but, as we explain in
Section 3.2, may or may not increase when funds are
transferred from chain D to chain S.

Initially, the sum of the remote balances bs,d for all
destination chains in the network is equal to the assets
on chain S. However, this will not be the case as trans-
actions occur due to credits. It is important to note that
the sum of all remote balances will always be less than
or equal to the assets on the source chain, preventing a
situation where the transferred funds exceed the avail-
able assets.

Last known balance (LKB) describes the last known
value of the balance bd,s from the perspective of chain
S. Put differently, the LKBs stored on chain S describe
a (possibly outdated) view of how its assets are parti-
tioned between all of the other chains in the network.
As we prove in Section 3.3, LKBs are always larger or
equal to the corresponding balance, making them more
conservative than the true global state; in other words,
a remote chain cannot have a larger balance than the
local chain is aware of, preventing a situation where a
transfer does not have sufficient assets to commit.

Credits is the amount of funds to be sent to a par-
ticular remote chain the next time communication oc-
curs with that remote chain. As we describe in Sec-
tion 3.2, the ∆ algorithm transforms each user request
into many smaller transfers to all chains in the network.
The ∆ algorithm uses credits as a method of batching
many of these smaller transfers to reduce the opera-
tional overheads of the system, accumulating credits
over multiple transactions and opportunistically com-
municating the total accumulated credits to the desti-
nation chain whenever a user transfers assets to that
destination chain.

Table 2 describes the ∆ algorithm’s configurable param-
eters:

Weights are the only parameter that needs to be config-
ured for the ∆ algorithm. For each pair of chains S and
X in the network, there are two weight parameters that
must be set: ws,x and wx,s, with ws,x stored on chain S
and wx,s stored on chain X. The weight ws,x describes
the proportion of LP to be allocated for transfers from
chain S to chain X, allowing the protocol to allocate
a higher proportion of the liquidity pool to particular
chain pairs. This can be done to provide a larger liq-
uidity buffer, allowing ∆Bridges to deal with the higher
transaction volume for those connections.

4

Chain X

Connections
Dest: Y

weightx,y

balancex,y
lkby,x

creditx,y

: 50
: 100
: 0

: 0.5
Dest: Z

weightx,z

balancex,z
lkbz,x

creditx,z

: 80
: 100
: 0

: 0.5

Liquidity provided: 100 Assets: 200

Figure 3: In a network consisting of chains X, Y, and
Z, a ∆Bridge stores on chain X local state correspond-
ing to chains Y and Z. Values are purely illustrative.

Figure 3 shows an example of how state is stored on
a given chain. Given a network containing chains X, Y,
and Z, the local chain X keeps track of a balance, LKB,
and credit for each remote chain (Y and Z). Weights are
assigned during initial configuration, and can be modi-
fied as the system operates (e.g., when a new chain is
added to the network). The exact mechanism by which
new chains are added to the network can vary by imple-
mentation and is beyond the scope of this paper.

3.2 The ∆ algorithm
In this section, we present the ∆ algorithm in full and de-
scribe the intuition behind each step. Figure 4 gives the
pseudocode for the full algorithm. The fundamental goal
of the ∆ algorithm is to maintain the proportional rela-
tionship between each remote balance and its respective
asset pool while also keeping each balance at or above its
initial value. Put more precisely, the goal is to maintain
the following condition:

bd,s ≈ as×ws,d

The algorithm begins by the source chain S receiving a
user request to transfer t units of liquidity to chain D. We
start by checking whether there are sufficient funds on
chain D to facilitate the transfer, rejecting the transfer if
the balance between chain S and chain D (bs,d) is smaller
than the transfer size t (lines 1–3). Provided the balance
is sufficient, we update the assets (as) and balance (bs,d)
to reflect the deposit from the user and the user’s intent
to withdraw from chain D, respectively (lines 4–5).

