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Abstract 
Whole Brain Connectomic Architecture (WBCA) is defined as a software architecture of the artificial 
intelligence (AI) computing platform which consists of empirical neural circuit information in the 
entire brain. It is constructed with the aim of developing a general-purpose biologically plausible AI to 
exert brain-like multiple cognitive functions and behaviors in a computational system. We have 
developed and implemented several functional machine learning modules, based on open mouse 
connectomic information, which correspond to specific brain regions. WBCA can accelerate efficient 
engineering development of the intelligent machines built on the architecture of the biological nervous 
system. 
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1 Introduction 
Competition for development of artificial intelligence (AI) is intensifying worldwide. The 

development of the artificial intelligence field is progressing at a remarkable speed, primarily because 
most major IT companies are involved. The growth in this field was evidenced at the most recent 
NIPS conference, which recorded the largest ever number of participants. We demonstrate one of the 
efficient means of creating artificial general intelligence (AGI) by adopting the whole brain 
architecture (WBA) approach (Figure 1) (Yamakawa et al., 2016). We believe a unified platform is 
required to develop AGI. In this paper, we describe the development of WBA based on the 
connectome structure, which is a neural circuit wiring diagram. 

                                                             
* Corresponding authors 

 

Whole brain connectomic architecture to develop 
general artificial intelligence 

Haruo Mizutani1,2*, Michihiko Ueno1,2, Naoya Arakawa1,2 and Hiroshi 
Yamakawa1,2* 

1Whole Brain Architecture Initiative, Tokyo, Japan 
2DwangoArtificial Intelligence Laboratory, Tokyo, Japan 

mizutani@wba-initiative.org, m.ueno@wba-initiative.org, arakawa@wba-initiative.org, 
ymkw@wba-initiative.org  

 
 
 

 
Abstract 
Whole Brain Connectomic Architecture (WBCA) is defined as a software architecture of the artificial 
intelligence (AI) computing platform which consists of empirical neural circuit information in the 
entire brain. It is constructed with the aim of developing a general-purpose biologically plausible AI to 
exert brain-like multiple cognitive functions and behaviors in a computational system. We have 
developed and implemented several functional machine learning modules, based on open mouse 
connectomic information, which correspond to specific brain regions. WBCA can accelerate efficient 
engineering development of the intelligent machines built on the architecture of the biological nervous 
system. 
 
Keywords: connectome, general artificial intelligence, whole brain architecture, empirical neural circuits, efficient 
engineering 

1 Introduction 
Competition for development of artificial intelligence (AI) is intensifying worldwide. The 

development of the artificial intelligence field is progressing at a remarkable speed, primarily because 
most major IT companies are involved. The growth in this field was evidenced at the most recent 
NIPS conference, which recorded the largest ever number of participants. We demonstrate one of the 
efficient means of creating artificial general intelligence (AGI) by adopting the whole brain 
architecture (WBA) approach (Figure 1) (Yamakawa et al., 2016). We believe a unified platform is 
required to develop AGI. In this paper, we describe the development of WBA based on the 
connectome structure, which is a neural circuit wiring diagram. 

                                                             
* Corresponding authors 

 

Whole brain connectomic architecture to develop 
general artificial intelligence 

Haruo Mizutani1,2*, Michihiko Ueno1,2, Naoya Arakawa1,2 and Hiroshi 
Yamakawa1,2* 

1Whole Brain Architecture Initiative, Tokyo, Japan 
2DwangoArtificial Intelligence Laboratory, Tokyo, Japan 

mizutani@wba-initiative.org, m.ueno@wba-initiative.org, arakawa@wba-initiative.org, 
ymkw@wba-initiative.org  

 
 
 

 
Abstract 
Whole Brain Connectomic Architecture (WBCA) is defined as a software architecture of the artificial 
intelligence (AI) computing platform which consists of empirical neural circuit information in the 
entire brain. It is constructed with the aim of developing a general-purpose biologically plausible AI to 
exert brain-like multiple cognitive functions and behaviors in a computational system. We have 
developed and implemented several functional machine learning modules, based on open mouse 
connectomic information, which correspond to specific brain regions. WBCA can accelerate efficient 
engineering development of the intelligent machines built on the architecture of the biological nervous 
system. 
 
