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Reinforcement learning (RL) has become central to training large language models (LLMs), yet the
field lacks predictive scaling methodologies comparable to those established for pre-training. Despite
rapidly rising compute budgets, there is no principled understanding of how to evaluate algorithmic
improvements for scaling RL compute. We present the first large-scale systematic study, amounting
to more than 400,000 GPU-hours, that defines a principled framework for analyzing and predicting
RL scaling in LLMs. We fit sigmoidal compute-performance curves for RL training and ablate a wide
range of common design choices to analyze their effects on asymptotic performance and compute
efficiency. We observe: (1) Not all recipes yield similar asymptotic performance, (2) Details such as
loss aggregation, normalization, curriculum, and off-policy algorithm primarily modulate compute
efficiency without materially shifting the asymptote, and (3) Stable, scalable recipes follow predictable
scaling trajectories, enabling extrapolation from smaller-scale runs. Combining these insights, we
propose a best-practice recipe, ScaleRL, and demonstrate its effectiveness by successfully scaling and
predicting validation performance on a single RL run scaled up to 100,000 GPU-hours. Our work
provides both a scientific framework for analyzing scaling in RL and a practical recipe that brings RL
training closer to the predictability long achieved in pre-training.
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Figure 1 Predicatably Scaling RL compute to 100,000 GPU Hours (a) We run ScaleRL for 100k GPU hours on an 8B dense
model, and 50k GPU hours on a 17Bx16 MoE (Scout). We fit a sigmoid curve (Equation (1)) on pass rate (mean@16)
on #d validation dataset up to 50k (and 16k) GPU hours and extrapolate to 100k (and 45k) on the 8B (Scout MoE)
models respectively. We trained for 7400 steps for 8B and 7100 steps for Scout, which is 3.5x larger than ProRL (Liu
et al., 2025a). The extrapolated curve (x markers) closely follows extended training, demonstrating both stability at
large compute and predictive fits—establishing ScaleRL as a reliable candidate for RL scaling. (b) Downstream evaluation
on AIME-24 shows a consistent scaling trend for ScaleRL, thus generalizing beyond the training data distribution.
Moreover, scaling model size substantially improves the downstream and asymptotic RL performance.
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1 Introduction

Scaling reinforcement learning (RL) compute is emerging as a critical paradigm for advancing large language
models (LLMs). While pre-training establishes the foundations of a model; the subsequent phase of RL
training unlocks many of today’s most important LLM capabilities, from test-time thinking (OpenAT, 2024;
Guo et al., 2025) to agentic capabilities (Kimi Team et al., 2025a). For instance, Deepseek-R1-Zero used
100,000 H800 GPU hours for RL training — 3.75% of its pre-training compute (Guo et al., 2025). This dramatic
increase in RL compute is amplified across frontier LLM generations, with more than 10x increase from ol to
03 (OpenAl, 2025) and a similar leap from Grok-3 to Grok-4 (xAl Team, 2025).

While RL compute for LLMs has scaled massively, our understanding of how to scale RL has not kept pace;
the methodology remains more art than science. Recent breakthroughs in RL are largely driven by isolated
studies on novel algorithms (e.g., Yu et al. (DAPO, 2025)) and model-specific training reports, such as,
MiniMax et al. (2025) and Magistral (Rastogi et al., 2025). Critically, these studies provide ad-hoc solutions
tailored to specific contexts, but not how to develop RL methods that scale with compute. This lack of scaling
methodology stifles research progress: with no reliable way to identify promising RL candidates a priori,
progress is tied to large-scale experimentation that sidelines most of the academic community.

This work lays the groundwork for science of RL scaling by borrowing from the well-established concept of
scaling laws from pre-training. While pre-training has converged to algorithmic recipes that scale predictably
with compute (Kaplan et al., 2020; Hoffmann et al., 2022; Owen, 2024), the RL landscape lacks a clear
standard. As a result, RL practitioners face an overwhelming array of design choices, leaving the fundamental
questions of how to scale and what to scale unanswered. To address these questions, we establish a predictive
framework for RL performance using a sigmoid-like saturating curve between the expected reward (R¢) on an
itd validation set and training compute (C):
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where 0 < A < 1 represents the asymptotic pass rate, B > 0 is a scaling exponent that determines the
compute efficiency, and Cy,iq sets the midpoint of the RL performance curve. A schematic interpretation of
these parameters is provided in Figure 3.

This framework in Equation (1) allows researchers to extrapolate performance from lower-compute runs to
higher compute budgets, enabling them to evaluate scalability of RL methods without incurring the compute
cost of running every experiment to its computational limit.

Guided by this framework, we develop ScaleRL, an RL recipe that scales predictably with compute. In a
massive 100,000 GPU-hours training run, we show that ScaleRL’s performance closely matches the scaling curve
predicted by our framework (Figure 1). Critically, scaling curves extrapolated from only the initial stages of
training closely match the final observed performance, confirming the predictive ability of our framework to
extreme compute scales.

The design of ScaleRL is grounded in a comprehensive empirical study of RL scaling that spanned over
400,000 GPU-hours (on Nvidia GB200 GPUs). This study explored numerous design choices at an 8B
model parameters scale, where individual runs use up to 16,000 GPU-hours, making them 6x cheaper than
experimenting at our largest training run scale. This investigation yielded three key principles:

e RL Performance Ceilings are Not Universal: As we scale training compute for different methods, they
encounter different ceilings on their achievable performance (A). This limit can be shifted by choices
such as the loss type and batch size.

e Embracing the Bitter Lesson: Methods that appear superior at small compute budgets can be worse when
extrapolated to large-compute regimes (Figure 2). We can still identify scalable methods by estimating
the scaling parameters (A4, B) from the early training dynamics using our framework (Equation (1)).
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Figure 2 ScaleRL is more scalable than prevalent RL methods. We fit sigmoid curves (Equation 1) on #d validation dataset
to commonly-used training recipes like DeepSeek (GRPO) (Guo et al., 2025), Qwen-2.5 (DAPO) (Yu et al., 2025),
Magistral (Rastogi et al., 2025), and Minimax-M1 (MiniMax et al., 2025), and compare them with ScaleRL. ScaleRL
surpasses all other methods, achieving an asymptotic reward of A = 0.61. Stars denote evaluation points; solid curves
show the fitted curve over the range used for fitting; dashed curves extrapolate beyond it. We validate the predictability
by running each method for longer (“x” markers), which align closely with the extrapolated curves for stable recipes
like ScaleRL and MiniMax. Further description of the individual recipes compared are given in Appendix A.16.

e Re-evaluating Common Wisdom: Common interventions thought to improve peak performance (e.g.,
loss aggregation, data curriculum, length penalty, advantage normalization) mainly adjust compute
efficiency (B), while not changing the performance ceiling considerably.

Based on these insights, ScaleRL achieves predictable scaling by integrating existing methods, rather than
inventing novel methods. Specifically, ScaleRL combines asynchronous Pipeline-RL setup (§3.1), forced length
interruptions, truncated importance sampling RL loss (CISPO), prompt-level loss averaging, batch-level
advantage normalization, FP32 precision at logits, zero-variance filtering, and No-Positive-Resampling — with
each component’s contribution validated in a leave-one-out ablation, consuming 16,000 GPU-hours per run.

ScaleRL not ounly scales predictably but also establishes a new state-of-the-art (Figure 2) — it achieves higher
asymptotic performance and compute efficiency compared to established RL recipes. Moreover, ScaleRL
maintains predictable scaling when increasing compute across multiple training axes (§ 5) — including 2.5x
larger batch sizes, longer generation lengths up to 32,768 tokens, multi-task RL using math and code, and
larger MoE (Llama-4 17Bx16); with benefits that consistently transfer to downstream tasks. Overall, this
work establishes a rigorous methodology for cost-effectively predicting the scalability of new RL algorithms.

