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Abstract
This paper introduces a family of leaderless Byzantine fault
tolerance protocols, built around a metastable mechanism
via network subsampling. These protocols provide a strong
probabilistic safety guarantee in the presence of Byzantine
adversaries while their concurrent and leaderless nature en-
ables them to achieve high throughput and scalability. Unlike
blockchains that rely on proof-of-work, they are quiescent and
green. Unlike traditional consensus protocols where one or
more nodes typically process linear bits in the number of total
nodes per decision, no node processes more than logarithmic
bits. It does not require accurate knowledge of all participants
and exposes new possible tradeoffs and improvements in safety
and liveness for building consensus protocols.
The paper describes the Snow protocol family, analyzes

its guarantees, and describes how it can be used to construct
the core of an internet-scale electronic payment system called
Avalanche, which is evaluated in a large scale deployment.
Experiments demonstrate that the system can achieve high
throughput (3400 tps), provide low confirmation latency (1.35
sec), and scale well compared to existing systems that deliver
similar functionality. For our implementation and setup, the
bottleneck of the system is in transaction verification.

1 Introduction
Achieving agreement among a set of distributed hosts lies at
the core of countless applications, ranging from Internet-scale
services that serve billions of people [13, 33] to cryptocur-
rencies worth billions of dollars [1]. To date, there have been
two main families of solutions to this problem. Traditional
consensus protocols rely on all-to-all communication to en-
sure that all correct nodes reach the same decisions with
absolute certainty. Because they usually require quadratic
communication overhead and accurate knowledge of mem-
bership, they have been difficult to scale to large numbers of
participants. On the other hand, Nakamoto consensus proto-
cols [9, 27,29,37,45–48,55–57] have become popular with
the rise of Bitcoin. These protocols provide a probabilistic
safety guarantee: Nakamoto consensus decisions may revert
with some probability ε. A protocol parameter allows this
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probability to be rendered arbitrarily small, enabling high-
value financial systems to be constructed on this foundation.
This family is a natural fit for open, permissionless settings
where any node can join the system at any time. Yet, these
protocols are costly, wasteful, and limited in performance.
By construction, they cannot quiesce: their security relies
on constant participation by miners, even when there are no
decisions to be made. Bitcoin currently consumes around
63.49 TWh/year [23], about twice as all of Denmark [17].
Moreover, these protocols suffer from an inherent scalabil-
ity bottleneck that is difficult to overcome through simple
reparameterization [20].

This paper introduces a new family of consensus protocols
called Snow. Inspired by gossip algorithms, this family gains
its properties through a deliberately metastable mechanism.
Specifically, the system operates by repeatedly sampling the
network at random, and steering correct nodes towards a com-
mon outcome. Analysis shows that this metastable mechanism
is powerful: it can move a large network to an irreversible state
quickly, where the irreversibility implies that a sufficiently
large portion of the network has accepted a proposal and a
conflicting proposal will not be accepted with any higher than
negligible (ε) probability.

Similar to Nakamoto consensus, the Snow protocol family
provides a probabilistic safety guarantee, using a tunable se-
curity parameter that can render the possibility of a consensus
failure arbitrarily small. Unlike Nakamoto consensus, the pro-
tocols are green, quiescent and efficient; they do not rely on
proof-of-work [26] and do not consume energy when there are
no decisions to be made. The efficiency of the protocols stems
partly from removing the leader bottleneck: each node requires
O(1) communication overhead per round and O(logn) rounds
in expectation, whereas classical consensus protocols have
one or more nodes that require O(n) communication per round
(phase). Further, the Snow family tolerates discrepancies in
knowledge of membership, as we discuss later. In contrast,
classical consensus protocols require the full and accurate
knowledge of n as its safety foundation.
Snow’s subsampled voting mechanism has two additional

properties that improve on previous approaches for consensus.
Whereas the safety of quorum-based approaches breaks down
immediately when the predetermined threshold f is exceeded,
Snow’s probabilistic safety guarantee degrades smoothlywhen
Byzantine participants exceed f . This makes it easier to
pick the critical threshold f . It also exposes new tradeoffs
between safety and liveness: the Snow family is more efficient
when the fraction of Byzantine nodes is small, and it can be
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parameterized to tolerate more than a third of the Byzantine
nodes by trading off liveness.
To demonstrate the potential of this protocol family, we

illustrate a practical peer-to-peer payment system, Avalanche.
In effect, Avalanche executes multiple Snowball (one from
the Snow family) instances with the aid of a Directed Acyclic
Graph (DAG). The DAG serves to piggyback multiple in-
stances, reducing the cost from O(logn) to O(1) per node
and streamlining the path where there are no conflicting
transactions.

Overall, the main contribution of this paper is to introduce
a brand new family of consensus protocols, based on ran-
domized sampling and metastable decision. The next section
provides the model, goals and necessary assumptions for the
new protocols. Section 3 gives intuition behind the protocols,
followed by their full specification, Section 4 provides method-
ology used by our formal analysis of safety and liveness in
Appendix A, Section 5 describes Avalanche, a Bitcoin-like
payment system, Section 6 evaluates Avalanche, Section 7
presents related work, and finally, Section 8 summarizes our
contributions.

2 Model and Goals
Key Guarantees

Safety Unlike classical consensus protocols, and similar to
longest-chain-based consensus protocols such as Nakamoto
consensus [45], we adopt an ε-safety guarantee that is proba-
bilistic. In practice, this probabilistic guarantee is as strong as
traditional safety guarantees, since appropriately small choices
of ε can render consensus failure negligible, lower than the
probability of hardware failure due to random events. Figure 1
shows how the portion ( f/n) of misbehaving participants (or
computation power) affects the probability of system safety
failure (decision of two conflicting proposals), given a choice
of finality.

Liveness All our protocols provide a non-zero probability
guarantee of termination within a bounded amount of time.
This bounded guarantee is similar to various protocols such
as Ben-Or [8] and longest-chain protocols. In particular,
for Nakamoto consensus, the number of required blocks for
a transaction increases exponentially with the number of
adversarial nodes, with an asymptote at f = n/2 wherein
the number is infinite. In other words, the time required
for finality approaches ∞ as f approaches n/2 (Figure 3).
Furthermore, the required number of rounds is calculable
ahead of time, as to allow the system designer to tune liveness
at the expense of safety. Lastly, unlike traditional consensus
protocols and similar to Nakamoto, our protocols benefit from
lower adversarial presence, as discussed in property P3 below.
Formal Guarantees: Let the system be parameterized for

an ε safety failure probability under a maximum expected
f number of adversarial nodes. Let O(logn) < tmax < ∞ be
the upper bound of the execution of the protocols. The Snow
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Figure 1: Classical BFT protocols that tolerate f failures will
encounter total safety failure when the threshold is exceeded
even by one additional node. The Bitcoin curve shows a
typical finality choice for Bitcoin where a block is considered
final when it is “buried” in a branch having 6 additional
blocks compared to any other competing forks. Snowflake
belongs to the Snow family, and it is configured with k = 10,
β = 150. Snowflake-7,8 uses α = 7 and α = 8 respectively
(see Section 3 for the definition of k, α and β.
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Figure 2: Figure 1 with log-scaled y-axis.
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Figure 3: The relation between f/n and the convergence speed,
given ε = 10−20. The left figure shows the expected number of
blocks to guarantee ε in Bitcoin, which, counter to commonly
accepted folk wisdom, is not a constant 6, but depends on
adversary size to withhold the same ε. The right figure shows
the maximum number of rounds required by Snowflake, where
being different from Bitcoin, the asymptote is below 0.5 and
varies by the choice of parameters.

protocols then provide the following guarantees:
P1. Safety. When decisions are made by any two correct

nodes, they decide on conflicting transactions with negligible
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probability (≤ ε).
P2. Liveness (Upper Bound). Snow protocols terminate

with a strictly positive probability within tmax rounds.
P3. Liveness (Strong Form). If f ≤ O(

√
n), then the Snow

protocols terminate with high probability (≥ 1−ε) in O(logn)
rounds.

Network In the standard definition of asynchrony [8], mes-
sage transmission time is finite, but the distribution is unspec-
ified (and thus the delivery time can be unbounded for some
messages). This implies that the scheduling of message trans-
mission itself could behave arbitrarily, and potentially even
maliciously (with full asynchrony). We use a modified version
of this model, which is well-accepted [7, 25, 28, 35, 41] in the
analysis of epidemic networks and gossip-based stochastic
systems. In particular, we fix the distribution of message delay
to that of the exponential distribution. We note that, just like in
the standard asynchronous model, there is a strictly non-zero
probability that any correct node may execute its next local
round only after an arbitrarily large amount of time has passed.
Furthermore, we also note that scheduling only applies to
correct nodes, and the adversary may execute arbitrarily, as
discussed later.

Achieving Liveness Classical consensus that works with
asynchrony does not get stuck in a single phase of voting
because the vote initiator always polls votes from all known
participants and waits for n− f responses. In our system,
however, nodes operate via subsampling, hence it is possible
for a single sample to select a majority of adversarial nodes,
and therefore the node gets stuck waiting for the responses.
To ensure liveness, a node should be able to wait with some
timeout. Therefore, our protocols are synchronous in order to
guarantee liveness. Lastly, it is worth noting that Nakamoto
consensus is synchronous, in which the required difficulty
of proof-of-work is dependent on the maximum network
delay [46].

Adversary The adversarial nodes execute under their own
internal scheduler, which is unbounded in speed, meaning
that all adversarial nodes can execute at any infinitesimally
small point in time, unlike correct nodes. The adversary can
view the state of every honest node at all times and can
instantly modify the state of all adversarial nodes. It cannot,
however, schedule or modify communication between correct
nodes. Finally, we make zero assumptions about the behavior
of the adversary, meaning that it can choose any execution
strategy of its liking. In short, the adversary is computationally
bounded (it cannot forge digital signatures) but otherwise is
point-to-point informationally unbounded (knows all state)
and round-adaptive (can modify its strategy at any time).