Following the balance and asset update, we begin the
main algorithm on line 6. The quantity diffs,x is calcu-
lated for each remote chain X that chain S is connected

Input: Transaction amount t, destination chain ID d

On the source chain:
1: if bs,d < t then
2: Reject the transfer
3: end if
4: as ← as + t
5: bs,d ← bs,d− t
6: for x ̸= s do
7: diffs,x ← max(0, l ps×ws,x− (lkbx,s + cs,x))
8: end for
9: Total← ∑x diffs,x

10: for x ̸= s do
11: diffs,x← min(Total, t)× diffs,x

Total
12: end for
13: t ′← t - min(Total, t)
14: for ∀x do
15: cs,x ← cs,x +diffs,x + t ′×ws,x
16: end for
17: msg = (t,cs,d)
18: lkbd,s ← lkbd,s + cs,d
19: cs,d ← 0
20: Send msg to chain d

On the destination chain:
21: Receive (t, cs,d) from chain s
22: ad ← ad− t
23: bd,s ← bd,s + cs,d
24: lkbs,d ← lkbs,d− t

Figure 4: The ∆ algorithm. Lines 1–20 describe the
transaction on the source chain and lines 21–24 de-
scribe the transaction on the destination chain.

to (lines 6–8). Assets in the amount of diffs,x must be al-
located to chain X to return it to its original balance. I.e.,
diffs,x is the difference between this target balance and
the current balance on the remote chain X. The max()
function serves to prevent diffs,x from being negative. In-
tuitively, this step is calculating, for every chain X that
chain S is connected to, whether chain X has enough bal-
ance to continue facilitating transactions to chain S. If the
balance on chain X is too low, then the ∆ algorithm redis-
tributes some of its assets in an attempt to restore chain
X’s balance to its initial value based on the LP of chain
S and the weight corresponding to chain X. The balance
on the remote chain X is calculated as the sum of the last
known balance on chain X and any credits to chain X.
This does not necessarily reflect the immediate value of
bx,s, as credits are only known to chain S. However, the
credit information will eventually be propagated to chain
X by piggybacking on a user transfer request from S to
X.

5

Next, we calculate Total, which is simply the total
amount of assets that would need to be redistributed to
restore each remote balance to its initial value (line 9).
Instead of directly redistributing assets, the ∆ algorithm
allocates a portion of the current transfer amount t to
each remote chain. If t is at least as large as Total, then
the current transaction is large enough to fully rebalance
the remote balances. However, if t is smaller than Total,
then it is only possible to partially rebalance the remote
balances. In this case, we adjust the diffs,x values to sum
to t instead (lines 10–12). If the total rebalance amount
is less than the current transaction (i.e., Total < t), then
line 11 has no effect. We calculate t ′, which may be 0,
to be the portion of t that remains after using Total to
rebalance the remote chains (line 13).

The most important steps in the ∆ algorithm are
lines 14–16. Here, we add credits to each chain in an at-
tempt to restore the remote balance to its initial value. To
the existing credits for a particular remote chain, we add
two values: (1) the rebalance amount (diffs,x) for that re-
mote chain and (2) a proportional amount of the remain-
ing transfer balance (t ′), weighted according to the sup-
plied weight parameter (ws,x). In more detail, we first add
a credit based on the diffs,x that we calculated on lines 7
and 11, bringing the sum of the credit and LKB as close
as possible to the initial value of the LKB. If there is any
transfer balance remaining (i.e., t ′ > 0), then each remote
chain is issued a credit based on the size of the remain-
ing transfer balance and the weight corresponding to that
chain.

Lines 17 crafts a message to send to the destination
chain D. As we are notifying chain D of any outstanding
credits (cs,d), we update the LKB for chain D (lkbs,d)
to reflect the credits and then reset the credits for chain
D to 0 (lines 18–19). Finally, chain D is notified of the
transfer amount and outstanding credits (line 20), and the
transaction is committed on chain S.

Lines 21–24 describe the transaction on the destina-
tion chain, with the destination assets (ad) and LKB
(lkbs,d) updated to reflect the transfer of size t. The bal-
ance between chain D and chain S (bs,d) is increased to
reflect any credits received. Note that it is possible for
the received credits to be 0 even if the transaction size is
greater than zero. This concludes the ∆ algorithm.

3.3 Proof of Instant Guaranteed Finality

We provide a proof that the ∆ algorithm achieves instant
guaranteed finality. To recall, we define instant guar-
anteed finality as the guarantee that a transfer which is
not rejected by the source chain S is guaranteed to be
successfully committed on the destination chain D, with
the primary implication being that the liquidity pool on
chain D is guaranteed to have enough assets to facilitate

the transfer. Importantly, transactions are atomic, mean-
ing lines 1–17 occurs atomically. This prevents the case
where two (or more) concurrent transactions of sizes t1
and t2 such that t1 + t2 > bs,d get accepted.