2 Preliminaries & Setup

We consider reinforcement learning with LLMs, where prompts x are sampled from a data distribution D. Our
setup follows a generator—trainer split across GPUs: a subset of GPUs (generators) use optimized inference
kernels for high-throughput rollout generation, while the remaining GPUs (trainers) run the training backend
(FSDP) and update parameters. We denote by Wgcn and 7 . the model with parameters ¢ on the generator
and training backends, respectively. For each prompt, the old policy ﬁgglg on the generator GPUs produces
candidate completions, which are then assigned scalar rewards. Policy optimization proceeds by maximizing a

clipped surrogate objective, taking expectations over x ~ D and rollouts from nggg.

Training Regimen All experiments are conducted on the RL for reasoning domain, where the model produces
a thinking trace enclosed with special tokens (<think> ... </think>) and a final solution. Unless noted,
training uses a sequence length of 16, 384 tokens: 12,288 for thinking, 2, 048 for the solution, and an additional



2,048 for the input prompt. We adopt the 12,288 thinking budget for faster iteration, and show in Section 5
that ScaleRL extrapolations remain predictive when training with larger thinking budgets (32, 768). For math
RL experiments, we use the Polaris-53K dataset (An et al., 2025) with a batch size of 768 (48 prompts with
16 generations each). In our setup, scaling RL compute corresponds to running multiple epochs over the
training prompts. More details about training, including SFT and hyper-parameters, are in Appendix A.3.

Base RL Algorithm  As our starting point in § 3, we start with a “base” algorithm that resembles GRPO (Shao
et al., 2024) without any KL regularization term, in line with large-scale training reports (Rastogi et al., 2025;
MiniMax et al., 2025). Additionally, we include the asymmetric DAPO clipping (Yu et al., 2025), because of
its widespread adoption as a default approach to avoid entropy collapse and maintain output diversity.

For a given prompt x, the old policy mgen(fo1a) generates G candidate completions {yi}iG:l, each assigned a
scalar reward r;. We compute advantages A; and group-normalized advantages using;:

Ay =i —mean({r;}1), A7 = A,/(std({r;}§_,) +e).

Each completion y; of length |y;| contributes at the token-level importance sampling (IS) ratios p; (), with
asymmetric upper and lower clipping thresholds, akin to DAPO (Yu et al., 2025):
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We aggregate losses at the sample level, i.e., averaging per-sample token losses before averaging across samples.
The surrogate objective is given by:
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Controlling Generation Lengths To prevent reasoning output lengths from exploding during training, which
harms training stability and efficiency, we use interruptions (GLM-V Team et al., 2025; Yang et al., 2025) that
forcibly stop overly long generations by appending an end-of-thinking phrase (e.g., “ </think>"), signaling
the LLM to terminate its reasoning and produce a final answer. We revisit this choice later in Section 4 and
compare it with length-penalty that penalizes long generations (Yu et al., 2025; Kimi Team et al., 2025Db).

2.1 Predictive compute-scaling and fitting curves

Unlike pre-training, which typically uses power-law to fit predictive curves, we model pass rate versus
log(compute) with a sigmoidal function (Equation (1)). We do so because we found the sigmoidal fit to be
much more robust and stable compared to power law empirically, which we discuss further in Appendix A.4.
Moreover, our choice is consistent with prior work that use sigmoid-like power laws to capture bounded
metrics such as accuracy (Ruan et al., 2024; Srivastava et al., 2022).

Similar to pre-training studies (Li et al., 2025b; Porian et al., 2025), we find that excluding the very early
low-compute regime yields more stable ﬁts7 after which trammg follows a predictable trajectory. Unless
noted otherwise, all our scaling fits begin after ~1.5k GPU hours. Further details of the fitting procedure are
provided in Appendix A.5 and the robustness of our curve fitting is discussed in Appendix A.7.

Interpreting scaling curves Intuitively, a sigmoidal curve captures saturating returns - grows slowly in the
low-compute regime, accelerates sharply through a mid-range of efficient scaling, and then saturates at high
compute. We also provide a schematic interpretation of the parameters A, B, and C,,;4 of the sigmoidal curve
in Figure 3. We see that B, Cp;q primarily affects the efficiency of the run, and A denotes the asymptotic
performance at large compute scale. Further discussion of these parameters is provided in Appendix A.8.
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Figure 3 Interpreting equation (1). We provide an example fit illustrating the roles of parameters A, B, and Cmid. Cmid
determines the compute point at which half of the total gain is achieved - smaller values correspond to faster ascent
toward the asymptote. B controls the curve’s steepness, with larger values indicating greater efficiency. A represents
the asymptotic performance reached at large compute scales. Further discussion is provided in Appendix A.8.

Scaling curve on held-out validation ~Consistent with pre-training practice (Hoffmann et al., 2022; Porian et al.,
2025), we measure predictive performance on in-distribution validation data. Since our training runs span
multiple epochs, we hold out randomly selected 1,000 prompts from the Polaris-53k dataset for validation
and use the remainder for training. The scaling curves are fitted on the validation points, which measure the
average pass rate every 100 training steps, with 16 generations per prompt on the 1,000 held-out prompts.

3 An Empirical Study of RL Scaling

In this section, we conduct RL experiments using an 8B dense model on verifiable math problems. Using
the setup described in Section 2, we study several design axes in terms of their predictable compute-scaling
behavior, namely asymptotic performance (A) and compute efficiency (B), as shown in Figure 3.

We structure our experiments in three stages — we first ablate design choices on top of the baseline at 3.5k to
4k GPU-hours since some experimental choices destabilize beyond this scale (Appendix A.15). Whenever
a design change proved stable, we trained it for longer. Then, we combine the best choices into ScaleRL
and run leave-one-out (LOO) experiments for 16k GPU-hours in Section 4. Here, we assess predictability
by fitting on the first 8k GPU-hours and extrapolating the remainder of the run. Finally, to demonstrate
predictable scaling with ScaleRL, we also consider training setups with larger batch sizes, mixture-of-experts
model, multiple tasks (math and code), and longer sequence lengths in Section 5.

3.1 Asynchronous RL Setup

We first investigate the choice of asynchronous off-policy RL setup (Noukhovitch et al., 2024), as it governs
training stability and efficiency, generally independent of all other design choices. Specifically, we consider
two approaches for off-policy learning: PPO-off-policy-k and PipelineRL-k.

PPO-off-policy-k is the default approach for asynchronous RL and has been used previously by Qwen3 (Yang
et al., 2025) and ProRL (Liu et al., 2025a). In this setup, the old policy 7% generates reasoning traces for

gen
a batch of B prompts. Each gradient update processes a mini-batch of B prompts, resulting in k = B /B
gradient updates per batch. In our experiments, we fix B = 48 prompts (with 16 generations each), and vary
k € {1,8} by setting B = k x 48.

PipelineRL-k is a recent approach from Piche et al. (2025) and used by Magistral (Rastogi et al., 2025). In this
regimen, generators continuously produce reasoning traces in a streaming fashion. Whenever trainers finish a
policy update, the new parameters are immediately pushed to the generators, which continue generating with
the updated weights but a stale KV cache from the old policy. Once a full batch of traces is generated, it is
passed to the trainers for the next update. In our setup we introduce a parameter k: the trainers wait if they
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Figure 4 (a) Comparing “compute-scaling” of asynchronous off-policy RL setups. We report only the B (scaling exponent)
and A (asymptotic pass rate) parameters of the fitted sigmoid curve (Equation 1). PipelineRL-k is much more efficient
and slightly better in the large compute limit. (b) Different max off-policyness with PipelineRL.

get k steps ahead of the generators.

We compare these approaches in Figure 4a. PipelineRL and PPO-off-policy achieve similar asymptotic
performance A, but PipelineRL substantially improves the compute efficiency Bj; thus reaching the ceiling A
faster. This is because PipelineRL reduces the amount of idle time in the training process. This choice yields
reliable gains with fewer tokens, making larger sweeps at a lower compute budget possible. We also vary the
maximum off-policyness for PipelineRL and find k = 8 to be optimal as shown in Figure 4b, which we discuss
further in Appendix A.11.

