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Abstract

This paper describes the work carried out by the Inter-American Development Bank, the
IDB Lab, LACChain, Cambridge Quantum Computing (CQC), and Tecnologico de Monterrey to
identify and eliminate quantum threats in blockchain networks.

The advent of quantum computing threatens internet protocols and blockchain networks be-
cause they utilize non-quantum resistant cryptographic algorithms. When quantum computers
become robust enough to run Shor’s algorithm on a large scale, the most used asymmetric al-
gorithms, utilized for digital signatures and message encryption, such as RSA, (EC)DSA, and
(EC)DH, will be no longer secure. Quantum computers will be able to break them within a short
period of time. Similarly, Grover’s algorithm concedes a quadratic advantage for mining blocks
in certain consensus protocols such as proof of work.

Today, there are hundreds of billions of dollars denominated in cryptocurrencies that rely on
blockchain ledgers as well as the thousands of blockchain-based applications storing value in
blockchain networks. Cryptocurrencies and blockchain-based applications require solutions that
guarantee quantum resistance in order to preserve the integrity of data and assets in their public
and immutable ledgers. We have designed and developed a layer-two solution to secure the
exchange of information between blockchain nodes over the internet and introduced a second
signature in transactions using post-quantum keys. Our versatile solution can be applied to any
blockchain network. In our implementation, quantum entropy was provided via the IronBridge
Platform from CQC and we used LACChain Besu as the blockchain network.

1 Introduction

Quantum computing, one of the most recent cross-pollination efforts between physics and com-
puter science, is a scientific and engineering field focused on developing information processing
devices and algorithms based on quantum mechanics [1–7]. Quantum computing is now an estab-
lished research field with solid theoretical and experimental results [8–12]. [8–12]. Further, high-
tech businesses across various sectors are increasingly experimenting with quantum computing
technological solutions [13–16].

Since the early days of quantum computing, the role of quantum algorithms and quantum pro-
tocols in information security has been a crucial issue. On the one hand, Shor’s algorithm [17]
could be used to break public-key cryptography protocols. On the other hand, Quantum Key Dis-
tribution schemes provide security levels to information transmission that are not based on math-
ematical conjectures but instead on the properties of quantum mechanics [18]. Quantum entropy
provides perfect randomness and strong cryptographic keys based on quantum mechanics [19].
Post-QuantumCryptography encompasses a new generation of algorithms for the creation of asym-
metric keys that are thought to be resistant to attacks by quantum computers [20].

Currently, blockchain [21] is the most popular technology amongst emerging applications for
decentralized data sharing and storage. The design and implementation of blockchain networks
makes extensive use of cryptography protocols; thus, studying the potential uses of quantum com-
puting to both weaken and strengthen blockchain technologies is essential to ensuring its future
reliability.
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The rest of this paper is divided as follows. Section 2 presents an introductory review of Quan-
tum Computing, Quantum Key Distribution, Post-Quantum Cryptography, blockchain, and the LAC-
Chain Blockchain Network; Section 3 analyzes relevant vulnerabilities of blockchain within the
context of quantum computing technologies; Section 4 introduces our solution for guaranteeing
quantum-resistance in blockchain networks and describes the implementation carried out in the
LACChain Blockchain Network; Section 5 explores several key implementation matters; Section 6
presents conclusions and future directions.

2 Context

2.1 Quantum computing as a threat to cryptography

Theoretical results, such as Shor’s algorithm [17], and state-of-the-art quantum computing tech-
nology in conjunction with expected near-to-mid future scalability and robust developments have
attracted the attention of international standards agencies in cyber security and cryptography, in-
cluding NIST [22], NSA [23], and ETSI [24]. They have made critical warnings that running some
quantum algorithms on full-scale quantum computers will necessitate the protection of internet and
telecommunication information exchanges for widely used cryptography protocols. Most notably,
NIST is currently running a post-quantum cryptography competition for standardization to replace
existing cryptographic algorithms that are susceptible to breakage using quantum computers [25].

Quantum computers use quantum bits (qubits) as fundamental units of information. Individual
qubits can be in binary zero and one states (classical bits), but they can also be in any state between
zero and one, which is defined by the superposition α|0⟩+β|1⟩where α,β ∈ C subject to |α|2+|β|2=
1. Qubits leverage the quantum effects that do not appear in classical computing, such as quantum
superposition, quantum entanglement and quantum tunneling. These effects are fundamental for
the development of quantum algorithms, which have proven to be very useful in solving certain
problems much more efficiently than the best-known classical algorithms, such as optimization or
factorization of prime numbers.

In general, physical channels currently used to transmit digital information are unprotected (e.g.,
optical fibers or wireless transmissions) and the security of data exchanges within these channels
relies on cryptographic protocols. It is only a matter of time before large and robust quantum com-
puters capable of breaking current cryptographic protocols are built. It is crucial that we be prepared
for these future technologies, especially in order to investigate the transition to quantum-safe cryp-
tography for blockchain technologies.

2.2 Current approaches for quantum-safe cryptography

Discussions on quantum computers and cryptography usually surround two main areas of cryp-
tography that are thought to resist attacks by large and robust quantum computers: quantum key
distribution and post-quantum cryptography.
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2.2.1 Quantum Key Distribution

Quantum Key Distribution (QKD) refers to quantum protocols for the co-creation of private sym-
metric keys between two parties using quantum and classical channels (e.g., optical fibers and
wireless channels) by codifying private key bits into quantum states. If these quantum states are
intercepted and observed by any eavesdropper, the information they contain (i.e., the bits of the
key) is modified, and therefore the key is corrupted and the eavesdropper is detected. Best known
QKD protocols are BB84 [26,27] and E91 [28].

An illustrative example of a QKD implementation is the BB84 protocol using polarized photons.
In this protocol, we have a sender (Alice), a recipient (Bob), and an eavesdropper (Eve). Alice
codes the bits of a private key to share with Bob using non-orthogonal quantum states, such as bit
value 0 using either |0⟩ or |+⟩ and bit value 1 using |1⟩ or |−⟩. Then, photons are sent by Alice to
Bob. Due to the properties of measurement in quantum mechanics, Eve’s eavesdropping activities
will eventually be detected (that is, Eve’s activities will leave a trace that will eventually be detected
by Alice and Bob) and, consequently, the protocol will stop and start over at a later stage [29,30].

