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Preface

The purpose of this short book is to provide the reader with a concise treatment
of single variable calculus. The main emphasis is on the understanding of ideas
and facts, rather than their memorization. Informal, intuitive explanations are
included for most facts, whenever feasible. Most of us tend to forget the �ne
details of proofs, but it is good to have a general understanding of why various
statements are true. My goal is to help the reader understand the main ideas
of calculus. There are certainly many topics, which are omitted for the sake
of brevity. This book does not aim to be an encyclopedic treatment of the
subject. Instead, I try to stay with the core ideas, with just a few digressions
here and there.
The book can be used as a supplemental text by students currently taking

a calculus course. It is also for those who took calculus in the past and who
would like to organize their knowledge, for example while taking another class
in which calculus is needed. Those who plan to take the GRE could also bene�t
from reading the book. The size of it is small enough to be carried around to
other classes in which calculus is used. There are many exercises and over 100
examples in the text and some more challenging problems at the end of each
Chapter. The problems are designed as an enhancement, but are not su¢ cient
for most people to acquire pro�ciency in calculus.
I emphasize the core ideas and concepts, but include occasional digressions

and comments, which show possible avenues for further exploration. Many of
these side trips are in smaller print and skipping them will not cause the reader
any di¢ culties in comprehending the rest. It is my hope that the reader will
not feel intimidated by any of the nonessential material.
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PREFACE 7

Everyone has a somewhat di¤erent learning style. It is my hope that this
book will make calculus more enjoyable and easier to grasp for at least some
readers. Chapter 1 contains a review of some basic facts and concepts used in
calculus, including trigonometry and logarithms, which are a frequent source
of headaches for young calculus apprentices. In Chapters 2 and 3 the concept
of the derivative and methods of �nding it are discussed. A limited selection
of applications of derivatives is the topic of Chapter 4. Next, the concept of
the integral, methods of integration and some applications are discussed in
Chapters 5, 6 and 7. The book ends, in Chapter 8, with a brief introduction
to in�nite series.
In addition, there are four appendices, which provide some additional re-

view of the background material (A), a summary of the book (B), answers to
selected problems (C) and a few proofs, which are neat, but not essential for
the general understanding of the subject (D).
I wish to thank all those who helped me make this book better, especially

my students who were subjected to earlier versions of this work and who gen-
erously shared their insights with me. Special thanks go to Andrea Buchwald
and Chris Kempes for their diligent proofreading and helpful comments. I am
grateful to Courtney Gibbons for all her help in making the �gures.
Observing all those who taught me mathematics and other subjects is how I

developed my own teaching style. I owe a debt of gratitude to all of my teachers
including my parents, my high school teacher, Mrs. Maria Czerska-Lazarowicz;
my undergraduate advisors, Professors Roman Ger, Jerzy Klamka and Andrzej
Świerniak; my Ph.D. advisor, Professor Isaac Kornfeld and countless faculty
and colleagues of mine, from whom I learned mathematics and how to explain
it. Most of all, I wish to thank my wife Iwona and our daughter Magdalena,
whose support and in�nite patience made this book possible.

Wojciech K Kosek, Colorado College



Chapter 1

Preliminary Concepts and
Facts

1.1 Real Numbers

The ancient Greeks discovered that the length of the diagonal of a square
of side 1 has the length of

p
2: This follows from what is known as the

Pythagorean Theorem: the sum of the areas of the squares built on the sides

b
a

c

of the right triangle is the same as the area of the
square built on the hypotenuse. This is clear from the
picture: the area of the big square can be calculated in
two ways: (a+ b)2 = c2 + 4 � 12ab: Expanding the left
hand side gives:

a2 + b2 = c2:

What is the big deal about it? The Greeks believed
that all numbers in nature can be represented as frac-
tions of integers. After specifying two points on a straight line as 0 and 1,
it is natural to identify every point on this line with a number: we call such
numbers real. However,

p
2 cannot be represented as a ratio of two integers mn :

(See Appendix D.1 for the proof). This was a serious problem: if mathemati-

8



1.2. COORDINATES ON THE PLANE 9

cians do not even know what a number is, what do they know? By now, we
have come to terms with this realization: there are actually more real numbers
which are not fractions of integers (irrationals) than there are those which can
be written in that form. (We also realize that there are a lot more questions
for which we do not have answers than those for which we do...)