3.2 Algorithmic Choices

Building on the results above, we adopt PipelineRL-8 as our updated baseline. We then study six additional
algorithmic axes: (a) loss aggregation, (b) advantage normalization, (c) precision fixes, (d) data curriculum,
(e) batch definition, and (f) loss type. In Section 4, we combine the best options into a unified recipe, termed
ScaleRL(Scale-able RL), and conduct leave-one-out experiments on a larger scale of 16,000 GPU-Hours.

Loss type We compare the asymmetric DAPO loss (Eq. 8) with two recently proposed alternatives:
GSPO (Zheng et al., 2025a) and CISPO (MiniMax et al., 2025; Yao et al., 2025). GSPO applies im-
portance sampling at the sequence level as opposed to GRPO’s token-level formulation. Specifically, GSPO
alters the token-level IS ratio (Eq. 2) to sequence-level ratios: p;(0) = mtrain(yilz.0)/x ... (yi|2,0014). CISPO simply
combines truncated IS with vanilla policy gradient (Tonides, 2008), where sg is the stop-gradient function:

G il
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Figure 5a shows that both GSPO and CISPO substantially outperform DAPO, improving the asymptotic
pass-rate A by a large margin. CISPO exhibits a prolonged near-linear reward increase, and is marginally
better than GSPO later in training, so we opt for CISPO as our best loss type. Further discussion on off-policy
loss types, and their hyperparameter robustness is detailed in Section 4 and Appendix A.17.

FP32 Precision for LLM logits The generators and trainers rely on different kernels for inference and training,
leading to small numerical mismatches in their token probabilities (He & Lab, 2025). RL training is highly
sensitive to such discrepancies, since they directly affect the IS ratio in the surrogate objective. MiniMax
et al. (2025) identified that these mismatches are especially pronounced at the language model head, and
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Figure 5 (a) Comparing popular loss functions: DAPO (Yu et al., 2025), GSPO (Zheng et al., 2025a), and CISPO
(MiniMax et al., 2025). We find CISPO/GSPO achieve a higher asymptotic reward compared to DAPO. (b) Using
FP32 precision in the final layer (LM head) gives a considerable boost in the asymptotic reward.

mitigate this by FP32 computations at the head for both the generator and trainer. As shown in Figure 5b,
the precision fix dramatically improves the asymptotic performance A from 0.52 to 0.61. Given this clear
benefit, we include the FP32 precision fix in our ScaleRL recipe.

Loss Aggregation We evaluate three strategies for aggregating the RL loss: (a) Sample average where each
rollout contributes equally (as in GRPO, Appendix A.2). (b) Prompt average where each prompt contributes
equally (as in DAPO, Appendix A.2). (¢) Token average where all token losses in the batch are averaged
directly, without intermediate grouping. The comparison results are shown in Appendix A.9 (Figure 14a). We
find prompt-average achieves the highest asymptotic performance and therefore use this choice for ScaleRL.

Advantage Normalization We compare three variants of advantage normalization: (a) Prompt level where
advantages are normalized by the standard deviation of rewards from the rollouts of the same prompt (as in
GRPO, Appendix A.2). (b) Batch level where advantages are normalized by the standard deviation across all
generations in the batch, as used by Hu et al. (2025a); Rastogi et al. (2025). (¢) No normalization where
advantages are computed as raw rewards centered by the mean reward of the prompt’s generations, without
variance scaling (as proposed in Dr. GRPO (Liu et al., 2025b)). A comparison plot is shown in Appendix A.9
(Figure 14Db), and all three methods are oberseved to yield similar performance. We therefore adopt batch-level
normalization as it is theoretically sound and marginally better. This choice is also further corroborated at a
larger scale by the leave-one-out experiments in Section 4.

Zero-Variance Filtering Within each batch, some prompts yield identical rewards across all their generations.
These “zero-variance” prompts have zero advantage and therefore contribute zero policy gradient. The default
baseline includes such prompts in loss computation, but it is unclear whether they should be included in the
effective batch. To test this, we compare the default setting against an effective batch approach, where only
prompts with non-zero variance are included in the loss calculation, as done by Seed et al. (2025). Note that
zero-variance filtering differs from dynamic sampling in DAPO (Yu et al., 2025). The former merely drop the
prompts, while latter resamples more prompts until the batch is full. We show in Figure 6a that using the
effective batch performs better asymptotically; and we adopt it in our ScaleRL recipe.

Adaptive Prompt Filtering A number of data curriculum strategies have been proposed for RL training to
improve sample efficiency (An et al., 2025; Zhang et al., 2025b; Zheng et al., 2025b). Here we evaluate a
simple variant, introduced by An et al. (2025), with the key observation that once a prompt becomes too easy
for a policy, it typically remains easy. Since such prompts consume some compute but no longer contribute
useful gradient signal (Section 3.2), it is better to exclude them from future training. We implement this
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Figure 6 (a) “Zero” variance filtering: We filter out “zero” variance (accuracy 0 or 1) samples in a batch since they
contribute zero policy gradient and find it achieves a higher asymptote, and (b) Adaptive prompt sampling: Filtering out
prompts with pass rate > 0.9 in subsequent epochs results in a higher asymptotic performance.

by maintaining a history of pass rates and permanently removing any prompt with pass rate > 0.9 from
subsequent epochs—we call this No-Positive-Resampling. In Figure 6b we compare this curriculum against the
default setting where all prompts are resampled uniformly throughout training. We see that the curriculum
improves scalability and the asymptotic reward A.

4 ScaleRL: Scaling RL Compute Effectively & Predictably

From the design axes studied above, we consolidate the best-performing settings into a single recipe, which
we term ScaleRL (Scale-able RL). ScaleRL is an asynchronous RL recipe that uses PipelineRL with 8 steps
off-policyness, interruption-based length control for truncation, FP32 computation for logits, and optimizes
the Jscater (#) loss. This loss combines prompt-level loss aggregation, batch-level advantage normalization,
truncated importance-sampling REINFORCE loss (CISPO) , zero-variance filtering, and no-positive resampling:
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where sg is the stop-gradient function, flstd is the standard deviation of all advantages flz in a batch and
pass_rate(x) denotes the historical pass rate of a prompt x. For forced interruptions, we use the end-of-thinking
phrase: “Okay, time is up. Let me stop thinking and formulate a final answer now. </think>".

Leave-One-Out (LOO) Ablations To validate that these choices remain optimal when combined, we conduct
leave-one-out (LOO) experiments: starting from ScaleRL, we revert one axis at a time to its baseline
counterpart from Section 2. This ensures that each design decision contributes positively even in the presence
of all others. Figure 7 reports these experiments, each scaled to 16k GPU hours.

Across all axes, ScaleRL consistently remains the most effective configuration, slightly outperforming LOO
variants either in asymptotic reward or in compute efficiency (refer to the last column in the Figure 7 table).
Since most LOO variants reach similar asymptotic pass rates, we transform the sigmoidal fit to a power-law fit,
to highlight efficiency differences via the slope B (details in Figure 7). Concretely, we average the asymptotic
reward A across all runs, re-fit the curves with this fixed A, and then compare slopes (measuring efficiency) in
Figure 7. The corresponding non-transformed pass-rate vs. compute curves are provided in Appendix A.2.
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Figure 7 Leave-One-Out (LOO) Experiments: Starting from ScaleRL, we revert one design choice at a time to its baseline
counterpart and re-train. Most LOO variants reach a similar asymptotic reward, with ScaleRL outperforming slightly
overall. The main difference in these methods lies in efficiency. To highlight this, we re-arrange Equation (1) into
F(R.) = CB, where F(R.) = Cﬁid/(l‘;‘;ﬁ)‘) — 1), and plot log F(R.) vs. logC. This form makes slope B directly
visible, showing that ScaleRL achieves the highest compute efficiency.

Error margin in fitting scaling curves  Since RL training is known to exhibit high variance (Agarwal et al., 2021),
we use three independent ScaleRL runs (Figure 8a) to estimate the variability in fitted scaling coefficients. The
observed variance in asymptotic reward and efficiency parameters serves as our empirical error margin, used
to determine whether changes in compute efficiency or asymptotic performance are statistically meaningful
for two different runs (Madaan et al., 2024).