QKD protocols such as BB84 and E91 have been successfully implemented since 2003. How-
ever, QKD is not fully scalable today because ground-based key exchanges using optical fibers are
limited to a few hundreds kilometers due to the degradation of the quantum states containing the
keys [31]. Additionally, ground-to-satellite key exchanges require sophisticated infrastructure for
generation, transmission, and reception of quantum keys [32,33]. The scalability of these networks
depends on the development of quantum repeaters, which require very sophisticated quantum
memories. This is still an area under development [34,35]. For these reasons, QKD has been dis-
carded as a feasible solution to provide quantum safeness to blockchain networks today. However,
this may change in the future as NSA, NIST, and ETSI, among others, have declared that quantum
cryptography (such as QKD) would be the only alternative for long term secure encryption [22–24].

2.2.2 Post-Quantum Cryptography

Existing symmetric standards such as AES have already well-understood variants that are believed
to provide adequate security against quantum adversaries. In contrast, it is well known that public
(asymmetric) key cryptographic protocols such as RSA [36, 37], (Elliptic Curve) Digital Signature
Algorithm [38], and (Elliptic Curve) Diffie-Hellman [39, 40] are considered vulnerable to quantum
attacks.

Post-Quantum Cryptography (PQC) refers to a new generation of asymmetric algorithms that
cannot be broken by Shor’s algorithm. Unlike QKD, PQC does not rely on any underlying quantum
processes but rather on more complex mathematical problems. The main focus areas for post-
quantum algorithms to generate quantum-safe asymmetric key pairs are:

• Hash-based Cryptography, based on the security of hash functions.

• Code-based Cryptography, based on the difficulty of decoding generic linear code.

• Lattice-based Cryptography, based on the difficulty of well-studied lattice problems (e.g.,
shortest vector problem).

• Multivariate Cryptography, based on multivariate polynomials over a finite field.
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As mentioned above, there is a standardization process being conducted by NIST which started
in August 2016 with a request for comments [25]. This process, which called for submissions in the
areas of “Public-key Encryption and Key Establishment Mechanisms (KEM)” and “Digital Signature
Algorithms” announced the final and alternate rounds of in July 2020 [41]. The final algorithms are
estimated to be standardized between 2022 and 2024 [42]. There are various initiatives running
alongside NIST’s initiative such as PQCrypto [43] and Open Quantum Safe [44]. NITS’s finalists in
the KEM category are:

• Classic McEliece, a code-based scheme. [45].

• Crystals-Kyber, a suite of algebraic lattices utilizing a Kyber primitive for KEM [46].

• NTRU, a lattice-based scheme [47].

• Saber, a lattice-based scheme utilizing learning with rounding [48].

The Digital Signature Algorithms are:

• Crystals-Dilithium, a suite of Algebraic lattices using a Dilithium primitive for signature [49].

• Falcon, lattice-based algorithm with shake256 hashing [50].

• Rainbow, multivariate based solution [51].

There are also a number of alternates proposed for both categories. Comments on the sub-
missions’ security and efficacy can be found in [52]. While there are several candidates sharing
a similar approach, their proposals vary in key sizes and signature sizes, making it necessary to
evaluate each scheme against the architecture in which candidates are intended to be deployed.

2.3 Blockchain and the LACChain Blockchain Network

Blockchain is a technology that allows one to build decentralized ledgers in which different enti-
ties can register transactions that are grouped into blocks that are linked using hashes [21]. The
immutability of the transactions stored in blockchain networks is guaranteed because it is impos-
sible to tamper with the ledger without being detected. As any entity can, in principle, have a
synchronized copy of the ledger and transactions that are validated according to predefined rules,
the history cannot be rewritten. The integrity of the transactions is guaranteed by digital signatures
because every transaction is signed by the sender, and the immutability of the chain is guaranteed
by hash functions [21].

Our work analyzes vulnerabilities of hash functions and cryptographic algorithms. The security
of these core elements of blockchain networks will be threatened when quantum computers be-
come robust enough. This applies to most blockchain networks and it is a critical concern that the
blockchain community has not yet properly addressed.

Vitalik Buterin, one of the founders of the Ethereum blockchain technology, acknowledged the
quantum threat back in 2015 and suggested eventually moving towards Lamport signatures even-
tually [53]. Prior to our work, the University of Waterloo and Microsoft Research estimated that
the number of logical qubits necessary to implement quantum algorithms that can break 256 bit-
long digital signatures generated with (EC)DSA, typically used in current blockchain networks,
are 1500 [54] and 2330 [55]. It is still unclear how many physical qubits would be needed for
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that purpose. Another study by researchers in Singapore, Australia, and France claimed in 2017
that quantum computers will be large and robust enough to break Bitcoin keys in 10 minutes by
2017 [56]. In 2018, three groups of scientists from Russia and Canada achieved an implementation
of a quantum-secured blockchain based on an exchange of keys using QKD techniques [57], but
their scalability is limited by the limitations of the channels for QKD exchange. Additional work has
been published since these initial analyses [58–63]. However, we are not aware of any scalable
implementation of a quantum-safe blockchain network prior to our work.

We have designed a solution that can be deployed in different blockchain networks. As a key
component to show the viability of our proposal, we have implemented it in the LACChain Consen-
sys Quorum (a.k.a. Besu) Network. LACChain is a blockchain infrastructure led by the Innovation
Lab of the Inter-American Development Bank (IDB Lab) in Global Alliance with some of the entities
leading the development of blockchain technology in the world [64]. The main goal of LACChain is
to enable a robust and scalable blockchain network that can host multipurpose use cases with so-
cial, economic, and financial impact. Hyperledger Besu is an Ethereum client originally developed
by Consensys and now maintained by the Ethereum community, including Consensys [65].

Blockchain can be thought of as a computational systemwith a distributed state shared among a
network of nodes, of which consistency can be verified by any participant. The state is dynamically
updated through messages, called transactions, that are broadcasted by the nodes, and each
participant can have a verified and verifiable copy of the state and the transaction history. These
transactions allow users to deploy executable code to the network, a.k.a. smart contracts, and
interact with them.

In order for a new state to be agreed upon by the network, a subset of nodes, called validator
or producer nodes, apply a consensus protocol. There are different types of consensus protocols
and each network decides which type of consensus protocol they implement. Essentially, every
consensus protocol consists of a set of rules that establish how these nodes will accomplish a
computational validation of the latest transactions replicated across the network. The validator or
producer nodes propose a package, called a block, which contains the transaction, block number,
nonce, block hash, previous block hash, and signatures of the block validators or producers. With
this, a new block is cryptographically sealed and, once appended to the blockchain, it cannot be
undone or tampered with.