Sybil Attacks Consensus protocols provide their guarantees
based on assumptions that only a fraction of participants are
adversarial. These bounds could be violated if the network is
naively left open to arbitrary participants. In particular, a Sybil

attack [24], wherein a large number of identities are generated
by an adversary, could be used to exceed the bounds.

A long line of work, including PBFT [15], treats the Sybil
problem separately from consensus, and rightfully so, as Sybil
control mechanisms are distinct from the underlying, more
complex agreement protocol1. In fact, to our knowledge, only
Nakamoto-style consensus has “baked-in” Sybil prevention
as part of its consensus, made possible by chained proof-
of-work [5], which requires miners to continuously stake a
hardware investment. Other protocols, discussed in Section 7,
rely on proof-of-stake (by economic argument) or proof-of-
authority (by administrative argument that makes the system
“permissioned”). The consensus protocols presented in this
paper can adopt any Sybil control mechanism, although proof-
of-stake is most aligned with their quiescent operation. One
can use an already established proof-of-stake based mecha-
nism [30]. The full deployment of an autonomous P2P payment
system incorporating staking mechanism is beyond the scope
of this paper, whose focus is on a novel design paradigm of
the core consensus algorithm.

Flooding Attacks Flooding/spam attacks are a problem for
any distributed system. Without a protection mechanism, an
attacker can generate large numbers of transactions and flood
protocol data structures, consuming storage. There are a mul-
titude of techniques to deter such attacks, including network-
layer protection, proof-of-authority, local proof-of-work and
economic mechanisms. In Avalanche, we use transaction fees,
making such attacks costly even if the attacker is sending
money back to addresses under its control.

Additional Assumptions We do not assume that all mem-
bers of the network are known to all participants, but rather
may temporarily have some discrepancies in network view.
We quantify the bounds on the discrepancy in Appendix A.7.
We assume a safe bootstrapping mechanism, similar to that of
Bitcoin, that enables a node to connect with sufficiently many
correct nodes to acquire a statistically unbiased view of the
network. We do not assume a PKI. Finally, we make standard
cryptographic assumptions related to digital signatures and
hash functions.

3 Protocol Design
We start with a non-BFT protocol called Slush and progres-
sively build up to Snowflake and Snowball, all based on the
same common majority-based metastable voting mechanism.
These protocols are single-decree consensus protocols of in-
creasing robustness. We provide full specifications for the
protocols in this section, and defer the analysis to the next
section, and present formal proofs in the appendix.

1This is not to imply that every consensus protocol can be coupled/decoupled
with every Sybil control mechanism.
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1: procedure onQuery(v,col′)
2: if col =⊥ then col := col′

3: respond(v,col)
4: procedure slushLoop(u,col0 ∈ {R,B,⊥})
5: col := col0 // initialize with a color
6: for r ∈ {1 . . .m} do
7: // if ⊥, skip until onQuery sets the color
8: if col =⊥ then continue
9: // randomly sample from the known nodes
10: K := sample(N \u,k)
11: P := [query(v,col) for v ∈K ]
12: for col′ ∈ {R,B} do
13: if P.count(col′)≥ α then
14: col := col′

15: accept(col)

Figure 4: Slush protocol. Timeouts elided for readability.

3.1 Slush: Introducing Metastability
The core of our approach is a single-decree consensus protocol,
inspired by epidemic or gossip protocols. The simplest proto-
col, Slush, is the foundation of this family, shown in Figure 4.
Slush is not tolerant to Byzantine faults, only crash-faults
(CFT), but serves as an illustration for the BFT protocols that
follow. For ease of exposition, we will describe the operation
of Slush using a decision between two conflicting colors, red
and blue.
In Slush, a node starts out initially in an uncolored state.

Upon receiving a transaction from a client, an uncolored node
updates its own color to the one carried in the transaction
and initiates a query. To perform a query, a node picks a
small, constant sized (k) sample of the network uniformly at
random, and sends a query message. Upon receiving a query,
an uncolored node adopts the color in the query, responds with
that color, and initiates its own query, whereas a colored node
simply responds with its current color. Once the querying
node collects k responses, it checks if a fraction ≥ α are for
the same color, where α > bk/2c is a protocol parameter. If
the α threshold is met and the sampled color differs from the
node’s own color, the node flips to that color. It then goes back
to the query step, and initiates a subsequent round of query,
for a total of m rounds. Finally, the node decides the color it
ended up with at time m.
Slush has a few properties of interest. First, it is almost

memoryless: a node retains no state between rounds other
than its current color, and in particular maintains no history
of interactions with other peers. Second, unlike traditional
consensus protocols that query every participant, every round
involves sampling just a small, constant-sized slice of the
network at random. Third, Slush makes progress under any
network configuration (even fully bivalent state, i.e. 50/50 split
between colors), since random perturbations in sampling will
cause one color to gain a slight edge and repeated samplings
afterwards will build upon and amplify that imbalance. Finally,
ifm is chosen high enough, Slush ensures that all nodes will be
colored identically with high probability (whp). Each node has

1: procedure snowflakeLoop(u,col0 ∈ {R,B,⊥})
2: col := col0, cnt := 0
3: while undecided do
4: if col =⊥ then continue
5: K := sample(N \u,k)
6: P := [query(v,col) for v ∈K ]
7: maj := false
8: for col′ ∈ {R,B} do
9: if P.count(col′)≥ α then
10: maj := true
11: if col′ 6= col then
12: col := col′, cnt := 1
13: else cnt++
14: if cnt ≥ β then accept(col′)
15: if maj = false then cnt := 0

Figure 5: Snowflake.

a constant, predictable communication overhead per round,
and m grows logarithmically with n.

The Slush protocol does not provide a strong safety guaran-
tee in the presence of Byzantine nodes. In particular, if the
correct nodes develop a preference for one color, a Byzantine
adversary can attempt to flip nodes to the opposite so as
to keep the network in balance, preventing a decision. We
address this in our first BFT protocol that introduces more
state storage at the nodes.

3.2 Snowflake: BFT
Snowflake augments Slush with a single counter that captures
the strength of a node’s conviction in its current color. This
per-node counter stores how many consecutive samples of the
network by that node have all yielded the same color. A node
accepts the current color when its counter reaches β, another
security parameter. Figure 5 shows the amended protocol,
which includes the following modifications:
1. Each node maintains a counter cnt;
2. Upon every color change, the node resets cnt to 0;
3. Upon every successful query that yields ≥ α responses for
the same color as the node, the node increments cnt.
When the protocol is correctly parameterized for a given

threshold of Byzantine nodes and a desired ε-guarantee, it
can ensure both safety (P1) and liveness (P2, P3). As we later
show, there exists an irreversible state after which a decision is
inevitable. Correct nodes begin to commit past the irreversible
state to adopt the same color, whp. For additional intuition,
which we do not expand in this paper, there also exists a
phase-shift point, where the Byzantine nodes lose ability to
keep network in a bivalent state.

3.3 Snowball: Adding Confidence
Snowflake’s notion of state is ephemeral: the counter gets
reset with every color flip. Snowball augments Snowflake with
confidence counters that capture the number of queries that
have yielded a threshold result for their corresponding color
(Figure 6). A node decides if it gets β consecutive chits for a

4



1: procedure snowballLoop(u,col0 ∈ {R,B,⊥})
2: col := col0, lastcol := col0, cnt := 0
3: d[R] := 0, d[B] := 0
4: while undecided do
5: if col =⊥ then continue
6: K := sample(N \u,k)
7: P := [query(v,col) for v ∈K ]
8: maj := false
9: for col′ ∈ {R,B} do
10: if P.count(col′)≥ α then
11: maj := true
12: d[col′]++
13: if d[col′]> d[col] then
14: col := col′

15: if col′ 6= lastcol then
16: lastcol := col′, cnt := 1
17: else cnt++
18: if cnt ≥ β then accept(col′)
19: if maj = false then cnt := 0

Figure 6: Snowball.

color. However, it only changes preference based on the total
accrued confidence. The differences between Snowflake and
Snowball are as follows:
1. Upon every successful query, the node increments its con-
fidence counter for that color.
2. A node switches colors when the confidence in its current
color becomes lower than the confidence value of the new
color.

4 Analysis
Due to space limits, we move some core details to Appendix A,
where we show that under certain independent and distinct
assumptions, the Snow family of consensus protocols provide
safety (P1) and liveness (P2, P3) properties. In this section, we
summarize our core results and provide some proof sketches.

Notation Let the network consist of a set of n nodes (rep-
resented by set N ), where c are correct nodes (represented
by set C ) and f are Byzantine nodes (represented by set B).
Let u,v ∈ C refer to any two correct nodes in the network. Let
k,α,β ∈ Z+ be positive integers where α > bk/2c. From now
on, k will always refer to the network sample size, where k≤ n,
and α will be the majority threshold required to consider the
voting experiment a “success”. In general, we will refer to
S as the state (or configuration) of the network at any given
time.