For a transaction T transferring t tokens from chain S
to chain D, we define the committability of transaction T
on chain D as:

committable(T) =⇒ ad > t

Instant guaranteed finality is the guarantee that any
transaction not rejected by chain S will always be com-
mittable on chain D. We define and prove three theorems
to help prove instant guaranteed finality for the ∆ algo-
rithm:

Theorem 1. The remote balance bd,s can never exceed
the last known balance lkbd,s.

bd,s ≤ lkbd,s

Proof. We use a proof by contradiction. Suppose that
bd,s > lkbd,s

bd,s and lkbd,s start with the same initial value by the
definition of the algorithm.

The balance bd,s is only updated in line 23 of the al-
gorithm, and bd,s can only be updated as a result of a
transaction from chain S:

b′d,s = bd,s + cs,d

cs,d can only be received by chain d if it was sent in
line 20 of the algorithm.

Line 20 of the algorithm cannot execute unless line 18
of the algorithm also executed, because the receiver-side
transaction cannot start until the sender-side transaction
is committed.

lkb′d,s = lkbd,s + cs,d

If at any point bd,s > lkbd,s, then there must be some
transaction where b′d,s > lkb′d,s

If b′d,s > lkb′d,s, this implies one of two possibilities:
(1) There exists a transaction where:

bd,s + cs,d > lkbd,s + cs,d =⇒ cs,d > cs,d

However, this is impossible, as cs,d = cs,d .
(2) Line 24 is executed before its matching execution

of line 5
This is impossible, as the destination chain transaction

cannot start until the sender chain transaction is commit-
ted.

Therefore, the remote balance bd,s must be strictly less
than or equal to the last known balance lkbd,s.

6

Theorem 2. The sum of all LKBs and credits on a given
chain can never exceed the local assets on that chain.

∑
d∈D

lkbs,d + ∑
d∈D

cs,d ≤ as

Proof. We define the set D to describe all of the destina-
tion chains for a given source chain.

By definition, the initial state is such that:

∑
d∈D

lkbs,d + ∑
d∈D

cs,d = as

lkbd,s is only updated on line 18, and cs,d is only up-
dated on lines 15 and 19. Note that lkbd,s and cs,d are
only ever changed by transactions originating on chain
S, meaning all mutations of this particular state happen
in atomic transactions.

For the purposes of this proof, lines 18 and 19 can be
ignored as they do not change the sum of lkbd,s and cs,d .

Let a′, lkb′s,d , and c′s,d represent the assets, LKB, and
credits after executing the algorithm once for a particular
transaction of size t.

We prove by contradiction that:

∑
d∈D

lkb′s,d + ∑
d∈D

c′s,d ≤ a′s

Suppose:

∑
d∈D

lkb′s,d + ∑
d∈D

c′s,d > a′s

=⇒

∑
d∈D

lkbs,d + ∑
d∈D

cs,d + ∑
d∈D

diffs,d + ∑
d∈D

(t ′×ws,d)> as + t

This can be simplified to:

∑
d∈D

diffs,d + ∑
d∈D

(t ′×ws,d)> t

By definition (Table 2), ∑d∈D ws,d = 1, so we can fur-
ther simplify:

∑
d∈D

diffs,d + t ′ > t

By the definition of Total in line 9, we can see that:

∑
d∈D

diffs,d

Total
= ∑

d∈D

diffs,d

∑
x
x diffs,x

= 1

By line 11, we observe:

∑
d∈D

diffs,d = min(t,Total)

Given this, we can simplify further:

min(t,Total)+ t ′ > t =⇒ t ′ > t−min(t,Total)

However, by line 13 of the algorithm:

t ′ = t−min(Total, t)

Therefore, the sum of all LKBs and credits on a given
chain can never exceed the local assets on that chain.

Theorem 3. lkbs,d ≥ 0

Proof. Let lkb′s,d be the value of lkbs,d after the destina-
tion chain transaction is committed (lines 21–24.