Extrapolating Scaling Curves In all our LOO experiments as well as independent ScaleRL runs, we fit the
sigmoidal curve up to 8000 GPU-hours and extrapolate to 16000 GPU-hours, observing that the predicted
curves align closely with both training and extended points. This demonstrates the stability and predictability
of ScaleRL and other stable, scalable recipes under large-scale RL training.

Are the design choices worth it? In Section 3.2, certain design choices alter asymptotic performance, such
as loss type (Figure 5a) and FP32 precision (Figure 5b). However, in our LOO experiments with ScaleRL
(Figure 7), these components appear less critical individually (last column in the figure). This raises the
question of whether certain design choices can be safely left at their “default” values.

We argue the answer is no. Even when a choice seems redundant in the combined recipe, it can still provide
stability or robustness that can become decisive in other regimes. For example, while the FP32 precision fix
makes little difference with dense 8B trained with ScaleRL (Figure 7), it provides large gains in GRPO/DAPO-
style losses by mitigating numerical instabilities. This indicates that its benefits extend beyond the specific
ScaleRL configuration we study. To further test this, we ran a leave-one-out experiment on the Scout 17Bx16
MoE and observed that FP32 precision improves overall scalability (Figure 8b).

A similar case arises with the loss type. In Figure 7, reverting to DAPO yields similar asymptotic performance
to CISPO within ScaleRL. Nonetheless, as we discuss in Appendix A.17, CISPO is markedly more robust
to the choice of IS-clipping parameter €.y, reducing the sensitivity of training to hyperparameter tuning.
Moreover, it’s also more efficient than DAPO, as seen in LOO experiment (B = 2.01 vs B = 1.77). This
justifies preferring CISPO, even if a carefully tuned DAPO variant can perform similar asymptotically.

In summary, even when individual design choices appear redundant within the combined recipe, they often
enhance training stability, robustness, or efficiency in ways that generalize across models and setups. ScaleRL
retains such components not just for marginal gains in a specific configuration, but because they address
recurring sources of instability and variance that arise across reinforcement learning regimes.
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Figure 8 (a) Variance in scaling fits. We train 3 independent runs of ScaleRL to measure variance. We observe a +0.02
error margin for asymptotic performance A. (b) FP32 LOO on Scout: Comparing ScaleRL on Scout with and without
FP32 precision fix at the LM Head. ScaleRL performs better with the FP32 fix.

5 Predictable Scaling Returns Across RL Compute Axes

Given a fixed or growing compute budget, which scaling knob —context length, batch size, generations per
prompt, and model size — buys the most reliable performance gain, and how early can we predict that return?
We answer this by (i) fitting the saturating power-law in equation (1) early in training for each setting
(precisely, half the target budget), (ii) extrapolating to the target budget, and (iii) extending training to
verify the forecast. Across all axes below we observe clean, predictive fits whose extrapolated curves align
with the extended trajectories, mirroring the behavior seen in our 100,000 GPU-hour run (Figure 1), and the
cross-recipe comparison in Figure 2.

Model scale (MoE) Does ScaleRL remain predictive and stable on larger models? Training the 17Bx 16
Llama-4 Scout MoE with ScaleRL exhibits the same predictable scaling behavior as the 8B model, with
low truncation rates and no instability pathologies (Appendix A.15, A.17). Figure 1 shows the training
curve. The extended points align with the fitted curve, supporting the model-scale invariance of our recipe.
Moreover, the larger 17Bx16 MoE exhibits much higher asymptotic RL performance than the 8B dense model,
outperforming the 8B’s performance using only 1/6 of its RL training compute.

Generation length (context budget) Increasing the generation length from 14k to 32k tokens slows early
progress (lower B and higher C,,;4) but consistently lifts the fitted asymptote (A), yielding higher final
performance once sufficient compute is provided (Figure 9). This validates long-context RL as a ceiling-raising
knob rather than a mere efficiency trade-off. Extrapolations made from the fit correctly forecast the higher
32k-token trajectory when training is extended.

Global batch size (prompts) Smaller-batch runs show early stagnation on downstream benchmarks even as
in-distribution validation performance continues to improve. Larger batches reliably improve the asymptote
and avoid the downstream stagnation we observe in smaller-batch runs. Figure 10a shows the same qualitative
pattern at mid-scale: small batches may appear better early but are overtaken as compute grows. In our
largest math run in Figure 1, moving to batch size of 2048 prompts both stabilized training and yielded a fit
that extrapolated from up to 50k GPU hours to the final 100k point.

Generations per prompt (fixed total batch) For a fixed total batch, is it better to allocate more prompts
or more generations per prompt? Sweeping generations per prompt 8,16,24,32 and adjusting prompts to
keep total batch fixed leaves fitted scaling curves essentially unchanged (Appendix A.13), suggesting that, at
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Figure 9 Scaling RL Generation Length. While long-context RL is less efficient initially, it eventually surpasses the
performance of the smaller-context run. This trend is observed on both the iid validation set (left) as well as downstream
evaluations (right).
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Figure 10 Scaling RL batch size. larger batch size is slower in training but settles at a higher asymptote. Batch size show
an inverse trend initially where smaller values seem better at lower compute budget, but reach a higher asymptotic
performance at larger scale.

moderate batch, this allocation is a second-order choice for both A and B. Clearer differences may emerge at
much larger batches (e.g., 2k+), which we leave for future work.

6 Related Work

We detail two most relevant works to our study in this section. ProRL (Liu et al., 2025a) demonstrates that
prolonged RL fine-tuning on LLMs (~ 2000 optimization steps, 64 batch size) for 16K GPU-hours using a
mix of reasoning tasks uncovers novel solution strategies beyond a model’s base capabilities. This longer
training regimen delivered significant gains on a 1.5B model, rivaling the performance of larger models on
some benchmarks. ProRL’s contributions lie in specific heuristics for stability (KL-regularization, policy
resetting, entropy controls, etc.) to achieve high performance out of a 1.5B model.

Liu et al. (2025¢) offer a complementary perspective and ablates various design choices under consistent
conditions on Qwen-3 4B/8B (Yang et al., 2025), and presents a minimalist combination, LitePPO, that
outperforms more complex methods like GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025) on smaller
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Figure 11 ScaleRL scales predictably on math and code. We report both the code and math validation set performance on
the joint math+code RL run; along with the math only ScaleRL run as a reference. These results demonstrate that
our sigmoidal compute—performance relationship holds across task mixtures, and that ScaleRL’s scalability generalizes
beyond a single domain training.

scale models and compute. This yields valuable algorithmic insights, but the focus is on comparative empirical
findings, rather than on scaling behaviour.

None of these work study “scaling” properties of these methods. In fact, the main comparisons are done on
downstream evaluations, which may not be not the right metric to study predictable scaling. Rather, as done
in pre-training and in our work here, we study performance on in-distribution held out eval set. In contrast
to the mentioned related works, our work develops and validates a compute-performance framework with
predictive fits, while operating at a much larger compute budget (e.g, 6x larger than ProRL) and model scale
compared to the above studies. Additionally, our findings yield a near state-of-the-art RL recipe that can
scale predictably to over 100,000 GPU-hours without any stability issues. The rest of the related work is
deferred to Appendix A.1.

7 Discussion & Conclusion

In this work, we study the scaling properties of different techniques used in RL for LLMs in pursuit of a
predictable scalable recipe. With this mission, we derive a method for fitting predictive scaling fits for accuracy
on the validation set that allows us to quantify the asymptotic performance and compute efficiency of an
RL method. Using this methodology, our primary contribution is to conduct a careful series of ablations of
several algorithmic options that go into the RL recipe. For each ablation, we choose the option with higher
asymptotic performance when possible and improved efficiency otherwise. Combining these choices yields the
ScaleRL recipe which scales better than all existing recipes in our experiments.