In Ethereum Networks, the code deployed in the network is a stream of bytes representing
operation codes from the Ethereum Virtual Machine (a.k.a. EVM). This set of operations can be
considered Turing complete and are executed as a stack machine with a depth of 1024 items.
The EVM is then the runtime environment where any state transformation takes place [66]. Every
smart contract has its own memory space and can be changed or updated by a transaction, which
is recorded in the transaction history and implies a modification of the current distributed state.
Additionally, each operation has an associated cost, which is an abstraction of the computational
power required to perform the requested action by an ideal computer. The cost is called gas and
serves as a metric for the amount of computation required to process each block.
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3 The vulnerabilities of blockchain technology with the advent of
quantum computing

The advent of quantum computing constitutes a new paradigm in which digital technologies will
endure both challenges and opportunities. Threats will come up in a variety of forms, especially
when robust quantum computers will be able to break several important cryptographic algorithms
currently used. Blockchain, as a technology that strongly relies on cryptography, is not safe from
these threats. As stated in [67], it is worth exploring the conjunction of blockchain technology and
quantum computing in the following four areas.

• Digital signatures are one of the most essential components of blockchain technology. Bit-
coin and Ethereum use elliptic curve cryptography (ECC), particularly the ECDSA signature
schemes on curve secp256k1. Others, such as EOSIO, use the NIST standard secp256r1
curve. NIST recommends that ECDSA and RSA signature schemes be replaced due to the
impact of Shor’s algorithm on these schemes [68].

• Communication over the Internet relies on protocols such as HTTP. The security of the com-
munication happens in HTTPS within the SSL/TLS protocol stack. TLS supports one-time
key generation (which is not quantum safe) with AES for symmetric encryption and several
non-quantum-safe algorithms for exchange and authentication, such as RSA, DH, ECDH,
ECDSA, and DSA. This means that all internet communications, including transactions and
messages sent between applications and nodes in a blockchain, will not be quantum safe
when robust quantum computers become fully operational.

• Block mining: blockchain networks that use proof-of-work as the consensus mechanism rely
on finding nonces. Quantum computers will be able to find these nonces quadratically faster
using Grover’s algorithm [69]. However, this does not pose a major threat to the security
of blockchain networks because the solution will be as easy as quadratically increasing the
difficulty to compensate for the quantum advantage. In networks with consensus protocols
that do not promote competition between nodes, such as the proof-of-authority used in the
LACChain Blockchain, this threat will not exist.

• Hash functions take an element from a set of infinitely many elements and gives an output
from a finite set of 2256 elements in the case of the SHA-256 function that is used by most
of the blockchain networks today. Thus, from a hash value stored in the blockchain, it is
statistically impossible to obtain the element that resulted in that value. This property, known
as irreversibility or pre-image resistance, guarantees the security of these operations even in
the presence of quantum computers [67].
Additionally, hash functions are continually evolving for increased security. For example, if
quantum computers evolve to the point of posing a threat to SHA-2, then SHA-3 is already
standardized as an alternative that offers a higher level of security in NIST standard FIPS202
[70].
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4 A Proposal for a Quantum-Safe Blockchain Network

As a result of this high-level analysis, it becomes clear that the threat blockchain networks face
with respect to quantum computers is primarily related to vulnerable digital signatures of blockchain
transactions and vulnerable key-exchange mechanisms used for the peer-to-peer communication
over the network. The solution we propose does not require modification of the algorithms used by
the Internet or blockchain protocols but creates a layer on top that provides quantum security. This
solution consists of:

• Encapsulating communication between nodes using post-quantum X.509 certificates to es-
tablish TLS tunnels. As part of the on-boarding process, nodes are issued a “post-quantum
X.509 certificate”, from a LACChain Certificate Authority (CA), which is an extension of an
X.509 certificate using the v3 extension specification that allows for the incorporation of new
fields into the credential, such as complementary cryptographic algorithms. In our case, these
complementary algorithms are post-quantum [71]. Using these certificates, nodes can estab-
lish secure post-quantum connections that encapsulate data sharing over the communication
protocol, defined by the blockchain network. The encapsulated data are transactions broad-
casted by writer nodes and the blocks produced by producer or validator nodes.

• Signing transactions with a post-quantum signature along with the regular signature defined
in the blockchain protocol and establishing on-chain verification mechanisms. Our solution
consists of enabling a second layer cryptography scheme that allows nodes that broadcast
transactions -writer nodes- to sign them with a post-quantum signature that can be verified
on-chain. This is in addition to the ECDSA signature that comes by default with the blockchain
protocol. If the ECDSA signature becomes compromised by a quantum computer, integrity
is preserved by the post-quantum signature. We leverage the post-quantum keys associated
to the post-quantum X.509 certificates for this purpose.

For both the encapsulation and transaction signing, we rely on certified quantum entropy to
generate keys for maximal security.

One could argue that by the time large quantum computers capable of breaking current cryp-
tography are ready, blockchain protocols will have upgraded their cryptography to post-quantum
safe algorithms. However, considering that blockchain networks are immutable ledgers, the rule of
“hack today, crack tomorrow” urges us to protect them now.

For example, a university can start issuing digital diplomas today and register the proofs with
their digital signature (ECC or RSA) in a blockchain network. However, in 5, 10, or 15 years, when
a quantum computer can break that signature and discover the private key, all previously issued
digital diplomas will be compromised, as the issuer can be impersonated. Further, we there is no
way of knowing whether a person has a quantum computer with the capacity to impersonate others
and steal their assets without being detected. The same rationale can be applied to the issuance
of a bond or the issuance of a central bank digital currency (CBDC) by a Central Bank.
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5 Implementation

The implementation of our solution is composed of the following five phases:

1. Generation and distribution of quantum entropy.

2. Generation of post-quantum certificates.

3. Encapsulation of the communication between nodes using quantum-safe cryptography.

4. Signature of transactions using post-quantum keys.

5. On-chain verification of post-quantum signatures.

5.1 Generation and distribution of quantum entropy

Randomness is the cornerstone upon which cryptographic standards are built. It is used to gener-
ate the keys and seeds used in cryptographic schemes. The challenge related to the generation
of randomness is the generation of truly random data. Current techniques rely on deterministic ap-
proaches - hardware utilizing classical physics, and any available inputs that might add some level
of unpredictability - which leads to the generation of pseudo-random data in the vast majority of the
cases. Failure to ensure sufficient randomness in cryptographic processes can lead to real-world
attacks on otherwise secure systems. This even extends to quantum random number generators
which is why there is a need to develop schemes for true randomness [72].