Modelling Framework To formally model our protocols,
we use continuous-time Markov processes (CTMC). The state
space is enumerable (and finite), and state transitions occur in
continuous time. CTMCs naturally model our protocols since
state transitions do not occur in epochs and in lockstep for
every node (at the end of every time unit) but rather occur at
any time and independently of each other.
We focus on binary consensus, although the safety results

generalize to more than two values. We can think of the

network as a set of nodes either colored red or blue, and we
will refer to this configuration at time t as St . We model
our protocols through a continuous-time process with two
absorbing states, where either all nodes are red or all nodes
are blue. The state space S of the stochastic process is a
condensed version of the full configuration space, where each
state {0, . . . ,n} represents the total number of blue nodes in
the system.
The simplification that allows us to analyze this system is

to obviate the need to keep track of all of the execution paths,
as well as all possible adversarial strategies, and rather focus
entirely on a single state of interest, without regards to how
we achieve this state. More specifically, the core extractable
insight of our analysis is in identifying the irreversibility state
of the system, the state upon which so many correct nodes have
usurped either red or blue that reverting back to the minority
color is highly unlikely.

4.1 Safety
Slush We assume that all nodes share the same N , and
in Appendix A.7, we sketch how to relax the requirement
of the membership knowledge. We model the dynamics of
the system through a continuous-time process where two
states are absorbing, namely the all-red or all-blue state. Let
{Xt≥0} be the random variable that describes the state of
the system at time t, where X0 ∈ {0, . . . ,c}. We begin by
immediately discussing the most important result of the safety
dynamics of our processes: the reversibility probabilities of
the Slush process. All the other formal results in this paper are,
informally speaking, intuitive derivations and augmentations
of this result.

Theorem 1. Let the configuration of the system at time t be
St = n/2+δ, meaning that the network has drifted to 2δ more
blue nodes than red nodes (δ = 0 means that red and blue are
equal). Let ξδ be the probability of absorption to the all-red
state (minority). Then, for all 0≤ δ≤ n/2, we have

ξδ ≤
(

1/2−δ/n
α/k

)α(1/2+δ/n
1−α/k

)k−α

≤ e−2((α/k)−(1/2)+(δ/n))2k

(1)

Proof. This bound follows from the Hoeffding-derived tail
bounds of the hypergeometric distribution by Chvatal [18].

We note that Chvatal’s bounds are introduced for simplicity
of exposition and are extremely weak. We leave the full closed-
form expression in Theorem 2 to the appendix, which is also
significantly stronger than the Chvatal bound. Nonetheless,
using the loose Chvatal bound, we make the key observation
that as the drift δ increases, given fixed α and k, the probability
of moving towards the minority value decreases exponentially
fast (in fact, even faster, since there is a quadratic term in
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the inverse exponent). Additionally, the same result holds for
increasing α given a fixed k.

The outcomes of this theorem demonstrate a key property:
once the network loses full bivalency (i.e. δ > 0), it tends to
topple and converge rapidly towards the majority color, unable
to revert back to the minority with significant probability.
This is the fundamental property exploited by our protocols,
and what makes them secure despite only sampling a small,
constant-sized set of the network. The core result that follows
for the safety guarantees in Snowflake is in finding regions
(given specific parameter choices) where the reversibility
holds with no higher than ε probability even under adversarial
presence.

Snowflake For Snowflake, we assume that some fraction
of nodes are adversarial. In Slush, once the network gains
significant majority support for one proposal (e.g., the color
blue), it becomes unlikely for a minority proposal (e.g., the
color red) to ever become decided in the future (irreversibility).
Furthermore, in Slush nodes simply have to execute the proto-
col for a deterministic number of rounds, m, which is known
ahead of protocol execution. When introducing adversarial
nodes with arbitrary strategies, however, nodes cannot simply
execute the protocol for a deterministic number of rounds,
since the adversary may nondeterministically affect the value
of m. Instead, correct nodes must implement a mechanism to
explicitly detect that irreversibility has been reached. To that
end, in Snowflake, every correct node implements a decision
function, D(u,St ,blue)→{0,1}, which is a random variable
that outputs 1 if node u detects that the network has reached an
irreversibility state at time t for blue. The decision mechanism
is probabilistic, meaning that it can fail, although it is designed
to do so with negligible probability. We now sketch the proof
of Snowflake.
Proof Sketch. We define safety failure to be the event wherein
any two correct nodes u and v decide on blue and red, i.e.
D(u,St ,blue)→ 1 and D(v,St ′ ,red)→ 1, for any two times t
and t ′. We againmodel the system as a continuous time random
process. The state space is defined the same way as in Slush.
However, we note some critical subtleties. First, even if all
correct nodes accept a color, the Byzantine nodes may revert.
Second, we also have to consider the decision mechanism
D(∗). To analyze, we obviate the need to keep track of all
network configurations under all adversarial strategies and
assume that a node u first decides on blue. Then, conditioned
on the state of the network upon u deciding, we calculate
the probability that another node v decides red, which is
a function of both the probability that the network reverts
towards a minority blue state and that v decides at that state.
We show that under appropriate choices of k, α, and β, we
can construct highly secure instances of Snowflake (i.e. safety
failure with probability ≤ ε) when the network reaches some
bias of δ, as shown in Figure 7. A concrete example is provided
in Figure 1.

0 c/2 c

≤ ε

δ

Figure 7: Representation of the irreversibility state, which
exists when – even under f Byzantine nodes – the number of
blue correct nodes exceeds that of red correct nodes by more
than 2δ.

Snowball Snowball is an improvement in security over
Snowflake, where random perturbations in network samples
are reduced by introducing a limited form of history, which
we refer to as confidence.
Proof Sketch. We apply martingale concentration inequalities
to prove that once the system has reached the irreversibility
state, then the growth of the confidence of the majority decided
color will perpetually grow and drift further away from those
of the minority color, effectively rendering reversibility less
likely over time. If the drifts ever revert, then reversibility
analysis becomes identical to that of Snowflake.

4.2 Liveness
We assume that the observed adversarial presence 0≤ f ′ ≤
n(k−α−ψ)/k ≤ f , where we refer to ψ as the buffer zone.
The biggerψ, the quicker the ability of the decision mechanism
to finalize a value. If, of course,ψ approaches zero or becomes
negative, then we violate the upper bound of adversarial
tolerance for the parameterized system, and thus the adversary
can,with high probability, stall termination by simply choosing
to not respond, although the safety guarantees may still hold.
Assuming that ψ is strictly positive, termination is strictly

finite under all network configurations where a proposal has
at least α support. Furthermore, not only is termination finite
with probability one,we also have a strictly positive probability
of termination within any bounded amount of time tmax, as
discussed in Lemma 4, which follows from Theorem 3. This
captures liveness property P2.
Proof Sketch. Using the construction of the system to prove
irreversibility, we characterize the distribution of the average
time spent (sojourn times) at each state before the system
terminates execution by absorption at either absorbing state.
The termination time is then a union of these times.

For non-conflicting transactions, since the adversary is
unable to forge a conflict, the time to decision is simply the
mixing time , which is O(logn). Liveness guarantees under
a fully bivalent network configuration reduce to an optimal
convergence time of O(logn) rounds if the adversary is at
most O(

√
n), for α = bk/2c+1. We leave additional detains

to Lemma 5. When the adversary surpasses O(
√

n) nodes, the
worst-case number of rounds increases polynomially, and as f
approaches n/2 it approaches exponential convergence rates.
Proof Sketch. We modify Theorem 3 to include the adversary,
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which reverts any imbalances in the network by keeping
network fully bivalent.

Multi-Value Consensus Our binary consensus protocol
could support multi-value consensus by running logarith-
mic binary instances, one for each bit of the proposed value.
However, such theoretical reduction might not be efficient in
practice. Instead, we could directly incorporate multi-values
as multi-colors in the protocol, where safety analysis could
still be generalized.

For liveness,we sketch a leaderless initializationmechanism,
which in expectation uses O(logn) rounds under the assump-
tion that the network is synchronized in the Appendix A.6.
While the design of initialization mechanisms is interesting,
note that it is not necessary for a decentralized payment system,
as we show in Section 5. Finally, in the Appendix A.7, we
discuss churn and view discrepancies.

5 Peer-to-Peer Payment System
Using Snowball consensus,we have implemented a bare-bones
payment system, Avalanche, which supports Bitcoin transac-
tions. In this section, we describe the design and sketch how
the implementation can support the value transfer primitive
at the center of cryptocurrencies. Deploying a full cryptocur-
rency involves bootstrapping, minting, staking, unstaking, and
inflation control. While we have solutions for these issues,
their full discussion is beyond the scope of this paper, whose
focus is centered on the novel Snow consensus protocol family.
In a cryptocurrency setting, cryptographic signatures en-

force that only a key owner is able to create a transaction that
spends a particular coin. Since correct clients follow the proto-
col as prescribed and never double spend coins, in Avalanche,
they are guaranteed both safety and liveness for their virtuous
transactions. In contrast, liveness is not guaranteed for rogue
transactions, submitted by Byzantine clients, which conflict
with one another. Such decisions may stall in the network,
but have no safety impact on virtuous transactions. We show
that this is a sensible tradeoff, and that the resulting system is
sufficient for building complex payment systems.

5.1 Avalanche: Adding a DAG
Avalanche consists of multiple single-decree Snowball in-
stances instantiated as a multi-decree protocol that maintains
a dynamic, append-only directed acyclic graph (DAG) of all
known transactions. The DAG has a single sink that is the
genesis vertex. Maintaining a DAG provides two significant
benefits. First, it improves efficiency, because a single vote
on a DAG vertex implicitly votes for all transactions on the
path to the genesis vertex. Second, it also improves security,
because the DAG intertwines the fate of transactions, similar
to the Bitcoin blockchain. This renders past decisions difficult
to undo without the approval of correct nodes.
When a client creates a transaction, it names one or more

parents, which are included inseparably in the transaction and
form the edges of the DAG. The parent-child relationships

1: procedure init
2: T :=∅ // the set of known transactions
3: Q :=∅ // the set of queried transactions
4: procedure onGenerateTx(data)
5: edges := {T ′← T : T ′ ∈ parentSelection(T )}
6: T := Tx(data,edges)
7: onReceiveTx(T )
8: procedure onReceiveTx(T )
9: if T /∈ T then
10: if PT =∅ then
11: PT := {T}, PT .pref := T
12: PT .last := T,PT .cnt := 0
13: else PT := PT ∪{T}
14: T := T ∪{T}, cT := 0.