Keywords: connectome, general artificial intelligence, whole brain architecture, empirical neural circuits, efficient 
engineering 

1 Introduction 
Competition for development of artificial intelligence (AI) is intensifying worldwide. The 

development of the artificial intelligence field is progressing at a remarkable speed, primarily because 
most major IT companies are involved. The growth in this field was evidenced at the most recent 
NIPS conference, which recorded the largest ever number of participants. We demonstrate one of the 
efficient means of creating artificial general intelligence (AGI) by adopting the whole brain 
architecture (WBA) approach (Figure 1) (Yamakawa et al., 2016). We believe a unified platform is 
required to develop AGI. In this paper, we describe the development of WBA based on the 
connectome structure, which is a neural circuit wiring diagram. 

                                                             
* Corresponding authors 

 

Whole brain connectomic architecture to develop 
general artificial intelligence 

Haruo Mizutani1,2*, Michihiko Ueno1,2, Naoya Arakawa1,2 and Hiroshi 
Yamakawa1,2* 

1Whole Brain Architecture Initiative, Tokyo, Japan 
2DwangoArtificial Intelligence Laboratory, Tokyo, Japan 

mizutani@wba-initiative.org, m.ueno@wba-initiative.org, arakawa@wba-initiative.org, 
ymkw@wba-initiative.org  

 
 
 

 
Abstract 
Whole Brain Connectomic Architecture (WBCA) is defined as a software architecture of the artificial 
intelligence (AI) computing platform which consists of empirical neural circuit information in the 
entire brain. It is constructed with the aim of developing a general-purpose biologically plausible AI to 
exert brain-like multiple cognitive functions and behaviors in a computational system. We have 
developed and implemented several functional machine learning modules, based on open mouse 
connectomic information, which correspond to specific brain regions. WBCA can accelerate efficient 
engineering development of the intelligent machines built on the architecture of the biological nervous 
system. 
 
Keywords: connectome, general artificial intelligence, whole brain architecture, empirical neural circuits, efficient 
engineering 

1 Introduction 
Competition for development of artificial intelligence (AI) is intensifying worldwide. The 

development of the artificial intelligence field is progressing at a remarkable speed, primarily because 
most major IT companies are involved. The growth in this field was evidenced at the most recent 
NIPS conference, which recorded the largest ever number of participants. We demonstrate one of the 
efficient means of creating artificial general intelligence (AGI) by adopting the whole brain 
architecture (WBA) approach (Figure 1) (Yamakawa et al., 2016). We believe a unified platform is 
required to develop AGI. In this paper, we describe the development of WBA based on the 
connectome structure, which is a neural circuit wiring diagram. 

                                                             
* Corresponding authors 

 

Whole brain connectomic architecture to develop 
general artificial intelligence 

Haruo Mizutani1,2*, Michihiko Ueno1,2, Naoya Arakawa1,2 and Hiroshi 
Yamakawa1,2* 

1Whole Brain Architecture Initiative, Tokyo, Japan 
2DwangoArtificial Intelligence Laboratory, Tokyo, Japan 

mizutani@wba-initiative.org, m.ueno@wba-initiative.org, arakawa@wba-initiative.org, 
ymkw@wba-initiative.org  

 
 
 

 
Abstract 
Whole Brain Connectomic Architecture (WBCA) is defined as a software architecture of the artificial 
intelligence (AI) computing platform which consists of empirical neural circuit information in the 
entire brain. It is constructed with the aim of developing a general-purpose biologically plausible AI to 
exert brain-like multiple cognitive functions and behaviors in a computational system. We have 
developed and implemented several functional machine learning modules, based on open mouse 
connectomic information, which correspond to specific brain regions. WBCA can accelerate efficient 
engineering development of the intelligent machines built on the architecture of the biological nervous 
system. 
 
Keywords: connectome, general artificial intelligence, whole brain architecture, empirical neural circuits, efficient 
engineering 

1 Introduction 
Competition for development of artificial intelligence (AI) is intensifying worldwide. The 

development of the artificial intelligence field is progressing at a remarkable speed, primarily because 
most major IT companies are involved. The growth in this field was evidenced at the most recent 
NIPS conference, which recorded the largest ever number of participants. We demonstrate one of the 
efficient means of creating artificial general intelligence (AGI) by adopting the whole brain 
architecture (WBA) approach (Figure 1) (Yamakawa et al., 2016). We believe a unified platform is 
required to develop AGI. In this paper, we describe the development of WBA based on the 
connectome structure, which is a neural circuit wiring diagram. 