Initially,
lkbs,d = bs,d ≥ 0

Suppose
lkb′s,d < 0

By theorem 1,
bs,d ≤ lkbs,d

=⇒ lkb′s,d < 0 =⇒ b′s,d < 0

=⇒ b′s,d < 0 =⇒ t > bs,d

This is invalid, as lines 1–3 do not permit this.
Note that we do not need to consider race conditions in

this case because the sender-side part of the transaction
(which updates bs,d) happens as an atomic transaction.

Using these three theorems, we prove our claim that
the ∆ algorithm provides instant guaranteed finality.

Proof. We start by defining a history as the complete,
temporally ordered sequence of non-rejected transfer re-
quests that occurred up to a given point in time. We claim
that no history can ever result in a negative value of ad
for any chain D in the chain network, and prove this by
induction.

We start with a history composed of one transaction T0
of size t0.

By lines 1–3, if bs,d < t0 then the transaction is re-
jected, meaning that any non-rejected transaction must
fulfill the condition bs,d > t0.

By Theorem 1:

bs,d ≤ lkbs,d =⇒ lkbs,d ≥ t0

By Theorem 2:

ad ≥ lkbs,d ≥ t0 =⇒ ad ≥ t0

ad for any chain D in the network is only ever reduced
in line 22, meaning ad can only (potentially) become
negative after executing this line.

7

We observe that this history cannot result in any
negative value of ad because ad ≥ t =⇒ ad− t ≥ 0.

Now, given a history H, we define H′ to be the result-
ing history when an additional non-rejected transfer Ti
from chain S to chain D is appended to the end of H.

Let a′d , bd,s, and lkb′d,s be the values of ad , bd,s and
lkbd,s respectively after executing all transfers in H.

We observe that b′d,s ≥ ti, otherwise the transfer Ti
would have been rejected.

By Theorem 2, we observe that b′d,s ≤ lkb′d,s.

=⇒ b′d,s + ∑
x∈X ,x ̸=s

lkb′d,x ≤ ∑
x∈X

lkb′d,x

By Theorem 1, we observe that ∑x∈X lkb′d,x ≤ a′d .

b′d,s + ∑
x∈X ,x ̸=s

lkb′d,x ≤ ∑
x∈X

lkb′d,x ≤ a′d

∑
x∈X ,x ̸=s

lkb′d,x ≤ a′d−b′d,s

By Theorem 3, lkbd,x can never be negative, therefore:

0≤ ∑
x∈X ,x ̸=s

lkb′d,x ≤ a′d−b′d,s =⇒ b′d,s ≤ a′d

ti ≤ b′d,s ≤ a′d =⇒ ti ≤ a′d

Therefore, there are sufficient assets on chain D to
serve the transaction Ti.

Note that reordering transactions (in a valid manner)
within any given history does not affect the correctness
of this proof, as the resulting reordered history is still a
valid history of finite size–this implies that there is no
possibility of a race condition resulting in insufficient as-
sets.

3.4 Discussion
As we proved in the previous section, the ∆ algorithm
is able to achieve instant guaranteed finality, and does
so while using a soft-partitioned unified liquidity pool to
achieve scalability. On top of this, ∆Bridges deal purely
in native assets, not minting or issuing any intermedi-
ate or wrapped tokens, which results in a single seam-
less transfer from the native asset on the source chain to
the native asset on the destination chain. To our knowl-
edge, no existing cross-chain bridge is capable of pro-
viding this functionality, as all existing bridges funda-
mentally rely on lock-and-mint semantics. Furthermore,
∆Bridge transactions are composable across chains: for

example, a user can, in one step, initiate a single cross-
chain transaction to convert ETH [10] to USDC [7],
bridge the USDC to Solana [5] using a ∆Bridge, and
swap the transferred USDC with SOL. This enables a
unified, streamlined experience for multichain applica-
tions (e.g. SushiSwap [6] or Abracadabra [1]). Each
of these three features—instant guaranteed finality with
native assets, capital efficiency through unified liquid-
ity pools, and cross-chain composability—is unique to
∆Bridges and not present on any other existing cross-
chain bridge.