Figure 8: Avalanche: transaction generation.

encoded in the DAG may, but do not need to, correspond
to application-specific dependencies; for instance, a child
transaction need not spend or have any relationship with the
funds received in the parent transaction. We use the term
ancestor set to refer to all transactions reachable via parent
edges back in history, and progeny to refer to all children
transactions and their offspring.

The central challenge in the maintenance of the DAG is to
choose among conflicting transactions. The notion of conflict
is application-defined and transitive, forming an equivalence
relation. In our cryptocurrency application, transactions that
spend the same funds (double-spends) conflict, and form a
conflict set (shaded regions in Figure 11), out of which only
a single one can be accepted. Note that the conflict set of a
virtuous transaction is always a singleton.

Avalanche instantiates a Snowball instance for each conflict
set. Whereas Snowball uses repeated queries and multiple
counters to capture the amount of confidence built in conflict-
ing transactions (colors), Avalanche takes advantage of the
DAG structure and uses a transaction’s progeny. Specifically,
when a transaction T is queried, all transactions reachable
from T by following the DAG edges are implicitly part of
the query. A node will only respond positively to the query
if T and its entire ancestry are currently the preferred option
in their respective conflict sets. If more than a threshold of
responders vote positively, the transaction is said to collect a
chit. Nodes then compute their confidence as the total num-
ber of chits in the progeny of that transaction. They query a
transaction just once and rely on new vertices and possible
chits, added to the progeny, to build up their confidence. Ties
are broken by an initial preference for first-seen transactions.
Note that chits are decoupled from the DAG structure, making
the protocol immune to attacks where the attacker generates
large, padded subgraphs.

5.2 Avalanche: Specification
Each correct node u keeps track of all transactions it has
learned about in set Tu, partitioned into mutually exclusive
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1: procedure avalancheLoop
2: while true do
3: find T that satisfies T ∈ T ∧T /∈ Q
4: K := sample(N \u,k)
5: P := ∑v∈K query(v,T )
6: if P≥ α then
7: cT := 1
8: // update the preference for ancestors
9: for T ′ ∈ T : T ′ ∗← T do
10: if d(T ′)> d(PT ′ .pref ) then
11: PT ′ .pref := T ′

12: if T ′ 6= PT ′ .last then
13: PT ′ .last := T ′, PT ′ .cnt := 1
14: else
15: ++PT ′ .cnt
16: else
17: for T ′ ∈ T : T ′ ∗← T do
18: PT ′ .cnt := 0
19: // otherwise, cT remains 0 forever
20: Q := Q ∪{T} // mark T as queried

Figure 9: Avalanche: the main loop.

1: function isPreferred(T )
2: return T = PT .pref
3: function isStronglyPreferred(T )
4: return ∀T ′ ∈ T ,T ′ ∗← T : isPreferred(T ′)
5: function isAccepted(T )
6: return

((∀T ′ ∈ T ,T ′← T : isAccepted(T ′))
∧|PT |= 1∧PT .cnt ≥ β1) // safe early commitment

∨(PT .cnt ≥ β2) // consecutive counter

7: procedure onQuery( j,T )
8: onReceiveTx(T )
9: respond( j, isStronglyPreferred(T ))

Figure 10: Avalanche: voting and decision primitives.

conflict sets PT , T ∈ Tu. Since conflicts are transitive, if Ti
and Tj are conflicting, then they belong to the same conflict
set, i.e. PTi = PTj . This relation may sound counter-intuitive:
conflicting transitions have the equivalence relation, because
they are equivocations spending the same funds.
We write T ′← T if T has a parent edge to transaction T ′,

The “ ∗←”-relation is its reflexive transitive closure, indicating
a path from T to T ′. DAGs built by different nodes are
guaranteed to be compatible, though at any one time, the two
nodes may not have a complete view of all vertices in the
system. Specifically, if T ′← T , then every node in the system
that has T will also have T ′ and the same relation T ′← T ; and
conversely, if T ′��←T , then no nodes will end up with T ′← T .

Each node u can compute a confidence value, du(T ), from

T1

T2 T3

T4 T5

T6

T7

T8 T9

PT1

PT2 = PT3

PT9 = PT6 = PT7

〈cT1 ,d(T1)〉= 〈1,6〉

〈1,5〉 〈0,0〉

〈1,2〉 〈1,3〉

〈0,0〉

〈0,0〉

〈1,1〉
〈1,1〉

Figure 11: Example of 〈chit,confidence〉 values. Darker boxes
indicate transactions with higher confidence values. At most
one transaction in each shaded region will be accepted.

the progeny as follows:

du(T ) = ∑
T ′∈Tu,T

∗←T ′
cuT ′

where cuT ′ stands for the chit value of T ′ for node u. Each
transaction initially has a chit value of 0 before the node
gets the query results. If the node collects a threshold of α

yes-votes after the query, the value cuT ′ is set to 1, otherwise
remains 0 forever. Therefore, a chit value reflects the result
from the one-time query of its associated transaction and
becomes immutable afterwards, while d(T ) can increase as
theDAGgrows by collectingmore chits in its progeny. Because
cT ∈ {0,1}, confidence values are monotonic.
In addition, node u maintains its own local list of known

nodes Nu ⊆N that comprise the system. For simplicity, we
assume for now Nu = N , and elide subscript u in contexts
without ambiguity.

Each node implements an event-driven state machine, cen-
tered around a query that serves both to solicit votes on each
transaction and to notify other nodes of the existence of newly
discovered transactions. In particular, when node u discovers
a transaction T through a query, it starts a one-time query
process by sampling k random peers and sending a message
to them, after T is delivered via onReceiveTx.
Node u answers a query by checking whether each T ′

such that T ′ ∗← T is currently preferred among competing
transactions ∀T ′′ ∈ PT ′ . If every single ancestor T ′ fulfills
this criterion, the transaction is said to be strongly preferred,
and receives a yes-vote (1). A failure of this criterion at any
T ′ yields a no-vote (0). When u accumulates k responses, it
checks whether there are α yes-votes for T , and if so grants
the chit (chit value cT := 1) for T . The above process will
yield a labeling of the DAG with a chit value and associated
confidence for each transaction T .
Figure 11 illustrates a sample DAG built by Avalanche.

Similar to Snowball, sampling in Avalanche will create a
positive feedback for the preference of a single transaction in
its conflict set. For example, because T2 has larger confidence
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than T3, its descendants are more likely collect chits in the
future compared to T3.

Similar to Bitcoin, Avalanche leaves determining the accep-
tance point of a transaction to the application. An application
supplies an isAccepted predicate that can take into account
the value at risk in the transaction and the chances of a decision
being reverted to determine when to decide.

Committing a transaction can be performed through a safe
early commitment. For virtuous transactions, T is accepted
when it is the only transaction in its conflict set and has a
confidence not less than threshold β1. As in Snowball, T can
also be accepted after a β2 number of consecutive successful
queries. If a virtuous transaction fails to get accepted due to
a problem with parents, it could be accepted if reissued with
different parents. Figure 8 shows how Avalanche entangles
transactions. Because transactions that consume and generate
the sameUTXOdo not conflict with each other, any transaction
can be reissued with different parents.

Figure 9 illustrates the protocol main loop executed by each
node. In each iteration, the node attempts to select a transaction
T that has not yet been queried. If no such transaction exists,
the loop will stall until a new transaction is added to T . It
then selects k peers and queries those peers. If more than α

of those peers return a positive response, the chit value is set
to 1. After that, it updates the preferred transaction of each
conflict set of the transactions in its ancestry. Next, T is added
to the set Q so it will never be queried again by the node. The
code that selects additional peers if some of the k peers are
unresponsive is omitted for simplicity.
Figure 10 shows what happens when a node receives a

query for transaction T from peer j. First it adds T to T ,
unless it already has it. Then it determines if T is currently
strongly preferred. If so, the node returns a positive response
to peer j. Otherwise, it returns a negative response. Notice
that in the pseudocode, we assume when a node knows T ,
it also recursively knows the entire ancestry of T . This can
be achieved by postponing the delivery of T until its entire
ancestry is recursively fetched. In practice, an additional gossip
process that disseminates transactions is used in parallel, but
is not shown in pseudocode for simplicity.

5.3 Multi-Input UTXO Transactions
In addition to the DAG structure in Avalanche, an unspent
transaction output (UTXO) [45] graph that captures spending
dependency is used to realize the ledger for the payment
system. To avoid ambiguity, we denote the transactions that
encode the data for money transfer transactions, while we call
the transactions (T ∈ T ) in Avalanche’s DAG vertices.
We inherit the transaction and address mechanisms from

Bitcoin. At their simplest, transactions consist of multiple
inputs and outputs, with corresponding redeem scripts. Ad-
dresses are identified by the hash of their public keys, and
signatures are generated by corresponding private keys. The
full scripting language is used to ensure that a redeem script is

TXg

TXa TXb

TXc

Ina1 Ina2 Inb1 Inb2

Inc1 Inc2

Figure 12: The underlying logical DAG structure used by
Avalanche. The tiny squares with shades are dummy vertices
which just help form the DAG topology for the purpose of
clarity, and can be replaced by direct edges. The rounded gray
regions are the conflict sets.

authenticated to spend a UTXO. UTXOs are fully consumed
by a valid transaction, and may generate new UTXOs spend-
able by named recipients. Multi-input transactions consume
multiple UTXOs, and in Avalanche, may appear in multiple
conflict sets. To account for these correctly, we represent
transaction-input pairs (e.g. Ina1) as Avalanche vertices. The
conflict relation of transaction-input pairs is transitive because
of each pair only spends one unspent output. Then, we use
the conjunction of isAccepted for all inputs of a transaction
to ensure that no transaction will be accepted unless all its
inputs are accepted (Figure 12). In other words, a transaction
is accepted only if all its transaction-input pairs are accepted
in their respective Snowball conflict sets. Following this idea,
we finally implement the DAG of transaction-input pairs such
that multiple transactions can be batched together per query.