The following is the standard classi�cation of numbers along with notation
commonly used to denote them:

N : the natural numbers; whole positive integers and zero.
Z : the integers; positive, negative and zero:
Q : the rational numbers; fractions of integers.
R : all real numbers
In modern times people came to appreciate an even larger set of numbers,

the complex numbers C, but we need to stay focused on calculus and this issue
is beyond our current interest.

Another common practice is the use of the interval notation: (a; b] denotes
the set of real numbers x; such that a < x � b; while (�1; a] stands for the
set of real numbers x such that x � a; and so on.
We use the symbol: jxj to denote the absolute value of x, which should

be thought of as the distance from 0 to x: In a similar fashion, the distance
between numbers a and x is jx� aj :

1.2 Coordinates on the Plane

­5 5 10 15 20

10

8

6

4

2

­2

­4

­6

M(3, 2.5)

P(1,1)

Q(5,4)

Just as there is a one-to-one correspondence be-
tween real numbers and the points on the line, we
can also identify ordered pairs of real numbers with
points on the plane. The distance between two
points P (x1; y1) and Q (x2; y2) is calculated using
the Pythagorean Theorem:

d =

q
(x2 � x1)2 + (y2 � y1)2;



14 CHAPTER 1. PRELIMINARY CONCEPTS AND FACTS

Example 2 Solve the inequality:

x2 (x+ 3)

(x� 5)3
� 0: (1.7)

First, let us notice, that the sign of either a product or a quotient of numbers
does not depend on their actual values but only on their signs. The expression
in inequality 1.7 has three "components": x2; x+3 and x�5: Each component
has a threshold value of x; for which it may change its sign. We need to keep
track of the signs of each of the components and count how many of them are
negative. Some people like to make a chart, but for me the quickest way is to
draw a quick sketch. In this example, there are three threshold values: �3; 0
and 5; which in turn cut the real line into four intervals: (�1;�3) ; (�3; 0) ;
(0; 5) and (5;1). The inequality is either true or false for all x inside each
of the intervals. One way to indicate the sign of each expression is to sketch

­8 ­6 ­4 ­2 2 4 6 8

­­ ++x­5
x+3

x

5­3 0

a lines, above or below the x-axis. For example, x + 3 gives a line below the
x-axis, for x < �3 and above it for x > �3: We do the same for (x� 5)3 ;
since it has the same sign as x � 5: The line corresponding to x2 stays above
the x-axis at all times, except for x = 0:
It is now easy to mark the sign of the whole rational expression in each of the
intervals by counting the number of lines below the x-axis. Finally, we need to
decide whether to include any of the threshold values in the solution. The key
issue is what is their origin: the numbers which make the denominator zero
can never be included, as the expression is unde�ned (in our case, we do not
include 5). Since the inequality was not sharp (>), we should include 0 and
�3: Therefore, the solution set to inequality 1.7 is:

(�1;�3] [ f0g [ (5;1) :
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In general, the roots of a rational function are those values of x; for which
the numerator is equal to zero and the denominator is not. That is because if
the denominator is zero, the fraction is unde�ned.
On the other hand, the zeroes of the denominator are candidates for vertical

asymptotes. However, there may or may not be an asymptote at the value
for which both numerator and denominator vanish. For example, consider a
function f (x) = (x�1)(x+2)

x�1 ; which is simply x + 2; as long as x 6= 1: A few
examples of graphs of rational functions are provided in Problem 4.

1.6 Exponentials and Logarithms

Exponential and logarithmic functions are of great importance in mathematics.
Let us �rst review some facts about raising numbers to di¤erent exponents.
While one can certainly raise negative numbers to integer powers, and to some
fractional powers as well, we will restrict our attention to positive values of
the base b: Let us pretend for a moment that we do not know how exponents
work and we are attempting to come up with sensible de�nitions.
For a positive number b and a natural number n; we de�ne bn = b � b � � � � � b;

as a product of "n copies of b". It is easy to verify that this implies

bm � bn = bm+n:

One way to look at this is that the operation of addition among the positive
integers m and n is "translated" into multiplication of bm and bn. This seems
like a nice property and we would like to keep it when we extend the de�nition
of raising to the power to other exponents. We would like the property b� �b� =
b�+� ; to remain valid for all real numbers � and �: If we could raise b to the
power of 0 then we should have bnb0 = bn+0 = bn, so our only choice is to
de�ne: b0 = 1: This makes sense as the additive "identity" 0 is now translated
to the multiplicative identity 1:
For negative exponents we want to have b�nbn = b�n+n = b0 = 1; thus we

should de�ne
b�n =

1

bn
:

This takes care of all of Z, all integer exponents. How about Q, all fractions of
integers? For a fractional exponent of 12 we should have b

1
2 b

1
2 = b

1
2+

1
2 = b1 = b;
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which means that b
1
2 =

p
b: By similar arguments we can convince ourselves

that the only reasonable way to de�ne raising b to a rational power is:

b
m
n =

n
p
bm =

�
n
p
b
�m

;

for any integers m;n 2 Z, with n � 1:
Let us consider a function f (x) = bx: So far we have established how to

evaluate this function for all rational values of x: Suppose that we plot on the
graph all the points (x; bx) ; where x 2 Q is rational. Then, we "connect the
dots". This is possible since the set Q of all rationals is dense on the real
number line, i.e. every real number can be approximated with any desired
accuracy by the rationals. (This can be formalized by saying that the value b�

is a limit of the sequence of values b
m
n for rational exponents, as the numbers

m
n approximate the irrational exponent � better and better.)
The graph of the function f (x) = bx lies above the x axis and goes through

the point (0; 1), for every value of b: If _b > 1; then the function is increasing
rapidly (exponentially). To obtain the graph of f (x) = bx for b < 1; notice
that bx =

�
1
b

��x
: All we need to do is �ip the graph of g (x) =

�
1
b

�x
about the

­2 0 2 4

50

100

150

x

y

Figure 1.1: y = ex

y-axis.
There is one value of the base b which is of

particular importance: e t 2:718 3. The sym-
bol for the constant e honors Leonard Euler,
who studied its properties extensively in the
early 18th century. We will encounter this
mysterious number many times in this book,
but for some motivation, please feel free to
look at Problems 10 and 11.
The logarithm of x to the base b is the

exponent to which b needs to be raised to get
x; that is

logb x = y if and only if b
y = x:

In other words, g (x) = logb x is the inverse function to the exponential function
f (x) = bx: For example, 103 = 1000; which means that log10 (1000) = 3: Just
in case the reader forgot, the inverse function has nothing to do with a reciprocal. It is the

function that brings your x back. (In mathematics we can even do that for you!)
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50 100 150
­2

0

2

4

x

y

Figure 1.2: y = lnx

For b > 1; the function f (x) = logb x is in-
creasing (very slowly, at least for large x). Its
graph always passes through the point (1; 0) ;
regardless of the value of the base b: It is com-
monly accepted, at least in sciences to use the
notation:

log x = log10 x (decimal logarithm)

lnx = loge x; (natural logarithm).

Logarithms have important properties,
which are equivalent to the corresponding

properties of the exponentials. We list them next to each other:

logb (xy) = logb x+ logb y � b�b� = b�+�

logb

�
x
y

�
= logb x� logb y � b�

b�
= b���

logb (x
r) = r logb x � (b�)

�
= b��

logb x =
logc x
logc b

= log x
log b =

ln x
ln b � (b�)

�
= b��

(1.8)

where x, y > 0; of course. Two of the formulas correspond to the same property
of exponents and in fact follow from each other. The last formula allows us
to rewrite a logarithm to a di¤erent base. When working with logarithms, it
is crucial to use their properties correctly. Please see Problem 9 for a list of
some common mistakes.

Example 3 Let us calculate a few values of logarithms: log 10 = 1; since
101 = 10; log 100 = 2; since 102 = 100; log 1000 = 3; as 103 = 1000:We can see
that 3 = log 1000 = log (100 � 10) = log 100+log 10 = 2+1; which illustrates the
�rst property 1.8. As further examples, we can notice that ln e = 1; logb 1 = 0;
regardless of the base b; logb (b

x) = x; ln (ex) = x = eln x: On the other hand
e2 ln x =

�
eln x

�2
= x2 (and it is not 2x).

Exercise 4 Convince yourself that the formulas 1.8 are correct. For instance,
suppose that logb x = � and logb y = �: Check that b

�+� = xy: Rewrite it back
into logarithms. For the change of base formula, start with y = logb x; which
means x = by: Then take logc of both sides.
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(cos(­α), sin(­α))

(cos(3π/2+α), sin(3π/2+α))(cos(3π/2­α), sin(3π/2­α))

(cos(π­α), sin(π­α))

(cos(π+α), sin(π+α))

(cos(π/2+α), sin(π/2+α)) (cos(π/2­α), sin(π/2­α))

(cosα, sinα)

α

Figure 1.3: Reduction formulas for sine and cosine.