                                                             
* Corresponding authors 

 

 

The static reference architecture was developed based on the knowledge of connectomes, neural 
wiring diagrams, as Whole Brain Connectomic Architecture (WBCA) and we used it to develop the 
base of WBA. We collected connectome information focusing on a wide range of mesoscopic data 
with spatial resolution capable of visualizing nerve cells to some extent and used this to construct 
WBCA. It is posited that AGI can be developed efficiently by constraining the combined repertoire of 
machine learning constituting artificial intelligence by connectome. WBCA is hierarchically described 
because the descriptive granularity required by AGI function, the developer's preference, the computer 
performance, etc. is different. For example, descriptions at the level of the cerebral organ such as the 
cerebral cortex, the hippocampus, and the basal ganglia are assumed as the coarsest grain size, and 
each is described as a machine learning instrument as a brain organ module. 

Many gains have developed in recent years that could solve many problems if sufficient learning 
data exists. Therefore, research on (AGI) technology which enables one AI agent to acquire various 
problem-solving skills through learning is gaining momentum worldwide. In building AGI, a 
cognitive architecture that is a framework of the system is required. In the AI field, several cognitive 
architectures have been built based on various design concepts, but there is no specific design concept 
that is dominating others in the field. With this backdrop of multiple design concepts, it is difficult to 
construct general purpose software with a single design philosophy. In short, in a general-purpose 
system, it is not possible to adopt a standard design strategy that will decompose objects into functions 
and implement them to realize that function. 

On the other hand, knowledge of neuroscience is rapidly increasing, so attempts to create 
correlating artificial intelligence are also increasing. Since the brain is the only real existing 
intelligence, it is easy to obtain consensus among researchers with its architecture as the completed 
goal. This is an effective scaffold for collaborative work that could integrate individual technologies. 
In this approach, the brain realizes the function by combining machine learning instruments that each 
have well-defined functions, and imitates them. Machine learning that is artificially constructed is 
based on the hypothesis that it is possible to build a general-purpose intelligent machine with human-
level or higher ability by combining vessels. Per this hypothesis, the construction of the AGI system is 
broken down into the development of machine learning modules for each brain organ, and integrating 
these modules based on the brain type cognitive architecture. Attempts to learn from the brain to build 
artificial intelligence are not new, but until now, there have been two major problems in promoting 
brain-type artificial intelligence. However, these issues have possible solutions. 

First, deep learning has appeared in such a way as to imitate to some extent the cerebral neocortex 
playing a pan-important role. Second, research on the connectome, which is the basic information of 
the cognitive architecture of the whole brain, has greatly advanced in the field of neuroscience. The 
neuron model used in the current artificial neural network is exhibiting various functions despite being 
a rather simple model without internal structure. Given these technological conditions, there is the 

Figure 1: Whole Brain Architecture approach. The diagram represents brain-like AGI development scheme 
according to an entire brain architecture with multiple machine learning modules implemented based on the 
actual connectomic morphology. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.01.048&domain=pdf
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possibility of making artificial intelligence with simple cognitive functions like humans based on 
neurons. Therefore, in this research, we focus on the relatively rough, brain mesoscopic connectome, 
and based on this, we construct WBCA, which is the reference model of whole brain architecture and 
the basis of brain type information processing research. 

In the WBA approach, the aim is to ultimately mimic the human brain. To start with, though, we 
first prepare WBCA from information such as connectome about rodents that have a rich accumulation 
of neuroscientific knowledge. Rodent intelligence does not reach the capabilities of human 
intelligence, including language etc., but the brain architecture that supports higher brain function is 
highly homologous, and research results in rodents are useful when stepping up to more complex 
systems, like humans. Specifically, we will aim for 100% coverage of the four main parts related to 
higher cognitive function (the neocortex, the thalamus, basal ganglia, and the hippocampus). Then, by 
combining artificial neural networks such as deep learning, we implement some cognitive functions of 
the brain and conduct practicality and functional verification as a research and development platform. 