Optimizations We implement some optimizations to help
the system scale. First, we use lazy updates to the DAG,
because the recursive definition for confidence may otherwise
require a costly DAG traversal. We maintain the current d(T )
value for each active vertex on the DAG, and update it only
when a descendant vertex gets a chit. Since the search path
can be pruned at accepted vertices, the cost for an update
is constant if the rejected vertices have a limited number
of descendants and the undecided region of the DAG stays
at constant size. Second, the conflict set could be large in
practice, because a rogue client can generate a large volume
of conflicting transactions. Instead of keeping a container
data structure for each conflict set, we create a mapping from
each UTXO to the preferred transaction that stands as the
representative for the entire conflict set. This enables a node
to quickly determine future conflicts, and the appropriate
response to queries. Finally, we speed up the query process by
terminating early as soon as the α threshold is met, without
waiting for k responses.

DAG Compared to Snowball, Avalanche introduces a DAG
structure that entangles the fate of unrelated conflict sets, each
of which is a single-decree instance. This entanglement em-
bodies a tension: attaching a virtuous transaction to undecided
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parents helps propel transactions towards a decision, while it
puts transactions at risk of suffering liveness failures when
parents turn out to be rogue. We can resolve this tension and
provide a liveness guarantee with the aid of two mechanisms.

First we adopt an adaptive parent selection strategy, where
transactions are attached at the live edge of the DAG, and are
retried with new parents closer to the genesis vertex. This
procedure is guaranteed to terminatewith uncontested,decided
parents, ensuring that a transaction cannot suffer liveness
failure due to contested, rogue transactions. A secondary
mechanism ensures that virtuous transactions with decided
ancestry will receive sufficient chits. Correct nodes examine
the DAG for virtuous transactions that lack sufficient progeny
and emit no-op transactions to help increase their confidence.
With these two mechanisms in place, it is easy to see that, at
worst, Avalanche will degenerate into separate instances of
Snowball, and thus provide the same liveness guarantee for
virtuous transactions.

Unlike other cryptocurrencies [50] that use graph vertices
directly as votes, Avalanche only uses a DAG for the purpose
of batching queries in the underlying Snowball instances.
Because confidence is built by collected chits, and not by just
the presence of a vertex, simply flooding the network with
vertices attached to the rejected side of a subgraph will not
subvert the protocol.

5.4 Communication Complexity
Let theDAG induced byAvalanche have an expected branching
factor of p, corresponding to the width of the DAG, and deter-
mined by the parent selection algorithm. Given the β1 and β2
decision threshold, a transaction that has just reached the point
of decision will have an associated progeny Y . Let m be the
expected depth of Y . If we were to let the Avalanche network
make progress and then freeze the DAG at a depth y, then it will
have roughly py vertices/transactions, of which p(y−m) are
decided in expectation. Only pm recent transactionswould lack
the progeny required for a decision. For each node, each query
requires k samples, and therefore the total message cost per
transaction is in expectation (pky)/(p(y−m)) = ky/(y−m).
Since m is a constant determined by the undecided region of
the DAG as the system constantly makes progress, message
complexity per node is O(k), while the total complexity is
O(kn).

6 Evaluation
6.1 Setup
We conduct our experiments on Amazon EC2 by running
from hundreds (125) to thousands (2000) of virtual machine
instances. We use c5.large instances, each of which simu-
lates an individual node. AWS provides bandwidth of up to 2
Gbps, though the Avalanche protocol utilizes at most around
100 Mbps.

Our implementation supports two versions of transactions:
one is the customized UTXO format, while the other uses the

code directly from Bitcoin 0.16. Both supported formats use
secp256k1 crypto library from bitcoin and provide the same
address format for wallets. All experiments use the customized
format except for the geo-replication, where results for both
are given.

We simulate a constant flow of new transactions from users
by creating separate client processes, each of which maintains
separated wallets, generates transactions with new recipient
addresses and sends the requests to Avalanche nodes. We use
several such client processes to max out the capacity of our
system. The number of recipients for each transaction is tuned
to achieve average transaction sizes of around 250 bytes (1–2
inputs/outputs per transaction on average and a stable UTXO
size), the current average transaction size of Bitcoin. To utilize
the network efficiently, we batch up to 40 transactions during a
query, but maintain confidence values at individual transaction
granularity.

All reported metrics reflect end-to-end measurements taken
from the perspective of all clients. That is, clients examine
the total number of confirmed transactions per second for
throughput, and, for each transaction, subtract the initiation
timestamp from the confirmation timestamp for latency. Each
throughput experiment is repeated for 5 times and standard
deviation is indicated in eachfigure. As for security parameters,
we pick k = 10, α = 0.8, β1 = 11, β2 = 150, which yields an
MTTF of ~1024 years.

6.2 Throughput
We first measure the throughput of the system by saturating it
with transactions and examining the rate at which transactions
are confirmed in the steady state. For this experiment, we first
run Avalanche on 125 nodes with 10 client processes, each
of which maintains 400 outstanding transactions at any given
time.

As shown by the first group of bars in Figure 13, the system
achieves 6851 transactions per second (tps) for a batch size of
20 and above 7002 tps for a batch size of 40. Our system is
saturated by a small batch size comparing to other blockchains
with known performance: Bitcoin batches several thousands
of transactions per block, Algorand [30] uses 2–10 Mbyte
blocks, i.e., 8.4–41.9K tx/batch and Conflux [40] uses 4Mbyte
blocks, i.e., 16.8K tx/batch. These systems are relatively slow
in making a single decision, and thus require a very large
batch (block) size for better performance. Achieving high
throughput with small batch size implies low latency, as we
will show later.

6.3 Scalability
To examine how the system scales in terms of the number of
nodes participating in Avalanche consensus, we run experi-
ments with identical settings and vary the number of nodes
from 125 up to 2000.
Figure 13 shows that overall throughput degrades about

1.34% to 6909 tps when the network grows by a factor of 16 to
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Figure 13: Throughput vs. network size. Each pair of bars is
produced with batch size of 20 and 40, from left to right.
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Figure 14: Throughput for batch size of 40, with (left) and
without (right) signature verification.

n = 2000. This degradation is minor compared to the growth
of the network size. Note that the x-axis is logarithmic.

Avalanche acquires its scalability from three sources: first,
maintaining a partial order that captures only the spending
relations allows for more concurrency than a classical BFT
replicated log that linearizes all transactions; second, the lack
of a leader naturally avoids bottlenecks; finally, the number of
messages each node has to handle per decision is O(k) and
does not grow as the network scales up.

6.4 Cryptography Bottleneck
We next examine where bottlenecks lie in our current im-
plementation. The purple bar on the right of each group in
Figure 14 shows the throughput of Avalanche with signature
verification disabled. Throughputs get approximately 2.6x
higher, compared to the blue bar on the left. This reveals that
cryptographic verification overhead is the current bottleneck
of our system implementation. This bottleneck can be ad-
dressed by offloading transaction verification to a GPU. Even
without such optimization, 7K tps is far in excess of extant
blockchains.

6.5 Latency
The latency of a transaction is the time spent from the moment
of its submission until it is confirmed as accepted. Figure 15
tallies the latency distribution histogram using the same setup
as for the throughput measurements with 2000 nodes. The
x-axis is the time in seconds while the y-axis is the portion of
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Figure 15: Transaction latency distribution for n = 2000.
The x-axis is the transaction latency in log-scaled seconds,
while the y-axis is the portion of transactions that fall into
the confirmation time (normalized to 1). Histogram of all
transaction latencies for a client is shown on the left with 100
bins, while its CDF is on the right.

transactions that are finalized within the corresponding time
period. This figure also outlines the Cumulative Distribution
Function (CDF) by accumulating the number of finalized
transactions over time.

This experiment shows that most transactions are confirmed
within approximately 0.3 seconds. Themost common latencies
are around 206 ms and variance is low, indicating that nodes
converge on the final value as a group around the same time.
The second vertical line shows the maximum latency we
observe, which is around 0.4 seconds.

Figure 16 shows transaction latencies for different numbers
of nodes. The horizontal edges of boxes represent minimum,
first quartile, median, third quartile and maximum latency
respectively, from bottom to top. Crucially, the experimental
data show that median latency is more-or-less independent of
network size.

6.6 Misbehaving Clients
We next examine how rogue transactions issued by misbe-
having clients that double spend unspent outputs can affect
latency for virtuous transactions created by honest clients.
We adopt a strategy to simulate misbehaving clients where a
fraction (from 0% to 25%) of the pending transactions conflict
with some existing ones. The client processes achieve this by
designating some double spending transaction flows among
all simulated pending transactions and sending the conflicting
transactions to different nodes. We use the same setup with
n = 1000 as in the previous experiments, and only measure
throughput and latency of confirmed transactions.

Avalanche’s latency is only slightly affected bymisbehaving
clients, as shown in Figure 17. Surprisingly, maximum laten-
cies drop slightly when the percentage of rogue transactions
increases. This behavior occurs because, with the introduc-
tion of rogue transactions, the overall effective throughput is
reduced and thus alleviates system load. This is confirmed by
Figure 18, which shows that throughput (of virtuous transac-
tions) decreases with the ratio of rogue transactions. Further,
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Figure 17: Latency vs. ratio of rogue transactions.

the reduction in throughput appears proportional to the number
of misbehaving clients, that is, there is no leverage provided
to the attackers.

