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Abstract Although the standard cosmological model exp-
lains most of the observed phenomena it still struggles with
the problem of initial singularity. An interesting scenario
in which the problem of the initial singularity is somehow
circumvented was proposed in the context of string theory
where the canonical quantisation procedure was addition-
ally applied (Gasperini and Veneziano in Gen Relativ Gravit
28:1301–1307, 1996). A similar effect can be achieved in
the context of the canonically quantized theory with vary-
ing speed of light and varying gravitational constant where
both quantities are represented by non-minimally coupled
scalar fields (Balcerzak in JCAP 04:019, 2015). Such the-
ory contains both the pre-big-bang contracting phase and the
post-big-bang expanding phase and predicts non-vanishing
probability of the transition from the former to the latter
phase. In this paper we quantize such a theory once again
by applying the third quantization scheme and show that
the resulting theory contains scenario in which the whole
multiverse is created from nothing. The generated family
of the universes is described by the Bose–Einstein distri-
bution.

1 Introduction

The standard cosmological model based on general theory
of relativity and standard model of particle physics encoun-
ters a certain number of the fundamental problems. How-
ever, although it explains a vast majority of the observational
data, it is plagued with huge fine-tuning problems. Some of
those can be resolved in the standard inflationary paradigm
[1]. Yet the classical theory of inflation is far from being
complete since it does not provide initial conditions for the
inflation to occur in a desired way. The incompleteness of
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this picture stretches to even more profound issues such as
the occurrence of the initial singularity, the related questions
about the beginning of time or the existence of epochs pre-
ceding big-bang. A consistent framework for investigating
the above-mentioned questions is provided by string the-
ory. The scenarios involving eras preceding big-bang sin-
gularity naturally arise in the cosmological models based on
the string theory [2]. The cosmological scenarios based on
the tree level low energy effective action classically include
both pre-big-bang and post-big-bang evolution phases sep-
arated by a singularity in which the curvature and the cou-
pling reach infinite values. Employing the quantum cosmol-
ogy Wheeler–DeWitt approach to the description of the near
singularity regime gives rise to the scenario in which the
universe passes form the pre-big-bang to the post-big-bang
phase in a process that can be viewed as reflection (scatter-
ing) of the Wheeler–DeWitt wave function on one dimen-
sional exponential potential barrier in the minisuperspace
[3]. A similar scenario in which the universe scatters quan-
tum mechanically over the singularity to finally enter the
standard post-big-bang expansion era arises in the context
of gravity theories with varying speed of light (VSL) and
varying gravitational constant [4]. Many different VSL the-
ories have been investigated in the literature so far, however,
inventing a consistent picture in which the speed of light
is allowed to vary encounters conceptual problems. One of
these is the violation of the Lorentz invariance in case the
speed of light is assumed to be dependent on the space-
time coordinates [5–10]. Violation of the Lorentz invariance
forces in turn an introduction of the preferred reference frame
in which the particular mathematical structure of an inves-
tigated VSL theory is formulated. An interesting realisation
of the mentioned above concepts is the VSL theory proposed
in [5,6]. The model additionally assumes that the degree of
freedom representing speed of light is minimally coupled to
the matter and the gravitational field in the preferred frame.
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Consequently, the equations of motion of such VSL grav-
ity theory are identical to the standard Einstein equations
with the speed of light being merely replaced by some time
dependent functions. A different VSL gravity theory can be
obtained by releasing the assumption of the minimal cou-
pling [7]. The resulting set of equations of motion in such
theory gains additional dynamical equation governing the
evolution of the non-minimally coupled degree of freedom
representing the speed of light. Another interesting example
is VSL theory in which the speed of gravitons is assumed
to be different from the speed of massless matter particles
[8–10]. This is achieved by introducing two different met-
rics. The first one describes the space-time geometry, the
second one couples to the matter. The separate group of the-
ories comprises VSL models which include corrections to
the dispersion relation [11]. Such corrections become rele-
vant for the energy scales comparable with the Planck scale.
The resulting group velocity of light depends on the energy
scale.