A few observations are in order:

e Compute scaling extrapolation. An important insight of our scaling methodology is that we can use
smaller-scale ablations in a systematic way to predict performance at larger scales. This allows us to
create our final scalable recipe.

e Most important decisions. The off-policy algorithm, loss function, and model precision are the most
important decisions from our ablations. Each of the other decisions does not have a large individual
effect, but as we see from the leave-one-out experiments, they still do have some cumulative impact (in
terms of efficiency) when all combined.

e Asymptotic performance vs. efficiency. For many of our ablations, we found the better option to
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improve both efficiency and asymptotic performance, but this is not always the case (e.g. for FP32,
Figure 5b). When doing the “forward” ablations starting from the baseline method, we opt for asymptotic
performance first and foremost. Interestingly, when doing the “backward” leave-one-out ablations from
the ScaleRL recipe, we find very little impact on asymptotic performance from each decision, but each
component of the algorithm seems to help efficiency. This shows that the cumulative effect of the
changes is quite robust.

e Generalization. While we report transfer to downstream evaluations, our primary focus is on studying
predictive scaling, which is characterized through in-distribution performance curves on a held-out
dataset from training prompts (Li et al., 2025b; Muennighoff et al., 2025). This still leaves the question
of how well the LLM would generalize from the training distribution to held out test sets. While
a full characterization of generalization is beyond the scope of our work, we do observe correlation
between in-distribution validation and downstream generalization performance. However, there are some
algorithmic choices that seem to help generalization more, that we want to note here including: larger
batch size (Section A.14), reducing truncations (Section A.15), longer generation lengths (Section 5,
Figure 9), and larger model scale (Section 5, Figure 1).

e Multi-task RL. While our experiments focus mainly on the math domain, we also evaluate ScaleRL under
multi-task RL training. As shown in Figure 11, joint training on math and code yields clean, parallel
power-law trends for each domain, with extended runs remaining aligned with the extrapolated curves.
While our preliminary results are promising, it would be interesting to thoroughly study predictability
of compute scaling for multi-task RL with different training data mixtures.

Future work A natural next step is to derive predictive “scaling laws” for RL across pre-training compute,
model size, and RL training data. Future studies can also include other axes of RL compute scaling, such
as incorporating structured or dense rewards (Setlur et al., 2024) and more compute-intensive generative
verifiers (Zhang et al., 2025a), to find optimal compute allocation for RL training. Finally, the methodological
framework introduced here can be applied to study the scaling behavior of other post-training regimes,
including multi-turn RL, agentic interaction, and long-form reasoning.

There are of course many design choices in RL, so we don’t think that our ScaleRL recipe is the end of the
story. We hope that our focus on scalable RL and methodology for predicting scalability can inspire future
work to push the frontier of RL for LLMs even further. To enable future studies to fit compute-performance
RL scaling curves, we release a minimal code repository at www.devvrit.com/scalerl curve fitting.
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A Appendix

A.1 Extended Related Work

A wave of recent work has applied Reinforcement Learning (RL) to improve the reasoning abilities of large
language models (LLMs); often achieving state-of-the-art results on challenging tasks (OpenAl, 2024; Guo
et al., 2025; Seed et al., 2025; Carbonneaux et al., 2025). OpenAI’s ol series of models established that
large-scale RL can substantially enhance long-horizon reasoning, but did not release any details on how these
models were trained. Deepseek R1 (and R1-Zero) (Guo et al., 2025) provided the first comprehensive study on
training high-performing and long Chain-of-Thought (CoT) models primarily via RL, documenting emergent
behaviours under extended RL without any reliance on reward models (Lightman et al., 2023) or Monte Carlo
Tree Search (MCTS) (Xie et al., 2024).

The earliest widely referenced RLVR (verifiable-reward) algorithm underlying this wave of reasoning develop-
ment is Group Relative Policy Optimization (GRPO), introduced in Shao et al. (2024). GRPO is a critic-free,
group-relative policy gradient with PPO-style clipping that replaces a learned value baseline with group
baselines to reduce computational cost and stabilize credit assignment for long CoTs. While GRPO catalyzed
rapid progress, subsequent work document its limitations (token-level clipping, model collapse risks) and
motivate different group- or sequence- level variants (Yu et al., 2025; Yue et al., 2025; Hu et al., 2025b; Zheng
et al., 2025a).

Yu et al. (2025) propose the Decoupled clip and Dynamic Sampling Policy Optimization (DAPO), where they
decouple €15y, and epgn clipping in the GRPO objective and do Clip-Higher for ey to avoid entropy collapse.
Furthermore, they do dynamic sampling of prompts in a given batch to avoid samples with zero variance (or
advantage) which contribute zero policy gradients. Finally, they employ token-level loss aggregation unlike
GRPO, which uses sample-level loss averaging. With these modifications, they are able to surpass the vanilla
GRPO baseline while avoiding entropy collapse in the RL training. In parallel, Yue et al. (2025) develop
VAPO; a value-augmented PPO tailored for long CoTs with strong stability and outperforming value-free
baselines like GRPO and DAPO. They combine value pre-training and decoupled Generalized Advantage
Estimation (GAE) from VC-PPO (Yuan et al., 2025), loss objective modifications from DAPO, and propose
length-adaptive GAE to come up with an open recipe, VAPO, that has been used to train large MoE models
in Seed et al. (2025). Similarly, other technical report like Magistral (Rastogi et al., 2025), Kimi-k1.5 (Kimi
Team et al., 2025b), Minimax-01 (Li et al., 2025a) detail various details on their RL training recipes, but
don’t share extensive experiments on why their design choices are better than the baselines.

A.2 RL for LLMs: GRPO and DAPO

Group Relative Policy Optimization (GRPO) GRPO (Shao et al., 2024) adapts PPO Schulman et al. (2017)
for LLM fine-tuning with verifiable rewards. For a given prompt z, the old policy mgen(fola) generates G
candidate completions {y;}$ |, each assigned a scalar reward r;. To emphasize relative quality within the
group, rewards are normalized as
- G
LT mean({r]}j,l)

A= TR be ®)

Each completion y; of length |y;| contributes at the token level through ratios

Ttrain (yi,t | Ty Yi, <t 9) (6)
Wgen( iy eold)

The GRPO objective averages across both completions and tokens:

pi,t(o) =

G v

Jerpo(0) = E b, Z Z min (pZ 1(0)A;, clip(pi(0),1 £ 6)1212) (7)

e
{yi iz ~Tgen(|2,001q) i=1 [yl

Thus GRPO preserves token-level policy ratios as in PPO, while using sequence-level, group-normalized
advantages to stabilize learning under sparse rewards.
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Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO) DAPO (Yu et al., 2025) extends GRPO
with two key modifications. First, it replaces symmetric clipping with asymmetric clipping, using distinct
thresholds for upward and downward deviations: clip,s,,(p,a) = clip(p, 1 — €=, 1+ €"), where ¢~ and €' are
hyper-parameters.

Second, DAPO changes the aggregation scheme to operate at the prompt level. For a given prompt  ~ D, the
old policy produces G completions {y;}&, with advantages {A;} (Equation (5)). Let T = Zf;:l |y;| denote
the total number of tokens across all completions. With token-level ratios as in Equation (2). The DAPO
surrogate objective is

G lyil
1 . N
Joaro(8) = Eamp, 720> min(pie(0)Ais clipyeyn(pin(@)Ai) | - (8)

G
{yi}il1~Tgen(12,0014) i=1 t=1

This prompt-level normalization ensures that each token contributes equally to the prompt’s loss, regardless
of the number or length of its sampled completions. DAPO also introduces dynamically dropping 0O-variance
prompts from the batch during training and filling the batch with more prompts until the batch is full. We
skip that change here since its effect is similar to having a larger batch size.

A.3 Training Setup

Datasets For small-scale SFT, we use a curated data mix of reasoning traces. We filter this dataset by
removing trivial prompts, discarding solution traces exceeding 12k tokens, and decontaminating with AIME
2024/2025 (AoPS, 2025) and MATH-500 (Hendrycks et al., 2021) benchmarks. For the RL stage, we use the
Polaris-53K dataset (An et al., 2025) for most of our runs; additionally using the Deepcoder dataset (Luo
et al., 2025) for runs with both math and code.