1.7 Trigonometric Functions

Trigonometry plays an important role in calculus, not just because we may
be interested in some geometric considerations. Trigonometric functions are
useful in integration techniques, (section 6.4). Also, the inverse trigonometric
functions are antiderivatives of fairly simple functions, which we would other-
wise not be able to integrate, (section 3.4).
The values of cos� and sin�; for any real number �; are de�ned as the

coordinates of the point on the unit circle at distance � units from (1; 0)
measured counterclockwise along the arc. This way of looking at the sin and
cos functions explains immediately what is the sign of each function in every
quadrant. It also explains several reduction identities as shown on Figure
1.3. For example, to obtain the reduction formula sin

�
�+ �

2

�
= cos�; all we

need to do is compare the coordinates of appropriate points on the unit circle.
Similarly, sin (��) = � sin� and cos (��) = cos�; which means that sine is
an odd function while cosine is even. The reduction formulas are useful, but



Chapter 2

Limits and Derivatives, the
concept.

2.1 Slope of a curve - rate of change.

One of the central ideas in calculus is that a typical function locally looks like
a straight line. In other words, if we "zoom in" on the graph of a "decent"
function su¢ ciently close, it becomes indistinguishable from a straight line.
This allows us to generalize the concept of a slope of a straight line to the
slope of a curve. Speci�cally, the slope of a curve y = f (x) at x = x0 is the
slope of the line tangent to the graph of f at the point (x0; f (x0)) : In other
words, the derivative f 0 (a) is the instantaneous rate of change of the function
f at a given value of x = a: We are taking for granted that we know what the
tangent line is. We will rede�ne the derivative, without using the tangent line
in section 2.2.
A function is called di¤erentiable (at a point x) if it has derivative (at the

point x). Such functions are locally well approximated by tangent lines. The
simplest and most common reason for which a continuous function may not
be di¤erentiable is when its graphs has a "cusp". For example f (x) = jxj is
not di¤erentiable at x = 0 (sketch a graph). A typical function in calculus is
di¤erentiable, except possibly at a few points.

23



24 CHAPTER 2. LIMITS AND DERIVATIVES, THE CONCEPT.

What is "typical" is another story. Just like most numbers on the real line are not

rational, most functions are not even continuous, not to mention di¤erentiable. In fact, a

randomly selected function is not likely to be continuous even at a single point. Moreover,

among continuous functions, most are not di¤erentiable anywhere, but this is a whole other

story. Luckily, most functions which we encounter in sciences are much more smooth.

The positive (negative) value of the derivative f 0 means that the function
itself is increasing (decreasing), at least at the immediate vicinity of the point
in question.
The value of the second derivative f 00 = (f 0)

0
; that is the derivative of

the derivative, controls the rate of change of the �rst derivative f 0: Suppose
that f 00 (x) > 0, on some interval. Then the �rst derivative f 0 (or slope of f)
increases, which in turn implies that the graph turns upwards. We say that
the function f is concave up. The graph of such a function lies locally above
the tangent line.
Conversely, if f 00 (x) < 0 then the function f is concave down, (the graph

turns to the right, or downwards; the graph of f is locally below the tangent
line). This is summarized below:

f 0 � + + �
f 00 + + � �

f

(2.1)

A number x0 in the domain of f is called:

� a stationary point of f if f 0 (x0) = 0: (some authors call those critical
points)

� a critical point of f if it is stationary or if f 0 (x0) does not exist

� a local (global) maximum point of f is f (x) � f (x0) in the immediate
vicinity of x0 (entire domain of f).

� a local minimum (global) point of f if f (x) � f (x0) in the immediate
vicinity of x0 (entire domain of f).

� an in�ection point if the concavity of f changes at x0:
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It is natural in this context to consider simple harmonic motion, that is a
motion of a mass on a spring with no friction. If y is a position of an object at
the time t; then the Newton�s Second Law of Motion implies: y

00
= F=m; where

F is the force acting on the mass m. On the other hand, Hooke�s Law gives
F = �k0y; which leads to a di¤erential equation y

00
= �ky; where k = k0=m:

For any constants a and b;

y = a sin
�p
kx
�
+ b cos

�p
kx
�

(3.7)

is a solution to this di¤erential equation. By choosing the right values of the
coe¢ cients a and b; we can make sure that the initial conditions are satis�ed
(see problems 6 and 7 at the end of this chapter).
We end this section by stating that:

(tanx)
0
= sec2 x (secx)

0
= secx tanx;

(cotx)
0
= � csc2 x (cscx)

0
= � cscx cotx;

(3.8)

all of which can be veri�ed using the Quotient Rule from the next section.