In paper [4] it was shown that the near curvature singular-
ity regime can be tackled within the framework of the theory
which assumes that both the speed of light and the gravita-
tional constant can vary. Both quantities are represented by
scalar fields non-minimally coupled to the gravitational field
in the preferred frame defined by the FLRW metric. This
is different form the approach presented in [12] where the
similar regime is investigated in the context of the model in
which the degrees of freedom representing varying speed of
light and gravitational constant minimally couple to gravity
and matter.

The so-called third quantization is based on the for-
mal similarity between the Wheeler–DeWitt and the Klein–
Gordon equations [13,14]. The role of the Klein–Gordon
field is played by the wave function in the Wheeler–DeWitt
equation, which as a result of the third quantization becomes
an operator acting on the Hilbert space. The third quantiza-
tion itself is completely analogous to the quantization of the
Klein–Gordon field. The resulting Hilbert space is spanned
by an orthonormal basis which elements represent occu-
pation with universes which properties are determined by
appropriate quantum numbers (these for example can be the
momenta in the minisuperspace).

Our paper is organised as follows. In Sect. 2 we quote the
main results of the paper [4] which will be a starting point
for the realization of the central task of our work consist-
ing in elaboration of the scenario in which the whole multi-
verse emerges out of vacuum (“out of nothing”). In Sect. 3
we fulfill our assumed task by applying the third quantiza-
tion procedure to the canonically quantized non-minimally
coupled varying constants model and by showing that the
resulting theory includes a scenario in which the family of
universes described by Bose–Einstein distribution is created
out of nothing.

2 Non-minimally coupled varying c and G theories

The classical action defining the considered varying c and
G model can be obtained by replacing each constant in the
ordinary Einstein-Hilbert action with a certain function of a
dynamical scalar degree of freedom. In order to keep c and
G positive during the cosmological evolution we link them
to the newly introduced scalar degree of freedom φ(xμ) and
ψ(xμ) by the following exponentials c3 = eφ and G = eψ .
The resulting action reads [4]:

S=
∫ √−g

(
eφ

eψ

) [
R+Λ + ω(∂μφ∂μφ + ∂μψ∂μψ)

]
d4x,

(1)

where ω is the parameter of the model. By application of the
field redefinitions of the form:

φ = β√
2ω

+ 1

2
ln δ, ψ = β√

2ω
− 1

2
ln δ, (2)

the action (1) can be transformed into the form of Brans–
Dicke action:

S =
∫ √−g

[
δ(R + Λ) + ω

2

∂μδ∂μδ

δ
+ δ∂μβ∂μβ

]
d4x .

(3)

The assumed dependence of c on space-time coordinates
breaks the invariance of the action (1) or (3) under general
transformations of coordinates. This means that we have to
specify the reference frame in which the action given by (1)
or (3) is assumed to describe our varying c and G model.
A natural step is to identify the above-mentioned preferred
reference frame with the cosmological frame defined by the
flat FLRW metric:

ds2 = −N 2(dx0)2 + a2
(
dr2 + r2dΩ2

)
, (4)

where N is the lapse function and a is the scale factor both
depending on the parameter x0 . Inserting the metric (4) into
(3) gives the form of the action of our model in the cosmo-
logical frame:

S = 3V0

8π

∫
dx0

(
−a2

N
a′δ′ − δ

N
aa′2

+Λδa3N − ω

2

a3

N

δ′2

δ
− a3

N
δβ ′2

)
, (5)

where ()′ ≡ ∂
∂x0 . A similar approach was introduced in

papers [5,6] where the VSL action and the correspond-
ing variational principle was formulated in the cosmolog-
ical frame. The solution to the model given by action (5)
expressed in the gauge determined by N = a3δ is:
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a = 1

D2(eFx0
)
2

sinhM |√(A2 − 9)Λx0|
, (6)