Supervised Fine-tuning We run SFT using a batch size of 2M tokens, max sequence length of 12288, and a
learning rate of 3 x 10~° using the AdamW optimizer (Loshchilov & Hutter, 2019) on 32 H100 GPU nodes for
approximately 4 epochs and 32B tokens in total.

Reinforcement Learning We allocate 14k generation budget during RL training, where 12k tokens are allocated
to the intermediate reasoning (“thinking”), followed by 2k tokens for the final solution and answer. We sample
48 prompts in each batch, each with 16 generations per prompt. Thus, we get the total batch size as 768
completions per gradient update step. The rewards are given as +1 to correct and incorrect traces respectively.
We use a constant learning rate of 5 x 107, AdamW optimizer (Loshchilov & Hutter, 2019) with e = 1071,
weight decay of 0.01 (default in AdamW), and a linear warmup of 100 steps. The lower € is to avoid gradient
clipping (epsilon underflow) (Wortsman et al., 2023).

We use automated checkers like Sympy (Meurer et al., 2017) or Math-Verify! for assessing the correctness of
the final answer for math problems after stripping out the thinking trace (<think>---</think>). We use a
custom code execution environment for coding problems involving unit tests and desired outputs.

We used 80 Nvidia GB200 GPU for a single run, with a compute budget ranging from 3.5-4K GPU hours for
establishing different design choices in Section 3.2, 16K for the leave-one-out experiments (Section 4), and
finally 30k-100K GPU hours for our larger scale runs (Section 5). We adopt a generator—trainer split between
GPUs. For 80 GPU experiments, we set 64 of those as generators, responsible for the generation of reasoning
trace using the optimized inference codebase. The remaining 16 GPUs act as trainers, which receive generated
trajectories, perform policy updates, and periodically broadcast updated parameters back to the generators.

A.4 What curve to fit?

Pre-training curves are usually fit using power-law equation (Li et al., 2025b; Kaplan et al., 2020; Muennighoff
et al., 2025), which in our case would model performance as Rc = A — D/CB,C > Cj, where D is a
constant, and Cy marks the compute threshold beyond which the law holds. Intuitively, this implies that each

Thttps://github.com/huggingface/Math-Verify
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multiplicative increase in compute yields a constant proportional gain in performance. For RL post-training,
however, we find a sigmoidal fit (equation (1)) more appropriate for several reasons. First, for bounded metrics
such as accuracy or reward, sigmoidal curves provide better predictive fits (Ruan et al., 2024; Srivastava et al.,
2022); we observe the same, with accurate extrapolation to higher compute (Figure 1). Second, power laws are
unbounded at low compute and are typically fit only beyond a threshold Cy. In RL, where total training spans
far fewer steps (e.g., only ~75 evaluation points to fit only in Figure 1), discarding early points a lot further
reduces the already limited data available for fitting. Third, empirically, sigmoidal fits are substantially more
robust and stable than power-law fits. Concretely, consider the 100k GPU-hour run on the 8B dense model
shown in Figure 1. When we fit a power-law curve between 1.5k—50k GPU hours, it predicts an asymptotic
performance of A = 1.0, which is clearly incorrect - the actual curve saturates near 0.65. In contrast, the
sigmoidal fit yields an accurate prediction of A = 0.645. Moreover, the power-law fit is highly sensitive to
the chosen fitting regime: fitting over (5k, 50k) GPU hours instead gives A = 0.74, while the sigmoidal fit
remains robust and still predicts A = 0.645. Power-law models only recover the correct asymptote when fitted
exclusively in the high-compute regime (e.g., 30k—60k GPU hours). However, our goal is to predict large-scale
performance from lower-compute regimes, where such long runs are unavailable.

Given these considerations, we use the sigmoidal form throughout our analysis. Intuitively, a sigmoidal curve
captures saturating returns - grows slowly in the low-compute regime, accelerates sharply through a mid-range
of efficient scaling, and then saturates at high compute as it approaches a finite performance ceiling.

One thing to note is that at high compute regime, sigmoidal curve behaves same as power-law. Concretely,
we can have the following approximation of sigmoidal curve:

A— Ry

Re = Ro + T4 (Coia/C)B (sigmoidal curve from equation (1))
CB,
= Rc ~ Ry + (A— Ryp) (1 — é,"éd) (For C' >> C\niq, high compute regime)
(A—Ro)Cpig
—A— T
D

where above D = (A — Ry)CE,,. And this is the same form of power-law mentioned at the start of this
section.

A.5 Fitting scaling curves

We fit the sigmoid-law equation in Equation (1) to the mean reward on our held-out validation set. This set
consists of 1,000 prompts held out from the Polaris-53k (An et al., 2025) math dataset, with 16 generations
sampled every evaluation step performed at 100 steps intervals.

Directly fitting all three parameters {A, B, C,,:q} is challenging. Instead, we perform a grid search over
A € {0.450,0.455,0.460, . ..,0.800} and C,,;q € [100,40000] (searching over 100 linearly separated values),
and for each candidate A, C,,;4 fit B. The best fit (measured by sum of squared residuals) across this grid is
selected as the final curve. We use SciPy’s curve_fit with default initialization; varying the initialization
strategies produced identical results. To enable future studies to fit compute-performance RL scaling curves,
we release a minimal code repository at www.devvrit.com/scalerl curve fitting.

To estimate the error margin of our fits, we trained three independent ScaleRL runs with a batch size of 768
and generation length of 14k (as used in Section 4), shown in Figure 8a. We found that the fit values of
A varied by at most +0.015, suggesting 0.02 as a reasonable error margin on the estimates of asymptotic
performance. Estimating the error margin for the fitted value B is difficult, as different algorithms with
different A values can have different error margins for B. However, for the purpose of comparing algorithms,
we can safely deduce that if two methods achieve similar A values (within 0.02), the one with higher B when
a refit is done with the average of A values is at least as good in terms of efficient scalability.
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A.6 Comparing algorithms

Consistent with observations in large-scale pre-training, where the loss exhibits a sharp initial drop before
settling into a predictable power-law decay (Li et al., 2025b), we observe a similar two-phase behavior in RL.
The mean reward increases rapidly, almost linearly, during the ~first epoch (~ 1k steps, or ~1.5k GPU Hours
for most runs), after which the curve follows sigmoidal-law behavior (see Figure 15 to see the “sigmoid" like
curve). Our sigmoidal-law fits are applied to this latter portion of the training curve.

Unlike pre-training, our main goal is not to predict the performance of a fixed recipe, but to identify which
algorithms and design choices scale reliably, and to design algorithm that exhibits predictive nature. Achieving
highly robust fits typically requires very large runs with hundreds or thousands of evaluation points, which is
impractical in our setting for two reasons. First, running all ablations at such scale would be computationally
prohibitive. Second, many RL algorithms we compare are themselves not scalable to such extreme budgets:
they often saturate much earlier or even degrade with more compute due to instability. For example, our
baseline method (Section 3.2) destabilizes beyond ~ 3500 GPU-hours, since overlong generation truncations
exceed 10% of generations - reducing the effective batch size. More discussion on this is in Section A.15.

As we ablate across different axes in Section 3.2, we discover design choices that improve stability at higher
compute. Some ablated variants can scale further, e.g., ~ 5k GPU hours for ¢ = 0.26 in DAPO, ~ 6k GPU
hours with the FP32 precision fix (Section 3.2), and ~ 7k GPU hours for CISPO. Once we combine the best
design choices, we obtain a stable and scalable recipe, which allows us to run leave-one-out (LOO) experiments
for ~ 1600 GPU hours per run.

