

MEMOIR Common For Crypto
Version 2.0

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
2

This specification is being provided to you strictly for informational purposes solely for the purpose of
developing or operating systems that interact with EDX Markets, or EDXM. All proprietary rights and
interest in this specification and the information contained herein shall be vested in EDXM and all
other rights including, but without limitation, patent, registered design, copyright, trademark, service
mark, connected with this publication shall also be vested in EDXM. No part of this specification may
be redistributed or reproduced in any form or by any means or used to make any derivative work
(such as translation, transformation, or adaptation) without written permission from EDXM. EDXM
reserves the right to withdraw, modify, or replace the specification at any time, without notice. No
obligation is made by EDXM regarding the level, scope, or timing of EDXM’s implementation of the
functions or features discussed in this specification.

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
3

THE SPECIFICATION IS PROVIDED "AS IS", "WITH ALL FAULTS" AND EDXM MAKES NO
WARRANTIES AND DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, OR
STATUTORY RELATED TO THE SPECIFICATIONS. EDXM IS NOT LIABLE FOR ANY
INCOMPLETENESS OR INACCURACIES IN THE SPECIFICATIONS. EDXM IS NOT LIABLE FOR
ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES RELATING TO THE
SPECIFICATIONS OR THEIR USE.

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
4

Table of Contents

1	 Overview .. 6	
2	 Encoding .. 7	
2.1	 Data Types .. 7	
2.1.1	 Boolean ... 7	
2.1.2	 FixedPointDecimal .. 7	
2.1.3	 String .. 8	
2.1.4	 Currency ... 8	
2.1.5	 BooleanType ... 8	
2.1.6	 IDType .. 8	
2.1.7	 UTC Timestamp Nanos .. 8	
2.2	 Header ... 8	
3	 Message Field Types .. 10	
3.1	 SideType ... 10	
3.2	 InstrumentTradingStatusType ... 10	
3.3	 InstrumentTradingStatusReasonType ... 10	
3.4	 TradingSessionType .. 10	
4	 Messages ... 11	
4.1	 Instrument Directory .. 11	
4.2	 Instrument Trading Status ... 12	
4.3	 Trading Session Status ... 12	
4.4	 Snapshot Complete ... 13	
5	 Message/State Recovery Methods .. 14	
5.1	 Gap Fill .. 14	
5.2	 Snapshot ... 15	

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
5

< THIS PAGE INTENTIONALLY LEFT BLANK>

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
6

1 Overview
Defines the MEMOIR messages that are common to the MEMOIR Depth For Crypto and MEMOIR
Top For Crypto feeds.

The MEMOIR Common For Crypto message set consists of the following:

• Instrument Directory - Supplies a mapping between symbology identifiers and token
identifiers, which are used for order entry, and market data.

• Instrument Trading Status - Provides status messages to inform participants of market
events for an instrument.

• Trading Session Status - Provides status messages to inform participants of trading
session status events.

• Snapshot Complete - Used on Snapshot ports - Indicates that the entire snapshot has
been sent and provides the point to continue reading the live data (see Snapshot under
Message State/Recovery Methods)

Application messages are implemented using a binary protocol based on SBE (Simple Binary
Encoding).

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
7

2 Encoding
The MEMOIR feeds use the FIX Trading Community's Simple Binary Encoding (SBE) to specify
message encoding. More information about SBE can be found at the FIX SBE XML Primer.

The feed is always encoded in Big Endian byte order.

2.1 Data Types
All encoding and decoding for SBE is centered around a set of basic primitive types.

For more information on primitive type encoding, see the SBE specification.

Type Length
(bytes)

Description Value
Range

Null Value Null Value (Hex)

CHAR 1 ASCII
Character

0 (NUL) to
127 (DEL)

0 0x00

INT8 1 Signed
Integer

-127 to
127

-128 0x80

INT16 2 Signed
Integer

-32767 to
32767

-32768 0x8000

INT32 4 Signed
Integer

-2^31 +
1 to 2^31
- 1

-2^31 (-
2147483648)

0x80000000

INT64 8 Signed
Integer

-2^63 +
1 to 2^63
- 1

-2^63 0x8000000000000000

UINT8 1 Unsigned
Integer

0 to 254 255 0xFF

UINT16 2 Unsigned
Integer

0 to 65534 65535 0xFFFF

UINT32 4 Unsigned
Integer

0 to 2^32-
2

2^32 - 1
(4294967295)

0xFFFFFFFF

The MEMOIR specification does not use the SBE floating point data types.

2.1.1 Boolean
The SBE specification does not define a primitive data type for booleans. MEMOIR defines one as
a single UINT8 value, set to 1 for “true”, and 0 for “false”.