3.2 Algebraic combinations of functions

3.2.1 Product and quotient rules

In order to see how to di¤erentiate a product of two functions, let us consider
a rectangle whose sides are some two di¤erentiable functions of time, say f (t)
and g (t), as in �gure 3.1. The area of the rectangle A (t) = f (t) � g (t) : When
both sides of the rectangle are changing in time, the area A (t) is growing "on
two fronts". Let us assume that the left-lower corner of the rectangle does not
move. The rate with which the right edge of the rectangle is sweeping the area
is f 0 (t) � g (t). Similarily, the rate with which the area is swept by the upper
edge of the rectangle is f (t) � g0 (t). This leads to the Product Rule:

(fg)
0
= f

0
g + fg

0
: (3.9)

Formally speaking, let us calculate the increase of the area in a small increment
of time �t:

�A = A (t+�t)�A (t) = �f (t) � g (t+�t) + f (t) ��g (t) ;
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g(t+ t)

f(t+ t)

g(t)f(t)

Figure 3.1: Product Rule

where �f (t) = f (t+�t)� f (t) and �g (t) = g (t+�t)� g (t) : Dividing by
�t we get

�A

�t
=

�f (t) � g (t+�t) + f (t) ��g (t)
�t

=

=
�f (t)

�t
� g (t+�t) + f (t) � �g (t)

�t

and taking the limit as �t!1 we obtain the product rule (3.9).

Having established the product rule by the above argument, let us use it
to verify the quotient rule:

�
f

g

�0

=
f
0
g � fg0

g2
: (3.10)

Suppose that a function u is a quotient u = f
g : Then f = u � g; hence by the

product rule f
0
= u

0
g + ug

0
: Solving this equation for u

0
we obtain

u
0
=
f
0 � ug0

g
=
f
0 � f

g g
0

g
=
f
0
g � fg0

g2
:
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Example 53 To �nd the area under the graph of g (x) = 1
x2+1 over [0; 1] we

calculate:
R 1
0

1
x2+1dx = arctanxj10 = �

4 :

Example 54 Let F (x) =
R x
0
sin t
t dt: The task of �nding an antiderivative of

sin t
t is an impossible one, at least as a so called elementary function. The
reader can easily verify by di¤erentiation, that any simple pretender for an
antiderivative of sin tt is an usurper! However, we can still �nd the derivative
d
dxF (x) =

sin x
x ; by the FTC, Version I.

The Fundamental Theorem of Calculus makes it worth our while to �nd
some methods for �nding antiderivatives of functions. Compared to di¤eren-
tiation (�nding derivatives) the process of integration (�nding antiderivatives)
is much harder. The good news is, that there are many calculators and soft-
ware packages capable of symbolic integration. This makes it somewhat less
important to be able to do it all on paper. However, it is still useful to acquire
some degree of pro�ciency in integration techniques.

5.3 Common integration mistakes

Let us begin with some good news. All the formulas for derivatives can be
applied "in reverse". There is little point in memorizing various formulas of
that sort, as long as we know how to di¤erentiate and can reverse the process.

Example 55 We know that d
dx

�
x4
�
= 4x3: Therefore

R
4x3dx = x4 + C: In

order to integrate x�; one needs to increase the exponent by one and multiply
the result by the reciprocal of the new exponent:Z

x�dx =
1

�+ 1
x�+1 + C

if � 6= �1: For � = �1 we have of course:
R
x�1dx = lnx+ C:
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Clearly, integration is more delicate than di¤erentiation. There is some
good news, integration is a linear operation:Z

f (x) + g (x) dx =

Z
f (x) dx+

Z
g (x) dx;Z

k � f (x) dx = k �
Z
f (x) dx:

Sooner or later we must come to terms with some realy bad news: there
are NO RULES for how to integrate a product or a quotient of func-
tions! It may have taken a while to learn how to di¤erentiate products and
quotients of functions, but at least there were rules. Not so with integration.
In particular: Z

f (x) � g (x) dx 6=
Z
f (x) dx �

Z
g (x) dx (5.6)

and Z
f (x)

g (x)
dx 6=

R
f (x) dxR
g (x) dx

: (5.7)

In general, it is much better for a calculus apprentice to say "I am sorry, but I
am unable to �nd an antiderivative of this function", than to give an obviously
wrong answer! Integration can be a complicated process and even the best
of us make simple mistakes once in a while. However, one is well advised to
check integrals by di¤erentiation to avoid giving bad answers, which tend to
frustrate those who read such erroneous solutions. The following examples are
not intented to o¤end the reader�s intelligence, but to illustrate the "antirules"
(5.6), (5.7) and a few others. A more experienced reader can skip the following
examples, however in author�s experience, the common mistakes below are
routinely committed even by good students. It takes a while to resist "obvious"
anwers.