A.7 Robustness of fits
One may wonder how robust our fitted curves are. We address a few relevant points below:

e For stable and scalable experiments, including all runs from Section 4 onward, changing the fitting
regime (e.g., including or excluding the initial 1.5k GPU-hour range) yields similar predictable results.
For instance, in the 100k GPU-hour run on the 8B dense model, fitting over (1.5k, 50k) gives B = 1.70,
A = 0.645, while (0,100k) gives B = 1.56, A = 0.655, (0, 50k) gets B = 1.7, A = 0.645, and (5k, 50k)
gives B = 1.67, A = 0.645. Across these regimes, parameter values remain within the expected error
margin (Section 7).

e We nonetheless skip the low-compute regime because early training phases, especially in less stable
setups from Section 3.2, often plateau prematurely or deviate from the sigmoidal trend due to transient
instabilities (see Appendix A.6, A.15). Excluding this region allows the fit to focus on the mid-to-high
compute range where saturation behavior is clearer and more consistent.

e The 1.5k GPU-hour threshold is a heuristic chosen empirically: it approximately corresponds to one
epoch for most experiments in Section 3.2. Larger cutoffs reduced the number of fitting points, while
smaller ones often introduced noise. We found 1.5k GPU hours to provide the best balance between fit
stability and sample coverage, consistent with practices of skipping low-FLOPs regime in pre-training
scaling analyses and fitting (Li et al., 2025b).

A.8 Interpreting Sigmoidal Curves

Figure 3 presented an example fit illustrating the influence of parameters A, B, and C,;q. Here, we extend
this with additional illustrations: Figure 12a, Figure 12b, and Figure 13a vary B, Cyiq, and A respectively,
while keeping the other parameters fixed. We observe that B and C,;q primarily affect the efficiency of
scaling, whereas A determines the asymptotic performance achievable at large compute. In Figure 13b we see
a case of two runs where one is much more efficient, hence shows initial promising gains, but converges to a
lower asymptote, while the other progresses more slowly yet ultimately surpasses it due to a higher A. In
practice, scaling strategies should prioritize design choices that raise the asymptotic ceiling A, and only then
optimize for efficiency parameters such as B or Cpq.
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Figure 12 Keeping all parameters same and only changing (a) B, (b) Cniq¢. Both these parameters modulate the
efficiency of the training run.

RL Scaling Fit: Effect of A RL Scaling Fit: Initial vs Asymptotic Reward
o A o A=0.7, B=1.0, Cpia = 100.0
« 3 A=0.6, B=3.0, Cpnig =50.0
Asymptotic reward A; (=0.8) Ay
2 =
S Az S A| e e
cﬂc) Asymptotic reward A, (=0.6) é)
s (A1+Ro)2 =y
© (A2 +Ro)2 g
o k] /
=% o 7
X X /
w w
Ro -~ [ it
T T T T T T
Compute C (log scale) Compute C (log scale)
(a) (b)

Figure 13 (a) Keeping all parameters same and only changing A. (b) A design choice can be less efficient yet reach a
higher asymptote. When designing scalable methods, one should prioritize choices that raise the asymptotic ceiling A,
since the ultimate goal is maximizing performance at scale.

A.9 Forward and LOO Ablations

We show additional results for Section 3.2 in Figures 14a-14b. We also plot the pass rate vs compute leave
one out experiments from Section 4 in Figure 15.

A.10 Controlling generation length

One common concern in reasoning RL is to control exploding generation lengths, which harms both training
efficiency and stability (Appendix A.15). We consider two approaches: (a) interruptions, used in works like
GLM-4.1V (GLM-V Team et al., 2025), and Qwen3 (Yang et al., 2025) and (b) length penalties, used in
works like DAPO (Yu et al., 2025), Kimi (Kimi Team et al., 2025b), Magistral (Rastogi et al., 2025), and
Minimax-M1 (MiniMax et al., 2025).

Interruptions forcibly stop generation by appending a marker phrase such as “Okay, time is up. Let me stop
thinking and formulate a final answer </think>", signaling the model to terminate its reasoning and produce
a final answer. In our setup, the interruptions tokens are placed randomly in between [10k, 12k] token length,
to induce generalization to different generation lengths.

Length penalties instead reshape the reward. Following DAPO (Yu et al., 2025), we penalize overly long
completions with a tolerance interval L¢ache:

. Lmax -
Rlength(y) = clip <L}|y| -1,-1, 0) (9)
cacne

This penalty is added only to the correct traces, discouraging excessively long generations. In the length
penalty experiment, we set L,.x = 14k tokens and Lcache = 2k tokens.

In Section 4, we compare length penalty and interruption at a scale of 16k GPU-Hours. We find that replacing
interruption with length penalty in our final ScaleRL recipe does not improve performance.
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Figure 14 Comparing (a) loss aggregation, (b) different advantage normalization techniques.
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Figure 15 Comparison of different leave-one-out strategies using 16k GPU-hours budget. loo-plan refers to using prompt
level advantage normalization, loo-Ip means using length penalty, loo-batch refers to using the entire batch without
any 0-variance prompts filtering. loo-8op refers using PPO-offpolicy-8, loo-fp32 means not using FP32 precision fix,
loo-savg means using sample average loss aggregation, loo-dapo means using DAPO loss function instead of CISPO.
Table in Figure 7 gives the values of Ci,in in addition to A and B. We notice that all methods have similar values of
A (within £0.02 error margin range). Hence, all methods scale well, but affect efficiency parameters B and Ciiq.

A.11 PipelineRL

Using the baseline setup, we ablated the off-policy parameter in PipelineRL (Figure 4b). Both 4 and 8
off-policyness performed equally well, and we adopt 8 as the default setting when updating the baseline in
Section 3.1.

Why does PipelineRL consistently outperform the classic PPO-off-policy approach (Sections 3.1 and 4)? We
attribute this to its closer alignment with on-policy training. In PPO-off-policy, generation and training
proceed in alternating phases: the trainer operates strictly on batches that are as off-policy as the chosen
parameter k, making updates based on stale rollouts. In contrast, PipelineRL operates in a streaming fashion.
As soon as a batch is available, it is passed to the trainer; likewise, as soon as a model update is ready, it is
shared back to the generators, who immediately use it—including in the continuation of partially generated
traces. This tight feedback loop keeps training closer to the on-policy regime, reducing the mismatch between
generator and trainer distributions.

Importantly, this distinction affects the asymptotic performance ¢ of the scaling curve, not just the efficiency
exponent b. Very few axes shift the asymptote in this way, making the choice of off-policy algorithm one of
the most consequential design decisions in RL post-training.
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A.12 Entropy Curves: Scaling Batch Size

We tracked entropy on the held-out validation set throughout training. Across all experiments—spanning
variations in batch size, number of tasks, generation length, and model scale—we observed a consistent overall
decrease in entropy.

An interesting finding is that entropy may not always offer a predictive insight into the performance, as
proposed by some recent works like Cui et al. (2025). In Section A.12, we plot entropy for ScaleRL runs with
batch sizes 768 and 2048. Despite the 2048-batch size run achieving much stronger downstream performance
at every stage (Figure 10b), both runs followed nearly identical entropy trajectories per step (Section A.12).
This highlights an important point - although entropy is sometimes used as a proxy for exploration, simply
maintaining higher entropy does not translate into better generalization. Instead, larger batches reduced
effective exploration similar to smaller batches, per step, yet still yielded substantially better performance -
underscoring batch size as an important decisive factor.

Entropy across training run
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Figure 16 Comparing entropy of large and smaller batch size runs across training steps.

Overall, our findings suggest that while entropy decreases consistently during training, it is not necessarily a
reliable predictor of downstream performance. This observation reinforces the need to focus on algorithmic
and scaling choices (e.g., batch size, off-policy method) in adddition to entropy dynamics when aiming for
improved performance, both on training distribution as well as downstream task distribution.

A.13 Scaling on multiple axes

We provide the remaining scaling to different axes figure here in Figure 17, and the corresponding downstream
evaluation in Figure 18. We also provide the value of A, B, C,,,;4 in Table 1.

A.14 Downstream performance

In Figure 1, 9, 10b, and 18, we report a representative set of downstream evaluation curves. These include
ScaleRL runs with batch sizes {512, 768,2048}, long-context training run with 32k generation length, the
large-model (Scout) training run, a multi-task run (math + code), and different number of generations per
prompt (with fixed batch size) run. For each setting we plot performance against compute. Moreover, we see
downstream performance better for experiments like larger batch sizes, longer generation length, and large
model size - mirroring similar order for validation set curves.