2.1.2 FixedPointDecimal
Prices and some other values are encoded as a fixed-point scaled decimal, consisting of a signed
long (int64) mantissa and a constant exponent of -8.

Type
Name

Length Type Description

Mantissa 8 INT64 The fixed-point decimal representation of the number.
Exponent N/A INT8 MEMOIR uses a constant exponent of -8 for all fixed-point

integers. This field is constant, and as such will not be transferred
on the wire.

For example, a mantissa of 123456789 with the constant exponent of -8 represents the decimal
number 1.23456789, and would appear encoded on the wire as the hex value
00000000075BCD15.

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
8

2.1.3 String
Strings are fixed length ASCII based character sequences. Lengths are defined in the schema.
Variable length fields are not supported.

2.1.4 Currency
Currencies are expressed as (up to) 3-character strings, right-padded with NULL (0x0) bytes, if
required. Currency code values will align with the ISO 4217 standard, where possible. For
currencies which do not have a matching ISO value, a custom, non-conflicting value will be
supplied.

2.1.5 BooleanType
Boolean values are not defined specifically in SBE. The schema defines a BooleanType which
represents a numeric value with True = 1 and False = 0.

2.1.6 IDType
A 16-byte globally unique identifier representing an entity, expressed for convenience as two 8-byte
integers. This identifier will be unique across session and day boundaries.

Note that this identifier may not conform to a UUID standard. Readers should not attribute any
independent significance to the numeric value of the higher or lower bit fields in isolation.

Type Name Length Type Description
UpperBits 8 INT64 The most significant bits of the ID
LowerBits 8 INT64 The least significant bits of the ID

2.1.7 UTC Timestamp Nanos
Fields with the UTCTimestampNanos type represents a timestamp in Coordinated Universal Time
(UTC) which begins at the UNIX epoch (January 1, 1970 at 00:00:00 UTC).

UTCTimestampNanos has the time unit of nanoseconds and is encoded as follows:

Type
Name

Length Type Description

Time 8 INT64 UTC timestamp since unix epoch with nanosecond precision.
Unit N/A UINT8 Unit of time. UTCTimestampNanos are represented in

nanoseconds. This field is constant (value=9) and as such will not
be transferred on the wire.

2.2 Header
SBE includes a header for each message. The SBE header is followed by the SBE body for the
message.

The common SBE message header contains the fields that allows the decoder to identify what
codec should be used as the template for a message.

The MEMOIR SBE header appears on the wire as:

Field Offset Length Type Description
BlockLength 0 2 UINT16 The number of bytes in the message body (does not

include the header bytes). Note that MEMOIR

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
9

Field Offset Length Type Description
messages do not use repeating groups or variable-
length fields.

TemplateID 2 1 UINT8 Identifier of the message template (ie. the message
type).

SchemaID 3 1 UINT8 The identifier of a message schema. NOTE:
SchemaID=6 for MEMOIR Depth For Crypto.
SchemaID=7 for MEMOIR Top For Crypto.

Version 4 2 UINT16 The version number of the message schema that
was used to encode a message.
Two pieces of information are packed into the
(UINT16) version field: a major version, and a minor
version.
For example, a version of 258 (hex 0102) indicates
major version 1, minor version 2.

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
10

3 Message Field Types
All messages are composed of fields. Each field has a type.

This section defines the field types, their underlying wire type, acceptable values and a description
of the field.

3.1 SideType
SideType describes the side the order is on: either bid (buy) or offer (sell).

SideType is a 1-byte CHAR value.

Value Name
B Buy
S Sell

3.2 InstrumentTradingStatusType
InstrumentTradingStatusType represents the current trading state of an instrument on the
exchange.

InstrumentTradingStatusType is a 1-byte CHAR value.

Value Name
H Halted
Q Quoting
L Limit-Only Trading
T Trading (All Order Types)

3.3 InstrumentTradingStatusReasonType
InstrumentTradingStatusReasonType represents the reason for this instrument trading status.

InstrumentTradingStatusReasonType is a 1-byte CHAR value.

Value Name Description
X None The instrument trading status does not apply (e.g the instrument is

trading normally).
A Administrative The instrument trading status change originated from the exchange

3.4 TradingSessionType
TradingSessionType represents the trading session for all symbols on the market.

TradingSessionType is a 1-byte CHAR value.

Value Name Description
1 Trading Market session
2 Closed Market closed, or undergoing temporary maintenance

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
11

4 Messages
This section defines the messages that make up the protocol. For each message, it lists the fields in
the message, as well as each field's position and length in the message, its underlying type, and a
description of its purpose.