However, there is one shortcoming of the ∆ algorithm
as shown above that we must address: It is possible for
user transactions to exhaust the available balance for a
particular source-destination chain pair. To solve this
problem in a cost-effective manner, we introduce equilib-
rium fees, which are transaction fees designed to incen-
tivize users to transfer liquidity in a manner that attempts
to keep all balances above their initial value. The key
idea is to charge an extra fee for users transferring assets
from a source chain S to a destination chain D when the
lkbd,s is high, and pay those fees back to users for con-
ducting transfers when lkbd,s is low. This results in an
incentive to deposit assets when the available liquidity is
low, leading users to replenish the liquidity pool.

While the exact details of how to optimally set and
scale such fees is beyond the scope of this paper, we pro-
vide an example of a simple fee schedule that encourages
equilibrium:

f ees,d = (lkbd,s + cs,d)− l ps×ws,d

This formula is similar to the calculation of diffs,x in
Figure 4, line 7, except negated. Using this formula, one
could hypothetically charge a fee proportional to how far
the remote balance is from its initial value. In short, the
larger an LKB, the higher the fee charged to the users
for transfers in that particular direction. Conversely, if
an LKB is below the initial value for a particular pair
of chains, then there is an arbitrage opportunity to bridge
assets in that direction and pay a negative fee (i.e., collect
a reward) for doing so.

These equilibrium fees will ultimately result in users
naturally working towards balancing each connection in
the network, ensuring ∆Bridges are able to continually
service transfers without requiring the addition of more
base liquidity.

4 Examples

In this section, we illustrate the ∆ algorithm via a detailed
explanation of the example transactions in Figure 5. This
example shows the behavior of the ∆ algorithm without
any equilibrium fees. Each horizontal section (row) in