6.7 Geo-replication
Next experiment shows the system in an emulated geo-
replicated scenario, patterned after the same scenario in prior
work [30]. We selected 20 major cities that appear to be near
substantial numbers of reachable Bitcoin nodes, according
to [10]. The cities cover North America, Europe, West Asia,
East Asia, Oceania, and also cover the top 10 countries with
the highest number of reachable nodes. We use the latency and
jitter matrix crawled from [60] and emulate network packet
latency in the Linux kernel using tc and netem. 2000 nodes
are distributed evenly to each city, with no additional network
latency emulated between nodes within the same city. Like
Algorand’s evaluation, we also cap our bandwidth per process
to 20 Mbps to simulate internet-scale settings where there are
many commodity network links. We assign a client process to
each city, maintaining 400 outstanding transactions per city at
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Figure 18: Throughput vs. ratio of rogue transactions.
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Figure 19: Latency histogram/CDF for n = 2000 in 20 cities.

any moment.
In this scenario, Avalanche achieves an average throughput

of 3401 tps, with a standard deviation of 39 tps. As shown in
Figure 19, the median transaction latency is 1.35 seconds, with
a maximum latency of 4.25 seconds. We also support native
Bitcoin code for transactions; in this case, the throughput is
3530 tps, with σ = 92 tps.

6.8 Comparison to Other Systems
Though there are seemingly abundant blockchain or cryptocur-
rency protocols, most of them only present a sketch of their
protocols and do not offer practical implementation or evalua-
tion results. Moreover, among those who do provide results,
most are not evaluated in realistic, large-scale (hundreds to
thousands of full nodes participating in consensus) settings.

Therefore, we choose Algorand and Conflux for our compar-
ison. Algorand, Conflux, and Avalanche are all fundamentally
different in their design. Algorand’s committee-scale con-
sensus algorithm is quorum-based Byzantine agreement, and
Conflux extends Nakamoto consensus by a DAG structure
to facilitate higher throughput, while Avalanche belongs to a
new protocol family based on metastability. Additionally, we
use Bitcoin [45] as a baseline.
Both Algorand and Avalanche evaluations use a decision

network of size 2000 on EC2. Our evaluation picked shared
c5.large instances, while Algorand used m4.2xlarge.
These two platforms are very similar except for a slight CPU
clock speed edge for c5.large, which goes largely unused
because our process only consumes 30% in these experiments.
The security parameters chosen in our experiments guarantee
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a safety violation probability below 10−9 in the presence of
20%Byzantine nodes,while Algorand’s evaluation guarantees
a violation probability below 5×10−9 with 20% Byzantine
nodes.

Neither Algorand nor Conflux evaluations take into account
the overhead of cryptographic verification. Their evaluations
use blocks that carry megabytes of dummy data and present
the throughput in MB/hour or GB/hour unit. So we use the
average size of a Bitcoin transaction, 250 bytes, to derive
their throughputs. In contrast, our experiments carry real
transactions and fully take all cryptographic overhead into
account.

The throughput is 3-7 tps for Bitcoin, 874 tps for Algorand
(with 10 Mbyte blocks), 3355 tps for Conflux (in the paper it
claims 3.84x Algorand’s throughput under the same settings).

In contrast, Avalanche achieves over 3400 tps consistently
on up to 2000 nodes without committee or proof-of-work. As
for latency, a transaction is confirmed after 10–60 minutes in
Bitcoin, around 50 seconds in Algorand, 7.6–13.8 minutes in
Conflux, and 1.35 seconds in Avalanche.
Avalanche performs much better than Algorand in both

throughput and latency because Algorand uses a verifiable
random function to elect committees, and maintains a totally-
ordered log while Avalanche establishes only a partial order.
Although Algorand’s leadership is anonymous and changes
continuously, it is still leader-based which could be the bottle-
neck for scalability, while Avalanche is leader-less.

Avalanche has similar throughput to Conflux, but its latency
is 337–613x better. Conflux also uses a DAG structure to
amortize the cost for consensus and increase the throughput,
however, it is still rooted in Nakamoto consensus (PoW),
making it unable to have instant confirmation compared to
Avalanche.

In a blockchain system, one can usually improve throughput
at the cost of latency through batching. The real bottleneck
of the performance is the number of decisions the system
can make per second, and this is fundamentally limited by
either Byzantine Agreement (BA∗) in Algorand andNakamoto
consensus in Conflux.

7 Related Work
Bitcoin [45] is a cryptocurrency that uses a blockchain based
on proof-of-work (PoW) to maintain a ledger of UTXO trans-
actions. While techniques based on proof-of-work [5, 26],
and even cryptocurrencies with minting based on proof-of-
work [51, 59], have been explored before, Bitcoin was the
first to incorporate PoW into its consensus process. Unlike
more traditional BFT protocols, Bitcoin has a probabilistic
safety guarantee and assumes honest majority computational
power rather than a known membership, which in turn has
enabled an internet-scale permissionless protocol. While per-
missionless and resilient to adversaries, Bitcoin suffers from
low throughput (~3 tps) and high latency (~5.6 hours for
a network with 20% Byzantine presence and 2−32 security

guarantee). Furthermore, PoW requires a substantial amount
of computational power that is consumed only for the purpose
of maintaining safety.
Countless cryptocurrencies use PoW [5, 26] to maintain

a distributed ledger. Like Bitcoin, they suffer from inherent
scalability bottlenecks. Several proposals for protocols exist
that try to better utilize the effort made by PoW. Bitcoin-
NG [27] and the permissionless version of Thunderella [48]
use Nakamoto-like consensus to elect a leader that dictates
writing of the replicated log for a relatively long time so as to
provide higher throughput. Moreover, Thunderella provides an
optimistic bound that,with 3/4 honest computational powerand
an honest elected leader, allows transactions to be confirmed
rapidly. ByzCoin [37] periodically selects a small set of
participants and then runs a PBFT-like protocol within the
selected nodes.

Protocols based on Byzantine agreement [39, 49] typically
make use of quorums and require precise knowledge of mem-
bership. PBFT [15, 16], a well-known representative, requires
a quadratic number of message exchanges in order to reach
agreement. The Q/U protocol [2] andHQ replication [19] use a
quorum-based approach to optimize for contention-free cases
of operation to achieve consensus in only a single round of
communication. However, although these protocols improve
on performance, they degrade very poorly under contention.
Zyzzyva [38] couples BFT with speculative execution to
improve the failure-free operation case. Past work in permis-
sioned BFT systems typically requires at least 3 f +1 replicas.
CheapBFT [34] leverages trusted hardware components to
construct a protocol that uses f +1 replicas.
Other work attempts to introduce new protocols under re-

definitions and relaxations of the BFT model. Large-scale
BFT [52] modifies PBFT to allow for arbitrary choice of num-
ber of replicas and failure threshold, providing a probabilistic
guarantee of liveness for some failure ratio but protecting
safety with high probability. In another form of relaxation.
Zeno [54] introduces a BFT state machine replication protocol
that trades consistency for high availability. More specifically,
Zeno guarantees eventual consistency rather than linearizabil-
ity,meaning that participants can be inconsistent but eventually
agree once the network stabilizes. By providing an evenweaker
consistency guarantee, namely fork-join-causal consistency,
Depot [42] describes a protocol that guarantees safety under
2 f +1 replicas.

NOW [31] uses sub-quorums to drive smaller instances of
consensus. The insight of this paper is that small, logarithmic-
sized quorums can be extracted from a potentially large set of
nodes in the network, allowing smaller instances of consensus
protocols to be run in parallel.

SnowWhite [21] andOuroboros [36] are some of the earliest
provably secure PoS protocols. Ouroboros uses a secure
multiparty coin-flipping protocol to produce randomness for
leader election. The follow-up protocol, Ouroboros Praos [22]
provides safety in the presence of fully adaptive adversaries.
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HoneyBadger [44] provides good liveness in a network with
heterogeneous latencies.

Tendermint [11,12] rotates the leader for each block and has
been demonstrated with as many as 64 nodes. Ripple [53] has
low latency by utilizing collectively-trusted sub-networks in a
large network. The Ripple company provides a slow-changing
default list of trusted nodes, which renders the system essen-
tially centralized. HotStuff [61, 62] improves the communica-
tion cost from quadratic to linear and significantly simplifies
the protocol specification, although the leader bottleneck still
persists. Facebook uses HotStuff as the core consensus for
its Libra project. In the synchronous setting, inspired by Hot-
Stuff, Sync HotStuff [3] achieves consensus in 2∆ time with
quadratic cost and unlike other lock-steped synchronous pro-
tocols, it operates as fast as network propagates. Stellar [43]
uses Federated Byzantine Agreement in which quorum slices
enable heterogeneous trust for different nodes. Safety is guar-
anteed when transactions can be transitively connected by
trusted quorum slices. Algorand [30] uses a verifiable random
function to select a committee of nodes that participate in a
novel Byzantine consensus protocol.
Some protocols use a Directed Acyclic Graph (DAG)

structure instead of a linear chain to achieve consen-
sus [6, 9, 55–57]. Instead of choosing the longest chain as
in Bitcoin, GHOST [56] uses a more efficient chain selec-
tion rule that allows transactions not on the main chain to be
taken into consideration, increasing efficiency. SPECTRE [55]
uses transactions on the DAG to vote recursively with PoW
to achieve consensus, followed up by PHANTOM [57] that
achieves a linear order among all blocks. Like PHANTOM,
Conflux also finalizes a linear order of transactions by PoW in
a DAG structure, with better resistance to liveness attack [40].
Avalanche is different in that the voting result is a one-time
chit that is determined by a query without PoW,while the votes
in PHANTOM or Conflux are purely determined by PoW in
transaction structure. Similar to Thunderella, Meshcash [9]
combines a slow PoW-based protocol with a fast consensus
protocol that allows a high block rate regardless of network
latency, offering fast confirmation time. Hashgraph [6] is a
leader-less protocol that builds a DAG via randomized gossip.
It requires full membership knowledge at all times, and, similar
to the Ben-Or [8], it requires exponential messages [4, 14] in
expectation.