4.1 Instrument Directory
At the start of a trading session, an instrument directory message will be sent for all tradable token
pairs on the exchange. The TokenID field uniquely specifies a particular token trading pair, and is
used to identify all subsequent market data events relevant to this instrument, as well as for order
entry.

Field Offset Length Type Meaning
SBE Header 0 6 N/A SBE Header with SchemaID set as

specified in Header definition
above, TemplateID=1,
BlockLength=33

Timestamp 6 8 UTCTimestampNanos The timestamp when the event
occurred.

TokenID 14 8 CHAR A unique code identifying the
instrument. Generally, this will take
the form <Base
Currency>/<Quote Currency>

BaseCurrency 22 3 Currency The base currency of the trading
pair.

QuoteCurrency 25 3 Currency The quote currency of the trading
pair. (The currency that quotations
and pricing data are denominated
in)

UnitMultiplier 28 2 INT16 The amount of 1 unit of order
quantity, expressed in the base
currency. UnitMultiplier is the
multiplier that is applied to all order
quantities for a given token to
calculate quantity of the token
being referenced. For example, for
BTC/USD with UnitMultiplier = -8,
an order for BTC/USD with order
quantity = 350, will be multiplied by
10-8, resulting in a quantity of
0.00000350 BTC. All quantities
referenced in MEMO messages are
specified as a whole numbers of
units.

IsTestSymbol 30 1 BooleanType Determines if this security is a test
instrument.

MPV 31 8 FixedPointDecimal The minimum price variation for an
instrument, used as the smallest
quoting price increment.

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
12

4.2 Instrument Trading Status
This message will inform the client of the current trading status of an instrument on the exchange,
and is sent for all instruments after a corresponding Instrument Directory message is sent.

The exchange may internally halt trading for an instrument for administrative or operational reasons
at any time.

This message can and will be sent out throughout the trading session to indicate realtime changes
in the instrument state.

If an InstrumentTradingStatus message is not received for an instrument, it should be
assumed that the status is Halted.

Field Offs
et

Lengt
h

Type Meaning

SBE Header 0 6 N/A SBE Header
with
SchemaID
set as
specified in
Header
definition
above,
TemplateID=
2,
BlockLength=
18

Timestamp 6 8 UTCTimestampNanos The
timestamp
when the
event
occurred.

TokenID 14 8 CHAR A code
uniquely
identifying the
instrument
from the
Instrument
Directory.

InstrumentTradingStatus 22 1 InstrumentTradingStatusType The current
trading state.

InstrumentTradingStatusRe
ason

23 1 InstrumentTradingStatusReason
Type

The source of
the trading
status
change.

4.3 Trading Session Status
The trading system has entered a new trading session.

Field Offset Length Type Meaning
SBE Header 0 6 N/A SBE Header with SchemaID set as

specified in Header definition
above, TemplateID=3,
BlockLength=9

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
13

Field Offset Length Type Meaning
Timestamp 6 8 UTCTimestampNanos The timestamp when the event

occurred.
TradingSession 14 1 TradingSessionType The trading session which was

entered.

4.4 Snapshot Complete
End of the snapshot message, all messages have been sent. Used only in Snapshot recovery (see
Message/State Recovery Methods below)

Upon receipt of this message, clients should disconnect from the MEMOIR Snapshot feed and
follow the recovery procedure to reconcile their state against the incremental MEMOIR feed.

Field Offset Length Type Meaning
SBE Header 0 6 N/A SBE Header with

SchemaID set as specified
in Header definition above,
TemplateID=4,
BlockLength=16

Timestamp 6 8 UTCTimestampNanos The timestamp when the
event occurred.

AsOfSequenceNumber 14 8 INT64 The sequence number on
the real-time multicast
channel that this snapshot
is based upon.
All messages buffered from
the real-time feed that are
less than or equal to this
number should be
discarded. All messages
buffered after this number
should be applied. (with
appropriate gaps filled
normally).

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
14

5 Message/State Recovery Methods
When MEMOIR is disseminated over the MEMX-UDP transport protocol, consumers of the feed
may periodically miss messages due to the unreliable nature of the UDP protocol. Two independent
Multicast groups will be provided for standard A/B arbitration and quick recovery of messages
dropped due to packet loss on a single channel. However, there are cases, such as a catastrophic
system issue on the client’s end, or the loss of the same message from both channels, where the
client may need to request data to be re-sent from the exchange. For these situations, two modes
of recovery are available for users.

The first is a “gap fill” mechanism, used to recover small numbers of messages, and is typically
used for small episodes of packet loss that affect the same messages on both Multicast channels.

The second is a “snapshot” mechanism, where the current business state of the feed is sent,
followed by a “live” sequence number for the client to begin processing the real-time MEMX-UDP
channels.