Conversely, quantum generation of randomness harnesses the power of the non-deterministic
nature of quantum mechanics. Generating quantum random numbers [73] can be built in many
ways, as has been illustrated by the various approaches used to date, including beam splitters with
detectors, vacuum fluctuations in coherent light, and squeezed coherent light mechanisms, among
others [74, 75]. Despite the fact that these methods are non-deterministic, they lack the ability for
an end user to guarantee that the device is working correctly. This ability in a device (sometimes
known as device independence or more commonly, as certifiably quantum generation) is at the
heart of the qRNG, Ironbridge, used in our solution presented in this paper.

IronBridge generates randomness through a quantum process evaluated as quantum certifiable
which utilizes a test for the violation of a Bell Inequality [76, 77] or a higher order test of a Mermin
Inequality on a NISQ machine [78]. Such a violation, along with various other security tests, are
taken as mathematical proof that the output could have only come from a quantum source and is
non-deterministic and thus maximally random for a physical system. For the experiments in this
paper, an IBM quantum computer was used to generate the entropy.

Given the distributed nature of a blockchain, ideally each entity running a node should have its
own local source of quantum entropy: a qRNG device. However, it was not feasible to provide each
node with its own qRNG for our pilot, so we used a central source of quantum entropy. As discussed
throughout this paper, current cryptographic schemes used in SSL/TLS are not quantum-safe, so
using them to distribute the entropy would have broken the quantum-safeness at the start.

We decided instead to design a protocol that allowed nodes to create a quantum safe tunnel
between themselves and the entropy distribution point to ensure that this communication could be
considered quantum safe. In order to do this, the entropy source creates a first key, splits it into
several parts, and delivers it to the node through various TLS channels. Nodes have a time out
to receive the key, recompose it, and use it to authenticate against the entropy source. This is
covered in more detail in Section 5.1.2.
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5.1.1 OpenSSL Framework

Over the last 20 years, the OpenSSL API has become the de-facto cryptographic framework for
applications that use TLS/SSL, providing capabilities such as:

• Generation of pseudo-random numbers.

• Classical cryptographic support using algorithms such as Diffie-Hellman (DH) and Elliptic
Curve Diffie-Hellman (ECDH).

The OpenSSL applications and libraries also provide the following functions:

• Generation of private and public key pairs.

• Certificate authority management.

• Certificate validation.

• Management of crypto libraries and engine plugins to support new algorithms.

• SSL/TLS client and server implementations.

Because quantum computing will impact the security of asymmetric cryptographic algorithms
such as RSA and ECDSA, the following changes within OpenSSL are required:

• Support for certified quantum entropy to replace the existing pseudo-random number gener-
ator used to seed keys and random values used for nonce parameters.

• Support for post-quantum algorithms to provide both key encapsulation and digital signatures.

IronBridge Platform facilitates the move to OpenSSL with entropy provided for:

• Quantum key encapsulation protecting existing PKI infrastructure by wrapping non-post quan-
tum resistant keys in a post quantum wrapper.

• Quantum generated random numbers for pure quantum generated keys for signature digest
algorithms.

This approach facilitates easy integration into computer security layers within the operating
system while still being compatible with most of the existing infrastructure. The IronBridge Service
Agent provides post quantum encapsulated key management for the secure entropy tunnel back
to the IronBridge Platform. The component provides users with the ability to enforce customer
security policies with regard to maximum key lifetimes by automatically providing configurable key
cycling capability.
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5.1.2 Entropy Source Setup

Asmentioned before, every blockchain node should ideally have its own source of quantum entropy.
For our pilot, LACChain nodes did not have a local source of quantum entropy so it was necessary
to establish a quantum-safe connection between the external source (the IronBridge platform) and
each of the nodes. As the quantum entropy is necessary to generate the post-quantum keys that
allow establishment of a quantum-safe connection, we could not use post-quantum cryptography
to protect this first channel.

Therefore, we designed a protocol that begins with the distribution of a post-quantum key from
the IronBridge platform to the LACChain nodes. This key is split into N parts and delivered through
different TLS channels. Once the LACChain node is in possession of all the N parts, it reconstructs
the key and uses it to establish a first connection with the quantum entropy source. This key is only
used once, and afterwards it is immediately discarded.

CQC IronBridge provides certified quantum generated entropy for cryptographic use, delivering
stronger classical cryptography and the highest strength post-quantum cryptography within cus-
tomer’s cryptographic ecosystems. IronBridge’s patent-pending device independent certification
mathematically proves every random number is the outcome of a quantum process without trusting
the generation process before customer use.

Once this first post-quantum key is used to establish the first secure connection between the
LACChain node and the entropy source, they initiate a second process to renegotiate a working
KEM keypair using the post-quantum algorithm, McEliece, in line with the NIST round three sub-
missions [41]. This allows for the establishment of a quantum-safe connection between the entropy
source and the nodes which allows the LACChain nodes to start requesting quantum entropy on
demand (see Fig. (1)).

Figure 1: High-level schema of the first connection between the remote source of entropy and the blockchain
node.
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5.2 Generation of Post-Quantum Certificates

Once the LACChain nodes have access to quantum entropy on demand, this entropy is consumed
by OpenSSL as illustrated in Fig. (2). Permanent quantum-safe cryptographic solutions such as
QKD (see Section 2.2.1) are not scalable today and require substantial investments in infrastruc-
ture. Feasible and practical solutions that provide quantum-resistance today involve PQC (see
Section 2.2.2). Instead of replacing current Internet and blockchain protocols with new ones that
incorporate PQC, we tried to introduce PQC in existing frameworks.

Based on the analysis presented above, we decided to use the traditional X.509 standard,
which defines an internationally accepted format for digital documents that securely associates
cryptographic key pairs with identities such as websites, individuals, and organizations [79].