8 Conclusion
This paper introduced a novel family of consensus protocols,
coupled with the appropriate mathematical tools for analyz-
ing them. These protocols are highly efficient and robust,
combining the best features of classical and Nakamoto consen-
sus.hey scale well, achieve high throughput and quick finality,
work without precise membership knowledge, and degrade
gracefully under catastrophic adversarial attacks.
There is much work to do to improve this line of research.

One such improvement could be the introduction of an adver-

sarial network scheduler. Another improvement would be to
characterize the system’s guarantees under an adversarywhose
powers are realistically limited,whereupon performancewould
improve even further. Finally, more sophisticated initializa-
tion mechanisms would bear fruitful in improving liveness of
multi-value consensus. Overall, we hope that the protocols
and analysis techniques presented here add to the arsenal of
the distributed system developers and provide a foundation
for new lightweight and scalable mechanisms.
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A Analysis
In this appendix, we provide an analysis of Slush, Snowflake
and Snowball.

A.1 Preliminaries
We assume the network model as discussed in Section 2. We
let R (“red”) and B (“blue”) represent two generic conflicting
choices. Without loss of generality, we focus our attention on
counts of B, i.e. the total number of nodes that prefer blue.

Hypergeometric Distribution Each network query of k
peers corresponds to a sample without replacement out of
a network of n nodes, also referred to as a hypergeometric
sample. We let the random variable H (N ,x,k)→{0, . . . ,k}
denote the resulting counts ofB in the sample (unless otherwise
stated), where x is the total count of B in the population. The
probability that the query achieves the required threshold of
α or more votes is given by:

P(H (N ,x,k)≥ α) =
k

∑
j=α

(
x
j

)(
n− x
k− j

)/(
n
k

)
(2)

For ease of notation, we overload H (∗) by implicitly referring
to P(H (N ,x,k)≥ α) as H (N ,x,k,α).

Tail Bounds On Hypergeometric Distribution We can
reduce some of the complexity in Equation 2 by introducing a
bound on the hypergeometric distribution induced by H k

N ,x.
Let p = x/n be the ratio of support for B in the population. The
expectation of H (N ,x,k) is exactly kp. Then, the probability
thatH (N ,x,k)will deviate from the mean bymore than some

small constant ψ is given by the Hoeffding tail bound [32], as
follows,

P(H (C ,x,k)≤ (p−ψ)k)≤ e−kD(p−ψ,p)

≤ e−2(p−ψ)2k
(3)

where D(p−ψ, p) is the Kullback-Leibler divergence, mea-
sured as

D(a,b) = a log
a
b
+(1−a) log

1−a
1−b

(4)

Concentration of Sub-Martingales Let {X{t≥0}} be a sub-
martingale and |Xt −Xt−1| < ct almost surely. Then, for all
positive reals ψ and all positive integers t,

P(Xt ≥ X0 +ψ)≤ e−ψ2/2∑
t
i=1 c2

t (5)

A.2 Slush
Slush operates in a non-Byzantine setting; that is, f = 0, c = n.
In this section, we will characterize the irreversibility proper-
ties of Slush (which appear in Snowflake and Snowball), as
well as the precise converge rate distribution. The distribution
of of both safety and liveness of Slush translate well to the
Byzantine setting.
The procedural version of Slush in Figure 4 made use of

a parameter m, the number of rounds that a node executes
Slush queries. What we ultimately want to extract is the total
number of rounds φ that the scheduler will need to execute in
order to guarantee that the entire network is the same color,
whp.

We analyze the system mainly using a continuous time
process. Let {X{t≥0}} be a CTMC. The state space S of
the stochastic process is a condensed version of the full
configuration space, where each state {0, . . . ,n} represents
the total number of blue nodes in the system.
Let FXs be the filtration, or the history pertaining to the

process, up to time s. This process is Markovian and time-
homogeneous, conforming to

P{Xt = j|FXs}= P{Xt = j|Xs}= P{Xt = j|X0}

Throughout the paper, we use Q ≡ (qi j, i, j ∈ S) notation
to refer to the infinitesimal generator of the process, where
death (i→ i−1) and birth (i→ i+1) rates of configuration
transitions are denoted via µi and λi (λi is distinct from the
clock parameter λ, and will be clear from context). These rates
are {

µi = i H (N ,c− i,k,α), for i→ i−1
λi = (c− i) H (N , i,k,α), for j→ i+1

for 1≤ i≤ c−1, and where i = 0 and i = c are absorbing. Let
pi j(t) refer to the probability of transitioning from state i to j
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at time t. We always assume that

pi j(t) =


λit +o(t), for j = i+1
µit +o(t), for j = i−1
1− (λi +µi)t +o(t), for j = i
o(t), otherwise

where all o(t) are uniform in i.

Irreversibility In Section 4, we discussed the loose Chvatal
bound which provided intuitive understanding into the strong
irreversibility dynamics of our core subsampling mechanism.
In particular, once the network drifts to some majority value, it
tends to revert back with only an exponentially small probabil-
ity. We compute the closed-form expression for reversibility,
and show that it is exponentially small.

Theorem 2. Let ξδ be the probability of absorption into the
all-red state (s0), starting from a drift of δ (i.e. δ drift away
from n/2). Then, assuming δ > 1,

ξδ = 1−

δ

∑
l=1

l−1

∏
i=1

µ2
i

n−l

∏
j=l

λ j

2
n/2

∑
l=1

l−1

∏
i=1

µ2
i

n−l

∏
j=l

µ j

(6)

and
ξδ−ξδ+1

ξδ+1−ξδ+2
= uδ+1 =

λδ+1

µδ+1

≈
n−δ−1

k

∑
j=α

(n−δ−1)k(δ+1)k− j

n2k− j

δ+1
k

∑
j=α

(δ+1)k(n−δ−1)k− j

n2k− j

(7)

where from now on we refer to uδ+1 as the drift of the process.

Proof. Our results are derived based on constructions from
Tan [58]. We construct a sub-matrix of Q, denoted B, as shown
in Figure 20. Let W ′1 = (µ1,0, . . . ,0), W ′n−1 = (0, . . . ,0,λn−1).
Then, we can express Q as

Q =

 0 . . . 0
W1 B Wn−1
0 . . . 0


As a reminder, the stationary distribution can be found via
limt→∞ P(t) = eQt , where we have

eQt =
∞

∑
i=0

t i

i!
Qi =

∞

∑
i=0

t i

i!

 0 . . . 0
Bi−1W1 Bi Bi−1Wn−1

0 . . . 0


As Tan (eq. 2.3) shows, we have

ξ(t) = B−1

[
∞

∑
i=0

Bi− In−1

]
W1

Since we want the ultimate probabilities, we have that

ξ = lim
t→∞

ξ(t) =−B−1W1

We can explicitly compute ξδ in terms of our rates µi and λi,
getting

ξδ =

n−δ

∑
l=1

n−l

∏
i=1

µi

n−1

∏
j=n−l+1

λ j

n

∑
l=1

n−l

∏
i=1

µi

n−1

∏
j=n−l+1

λ j

However, we note that ui = λn−i. Algebraic manipulation from
this observation leads to the two equations in the theorem.
This expression is strictly lower than the Chvatal bounds used
in Section 4.

Using the construction for the absorption (and
(ir)reversibility) probabilities as discussed previously, a nat-
ural follow up computation is in regards to mean conver-
gence time. Let Tz(t) = inf{t ≥ 0 : Xt = {0,n}|X0 = z}, and
let τz = E[Tz(t)]. τz is the mean time to reach either absorbing
state, starting from state z, which corresponds to the mean
convergence time. The next theorem characterizes this distri-
bution.

Theorem 3. Let τz be the expected time to convergence,
starting from state z > n/2, to any of the two converging states
in the network (all-red or all-blue). Then,

τz =

n−1

∑
d=1

x(d)y(d)

2
n/2

∑
l=1

l−1

∏
i=1

µ2
i

n−l

∏
j=l

µ j

(8)

where x(d) and y(d) are

x(d) =
min(z,d)

∑
l=1

l−1

∏
i=1

µi

d−1

∏
j=l

λ j

y(d) =
n−d−max(z−d,0)

∑
l=1

n−l

∏
i=d+1

µi

n−1

∏
j=n−l+1

λ j

(9)

Proof. Following the calculations from before, −B−1 at row
z provides the number of traversals to each other state starting
from z. Calculating their sum, we have our result. The above
equation is the full expression of the matrix row sum.

Theorem 3 leads to the next lemma that captures property
P2, under the assumption that at the beginning of the protocol,
one proposal has at least α support in the network.

Lemma 4. Slush reaches an absorbing state in finite time
almost surely.
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B =



−(λ1 +µ1) λ1 0 · · · · · · 0
µ2 −(λ2 +µ2) λ2 0 · · · 0
0 µ3 −(λ3 +µ3) λ3 · · · 0
...

...
. . . . . . . . .

...
...

... µn−3 −(λn−2 +µn−2) λn−3 0
... . . . 0 µn−1 −(λn−2 +µn−2) λn−2
0 . . . 0 0 µn−1 −(λn−1 +µn−1)


Figure 20: Matrix B.