5.1 Gap Fill
A client detects missing messages over the MEMX-UDP transport for MEMOIR by using the
sequence number in the MEMX-UDP datagram header to determine if a gap in sequence numbers
has occurred. In order to recover these messages, the client may use a connection to a Gap Fill
Server via the MEMX-TCP Replay mode to request the missing messages.

NOTE: The client may initiate and maintain a connection to the MEMX-TCP Gap Fill Server early (to
verify connectivity) and stay connected (while periodically sending heartbeats) until the functionality
is needed.

The process by which a client recovers missing messages via the Gap Fill Server is as follows:

1. Issue a MEMX-TCP ReplayRequest to the MEMOIR Gap Fill Server, containing the
SessionID received over the MEMX-UDP channel(s), the NextSequenceNumber of the
first missing message, and the Count of messages required (including the sequence
provided)

2. While the above request is being processed, the client should buffer any received MEMX-
UDP multicast messages and not apply them until the missing sequence numbers have
been recovered.

3. After the receipt of the MEMX-TCP Replay Request, the Gap Fill Server will send the
following:

a. A MEMX-TCP ReplayBegin message, with NextSequenceNumber set to the
requested Sequence number, and a PendingMessageCount set to the number of
messages to follow in the replay. (This may be less than the requested count - see
NOTE below)

b. The requested number of MEMOIR messages (or less given the constraints listed
above on request size), starting at the requested sequence number

c. A MEMX-TCP ReplayComplete message

4. After the ReplayComplete message is received, the client is free to send another request
(if this request did not satisfy the entire gap)

5. Once the client has received all of the missing messages from one or more replay requests
to the MEMX-TCP Replay server, the client may then process the messages buffered from
the MEMX-UDP channel, discarding duplicate sequence numbers and applying future
sequence numbers in order.

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
15

NOTE: the replay provided may consist of fewer messages than requested due to some constraints
on the size of the response. The number of messages in the replay response will be the minimum
of:

• the requested count

• the configured maximum messages per request for the service

• the number of messages remaining from the requested start sequence to the highest
published sequence

5.2 Snapshot
If a catastrophic failure occurs on the client side that requires a full state reset on the client, and the
client does not wish to manually replay the entire day via multiple MEMX-TCP Replay requests, the
client may opt to use the MEMX-TCP snapshot mechanism to recover state. Once the snapshot has
completed, the client should use normal Gap Fill processing (described above) to recover any
further gaps in data that may occur during that trading session, as Snapshots can be quite large
compared to a gap of one or two datagrams.

NOTE: The client may initiate and maintain a connection to the MEMX-TCP snapshot server early
(to verify connectivity) and stay connected (while periodically sending heartbeats) until the
functionality is needed.

The process by which a client recovers via snapshot is as follows:

1. Join the real-time MEMX-UDP multicast group(s) for the data feed, and begin buffering all
received messages.

2. Issue a MEMX-TCP ReplayAllRequest to the MEMOIR snapshot server, containing the
SessionID received over the MEMX-UDP channel(s)

3. After the receipt of the MEMX-TCP ReplayAll request, the Snapshot Server will send the
following:

a. A MEMX-TCP ReplayBegin message, with NextSequenceNumber set to 1 and
PendingMessageCount set to the number of MEMOIR Business Level messages
contained in the snapshot

b. MEMOIR Business Level InstrumentDirectorymessages containing an
instrument description and associated TokenID to be used throughout the session.

c. MEMOIR Business Level InstrumentTradingStatus messages containing the
current trading status for each instrument

d. MEMOIR Business Level TradingSessionStatus message containing the
current trading session status.

e. For MEMOIR Depth For Crypto: MEMOIR Business Level AddOrder messages for
each instrument. For MEMOIR Top For Crypto: Business Level 1 or 2-sided book
updates BestBidOffer, BestBid, BestOffer messages for each instrument.

f. A single MEMOIR Business Level SnapshotComplete event containing an
AsOfSequenceNumber set to the sequence number on the MEMX-UDP multicast
channel that this snapshot was taken (clients should resume processing at this
number + 1 on the multicast feed after applying the snapshot)

g. A MEMX-TCP ReplayComplete message

4. Discard all buffered events from the MEMX-UDP real-time feed at or before the
AsOfSequenceNumber in the received Snapshot Complete event.

MEMOIR Common For Crypto

COPYRIGHT EDX MARKETS LLC 2022. ALL RIGHTS RESERVED
16

5. Apply all buffered events from the MEMX-UDP real-time feed after the
AsOfSequenceNumber in the received Snapshot Complete event, in sequence order.

6. Continue to process the MEMX-UDP real-time multicast feed normally from this point
onward, using the Gap Fill mechanism above to recover dropped messages.