By using a modified version of libSSL, the X.509 specification was extended to incorporate
post-quantum and Ethereum (ECDSA) public keys, allowing blockchain nodes to use the modified
libSSL to establish peer-to-peer quantum-safe channels that leverage those keys. Libssl is the
portion of OpenSSL that supports TLS (SSL and TLS Protocols) and depends on libcrypto.

As discussed in Section 4, the nodes use the post-quantum keys to encapsulate communication
with other nodes and sign transactions broadcasted to the blockchain. We decided to use the same
algorithm for the generation of both types of keys (i.e., encryption keys and signing keys). Given
the versatility of OpenSSL to incorporate any post-quantum algorithm, the election of the post-
quantum algorithm was based on the restrictions inherent in executing blockchain transactions -
essentially execution time and payload size- as different algorithms present substantial differences
that condition the feasibility of on-chain verifications and storage.

We evaluated the two finalists of the NIST competition in the signature category [41], Crystals-
Dilithium [49] and Falcon [50]. Figure 3 presents some of the differences between these two algo-
rithms in terms of public key size, private key size, and signature size.

Both algorithms are very demanding regarding processing, memory, and amount of random
material required to compute keys and signatures. However, Falcon has been acknowledged
as the most compact and contains a built-in SHA3 compliant Extendable Output Function (XOF
Shake256). The Ethereum VM natively supports the Keccak hashing algorithm upon which SHA 3
NIST FIPS202 is based, but it does not provide the extendable output func- tions (XOF) required.
Further, implementing the shake XOF functionality is not straightforward.

We evaluated the other signing algorithms but speed, complexity, and the fact that we would
have to implement a SHA3 compliant ecosystem for the qRNG source to feed those schemes
proved Falcon to be the best option. Our solution allows for the incorporation of new post-quantum
algorithms, such as those that can be standardized by organizations such as NIST in the upcoming
months and years.

To use Falcon, we needed to add a new object identifier (OID), the 1.3.9999.3.1, to libSSL in
order to recognize the post quantum Falcon-512 algorithm [80].

The process for the generation of post-quantum certificates is summarized in Figs. (4,5) and
broken down into the following seven steps:

• The applicant requests and receives the entropy form the qRNG as explained in Section 5.1.

• The applicant generates a post-quantum Falcon-512 key pair using the quantum entropy
through a modified version of the OpenSLL CLI (this modification has been made by the
Open Quantum Safe Initiative and we have contributed with a Debian package to simplify its
installation) and builds a certificate signing request (CSR).
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Figure 2: Detailed flows describing the generation and consumption of entropy on demand by the Open
SSL.

13



Figure 3: Comparison between Falcon and Crystals-Filithium algorithms.

• The applicant generates a second CSR with an Ethereum key pair that will be used to sign
transactions using the default method set by Ethereum (currently ECDSA).

• The applicant sends to a certificate authority (CA) -a role played by the LACChain Technical
Team in our pilot- (i) a traditional X.509 issued by a trusted CA, (ii) a certificate signing request
(CSR) for the Ethereum key, and (iii) a CSR associated for the Falcon post-quantum key.

• The CA verifies that (i) the traditional X.509 is valid, (ii) the subject in the traditional X.509
matches the subject in the CSRs, and (iii) the signature of the CSRs matches the public keys
that are requested to be certified (i.e., the CSRs are valid).

• If the verification fails, the certification process is rejected, and an error message is returned
to the applicant.

• If the validation process is passed, the CA proceeds to register three items into the smart con-
tract within the blockchain called “the Decentralized Identifier (DID) Registry.” DIDs are URIs
that follow aW3C standard [81], which are suitable for the identification of individuals, entities,
or other components within decentralized environments such as blockchain networks. The
three items registered in the smart contract are (i) the DID, (ii) the Ethereum and Falcon post-
quantum public keys, and (iii) the subject data or alternatively a proof of the subject’s identity
that does not reveal subject data. Simultaneously, the CA also returns several items to the
applicant, including the Falcon post-quantum X.509 certificate that contains the Ethereum
public key, the Falcon post-quantum public key, and a new DID controlled by another DID
derived from the ETH key.

Each of these steps is essential and additional useful clarifications are listed below:

• CSR are files of encoded text that contain information to be included in the requested certifi-
cate such as the organization name, common name (domain name), address, and country.
It also contains the public key that will be included in the certificate, but the private key is not
disclosed. Instead, the private key is used to sign the request so the CA can verify that the
requester is indeed in control of that particular private key.

• The applicant is required to present a traditional X.509 so the blockchain CA does not have
to accomplish the verification of the applicant’s identity from scratch. Both the applicant and
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Figure 4: High level diagram of the post-quantum certification and on-chain registration of an entity.

the CA take advantage of a previous X.509 and the CA only verifies that the certified subject
data in the X.509 matches the subject data in the CSRs.

• The DID Registry follows the DID standard from theW3C [81] which presents a data model for
identifiers particularly designed to be resolved and verified in decentralized registries. Every
time the CA certifies a new entity, it registers the DID in the blockchain with the information
about the certified Ethereum and Falcon public keys, so that anyone with access to the public
blockchain ledger can resolve the entity’s DID and verify the keys associated with them. For
example, this would occur when the entity is using the Ethereum key, the Falcon key, or both
to sign a transaction, which will be addressed in Subsection 5.5.

5.3 Encapsulation of the communication between nodes using quantum-safe cryp-
tography

Communication between nodes is made through the protocol established by the blockchain tech-
nology and varies depending on the network used. In the case of the LACChain Besu Network
used for this pilot, nodes communicate via TCP and use the RLPx for data encryption (this is the
same for the Ethereum mainnet, as Hyperledger Besu is an Ethereum client.) This protocol seals
messages with a ECDSA signature on curve SECP251k1 to link the network message to a peer
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Figure 5: High level diagram of the post-quantum certification and on-chain registration of an entity.

address. We decided not to modify this protocol because that would require maintenance of a new
blockchain technology. Instead, our goal was to keep using the Hyperledger Besu technology and
develop a layer on top to make it quantum-resistant.

With the aim of developing a layer-2 solution that could be used by any blockchain with any
communication protocol and that would not be invasive to the protocol (i.e., does not require layer-1
modifications), our solution consist of adding a point-to-point TLS tunnel modified to support post-
quantum keys where the post-quantum X.509 certificates described in Subsection 5.2 are used for
identification and authorization.