Proof. Starting from any non-absorbing, transient state, there
is a non-zero probability of being absorbed. Additionally, since
termination is finite and everywhere differentiable, Theorem 3
also implies that the probability of termination of any network
configuration where a proposal has ≥ α support in bounded
time tmax is strictly positive.

A.3 Snowflake
In Snowflake, the sampled set of nodes includes Byzantine
nodes. We introduce the decision function D(∗), which is
constructed by having each node also keep track of the total
number of consecutive times it has sampled a majority of the
same color (β). Finally, we introduce a function called A(St),
the adversarial strategy, that takes as parameters the entire
configuration of the network at time t, as well as the next set of
nodes chosen by the scheduler to execute, and as a side-effect,
modifies the set of nodes B to some arbitrary configuration
of colors.

In order for our prior framework to apply to Snowflake, we
must deal with a key subtlety. Unlike in Slush, where it is
clear that once the network has reached one of the converging
states and therefore may not revert back, this no longer applies
to Snowflake, since any adversary f ≥ α has strictly positive
probability of reverting the system, albeit this probability may
be infinitesimally small. The CTMC is flexible enough to deal
with a system where there is only one absorbing state, but
the long-term behavior of the system is no longer meaningful
since, after an infinite amount of time, the system is guaranteed
to revert, violating safety. We could trivially bound the amount
of time, and show safety using this bounded time assumption
by simply characterizing the distribution of etQ, where Q is the
generator. However, we can make the following observation:
if the probability of going from state c (all-blue) to c−1 is
exponentially small, then it will take the attacker exponential
time (in expectation; note, this is a lower bound, and in reality
it will take much longer) to succeed in reverting the system.
Hence, we can assume that once all correct nodes are the same
color, the attack from the adversary will terminate since it is
impractical to continue an attack. In fact, under reasonably
bounded timeframes, the variational distance between the
exact approach and the approximation is very small. We leave

details to the accompanying paper, but we briefly discuss how
analysis proceeds for Snowflake.

As stated in Section 4, theway to analyze the adversary using
the same construction as in Slush is to condition reversibility
on the first node u deciding on blue, which can happen at
any state (as specified by D(∗)). At that point, the adversarial
strategy collapses to a single function, which is to continually
vote for red. The probabilities of reversibility, for all states
{1, . . . ,c−1}must encode the probability that additional blue
nodes commit, and the single function of the adversary. The
birth and death rates are transformed as follows:{

µi = i(1− I[D(∗, i,B)]) H (N ,c− i+ f ,k,α)
λi = (c− i)(1− I[D(∗,c− i,R)]) H (N , i,k,α)

From here on, the analysis is the same as in Slush. Under
various k and β, we can find the minimal α that provides the
system strong irreversibility properties.
The next lemma captures P3, and the proof follows from

central limit theorem.

Lemma 5. If f < O(
√

n), and α = bk/2c+1, then Snowflake
terminates in O(logn) rounds with high probability.

Proof. The results follows from central limit theorem,wherein
for α = bk/2c+ 1, the expected bias in the network after
sampling will be O(

√
n). An adversary smaller than this bias

will be unable to keep the network in a fully-bivalent state
for more than a constant number of rounds. The logarithmic
factor remains from the mixing time lower bound.

A.4 Snowball
Wemake the following observation: if the confidences between
red andblue are equal, then the adversary has the same identical
leverage in the irreversibility of the system as in Snowflake,
regardless of network configuration. In fact, Snowflake can
be viewed as Snowball but where drifts in confidences never
exceed one. The same analysis applies to Snowball as in
Snowflake, with the additional requirement of bounding the
long-term behavior of the confidences in the network. To
that end, analysis follows using martingale concentration
inequalities, in particular the one introduced in Equation 5.
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Snowball can be viewed as a two-urn system, where each
urn is a sub-martingale. The guarantees that can be extracted
hereon are that the confidences of the majority committed
value (in our frame of reference is always blue), grow always
more than those of the minority value, with high probability,
drifting away as t→ tmax.

A.5 Safe Early Commitment
As we reasoned previously, each conflict set in Avalanche can
be viewed as an instance of Snowball, where each progeny
instance iteratively votes for the entire path of the ancestry.
This feature provides various benefits; however, it also can
lead to some virtuous transactions that depend on a rogue
transaction to suffer the fate of the latter. In particular, rogue
transactions can interject in-between virtuous transactions and
reduce the ability of the virtuous transactions to ever reach
the required isAccepted predicate. As a thought experiment,
suppose that a transaction Ti names a set of parent transactions
that are all decided, as per local view. If Ti is sampled over
a large enough set of successful queries without discovering
any conflicts, then, since by assumption the entire ancestry of
Ti is decided, it must be the case (probabilistically) that we
have achieved irreversibility.
To then statistically measure the assuredness that Ti has

been accepted by a large percentage of correct nodes without
any conflicts, we make use of a one-way birth process, where
a birth occurs when a new correct node discovers the conflict
of Ti. Necessarily, deaths cannot exist in this model, because a
conflicting transaction cannot be unseen once a correct node
discovers it. Our births are as follows:

λi =
c− i

c

(
1−

(n−i
k

)(n
k

) ) (10)

Solving for the expected time to reach the final birth state
provides a lower bound to the β1 parameter in the isAccepted
fast-decision branch. The table below shows an example of the
analysis forn= 2000,α= 0.8k, andvarious k,where ε� 10−9,
and where β is the minimum required value before deciding.
Overall, a very small number of iterations are sufficient for

k 10 20 30 40
β 10.87625 10.50125 10.37625 10.25125

the safe early commitment predicate. This supports the choice
of β in our evaluation.

A.6 Initialization Heuristic
To improve liveness,we can use strong synchrony assumptions.
The heuristic works as follows. Every node operates in two
phases: in the first phase, it gossips and collects proposals
for O(logn) rounds, where each round lasts for the maximum
message delay, which ensures the proposal from a correct node
will propagate to almost all other correct nodes; in the second
phase, each node stops collecting proposals, and gossips the

S
a

f

S
d

S
b

S
b

S
d

S
a

Figure 21: Changes in network view based on Sd’s size. All
prior proofs up to now represent the variantwhere Sa = Sb =∅.
With the new construction, the probability of safety violation
is simply a direct application of the prior sets of proofs under
the new subsets.

existing proposals for an additional O(logn) rounds so that
every correct node ends up with approximately the same set
of proposals. Finally, each node samples for the proposals it
knows of locally, checking for those that have an α majority,
ordered deterministically, such as by hash values. It then selects
the first value by the order as its initial state when it starts the
actual consensus protocol. In a cryptocurrency setting, the
deterministic ordering function would incorporate fees paid
out for every new proposal, which means that the adversary
is financially limited in its ability to launch a fairness attack
against the initialization.

A.7 Churn and View Discrepancy
Realistic systems need to accommodate the departure and
arrival of nodes. Up to now, we simplified our analysis by
assuming a precise knowledge of network membership, i.e.
L(u) = N . We now demonstrate that correct nodes can admit
a well-characterized amount of churn, by showing how to pick
parameters such that Avalanche nodes can differ in their view
of the network and still safely make decisions.
To characterize churn we use a generalized set intersec-

tion construction that allows us to make arguments about
worst-case network view splits. Before formalizing it, we
provide the intuition: suppose we split the network into two
entirely independent, but fully connected, subsets. Clearly,
the Byzantine adversary wins with probability one since it
can send two conflicting transactions to the two independent
networks respectively, and they would finalize the transactions
immediately. This represents the worst case view split. We
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can generalize this to arbitrary network splits, which can even
be applied recursively in each subset. The proofs of safety
then are a matter of characterizing the probability of red and
blue committing into the two (possibly independent) subsets.
Suppose we divide the set of correct nodes into three

subsets, Sa, Sd , Sb. We overload L(S∗) to represent the views
of any node within the input set. The view of all nodes in
Sa is L(Sa) = Sa ∪ Sd ∪B , the view of all nodes in Sb is
L(Sb) = Sb∪Sd ∪B , and the view of Sd is N . We assume the
worst case, which means that adversarial nodes are common
to all subsets. When Sd =∅, this represents a division of the
network into two equal subsets where |Sa|= |Sb|= n/2 2. If
Sd is all correct nodes, then |Sa|= |Sb|= n. This construction
is visually demonstrated in Figure 21.

Lemma 6. Let τ ∈ Z+. Let |Sd |= n− τ, and thus |S{a,b}|=
τ/2. There exists some maximal size of τ such that probability
of any two nodes u,v ∈ Sa, Sb, Sd finalizing equivocating
transactions is less than ε.

Proof. We assume that the adversary has full control of the
network view splits, meaning that they choose in full how to
create Sa, Sb, Sd . To prove safety, we simply reuse the same

exact construction as in Subsection A.3, but we replace the
original set N with a new set of interest, namely Sa∪Sd ∪B
(i.e., we exclude Sb) 3. To thus find the maximal τ, we simply
replace ui and λi with{

µ̄i = i H (Sa∪Sd ∪B,c− (τ/2)− i,k,α), for i→ i−1
λi = (c− i) H (Sa∪Sd ∪B, i,k,α), for j→ i+1

(11)
where

P(H (Sa∪Sd ∪B,x,k)≥ α)

=
k

∑
j=α

(
x
j

)(
c− (τ/2)− x

k− j

)/(
c− (τ/2)

k

) (12)

and apply the same construction as in Subsection A.3. As
τ increases, it is clear that Sa (and conversely, Sb), become
more independent and less reliant on the values proposed by
members in Sd , thus incrementing the ability of the adversaries.

2|Sa| and |Sb| do not have to be equal, we assume so as a demonstration.
3Sets are symmetric in this example.
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