δ = D6(eFx
0
)
6

sinhW |√(A2 − 9)Λx0| , (7)

where A = 1√
1−2ω

, M = 3−A2

9−A2 , W = 2A2

9−A2 and D and

F are some integration constants and the variable x0 is the
following function of the rescaled proper time x̄0 defined with
its differential dx̄0 ≡ c(x̄0)dτ with τ being here the proper
time encountered by the comoving observer (for the detailed
derivation of the solution given by (6), (7) and (8) see [4]):

x0 = 2√
(A2 − 9)Λ

arctanh

(
e
√

(A2−9)Λx̄0
)

, for x̄0 < 0,

x0 = 2√
(A2 − 9)Λ

arctanh

(
e−

√
(A2−9)Λx̄0

)
, for x̄0 > 0,

(8)

where as in [4] we restrict our considerations to the mod-
els with A2 > 9. Figure 1 depicts qualitative behaviour of
the scale factor a, the speed of light c and the gravitational
constant G in the near high-curvature regime for the pre-big-
bang x̄0 < 0 and post-big-bang x̄0 > 0 phase. We see that
as the universe approaches the curvature singularity (a → 0)
the speed of light c goes to infinity while the gravitational
constant G tends to zero. It means that the transition from
pre-big-bang to post-big-bang phase occurs in the Newto-
nian limit. A similar behaviour of the scale factor occurs
in the ekpyrotic [15,16] and cyclic scenarios [17,18] where
both pre-big-bang and post-big-bang eras are separated by
the curvature singularity induced by vanishing scale factor.
A qualitatively different evolution is encountered in the case
of pre-big-bang scenarios based on the low-energy effec-
tive action of the string theory where curvature singularity is
reached during the phase of accelerated expansion [2,3].

Studying the quantum mechanical nature of the consid-
ered model requires analysis of the solutions of the Wheeler–
DeWitt equation. In order to obtain the Wheeler–DeWitt
equation corresponding to our model first we have to find the
form of the hamiltonian. By application of the following field
transformation X = ln(a

√
δ), Y = 1

2A ln δ, I = AY − 3X ,

J = 3Y − AX and B =
√
Ṽ0β the action (5) can be reduced

to the following form:

S =
∫

dx0
[
m(J ′2 − I ′2) + Λ̄e−2I − B ′2] . (9)

The hamiltonian corresponding to our model is given by:

H = 1

4

[
1

m

(
π2
J − π2

I

)
− π2

B

]
− Λ̄e−2I . (10)

Here Λ̄ = Ṽ0Λ with Ṽ0 = 3V0
8π

while πI = −2mI ′, and
πB = −2B ′ are the canonically conjugated momenta with
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Fig. 1 The scale factor a (black), the speed of light c (red) and the
gravitational constant G (blue) before (x̄0 < 0) and after (x̄0 > 0) the
big-bang (curvature singularity)

m = Ṽ0
9−A2 . The form of the hamiltonian proves that πJ and

πB are constant during the evolution. Therefore the classical
evolution of the universe in the near curvature singularity
regime can be reduced to the process of scattering of a particle
on the exponential potential barrier. The solutions (6) and (7)
expressed in term of the new variables B, I and J are given
by:

B = −πB

2
x0 + P, (11)

I = ln sinh |
√

(A2 − 9)Λx0|, (12)

J = πJ

2m
x0 + E, (13)

where E and P are some constants.
By analysing the classical solutions (11)–(13) we find

that the near curvature singularity regime corresponds to
the region located at I → ∞. On the other hand the low-
curvature regime for both the pre-big-bang and the post-
big-bang branches is associated with the region located at
I → −∞. Both regimes correspond to the particular asymp-
totic values of the momentum πI . In the high-curvature (near
big-bang) limit I → ∞ we have

πI =
{

π∞
I collapsing pre-big-bang

−π∞
I expanding post-big-bang

while in the low-curvature (far away from big-bang) limit
I → −∞ the momentum πI is given by:

πI =
{

π∞
I e−I collapsing pre-big-bang

−π∞
I e−I expanding post-big-bang

where π∞
I ≡ 2Ṽ0

√
Λ

A2−9
(again for the detailed derivation

see [4]). In order to obtain the quantum theory we apply the
Jordan quantization rules and replace the canonical momenta
with the following operators: πJ → π̂J = −i ∂