For the pilot, we used Falcon-512 asymmetric keys. As this is built on a TLS connection that
is not sensitive to the key length, unlike blockchain transactions, it is possible to use other post-
quantum algorithms. However, in order to be consistent with the use of a single post-quantum
algorithm in the different phases of the pilot, we used Falcon-512.

Once this tunnel is established, each node must route the traffic aimed at its counterpart through
the TLS tunnel, making it unfeasible for a quantum computer to intercept the traffic and impersonate
a node. This protects the blockchain network from different types of attacks. For example, because
we are not modifying the blockchain protocol in our permissionless network, the node producers
that vote for the generation of new blocks are still materializing this vote in an ECDSA signature (the
consensus protocol requires 2/3+1 of node producer’s signatures for a block to be considered valid)
that is neither replaced not complemented with a post-quantum signature. However, if a hacker was
to discover all the private ECDSA keys of the validator nodes and tried to tamper with the block
production by changing the valid transactions and use the validator nodes’ signatures to sign them,
it could not achieve it because it cannot intercept the communication between nodes where they
could provoke this type of man-in-the-middle attack. The hacker would need to hack and access
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each of the validator node servers, for which quantum computers present no advantage.
In any case, despite the fact that we believe this threat is removed with our solution, it would be

easier and more convenient to modify the Ethereum protocol so cryptographic algorithms different
from ECDSA, such as Falcon-512, are recognized and can be used by validator nodes to sign
blocks

5.4 Signature of transactions using post-quantum keys

Unlike the first three phases, the implementation of the fourth phase requires us to be particular
about each specific blockchain network. There are blockchain protocols that recognize different
encryption algorithms and/or are already flexible in incorporating new ones. At the present moment,
this is not the case of Ethereum and the Ethereum-client, Hyperledger Besu, on top of which the
LACChain Network used in the pilot is built [65]. In this context, our way for introducing amechanism
to add a quantum signature to the transactions broadcasted to the network without modifying the
blockchain protocol was the development of a relay signer and a meta-transaction signing schema.

A meta-transaction is a mechanism through which to wrap a regular transaction into another
transaction addressed to a method of a smart contract (a.k.a. relay Hub) which unwraps and exe-
cutes the original transaction. Because the meta-transaction is a regular call to a smart contract,
we can add new parameters along with the original transaction. In this case, our design allows us
to add the writer node’s URI (a DID [81]) and a post-quantum signature to the original transaction.

We have developed a relay signer that is provided to the writer nodes -the only nodes allowed to
broadcast transactions according to the LACChain topology [82]- that can manage post-quantum
keys. This component exposes a JSON-RPC standard interface, instrumenting methods to make
the whole operation transparent to the user. Each writer node is responsible for keeping its Falcon-
512 private key safe, and the signer to generate the meta-transaction. Figure 6 summarizes these
concepts. Furthermore, full interaction among components is presented in Fig. 7.

Following the EIP-155 [83], signatures in Ethereum take nine RLP encoded elements: nonce,
gasprice, startgas, to, value, data, chainid, 0, 0. For consistency, we took the same stream of data
to generate the Falcon-512 signatures. This guarantees the integrity of the original transaction -the
writer node cannot modify it- and its quantum resistance by adding the post-quantum signature in
the meta transaction. Writer nodes leverage the post-quantum public keys certified by a CA in the
post-quantum X.509.

It is worth mentioning that we are only adding a post-quantum signature in the meta transaction
that is created by the writer node, but original senders (i.e., blockchain addresses) are still using
only the ECDSA signatures to sign their transactions. Ethereum addresses are the 20 bytes of
the SHA3 hashed ECDSA public key, so the public key is not directly exposed. However, when an
address sends a transaction, the private key is used to sign it and therefore it is necessary to reveal
the public key so the transaction can be verified.

Thus, if a blockchain address is in possession of certain tokens or has a particularly relevant role
in the network (e.g., being permissioned in a smart contact that can issue digital bonds), a quantum
computer could be used to hack the private key associated to that address and send transactions
to the blockchain that impersonate the true owner. This would allow the hacker to steal the victim’s
funds or to assume their particularly relevant role in the network, respectively.

Our solution allows to remove this threat by enabling each smart contract to require post-
quantum authentication and leveraging for it one of our on-chain verification mechanisms presented
in Section 5.5 . Only the transference of Ether would not be protected, but LACChain does not have
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Ether enabled.
As in the case of the signatures by validator nodes described in Section 5.3, it would be much

easier, ideal, and convenient to have the Ethereum technology enabling the use of quantum-safe
cryptographic algorithms that can be used at the protocol level to sign and verify transactions. We
believe that Ethereum Improvement Proposals (EIPs) such as the EIP-2938 [84] are moving in the
right direction and are very aligned with the work described in this paper.

Figure 6: High level diagram presenting the different components from the DApp (it can also be an app or
any application connected to the writer node and generating transactions) and the smart contract that it is
calling.

Figure 7: High level diagram illustrating the flows from the generation of a transaction to the incorporation
of that transaction to the transaction pool of a node, after validating the post-quantum signature.
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5.5 On-chain verification of post-quantum signatures

When a writer node adds a post quantum signature to the meta-transaction and broadcasts it to the
network, there must be a mechanism for the signature to be verified. In the regular Ethereum proto-
col, there is not explicit verification for any signature. In the Ethereum protocol, for a given ECDSA
signature, an address is derived and used as the identity of the person willing to execute and pay
for a blockchain operation. For the LACChain Besu Network, we have decided to implement a ver-
ification protocol based on the Onchain Permissioning feature, which is based on smart contracts.
This feature enables each node to intercept every transaction and run different validations before
incorporating them into their transaction pool and replicate them to their peers.

Particularly, according to our protocol, nodes use the post quantum signature to verify the au-
thenticity and integrity of the transaction. As the name of the feature implies, this is resolved by
making a local call to a smart contract existing in the network, which receives several parameters
(sender address, target address, transaction value, gas price, gas limit, payload). To our purpose,
nodes check the “target address” and dissect the “payload”, as described below.

As previously discussed (see Section 5.4), we use a meta-transaction model for executing user
requests. This means that there is a single-entry point for our network, which is the address of
the Relay Hub contract where the meta-transaction is directed. Therefore, the first Permissioning
check consists of verifying that the target address is the Relay Hub contract. Otherwise, nodes will
reject the transaction.