A.15 Truncations and training instabilities

Across our experiments we found that training instabilities were often linked to truncations. As generation
length grew, many RL runs exhibited fluctuating truncation rates that sometimes increased over training.
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Figure 17 Scaling to (a) different number of generations per prompt, (b) Downstream performance of different number
of generations per prompt

Experiment Cmid B A

ScaleRL 2542  1.92 0.610
ScaleRL-32k 11272 1.89 0.645
ScaleRL-8gen 2542 244  0.585
ScaleRL-24gen 3054  2.22 0.590
ScaleRL-32gen 2936  2.07 0.595
ScaleRL-Scout 4242  1.65 0.710
ScaleRL-bs512 2818  1.77 0.605
ScaleRL-bs2048 10909 1.70 0.645

ScaleRL-math-+code, math curve 2896  2.05 0.595
ScaleRL-math-+code, code curve 1675 1.09 0.615

Table1 C.,iq, B, and A values for the large scale runs in Section 5.

At batch size 768, we observed that truncations in the range of 10-15% typically destabilized training, with
performance degrading and not recovering without intervention. Examples include the extended GRPO
run in Figure 2, where instability correlated with rising truncation rates, and the updated baseline used in
Section 3.2.

By contrast, ScaleRL runs were more stable. On the 8B model, truncations remained below 5% for over 90%
of training. At batch size 2048, truncations were slightly higher, occasionally approaching ~ 7%. This increase
was largely attributable to longer average generation lengths observed during training, which naturally raise
the chance of exceeding the budget. Nevertheless, because the effective batch size (after excluding truncated
samples) remained large, training stability was preserved. Intuitively, larger generation length budget should
help reduce truncations. Training with 34k generation length (batch 768) remained stable - truncations briefly
spiked to ~ 4% but quickly fell below 2%.

Larger models were even more robust. On the Scout run, truncations remained consistently below 2%, and
for > 90% of training steps were under 1%. This likely reflects both the inherent ability of larger models to
regulate generation length and their stronger instruction-following ability, which made interruption signals
more effective.
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Figure 18 Downstream performance of (a) different number of generations per prompt, on AIME, (b) LiveCodeBench
(Jan-June 2025) performance on math+code run, (c¢) AIME-24 performance on math+code run

Overall, we suggest practitioners monitor truncation rates closely. Our findings indicate that high truncation
rates are a reliable warning signal of instability, while larger models, higher generation budgets, and careful
design choices (as in ScaleRL) substantially mitigate this risk.

A.16 Comparing Prevalent Methods

In Figure 2 we compared some popular training recipes with ScaleRL. We briefly describe these existing
recipes here.

DeepSeek (GRPO) This recipe mostly follows the DeepSeek Guo et al. (2025) work. We use GRPO as the
loss function (Section A.2) with €,,in = €mar = 0.2, sample average loss aggregation, and PPO-offpolicy-8
algorithm. We saw the training became unstable post 6k GPU Hours due to truncations (Section A.15).

Qwen2.5 (DAPO) This recipe follows DAPO Yu et al. (2025). It includes the DAPO loss function (Ap-
pendix A.2) with €5, = 0.2, €;n42 = 0.26 (Appendix A.17.1). This recipe uses PPO-offpolicy-8, and prompt
average loss aggregation. The only change from the original DAPO paper (Yu et al., 2025) was regarding
dynamically filling in the batch. Specifically DAPO drops 0-variance prompts and samples more prompts until
the batch is full. In our codebase, this was not efficent because for PPO-offpolicy algorithm, we had generators
pre-decide that each generator will generate rollouts for #prompts/ugenerators. Therefore, if a specific generator
had more 0-variance prompts, it sampled further prompts to complete its share of #prompts/#generators. This
could lead to other generators being stalled and an overall slowdown. Hence, to get around this issue, we
rather kept a larger batch size of 1280 (80 prompts, 16 generations each), and dropped 0-variance prompts
from the batch. We noted that post-dropping, the effective batch was still greater than 768, what we used for
ScaleRL. Therefore, if at all, we gave some advantage to the DAPO recipe.

Magistral This refers to the recipe used in Rastogi et al. (2025). It includes similar recipe as DAPO with the
main difference being PipelineRL used as the off-policy algorithm.

MiniMax This refers to the recipe used in MiniMax et al. (2025). It uses CISPO loss, FP32 precision fix at

the LM head, PPO-offpolicy algorithm, and prompt average. Similar to DAPO, it drops 0-variance prompts
as well and hence we give it a larger batch size of 1280 as well.
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A.17 Loss Type - Stability and Robustness

As discussed below, GRPO/DAPO-style losses are highly sensitive to the choice of clipping ratio hyperparameter
€max- In contrast, CISPO and GSPO show far greater robustness. For example, in Appendix A.17.2, varying
€max for CISPO between {4, 5,8} produced no significant differences in performance. For GSPO, the 10~4
clipping scale used in the original paper (Zheng et al., 2025a) did not work well in our setting. We therefore
ablated across broader scales and found that once the correct order of magnitude was identified (e.g., 4x1073
and higher), performance was stable and largely insensitive to fine-grained changes (e.g., {4x1073,5x1073).

Effect of €max 0N GRPO/DAPO-like loss CISPO Upper Clipping Ratio
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Figure 19 (a)Comparing upper clipping ratio of DAPO loss function. Change of €mas fundamentally changes the
asymptotic performance value A. (b) CISPO clipping ratio ablations

A.17.1 DAPO clipping ratios

In this section, we analyze the role of the clipping threshold €y, in DAPO Loss Function (equation (8)).
The hyper-parameter sensitivity of €,,,, has been observed in prior work, for example, GRPO typically sets
€max = 0.2, while DAPO uses 0.28. However, beyond tuning sensitivity, we find that €y, directly alters the
scaling behavior of the algorithm. As €.y increases, the terminal reward A increases until an optimal range
is reached, after which A decreases again. This is a striking effect: unlike many hyper-parameters that merely
shifts the convergence speed, €q.x governs the asymptotic error itself.

A.17.2 CISPO Clipping Ratios

We ablate the higher clipping ratio for CISPO, keeping the lower clipping ratio fixed at 0 (Figure 19b). Across
a wide range of values, we find little difference in performance, indicating that CISPO is largely insensitive
to this hyperparameter. This robustness mirrors our findings for GSPO (Section A.17.3), and stands in
contrast to DAPO/GRPO-style objectives, which are highly sensitive to the exact choice of clipping threshold.
Such stability under hyperparameter variation makes CISPO a strong candidate for default use in large-scale
training.

A.17.3 GSPO ablations

We ablate the clipping-ratio scale used in GSPO, as shown in Figure 20a. The default 10~ scale as given in
the GSPO paper Zheng et al. (2025a) does not scale the best for our 8B model. The 1072 scale performs as
well as, or better than, alternatives (Figure 20a) Given this scale, we further varied the upper clipping ratio in
{4x1073,5x1073} and found {5x 1073} yielded slightly better fit (Figure 20b).

An important observation is that GSPO is quite robust to the choice of clipping ratio. Once the correct scale
is identified, most nearby values or even larger scale perform similarly. This robustness contrasts sharply
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with DAPO-style losses, which are highly sensitive to the exact value of the higher clipping ratio, as noted in
Section 3.2.

GSPO Clipping Ratio Scale GSPO 1073 Scale Clipping Ratio
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Figure 20 (a) GSPO Scale comparison. gspo_z_y_e_z in the legend means an upper and lower threshold of {z x 10™*
and y x 107%} respectively. (b) With 1072 scale, we found similar performance for both 4 3 e 3and5 3 e 3,
with latter performing slightly better.

A17.4 GSPOvsCISPO

Despite hyperparameter robustness, we encountered stability issues with GSPO. On multiple occasions,
GSPO runs diverged mid-training, leading to sudden drops in performance. For 8B models, restarting from a
stable checkpoint allowed recovery, but this strategy failed on larger models such as Scout, where instability
persisted despite repeated resetting to a stable checkpoint. While we checked to the best of our ability for any
implementation bugs, we did not find one.

Overall, while all three loss families can be competitive under tuned settings, CISPO offers the best balance
of stability and robustness to hyperparameters, making it our recommended choice.
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