∂ J , πI →
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π̂I = −i ∂
∂ I and πB → π̂B = −i ∂

∂B . The corresponding
Wheeler–DeWitt equation is:

{
1

4

[
1

m

(
∂2

∂ I 2 − ∂2

∂ J 2

)
+ ∂2

∂B2

]
− Λ̄e−2I

}
Φ = 0 (14)

and its separable solution is given by [19]:

Φ = α(J )γ (B)β(I ), (15)

where

α(J ) = eik1r J , γ (B) = ei2k2B , β(I ) = J−iπ∞
I

(
π∞
I e−I

)
,

(16)

where r = 2
√

Ṽ0
A2−9

and

Ṽ0Λ = k2
1 + k2

2 . (17)

Asymptotically for I → ∞ the wave function Φ is an eigen-
function of the momentum operator π̂I since π̂Iβ(I ) =
π∞
I β(I ). Thus, in the near curvature singularity regime

Φ represents only those modes which are associated with
the collapsing classical solution [3,20]. On the other hand
asymptotically in the low curvature regime (I → −∞) the
Bessel function Jin can be written as Jin(z) = Ψ1 +Ψ2 with

Ψ1 =
√

1
2π z e

i(z− π
2 in− π

4 ) and Ψ2 =
√

1
2π z e

−i(z− π
2 in− π

4 )

where n ≡ −π∞
I . Since both Ψ1 and Ψ2 are eigenfunctions

of the momentum operator π̂I to the eigenvalues −π∞
I e−I

and π∞
I e−I respectively we find that asymptotically for

I → −∞ the function Ψ2 represents the pre-big-bang col-
lapsing branch while the function Ψ1 represents the post-
big-bang expanding branch. Thus the transition form the
pre-big-bang low curvature initial state to the post-big-bang
low curvature final state corresponds to the stationary quan-
tum mechanical scattering of the plane wave (representing
the particle with the definite value of the momentum) on
the exponential potential barrier in the minisuperspace (see
Fig. 2).

3 Emergence of multiverse in the third quantized
varying c and G model

In this section we will argue that the third quantized non-
minimally coupled varying constants model includes a sce-
nario in which the whole bunch of universes emerges out of
the initial vacuum (containing no universes) in the process
analogous to the particle creation in an evolving background.
The idea of third quantization assumes that the multiverse can
be treated as a many-particle system (with non conserved
number of particles) where the individual particles with their

Fig. 2 Scattering on the exponential potential barrier. The curvature
singularity occurs for I → ∞. The pre-big-bang and post-big-bang
branches in the low curvature limit are represented by the plane waves
moving in the region located at I → −∞ characterized by momenta
πI = π∞

I e−I and πI = −π∞
I e−I respectively

trajectories in spacetime are replaced by the universes mak-
ing up the multiverse existing in the minisuperspace [13,14].
The Wheeler–DeWitt (14) can be rewritten in the form of
Klein–Gordon equation:

Φ ′′ − ΔΦ + m2
e f f Φ = 0, (18)

where ()′ = ∂
∂η

and Δ = ∂2

∂x2
1

+ ∂2

∂x2
2

, m2
e f f = Λe− 2

r η. The

relation between the new variables η, x1 and x2 and the old
variables I , J and B are:

η ≡ r I, (19)

x1 ≡ r J, (20)

x2 ≡ 2B. (21)

It is useful to define the following vectors: x ≡ (x1, x2),
k ≡ (k1, k2). The formal analogy between Wheeler-DeWitt
and the Klein–Gordon equations allows us to third quantize
the wave function Φ by formally applying the standard quan-
tization procedure of the quantum field theory. Following this
procedure we promote the wave function Φ to be an operator
Φ̂ acting on an associated quantum space of state [21]. The
expansion of the field operator Φ̂ in terms of mode functions
vk(η) is:

Φ̂(x, η) = 1√
2

∫
d2k

2π

[
eik·xv∗

k (η)â−
k + e−ik·xvk(η)â+

k

]
,

(22)

where k ≡ |k|. The mode functions vk(η) fulfil the mode
equation

vk(η)′′ + ωk(η)2vk(η) = 0, (23)
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where ωk(η) =
√
k2 + m2

e f f (η), and the normalisation con-

dition

W (vk(η), v∗
k (η)) = 2i, (24)

where W is a Wronskian. We impose the standard commu-
tation rules on the creation an annihilation operators â−

k and
â+
k :

[
â−
k , â+

k′
] = δ(k − k′), (25)[

â−
k , â−

k′
] = 0, (26)[

â+
k , â+

k′
] = 0. (27)

Instead of vk(η) any linear combinations of the form

uk(η) = αkvk(η) + βkv
∗
k (η), (28)

with the coefficients αk and βk fulfilling the normalisation
condition |αk |2 − |βk |2 = 1 could be used as the mode func-
tions since any such linear combination is also a solution of
the mode Eq. (23). The field operator Φ̂ expressed in terms
of the mode functions uk(η) is given by:

Φ̂(x, η) = 1√
2

∫
d2k

2π

[
eik·xu∗

k(η)b̂−
k + e−ik·xuk(η)b̂+

k

]
,

(29)

where b̂−
k and b̂+

k is a different set of the creation and annihila-
tion operators satisfying the standard commutations relations
given by:[
b̂−
k , b̂+

k′
]

= δ(k − k′), (30)[
b̂−
k , b̂−

k′
]

= 0, (31)[
b̂+
k , b̂+

k′
]

= 0. (32)

By comparing the two expansions (22) and (29) we can obtain
the Bogolyubov transformations in the form:

â−
k = α∗

k b̂
−
k + βk b̂

+
−k, (33)

â+
k = αk b̂

+
k + β∗

k b̂
−
−k. (34)

The explicit values of the Bogolyubov coefficients αk and βk

are:

αk = W (uk, v∗
k )

2i
, (35)

βk = W (vk, uk)

2i
. (36)

We define the two different vacuum states in a standard way:

â−
k |(a)0〉 = 0, (37)

b̂−
k |(b)0〉 = 0. (38)

Following the paper [22] we interpret both vacuum states
|(a)0〉 and |(b)0〉 as state vectors which represent the “ground

states” of the multiverse, where the notion “ground state”
refers to the “empty” multiverse (a multiverse containing no
“a-universes” for |(a)0〉 vector and a multiverse containing no
“b-universes” for |(b)0〉 vector). The creation and annihilation
operators can be used to build the two sets of the excited state
of the multiverse. Thus the quantum state of the multiverse
containing “a-universes” with m universes in mode k1, n
universes in in mode k2, etc. is represented by

|(a)mk1 , nk2 , . . .〉 ≡ 1√
m!n! . . .

[
(â+

k1
)m(â+

k2
)n · · ·

]
|(a)0〉,

(39)

while the quantum state of the multiverse containing “b-
universes” with m universes in mode k1, n universes in in
mode k2, etc. is represented by

|(b)mk1 , nk2 , . . .〉 ≡ 1√
m!n! . . .

[
(b̂+

k1
)m(b̂+

k2
)n · · ·

]
|(b)0〉.

(40)

Thus we have built an orthonormal basis on the Hilbert space
of the multiverse. This means that any arbitrary vector rep-
resenting state of the multiverse can be written as a linear
combination of the excited states:

|ψ〉 =
∑
m,n,...

C (a)
mn...|(a)mk1, nk2 , . . .〉

=
∑
m,n,...