Neuroinformatics improves the capability by organizing the information obtained experimentally, 
assuming medical application, etc. This creates the need to handle information in detail and 
exhaustively. On the other hand, WBCA focuses on specific neuroscience knowledge to obtain a 
framework for linking machine learning, creating good prospects for engineering researchers and 
engineers. For at least the neocortex, it is reasonable and realistic to adopt a mesoscopic connectome, 
which defines the coupling between regions, as an architecture. Because the function of individual 
areas in the new cortex is determined mainly by the unique combination of the source field and the 
target area to be connected (connection fingerprint), the layer unit of deep learning dealing with visual 
information corresponds to the area of the visual cortex This can be attached using WBCA, which 
forms the basis of the architecture of the whole brain. 

 

2 Representation of Brain Region Interconnectivity  

2.1 Preparation of Strength Matrix between Brain Areas 
The first task is to collect connectome data from existing databases and academic papers. The 

database with the most information accumulated in the connectomic data is the Allen Mouse Brain 
Connectivity Atlas (Oh et al., 2014) provided by the Allen Institute for Brain Science. Therefore, 
using this database as a template, we created the basic data section of WBCA focusing on the 
connectivity information between brain regions. The Allen Mouse Brain Connectivity Atlas stores 
connectivity data between 295 brain regions. Currently, 2279 experimental data are stored on the 
database, and all experiments are injections of stain solution capable of tracing nerve cells into each 
brain region. From there, 104 regions corresponding to the cerebral neocortex, the thalamus, the basal 
ganglia, and the hippocampus are selected, and the extent to which the brain region of the projection 
source and the brain region of the projection target is nerve-projected is extracted. Since the number of 
voxels in the stained area is registered in the database, the nerve coupling strength from the brain 
region of the injection destination is calculated based on the number of voxels of the projection 
destination. By using the API distributed at Allen Laboratories, we automatically comprehensively 
acquire neural connectivity data by scripts etc. and metricize the binding strength between each brain 
region to make it the basis of WBCA (left in Figure 2). 

2.2 Preparation of Neocortical FF / FB Directional Matrix 
 With regard to the connectivity of the cerebral cortex region, determining the direction of 

feedforward / feedback (FF / FB) is extremely important for operating the deep learning model of the 

 

 

WBCA. Therefore, we also use the Allen Connectivity Atlas to identify the FF / FB relationship 
between each region of each cerebral cortex. Since there are 40 neocortical areas on the database, a 
reasonable FF / FB relationship was determined for these areas. The method of determining the FF / 
FB relationship was adopted from the method of Markov et al, 2014. This method quantifies whether 
the staining solution migrates to the upstream side or the downstream side of the granule cell layer 
when the staining solution is injected into the neocortex. The ratio is defined as SLN (Supragranular 
Labeled Neurons). In the Allen Connectivity Atlas, it is possible to acquire a list of experimental data 
on the projection by selecting the projection source and the projection destination, so that it is possible 
to calculate the FF / FB property of the neural projection appropriately from that experiment data. An 
example of analysis of the FF / FB property of the neocortical area 38 is shown by randomly selecting 
one piece of data from the appropriate available data (right in Figure 2).  

 
Figure 2: Matrix of binding strength (left) and FF / FB directionality (right) between each neocortical area 
calculated from Allen Mouse Connectivity Atlas at http://connectivity.brain-map.org/ 

3 Creation of Cognitive Architecture and Functional 
Verification 

Using the results of bond strength analysis and FF / FB directional analysis between neocortical 
regions, we constructed a brain architecture to develop cognitive function. Within the brain 
architecture, we constructed a deep learning model along the FF / FB directionality between the 
neocortex and verified the functionality using the specific cognitive model described below. 

3.1 Description of Brain Architecture 
The neural connectivity matrix that defines the connection between the brain regions is described 

by the machine readable architecture description language BriCA (Takahashi et al., 2015) to describe 
the network structure. This makes it possible to build a cognitive architecture while linking modules 
without depending on a specific computer environment (computer language, OS, etc.). Also, by 
separating the structure and procedures, it is easy for developers to refer and share structures. 
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combining artificial neural networks such as deep learning, we implement some cognitive functions of 
the brain and conduct practicality and functional verification as a research and development platform. 

Neuroinformatics improves the capability by organizing the information obtained experimentally, 
assuming medical application, etc. This creates the need to handle information in detail and 
exhaustively. On the other hand, WBCA focuses on specific neuroscience knowledge to obtain a 
framework for linking machine learning, creating good prospects for engineering researchers and 
engineers. For at least the neocortex, it is reasonable and realistic to adopt a mesoscopic connectome, 
which defines the coupling between regions, as an architecture. Because the function of individual 
areas in the new cortex is determined mainly by the unique combination of the source field and the 
target area to be connected (connection fingerprint), the layer unit of deep learning dealing with visual 
information corresponds to the area of the visual cortex This can be attached using WBCA, which 
forms the basis of the architecture of the whole brain. 