Example 56 Since (ex)0 = ex; we have
R
exdx = ex+C: However, a common

mistake is to attempt integration of functions of the form eg(x) in a naive way.
However, by Chain Rule d

dx

�
eg(x)

�
= eg(x) � g0 (x) 6= eg(x): In the case when

g (x) = kx; we can easily �x the problem:
R
ekxdx = 1

ke
kx+C; for any constant

k 6= 0: Unfortunately, this does not work when g (x) is not a linear function.
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The lesson is: Z
ef(x)dx 6= ef(x) + C (5.8)

Example 57 Continuing the previous example,
R
xex

2

dx = 1
2e
x2 + C; which

is easily veri�ed by di¤erentiation. Apparently, having the x in front of ex
2

is
a blessing, not a curse. A common mistake which beginners make is to think
as follows: "I know how to integrate x: If I only knew how to integrate ex

2

;
maybe I would make some progress in this integral". There are two problems
with that reasoning. First, even if we knew how to integrate ex

2

; this would not
directly help us integrate the product xex

2

: A second problem is that it is not
possible to write integral of ex

2

in terms of elementary functions. (There are
tables of values of a closely related integral in every statistics book. They would
not have been there if one could just �nd a nice antiderivative formula...)

Example 58 In the same �avor: we know that
R
1
xdx = lnx + C and thatR

cosxdx = sinx+C: This does not help in �nding the antiderivative of cos xx =
1
x � cosx: It certainly is not (lnx) � (sinx) ; as

d
dx ((lnx) � (sinx)) =

1
x sinx +

cosx lnx: This illustrates 5.6.

Example 59 To illustrate 5.7 let us consider cos x
x : Some students attempt to

integrate this quotient one piece at a time:
R
cos x
x dx = sin x

1
2x

2 + C = 2 sin x
x2 +

C: This is of course a bad idea, since by the Quotient Rule the derivative
d
dx

�
2 sin x
x2

�
= 2x cos x�4 sin x

x3 ; which is not even close to cos x
x .

Example 60 Another common error is to misuse the fact that (lnx)0 = 1
x :

Yes, that means that
R
1
xdx = lnx+C (OK, it is more general to write ln jxj+C

instead, to allow for negative values of x). However,Z
1

u (x)
dx 6= lnu (x) + C (5.9)

Di¤erentiating the right hand side of 5.9 we get d
dx lnu (x) =

1
u(x) � u

0 (x) =
u0(x)
u(x) : For instance, we have:Z

1

x2 + 1
dx = arctanx+ C 6= ln

�
1 + x2

�
+ C



Chapter 8

In�nite Sequences and
Series

We know that many functions can be well approximated by polynomials, at
least on intervals of �nite length. For example, we know using the MacLaurin
polynomial for f (x) = ex (see section 4.4) we can say that

ex � 1 + x+ x
2

2
+
x3

3!
+ � � �+ x

n

n!
=

nX
k=0

xk

k!
:

It would certainly be nice to be able to replace the approximate equality "� "
with the exact one "=", that is to write

ex = 1 + x+
x2

2
+
x3

3!
+ � � �+ x

n

n!
+ � � � =

1X
k=0

xk

k!
: (8.1)

This requires making some sense out of adding in�nitely many numbers, which
is denoted by the innocent looking "+ : : : ". This is the goal of this chapter.