8

Initial State
Chain X
lpx: 100

X ↔ Y
wx,y: 0.5

X ↔ Z
wx,z: 0.5

bx,y: 60
lkby,x: 50
cx,y: 0

bx,z: 50
lkbz,x: 50
cx,z: 0

ax: 100

Chain Y
lpy: 100

Y ↔ X
wy,x: 0.6

Y ↔ Z
wy,z: 0.4

by,x: 50
lkbx,y: 60
cy,x: 0

by,z: 50
lkbz,y: 40
cy,z: 0

ay: 100

Chain Z
lpz: 100

Z ↔ X
wz,x: 0.5

Z ↔ Y
wz,y: 0.5

bz,x: 50
lkbx,z: 50
cz,x: 0

bz,y: 40
lkby,z: 50
cz,y: 0

az: 100

Chain X
lpx: 100

Transaction 0: Transfer 40 from X to Y

X ↔ Y
wx,y: 0.5

Temporaries

X ↔ Z
wx,z: 0.5

bx,y: 20
lkby,x: 50
cx,y: 20

di�x,y: 0
di�x,z: 0

total: 0
t’: 40

bx,z: 50
lkbz,x: 50
cx,z: 20

ax: 140

Chain Y
lpy: 100

Y ↔ X
wy,x : 0.6

Y ↔ Z
wy,z: 0.4

bx,y: 50
lkby,x: 60
cy,x: 0

by,z: 50
lkbz,y: 40
cy,z: 0

ay: 100

Chain Z
lpz: 100

Z ↔ X
wz,x: 0.5

Z ↔ Y
wz,y: 0.5

bz,x: 50
lkbx,z: 50
cz,x: 0

bz,y: 40
lkby,z: 50
cz,y: 0

az: 1004

5

10

1515

9

Transaction 0, Step 1Transaction 0, Step 0

Chain X
lpx: 100

X ↔ Y
wx,y: 0.5

X ↔ Z
wx,z: 0.5

bx,y: 20
lkby,x: 70
cx,y: 0

bx,z: 50
lkbz,x: 50
cx,z: 20

ax: 140

Chain Y
lpy: 100

Y ↔ X
wx,y: 0.6

Y ↔ Z
wy,z: 0.4

by,x: 70
lkbx,y: 20
cy,x: 0

by,z: 50
lkbz,y: 40
cy,z: 0

ay: 60

Chain Z
lpz: 100

Z ↔ X
wz,x: 0.5

Z ↔ Y
wz,y: 0.5

bz,x: 50
lkbx,z: 50
cz,x: 0

bz,y: 40
lkby,z: 50
cz,y: 0

az: 100

t: 40; cx,y: 2020

18
19

22

24

t = 40

t = 40

t = 30

Chain X
lpx: 100

Transaction 1: Transfer 30 from Y to Z

X ↔ Y
wx,y: 0.5

X ↔ Z
wx,z: 0.5

bx,y: 20
lkby,x: 70
cx,y: 0

bx,z: 50
lkbz,x: 50
cx,z: 20

ax: 140

Chain Y
lpy: 100

Y ↔ X
wy,x : 0.6

Y ↔ Z
wy,z: 0.4

by,x : 70
lkbx,y : 20
cy,x : 30

by,z: 20
lkbz,y: 40
cy,z: 0

ay: 90

Chain Z
lpz: 100

Z ↔ X
wz,x: 0.5

Z ↔ Y
wz,y: 0.5

bz,x: 50
lkbx,z: 50
cz,x: 0

bz,y: 40
lkby,z: 50
cz,y: 0

az: 100

Transaction 1, Step 1Transaction 1, Step 0

Chain X
lpx: 100

X ↔ Y
wx,y: 0.5

X ↔ Z
wx,z: 0.5

bx,y: 20
lkby,x: 70
cx,y: 0

bx,z: 50
lkbz,x: 50
cx,z: 20

ax: 140

Chain Y
lpy: 100

Y ↔ X
wy,x: 0.6

Y ↔ Z
wy,z: 0.4

by,x: 70
lkbx,y: 20
cy,x: 30

by,z: 20
lkbz,y: 40
cy,z: 0

ay: 90

Chain Z
lpz: 100

Z ↔ X
wz,x: 0.5

Z ↔ Y
wz,y: 0.5

bz,x: 50
lkbx,z: 50
cz,x: 0

bz,y: 40
lkby,z: 20
cz,y: 0

az: 70

t: 30; cy,z: 020

19

22

24

Resolved State
Chain X
lpx: 100

X ↔ Y
wx,y: 0.5

X ↔ Z
wx,z: 0.5

bx,y: 66
lkby,x: 50
cx,y: 0

bx,z: 50
lkbz,x: 70
cx,z: 0

ax: 120

Chain Y
lpy: 100

Y ↔ X
wy,x: 0.6

Y ↔ Z
wy,z: 0.4

by,x: 50
lkbx,y: 66
cy,x: 0

by,z: 20
lkbz,y: 44
cy,z: 0

ay: 110

Chain Z
lpz: 100

Z ↔ X
wz,x: 0.5

Z ↔ Y
wz,y: 0.5

bz,x: 70
lkbx,z: 50
cz,x: 0

bz,y: 44
lkby,z: 20
cz,y: 0

az: 70

t = 30

Temporaries
di�y,x: 30
di�y,z: 0

total: 40
t’: 10

4

5

15

911

Chain X
lpx: 100

Transaction 2: Transfer 20 from Y to X

X ↔ Y
wx,y: 0.5

X ↔ Z
wx,z: 0.5

bx,y: 20
lkby,x: 70
cx,y: 0

bx,z: 50
lkbz,x: 50
cx,z: 20

ax: 140

Chain Y
lpy: 100

Y ↔ X
wy,x: 0.6

Y ↔ Z
wy,z: 0.4

by,x: 50
lkbx,y: 20
cy,x: 46

by,z: 20
lkbz,y: 40
cy,z: 4

ay: 110

Chain Z
lpz: 100

Z ↔ X
wz,x: 0.5

Z ↔ Y
wz,y: 0.5

bz,x: 50
lkbx,z: 50
cz,x: 0

bz,y: 40
lkby,z: 20
cz,y: 0

az: 70

Transaction 2, Step 1Transaction 2, Step 0

Chain X
lpx: 100

X ↔ Y
wx,y: 0.5

X ↔ Z
wx,z: 0.5

bx,y: 66
lkby,x: 50
cx,y: 0

bx,z: 50
lkbz,x: 50
cx,z: 20

ax: 120

Chain Y
lpy: 100

Y ↔ X
wy,x: 0.6

Y ↔ Z
wy,z: 0.4

by,x: 50
lkbx,y: 66
cy,x: 0

by,z: 20
lkbz,y: 40
cy,z: 4

ay: 110

Chain Z
lpz: 100

Z ↔ X
wz,x: 0.5

Z ↔ Y
wz,y: 0.5

bz,x: 50
lkbx,z: 50
cz,x: 0

bz,y: 40
lkby,z: 20
cz,y: 0

az: 70

t: 20; cy,x: 4620

18
19

22

24

t = 20

t = 20
Temporaries

di�y,x: 10
di�y,z: 0

total: 10
t’: 10

4

5

13

15

9
7
7

7
7

15

15

23

23
18

137

23

Figure 5: Three example transactions under the ∆ algorithm. See Section 4 for further explanation.