 

2 Representation of Brain Region Interconnectivity  

2.1 Preparation of Strength Matrix between Brain Areas 
The first task is to collect connectome data from existing databases and academic papers. The 

database with the most information accumulated in the connectomic data is the Allen Mouse Brain 
Connectivity Atlas (Oh et al., 2014) provided by the Allen Institute for Brain Science. Therefore, 
using this database as a template, we created the basic data section of WBCA focusing on the 
connectivity information between brain regions. The Allen Mouse Brain Connectivity Atlas stores 
connectivity data between 295 brain regions. Currently, 2279 experimental data are stored on the 
database, and all experiments are injections of stain solution capable of tracing nerve cells into each 
brain region. From there, 104 regions corresponding to the cerebral neocortex, the thalamus, the basal 
ganglia, and the hippocampus are selected, and the extent to which the brain region of the projection 
source and the brain region of the projection target is nerve-projected is extracted. Since the number of 
voxels in the stained area is registered in the database, the nerve coupling strength from the brain 
region of the injection destination is calculated based on the number of voxels of the projection 
destination. By using the API distributed at Allen Laboratories, we automatically comprehensively 
acquire neural connectivity data by scripts etc. and metricize the binding strength between each brain 
region to make it the basis of WBCA (left in Figure 2). 

2.2 Preparation of Neocortical FF / FB Directional Matrix 
 With regard to the connectivity of the cerebral cortex region, determining the direction of 

feedforward / feedback (FF / FB) is extremely important for operating the deep learning model of the 

 

 

WBCA. Therefore, we also use the Allen Connectivity Atlas to identify the FF / FB relationship 
between each region of each cerebral cortex. Since there are 40 neocortical areas on the database, a 
reasonable FF / FB relationship was determined for these areas. The method of determining the FF / 
FB relationship was adopted from the method of Markov et al, 2014. This method quantifies whether 
the staining solution migrates to the upstream side or the downstream side of the granule cell layer 
when the staining solution is injected into the neocortex. The ratio is defined as SLN (Supragranular 
Labeled Neurons). In the Allen Connectivity Atlas, it is possible to acquire a list of experimental data 
on the projection by selecting the projection source and the projection destination, so that it is possible 
to calculate the FF / FB property of the neural projection appropriately from that experiment data. An 
example of analysis of the FF / FB property of the neocortical area 38 is shown by randomly selecting 
one piece of data from the appropriate available data (right in Figure 2).  

 
Figure 2: Matrix of binding strength (left) and FF / FB directionality (right) between each neocortical area 
calculated from Allen Mouse Connectivity Atlas at http://connectivity.brain-map.org/ 

3 Creation of Cognitive Architecture and Functional 
Verification 

Using the results of bond strength analysis and FF / FB directional analysis between neocortical 
regions, we constructed a brain architecture to develop cognitive function. Within the brain 
architecture, we constructed a deep learning model along the FF / FB directionality between the 
neocortex and verified the functionality using the specific cognitive model described below. 

3.1 Description of Brain Architecture 
The neural connectivity matrix that defines the connection between the brain regions is described 

by the machine readable architecture description language BriCA (Takahashi et al., 2015) to describe 
the network structure. This makes it possible to build a cognitive architecture while linking modules 
without depending on a specific computer environment (computer language, OS, etc.). Also, by 
separating the structure and procedures, it is easy for developers to refer and share structures. 
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3.2 Calculation Platform for Brain Architecture 
As a computing platform for the implementation of the brain architecture, multiple modules called 

BriCA exchange signals having values as numerical vectors (simulating signals flowing through a 
bundle of nerve axons). BriCA can asynchronously combine and execute multiple machine learning 
modules. 

3.3 Agent Simulation Platform 
The cognitive architecture exerts its cognitive function as an agent interacting with the outside 

world. To verify the cognitive function, we will incorporate the cognitive architecture into the agent in 
a simulation environment and perform the simulation. Here, we use an environment called LIS (Life in 
Silico) (Nakamura and Yamakawa, 2016) as an agent simulation platform. LIS makes a game with the 
game engine Unity and the agent built in the cognitive architecture. 