Once the Relay Hub smart contract has been verified as the target of the transaction, each node
extracts the original payload transaction, the writer node’s DID, and the Falcon-512 signature from
the original transaction in order to verify the signature. Additionally, a call to the DID Registry allows
for retrieval of the public keys associated with it, including the post-quantum public key that should
match the post-quantum signature. With this information, each node receiving a transaction from a
peer takes the original transaction, the public key, and the signature, and verifies their consistency.
If it is not consistent, they reject the transaction (i.e., they do not add it to their transaction pool, nor
propagate it to other peers).

To summarize, the protocol we have designed consists of three steps:

1. Every node that receives a meta-transaction -from the node that created it or from another
node that replicated it- checks the sender. This involves obtaining the DID from the meta-
transaction and locally querying the DID Registry in order to resolve (i.e., obtain) its Ethereum
keys (ECDSA). They then verify that the public key derived from the ECDSA signature of the
meta-transaction has control over the node’s DID that generated it.

2. If Step 1 is successful, the node calls the DID Registry again and now resolves the post-
quantum public key associated with the DID as well as the Ethereum public key verified in
Step 1.

3. With the post-quantum public key resolved from the DID Registry in Step 2, the post- quantum
signature, and the original transaction, each node the verifies the post-quantum algorithm.

If the three previous steps are successfully completed, nodes add the meta-transaction to their
transaction pool and replicate them onto other nodes so that the validators will receive them and
add them into the next block.

As previously stated, we have chosen Falcon-512 as our post-quantum algorithm. There is
not yet an ideal way of implementing the Falcon-512 verification required to accomplish the Step
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3 of this verification process nor any other post-quantum algorithm, in Ethereum-based networks.
We have developed three alternative mechanisms and analyzed their pros and cons, which are
presented in detail in Subsection 5.5.4.

These three mechanisms are:

• Implementing the verification code in Solidity (see Subsection 5.5.1).

• Implementing solidity instruction in the Solc compiler and corresponding EVM opcode, written
in Java (Besu is written in Java), that performs a call through JNI to a NIST-compliant and high
performance native Liboqs library outside of the EVM virtualized environment (see Subsection
5.5.2).

• Refactoring the EVM opcode Java from the EVM virtual machine into a pre-compiled con-
tract (a EVM Java-code native smart contract) that performs the call through JNI to the NIST
compliant, high performance native Liboqs library outside of the EVM virtualized environment
(see Subsection 5.5.3).

We hope that in the not-so-distant future, we can use this effort in alignment with the upcoming
protocol changes in the form of the Accounts Abstractions, which will allow us to replace ECC
cryptography with new algorithms, including post-quantum.

5.5.1 Verification code in solidity

The natural execution environment for the blockchain is the Ethereum Virtual Machine; thus, in
our first attempt, we implemented the verification code entirely in the Solidity language. We dis-
sect the reference implementation in the following modules and discuss the implementation of the
highlighted functions one by one.

Implementing the highlighted portions of Fig. 8 in Solidity allowed for on-chain signature verifi-
cation. Upon the completion of the development process, we faced two major problems. The first
problem was the code size. It exceeded the 24kb limit that Ethereum mainnet imposes. This limit
could have been exceeded in LACChain because LACChain has different boundaries, but such
large code sizes are not ideal. The second and more major problem was the execution cost. In
Fig. 9, we present a chart with the execution cost of the verification of the known answer tests
provided by the Falcon implementation. If we compare the average 500 million gas units for a sin-
gle Falcon signature verification, with the current block limit of 12 million gas units in the Ethereum
mainnet, we can conclude that this approach is completely impractical at this point.

5.5.2 EVM virtual machine-based signature validation support

An EVM based approach requires modification of both the Solidity compiler (solc) and the Ethereum
Virtual Machine (EVM) that underpins the Besu Hyperledger technology used by LACChain.

These changes are applicable across all Ethereum-based networks but require all participating
nodes within the blockchain to utilize the updated solidity compiler and EVM. The Java Native
Interface (JNI) is also required in addition to ensuring that compatible OpenQuantum Safe (an
open-source venture) Liboqs libraries are installed. Performance is therefore limited only by the
native liboqs library and the native node processing power.

The solidity modification is minor, and only requires adding an instruction token to the existing
instruction list. The modification to the EVM is similarly minor and only requires adding a Java class
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to a Falcon Verify operation and registering the class with the operations available for that version
of the EVM virtual machine. This implementation provides a simple Gas cost of 1. However, an
extended example could be made to utilize the memory-block size cost calculation performed by
SHA3.

Figure 8: High level function hierarchy of Falcon highlighting the necessary calls for verification.

The approach only uses one opcode from the 6000 opcodes limit call within the standard con-
figuration of Ethereum. The real-world performance of the signature verification is as fast as the
hardware can perform - aligning with the performance observed by the OpenQuantum Safe teams.

The utilization of the OpenQuantum Safe liboqs library ensures minimal operational delay or
risk in maintaining updated quantum algorithms in line with NIST and the OpenSource Safe current
standards. The Java class implemented for the EVM can also be extended beyond Falcon-512
and to allow Falcon-1024 or other signatures.

The EVM stack word width is 256bits, which naturally fits with the existing 256-bit hashes used
in the classical encryption. However, post-quantum signatures with larger memory requirements
will become less optimal unless the stack word width is increased at the cost of compatibility with
previously operational blockchains. Finally, the POC EVM implementation utilizes Falcon-512,
which minimizes this impact while also providing a security level that is in alignment with classical
AES-256. Fig. 10 summarizes the interactions described in this subsection.
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Figure 9: Gas consumption by the on-chain verification of Falcon-512.

5.5.3 EVM pre-compiled-based signature validation support

The pre-compiled approach transplants the EVM falcon verify operation Java class into a EVM pre-
compiled smart contract (a native Java compiled smart contract). This approach has two benefits
that reduce operational impact:

• No change to the Solidity compiler.

• No change to the underlying EVM virtual machine.

This facilitates the distribution of the quantum signature verification separate from the compiler
and EVM releases. The approach therefore brings all the benefits of the EVM opcode implemen-
tation but with less operational work. The JNI and Liboqs libraries are used identically, offering
speed and ease of maintenance. It is also worth mentioning that given this verification is meant
to be executed before a node joins the blockchain, it could easily be replaced in the future without
affecting the consensus. It will only be necessary to modify the deployment scripts.