C (b)
mn...|(b)mk1, nk2 , . . .〉. (41)

The two vacuum states |(a)0〉 and |(b)0〉 are generally differ-
ent vectors. This can be seen by calculating the expectation
value of the “a-universe” number operator in the vacuum
state |(b)0〉:
〈
(b)0|N̂ (a)

k |(b)0
〉
= 〈

(b)0|â+
k â

−
k |(b)0

〉 = |βk |2δ(3)(0). (42)

The divergent factor δ(3)(0) accounts for an infinite spatial
volume and hence the mean density of “a-universes” in the
mode k is:

nk = |βk |2. (43)

Now, we are going to introduce a scenario in which the
whole family of the universes is created from nothing. Let us
first assume that initially the vector representing the quan-
tum state of the multiverse is described by the “b-vacuum”
state |(b)0〉 which is completely specified by the set of mode
functions

uk = AJ−ikr (x) (44)

that solve the mode Eq. (23) in the high-curvature limit
(which appear for η → ∞), where A is the normalisation
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constant and x ≡
√

Λ̄e−η/r . Since the structure of the vac-
uum state is controlled by the instantaneous value of the back-
ground curvature the initial vacuum state is identical with
|(b)0〉. Thus, initially the multiverse contains no universes at
all. Due to stationarity of the scattering process the instanta-
neous quantum state of the multiverse does not evolve, so the
final state of the multiverse (in the low-curvature limit that
occurs for η → −∞) is still represented by |(b)0〉. Due to the
variation of the background curvature the notion of the vac-
uum is not invariant and the final vacuum state corresponding
to the low-curvature limit (for η → −∞) is identical with
|(a)0〉 which, on the other hand, is completely specified by
the set of mode functions

vk = BH (2)
−ikr (x) (45)

being the solution of the mode Eq. (23) in the low-curvature
limit (for η → −∞), where B is the normalisation con-
stant and H (2)

−ikr (x) is the Hankel function of the second kind.
Therefore, the quantity:

nk = |βk |2 =
∣∣∣∣W (vk, uk)

2i

∣∣∣∣
2

(46)

can be interpreted as the average number of the universes
created from nothing described with the quantum number k.
By calculating the Wronskian in (46) we obtain that:

nk = 1

e2πkr − 1
. (47)

The formula (47) describes the Bose–Einstein distribution
for the temperature T = 1

2πkB
, where kB is the Boltzmann

constant provided that the energy of the bosons is identified
with the quantity kr . Taking into account the Eq. (17) we

obtain that kr = π∞
I ≡ 2Ṽ0

√
Λ

A2−9
. Thus, the distribution

(47) expressed in terms of the cosmological constant Λ reads:

π Ṽ0

e
4π Ṽ0

√
Λ

A2−9 − 1

. (48)

The formula (48) expresses the average number of the uni-
verses created from nothing with the value of the cosmolog-
ical constant Λ in the interval (Λ,Λ + dΛ). From (48) we
can see that the concentration of universes characterised by
small value of the vacuum energy density is large. On the
contrary, for larger values of the vacuum energy density the
concentration of universes tends to zero.

4 Discussion

The canonically quantized non-minimally coupled varying c
and G theory includes a scenario in which the transition from

the pre-big-bang contraction to the post-big-bang expansion
occurs as a consequence of the scattering of the plane wave on
the exponential potential barrier in the minisuperspace. This
is similar to the scenarios included in the string cosmolo-
gies [3]. The third quantization (a procedure analogous to
the quantization of the Klein–Gordon field) of such a theory
leads to the scenario in which the whole bunch of universes
is created out of vacuum. The third quantization scheme was
already applied to discuss the transition from expanding to
contracting cosmological phases (and vice-versa) in [23,24].
The Hilbert space that emerges in the process of third quanti-
zation comprising all the states of the multiverse can be used
as a base for introducing some standard notions of the ordi-
nary quantum mechanics that exploit the linear structure of
the space of quantum states. Particularly important here is the
concept of quantum entanglement which relies on the notion
of the tensorial product of the Hilbert spaces associated with
quantum subsystems making up the whole physical setup.
The scenarios in which the components of the multiverse
experience their mutual presence via quantum entanglement
was considered in [25,26]. Concepts of that kind can con-
stitute a basis for introducing models in which the quantum
entanglement between different universes influences the cos-
mological observables making the idea of multiverse obser-
vationally testable [27,28].
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