3.4 Verification 
Using the WBCA as a basis for the whole brain and focusing on specific cognitive functions, we 

created a cognitive architecture as software implementing a machine learning module on BriCA and 
verified whether the cognitive model works in the virtual environment simulator. The targeted 
cognitive functions are based on spatial memory (Morris water maze), working memory (2~8 direction 
radial maze) etc., which are commonly used in mouse behavioral experiments. As a machine learning 
algorithm used for verification, Convolutional Neural Network (CNN) and reinforcement learning are 
used. Since the cognitive architecture is represented by WBCA, there is a strong connection with the 
constraints on connectivity. We verify that the machine learning framework functions on a static 
foundation in which a structural module is fixed, called a mesoscopic connectome structure. The 
minimum unit as a functional module is defined as the minimum size of the brain region in which the 
neuronal connection relation is recognized by the Allen Connectivity Atlas, and combinations thereof 
are made in consideration of the actual projection relation. The size of the final functional module 
makes it possible to flexibly change within the applicable range of the machine learning frame. In the 
evaluation method of cognitive function, we introduce criteria (time to attain the goal, etc.) that are 
almost equal to that of usual mouse behavioral experiments and observe how closely the computer 
mouse approaches the learning behavior of the actual mouse. The operation verification of cognitive 
function is performed by installing WBCA written in BriCA language on BriCA and incorporating it 
in the agent in the virtual environment simulator LIS. 

3.5 Verification Environment and Agents 
In this paper, we constructed the agent composition and learning environment based on the 

experiment of Manita et al. 2015 on haptic sensations, especially tactile and memory related to texture 
of the surface. This paper aims to reproduce this experiment in virtual space. We installed two cameras 
inside the agent. One camera functions as the vision of the agent and the other replaces the tactile 
sense of the agent. The camera that substitutes for vision is installed on the front of the head of the 
agent and represents the viewpoint of the agent. Through this camera, we can observe the state in the 
space where the agent is located. A camera representing tactile sense is installed at the feet of the 
agent and observes the floor surface which changes as the agent moves. The resolution is 227 x 227 
for the vision camera and 10 x 10 for the tactile camera. The different resolutions of the cameras were 
determined on the assumption that the tactile sense with respect to the uneven surface can function at a 
lower resolution than the camera for visual sense. The agent learns based on its experience with these 
two conditions and obtains a reward.  

 

 

We created an environment where the agent is placed in a labyrinth designed in a “Y” shape where 
the surroundings are covered with walls. The reward is arranged at the tip of the Y-junction maze. At 
the branch point, a wall that blocks the view of the reward is installed so that the reward cannot be 
seen from the viewpoint camera of the agent at the branch point. The agent can go to either branch at 
the Y-junction, and obtains a reward if it chooses the right one. The agent can perform three kinds of 
behaviors: agent left, clockwise, and forward. 

Two kinds of uneven floor surfaces were installed in front of the branch point, and the agent 
estimates the position of the reward based on the floor surface. The reward appears in one of the ends 
of Y depending on the floor surface. Unevenness on the floor surface is expressed as shades of gray 
scale image patterns to simulate tactile cues. The shading is expressed in 256 steps from 0 to 255; the 
closer to 0, the flatter the surface, and the closer to 255, the more convex the surface. Different floor 
surfaces randomly appear with 50% probability. Each trial has a fixed number of steps, and is 
designed to automatically return to the starting point when reaching more than a certain number of 
steps. The agent updates the evaluation function based on the time it takes to acquire the reward and 
the selected action, and then learns to obtain the reward more quickly by repeating the trial. 

4 Conclusion 
The first step in conducting this approach is to construct WBCA as the basis of the WBA. WBCA 

was constructed as a framework of intelligence that solves problems by combining new expressions 
and knowledge acquired by machine learning. We are developing an algorithm that realizes each brain 
cognitive functions reliably and efficiently. We hope to realize a flexible artificial intelligence system 
that follows WBA. Once the framework is laid, many machine learning and artificial intelligence 
experts (e.g. engineers, researchers) can focus on the local network and multiple machine learning 
modules It becomes possible to build an artificial intelligence system combining the work of many. 
Thus, using WBA makes it conceivable to efficiently execute distributed cooperative development in 
the presence of connective constraints It also is possible to promote research and development of AGI 
under this uniform framework. 
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