Implementing this solution in the LACChain Hyperledger Besu Network would require changes
in the protocol with respect to other Ethereum networks, including the mainnet. This would be
against our goal to preserve compatibility with the Ethereum community. Therefore, the ideal way
to proceed with this third approach for the verification of Falcon signatures is submitting an EIP for
the community to evaluate the incorporation of a pre-compiled smart contract into the Ethereum
protocol, being this either the full Falcon verification algorithm or same detected bottlenecks from
a gas consumption perspective.

Fig. 11 shows some advantages and disadvantages of Pure Solidity, EVM Opcode and pre-
compiled contract.
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Figure 10: EVM virtual machine-based signature validation support.

5.5.4 Comparison between different solutions for verification of post-quantum signatures

The three alternatives that were designed and tested for the verification of post-quantum signatures
are successful for verification but not ideal for a productive implementation if the Ethereum-based
network implementing them is intended to remain fully compatible with the Ethereum mainnet. The
Solidity native implementation presented in Subsection 5.5.1 is not scalable due to the amount of
gas required for the execution of the code, although it does not require a modification of Besu or
Ethereum. The modification of the Solidity compiler and the EVM, as well as the pre-compiled
smart contract (presented in Subsections 5.5.2 and 5.5.3 respectively) are computationally scal-
able. However, they require undesired modifications unless otherwise agreed upon by the entire
Ethereum community, which is the goal we aim at to pursue in the next step of this pilot.

Additionally, the solutions described in Subsections 5.5.2 and 5.5.3 use the Java Virtual ma-
chine. However, unlike the Solidity native implementation, these two techniques are not impacted
by EVM or JavaVM mathematical computational problems maintaining validity and security be-
tween releases. Instead, the pure C native method of Liboqs implements its own mathematical
validity tests as part of the C build system. The result is that regardless of Java or EVM release,
the verifying Liboqs library remains mathematically valid (assuming no optimizations or changes
that invalidate tests). This approach allows organizations to separate security requirements, of-
fering more precise maintenance and governance. However, this approach would require extra
security protocols with the additional overhead.

6 Conclusions and next steps

We have analyzed the various areas of blockchain technology threatened by the advent of quantum
computers and identified two areas that are under particularly critical risk: internet communication
between blockchain nodes and the blockchain transaction signatures. Today, these protocols rely
on algorithms such as ECDH and ECDSA, which are susceptible to attacks by quantum computers.
Current quantum computers have already proven themselves able to break short asymmetric keys
using Shor’s algorithm and it is only a matter of time before robust quantum computers currently
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Figure 11: Pros and Cons of Pure Solidity, EVM Opcode, and Precompiled contract.

under development will be able to break larger and larger keys. As the “hack today, crack tomorrow”
motto warns, quantum computers will be able to access secrets retroactively. This is particularly
critical for blockchain, where information is recorded publicly and immutably so having access to
all the information any time in the future will not even require any hacking.

The scarce previous work on this topic has focused on theoretical approaches, with the excep-
tion of one implementation of a QKD scheme for key establishment, which requires nodes to run
close together on-site due to QKD channels’ length constraints. In this paper, we have proposed
the first robust and scalable solution, to our knowledge, to protect communications and signatures
in a blockchain network from attacks by quantum computers. Its effectiveness has been demon-
strated by its implantation in a real blockchain network. Our solution consists of modifying libSSL
to incorporate post-quantum algorithms that are quantum-resistant and adding post-quantum keys
into X.509 certificates derived from traditional certificates. The nodes use these post-quantum
X.509 certificates to encapsulate their communication by establishing post-quantum TLS tunnels.
The nodes also use the post-quantum key associated with the certificate to sign the transactions
they broadcast to the network. We have implemented this solution in the LACChain Besu Network,
which is built on Ethereum technology.

There are several strengths and benefits to our implementation. First, it uses a quantum source
of entropy (i.e., a non-deterministic quantum random number generator) as the seed for the gen-
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eration of post-quantum keys. Second, we are respectful of the exchange of transactions and the
blockchain protocols for encryption discovery and communication (still happens inside the post-
quantum tunnel). Third, we have proposed three different alternatives for the post-quantum sig-
nature verification, which every node accomplishes before adding a transaction to the transaction
pool and replicating it. Therefore, if a signature is not valid, the transaction is never propagated nor
added into a block.

The three different solutions for the verification of the post-quantum signatures that we have
proposed, developed, and tested are: an implementation of the verification code in Solidity, the
addition of a new operation code into the EVM assembly language (with a corresponding Solidity
compiler modification to generate this _opcode_), and the introduction of a new pre-compiled (i.e.,
native) smart contract. The first solution, despite the fact that it is totally compatible with the current
protocol, is not computationally scalable due the enormous gas cost it involves. The latter two were
implemented through a native Liboqs library outside of the EVM runtime allowing us to improve the
execution time and to adjust gas consumption. The experience gathered through this work will
lead our team to raise the discussion through an EIP to support the use of Falcon-512 for on-chain
verifications. This is the way to not diverge LACChain or any other particular blockchain network
from Ethereum consensus and, at the same time, improve the security of any implementation of
the protocol.

The three different solutions for the verification of the post-quantum signatures that we have
proposed, developed, and tested are: an implementation of the verification code in Solidity, an
implementation of the verification in a native Liboqs library outside of the EVM virtualized environ-
ment, and a verification using a EVM Java-code pre-compiled (i.e., native) smart contract. These
three implementations are focused on ensuring the minimization of the number of operations and
amount of entropy required, in addition to being NIST compliant. The first solution is not compu-
tationally scalable, and the other two require modification to the Ethereum protocol, which we will
propose to the Ethereum community in the form of an EIP.

In addition to the potential modifications of the Ethereum protocol to enable our layer-two im-
plementation, we also believe it is necessary to modify current blockchain protocols to introduce
new post-quantum signature cryptographic algorithms that allow the use of post-quantum cryptog-
raphy natively. We hope that our work can contribute to current efforts in this direction such as the
EIP-2938.

With respect to other blockchain networks that are not Ethereum-based, the proposed solution
for a quantum-safe blockchain network presented in this paper is applicable too. However, the so-
lution implementation will vary based on the technology used. Therefore, this solution might enable
quantum-safeness in other blockchain networks in a more efficient way than in the Ethereum-based
network.
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