9

the figure represents a transaction and, for simplicity,
we split the execution of the protocol into two phases
(columns) per transaction. The top row shows the initial
state of each chain in the network, and, for illustrative
purposes, the final row shows what the state of the net-
work would be if all credits were resolved.

For each transaction, we annotate every change in lo-
cal state with a number representing the line of the algo-
rithm (Figure 4) that the change corresponds to. Mutable
state is bold and intermediate values are organized in a
white box labeled “Temporaries”. We use three hypo-
thetical blockchains (X, Y, and Z) in our example, and
any chains not involved in a particular transaction are
grayed out.

Initial state: Each chain has assets equaling their liq-
uidity provided, a total of $100 per chain. Chains X and
Z evenly weight each of their connections with w = 0.5,
meaning that by,x, bz,x, bx,z, by,z are all equal and have
the value 50. However, chain Y weights its connection
with X with wy,x = 0.6 and its connection with Z with
wy,z = 0.4. As a result, bx,y = 60 and bz,y = 40, meaning
that chain Z can only send up to $40 to chain Y, whereas
chain X can send up to $60 to chain Y.

Transaction 0, step 0: A user requests to transfer $40
from chain X to chain Y. The transaction begins with the
user depositing $40 into the liquidity pool on chain X.
As the transaction is smaller than the available balance,
the transaction is not rejected. Next, ax is updated to 140
and bx,y is updated to 20 by lines 4 and 5, respectively.
diff, Total, and t ′ are calculated in lines 6–12. In the
case of transaction 0, all of the LKBs are at their initial
value, so the entire transaction is split between cx,y and
cx,z proportionally to wx,y and wx,z respectively. The re-
sult is that the transaction of size 40 gets split evenly into
20 for chain Y and 20 for chain Z (line 15).

Transaction 0, step 1: The ∆ algorithm notifies chain
Y of the transaction and any outstanding credits. To that
end, we start by updating lkby,x to 70 on chain X to re-
flect the credits (line 18) and then resetting the credits
to zero (line 19). After that, we send the transaction
size t along with the value of the credits before it was
reset (cx,y = 20) to chain Y. Upon receipt of this mes-
sage, chain Y updates its assets and balance to reflect the
asset transfer (lines 22–23). Chain Y then updates its
last known value of the balance bx,y based on the 20 re-
ceived credits (line 24). Finally, chain Y can grant $40 to
the user and commit the transaction, concluding the asset
bridge process.

Transaction 1: The second transaction illustrates how
the ∆ algorithm works to dynamically rebalance its re-
mote balances during each transaction. In transaction 1,
a user transfers $30 from chain Y to chain Z. The pri-
mary difference compared to transaction 0 is that the cur-
rent value of lkbx,y is 20, reflecting the withdrawal of $40
that occurred in transaction 0, step 1. As such, in line 7,
the delta between the current value of 20 and the initial
value of 60 is calculated to be 40. However, this delta is
larger than the current transaction, so it is capped to the
transaction amount (30) in line 11. This means that the
transaction of $30 will be fully distributed to chain X to
move the remote balance bx,y as close as possible to its
initial value of 60. Despite the fact that the destination
of this transaction is chain Z, there is no credit allocated
to chain Z, and the entire transaction amount is used to
replenish the bandwidth of the connection from chain Y
to chain X.