Example 105 Assuming that the formula 8.1 is true and that it is legal to
di¤erentiate such an in�nite "polynomial", let us �nd the derivative of ex: As

106
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expected, we obtain:

d

dx
(ex) = 0 + 1 +

2x

2
+
3x2

3!
+ � � �+ nx

n�1

n!
+ : : :

= 1 + x+
x2

2
+
x3

3!
+ � � �+ x

n

n!
+ � � � = ex:

Example 106 Let us replace the variable x in the formula 8.1 by x2: We get

ex
2

= 1 + x2 +
x4

2
+
x6

3!
+ � � �+ x

2n

n!
+ � � � =

1X
k=0

x2k

k!
:

Integrating term by term, we obtainZ
ex

2

dx =

Z �
1 + x2 +

x4

2
+
x6

3!
+ � � �+ x

2n

n!
+ : : :

�
dx

= x+
x3

3
+
x5

5 � 2 +
x7

7 � 3! + � � �+
x2n+1

(2n+ 1)n!
+ � � �+ C

=
1X
k=0

x2k+1

(2k + 1) k!
+ C:

This should be a nice incentive to study a fairly delicate concept of an
in�nite series and its convergence. There are many functions impossible to
integrate in the traditional sense: we are unable to �nd their neatly packaged
antiderivatives. However, if under some conditions, one can di¤erentiate and
integrate such in�nite sums term by term, then we can at least express certain
integrals in the form of in�nite sums.

8.1 Sequences and their limits

An in�nite sequence is an in�nite list of numbers of the general form:

a1; a2; : : : ; ak; ak+1; : : : :

Individual entries are called terms of the sequence. A standard notation for
a sequence with the general term ak is fakg1k=1 ; (or simply fakg ; for short.)
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Another way of looking at this concept is that an in�nite sequence is a
real-valued function whose domain consists of all positive integers.
We will say that the sequence fakg1k=1 converges to a real number L; and

write
lim
k!1

ak = L

if ak approaches L to within any desired tolerance as k increases without bound.
More formally, for a �nite L, we say that limk!1 ak = L if for every " > 0;

there exists an N > 0; such that jak � Lj < " whenever k > N:

8.2 In�nite Series

Commercial: Making sense of adding in�nitely many numbers would allow
for example to express a function as an in�nite Taylor Series, instead of just
approximating it by a Taylor Polynomial!
The goal of this section is to make sense out of expressions involving adding

in�nitely many numbers, like:
1X
k=1

ak = a1 + a2 + a3 + � � �+ ak + ak+1 + : : : :

In other words - what could these mysterious dots at the end of the sum mean?
We will use the word series or in�nite series to refer to an expression of this
form.
Given a sequence fakg1k=1 consider another sequence fSng

1
n=1, de�ned as

a sequence of partial sums of the original sequence:

Sn =
nX
k=1

ak = a1 + a2 + a3 + � � �+ an:

It is sensible to say that the larger value of n we take, the closer the n-th
partial sum Sn is to the sum of all the terms. Formally, if the sequence Sn
converges to S; we will say that the series

P1
k=1 ak converges and will call

number S the sum of the series
P1

k=1 ak; that is
1X
k=1

ak = lim
n!1

Sn = S:
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Otherwise we say that the series diverges.

Example 107 Consider a series
P1

k=1
1
2k
= 1

2+
1
4+

1
8+ : : : Does it converge?

In this case we have ak = 1
2k
for all integer values of k: The partial sums are

S1 =
1

2
= 1� 1

2

S2 =
1

2
+
1

4
=
3

4
= 1� 1

4

S3 =
1

2
+
1

4
+
1

8
= 1� 1

8
...

Sn =

nX
k=1

1

2k
= 1� 1

2n
;

therefore

S = lim
n!1

Sn = lim
n!1

�
1� 1

2n

�
= 1;

and we will say that the series
P1

k=1
1
2k
so the series converges to 1: In short,

we usually just write
P1

k=1
1
2k
= 1:

Let us assume for the moment that all the
terms ak are positive. A good way to visual-
ize the concept of the series is to imagine a
stack made of in�nitely many bricks of height
ak: Clearly, if there is any hope that this stack
has �nite height, the terms ak must be get-
ting smaller and smaller. That is, in order

for the in�nite sum
P1

k=1 ak = limSn to converge to something, it is necessary
that limk!1 ak = 0:One other way to see that is to realize that ak = Sk�Sk�1;
for all k (or at least for k � 2). If the limk!1 Sk = S exists (a �nite limit that
is), then for su¢ ciently large of k; the values of Sk are close to S: Therefore,
the di¤erence Sk � Sk+1 must be small.
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Once again, we have established that the limit of the general term limk!1 ak
must be 0 in order for the series

P1
k=1 ak to converge. It is a common mis-

conception, that this necessary condition for the convergence of a series is also
su¢ cient. The following important example shows that this is not case.