Transaction 2: The final transaction shows both how
credits from previous transactions are piggybacked onto
new user requests and how the ∆ algorithm handles dif-
ferent weight parameterizations. In transaction 2, a user
transfers $20 from Y to X. The remote balance lkby,x is
still 10 below its initial value of 60, so the value diffy,x is
calculated to be 10. As a result, the transaction is divided
into two parts: (1) $10 is used to restore lkby,x back to its
initial value of 60 and (2) the remaining $10 is divided
between chains X and Z in a manner proportional to their
assigned weights, giving additional credits of 6 to chain
X and 4 to chain Z. When chain Y notifies chain X of the
transaction, it sends all of the accumulated credit (46,
in this case). By piggybacking accumulated credit onto
user requests, the ∆ algorithm is able to conduct transfers
and rebalance connections with a small number of trans-
actions. Minimizing the number of transactions is a key
part of what makes ∆Bridges practical and scalable, as
each transaction can be costly to commit, especially on
layer 1 chains like Ethereum.

5 Conclusion

In this paper, we presented the ∆ algorithm, a novel re-
source balancing algorithm enabling cross-chain bridges
with instant guaranteed finality in native assets with uni-
fied liquidity and cross-chain composability. We pre-
sented a formalization of the algorithm and proved that
it achieves instant guaranteed finality. These features of
the ∆ algorithm enables ∆Bridges to ensure that requests
are only accepted when there is a sufficient amount of
liquidity in the system, precluding the possibility of any
rolled-back transactions. In addition, we presented a fee
scheme that allows the ∆ algorithm to be automatically

10

maintained by user transactions, ensuring continuous op-
eration without the introduction of additional LP.

∆Bridges represent a new evolution in the cross-chain
bridge ecosystem, providing three features not present in
any other solution: no existing cross-chain bridge pro-
vides cross-chain composability, no existing cross-chain
bridge scales to large numbers of chains, and no existing
cross-chain bridge can transact using native assets. The ∆

algorithm allows ∆Bridges to resolve all of these short-
comings, providing unparalleled versatility and conve-
nience.

The flexibility afforded by the ∆ algorithm creates
the opportunity to improve many existing applications,
such as decentralized exchanges, by taking advantage of
single-transaction cross-chain swapping of native assets
across vast networks of chains. We envision ∆Bridges
as the infrastructure that enables densely-connected net-
works of blockchains and ushers in a new class of cross-
chain applications that take advantage of fast guaranteed
cross-chain native asset transfers.

References
[1] Abracadabra.money. https://abracadabra.money/.

[2] Avalanche bridge faq. https://docs.avax.network/learn/
avalanche-bridge-faq.

[3] Blockchain bridges. https://medium.com/1kxnetwork/
blockchain-bridges-5db6afac44f8.

[4] Layerzero: Trustless omnichain interoperability protocol.
https://layerzero.network/.

[5] Solana. https://solana.com/.

[6] Sushiswap. https://sushi.com/.

[7] Usdc: the world’s leading digital dollar stablecoin. https://

www.circle.com/en/usdc.

[8] What are blockchain bridges and why are they important for defi.
https://blog.makerdao.com/what-are-blockchain-
bridges-and-why-are-they-important-for-defi/.

[9] Anyswap dex user guide. https://anyswap-

faq.readthedocs.io/en/latest/index.html. Accessed:
2021-5-13.

[10] Ethereum. https://ethereum.org/en/. Accessed: 2021-5-
13.

11

https://abracadabra.money/
https://docs.avax.network/learn/avalanche-bridge-faq
https://docs.avax.network/learn/avalanche-bridge-faq
https://medium.com/1kxnetwork/blockchain-bridges-5db6afac44f8
https://medium.com/1kxnetwork/blockchain-bridges-5db6afac44f8
https://layerzero.network/
https://solana.com/
https://sushi.com/
https://www.circle.com/en/usdc
https://www.circle.com/en/usdc
https://blog.makerdao.com/what-are-blockchain-bridges-and-why-are-they-important-for-defi/
https://blog.makerdao.com/what-are-blockchain-bridges-and-why-are-they-important-for-defi/
https://anyswap-faq.readthedocs.io/en/latest/index.html
https://anyswap-faq.readthedocs.io/en/latest/index.html
https://ethereum.org/en/

	Introduction
	Background
	Instant guaranteed finality
	Cross-chain composability
	Unified liquidity

	 Algorithm Design
	Notation
	The algorithm
	Proof of Instant Guaranteed Finality
	Discussion

	Examples
	Conclusion