Example 108 The harmonic series
P1

k=1
1
k =

1
1 +

1
2 +

1
3 + : : : diverges.

Let us �rst notice that

1

3
+
1

4
>

1

4
+
1

4
=
1

2
1

5
+
1

6
+
1

7
+
1

8
>

1

8
+
1

8
+
1

8
+
1

8
=
1

2
1

9
+
1

10
+
1

11
+
1

12
+
1

13
+
1

14
+
1

15
+
1

16
> 8 � 1

16
=
1

2
...

1

2i + 1
+

1

2i + 2
+

1

2i + 3
+ : : :

1

2i+1
> 2i � 1

2i+1
=
1

2

Hence, by taking su¢ ciently many terms of the harmonic series we have

S2i+1 = 1 +
1

2
+

�
1

3
+
1

4

�
+

�
1

5
+
1

6
+
1

7
+
1

8

�
+ � � �+

+

�
1

2i + 1
+

1

2i + 2
+

1

2i + 3
+ : : :

1

2i+1 � 1 +
1

2i+1

�
>

> 1 +
1

2
+
1

2
+
1

2
+ � � �+ 1

2
= 1 +

i+ 1

2
;

(where 1
2 in the sum above is repeated i + 1 times). For instance, adding the

�rst 210 = 1024 terms of the series we have S1024 > 1 + 10
2 = 6: In the same

way: S220 = S1;048;576 > 1 + 20
2 = 11; and so on. Therefore

1X
k=1

1

k
= lim

n!1
Sn =1;

which means that the harmonic series diverges to 1:



Appendix B

Summary

B.1 Main concepts and ideas in the book

1. Limit of a function at a point. The concept of continuity and di¤eren-
tiability.

2. The concept of the derivative as rate of change and as the slope of the
tangent line. Approximating a function by the tangent line at a point
and by polynomials.

3. Rules for �nding derivatives, including: power rule, derivatives of com-
mon functions, chain rule, product and quotient rules.

4. Some applications of derivatives, including l�Hôpital�s Rule, optimization
and related rates.

5. The Fundamental Theorem of Calculus.

6. Methods of integration.

7. Some applications of integrals, including arc length, areas between curves,
volumes of solids and work.

8. In�nite series and some conditions for their convergence.
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9. Representation of functions as an in�nite series of simpler functions, such
as polynomials or trigonometric polynomials.

B.2 What everyone should remember from cal-
culus

1. The concept of a limit is important for many reasons, including properly
de�ning continuity of functions and de�ning derivative of a function.
Plugging in the value of x does not always work! If we get for example 00 ;
that does not mean that the limit does not exist, but that there is more
work to be done.

2. The derivatives of basic functions such as power functions, exponential
and logarithmic functions, as well as of at least some trigonometric and
inverse trigonometric functions (sin; cos; tan; arcsin; arccos and arctan).

3. Implicit di¤erentiation: think of both sides of the equation as functions
of x. Then di¤erentiate both sides using the known rules. Next, solve
the resulting equation for y0:

4. Some limits (of the form 0
0 and

1
1 ) can be calculated using l�Hôpital�s

Rule: limx!a
f(x)
g(x) = limx!a

f
0
(x)

g0 (x)
. There is no rule like that for the prod-

uct, which needs to rewritten as a quotient before attempting l�Hôpital�s
Rule: f � g = f

1=g : Also, sometimes it is helpful to �nd the limit of the
logarithm of the function �rst: f (x)! L; whenever ln (f (x))! lnL:

5. In optimization problems the most di¢ cult part is frequently the set up.
It is important not to mix up the objective function with the constraint
equation.

6. Related Rates: do not plug in numbers too soon. Keep the variables as
variables, until after di¤erentiating. Put the numbers in at the end.

7. Di¤erentiable functions can be locally approximated by a tangent line
- the �rst order approximation. Linear approximations of a function at
various points are used for example in numerical methods for solving
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di¤erential equations (Euler�s method). For a better approximation of a
function we can use Taylor Polynomials.

8. The Intermediate Value, the Extreme Value and the Mean Value Theo-
rems are examples of existence theorems. It is good to know what they
say.

9. De�nite integral is the signed area below the graph of the function over
a given interval. It is formally de�ned as a limit of Riemann sums.
The value of the de�nite integral can be approximated numerically using
rectangles or trapezoids instead of the actual function.

10. The derivative of the area function is the integrand:

d

dx

Z x

a

f (t) dt = f (x) :

In other words: Z b

a

f (x) dx = F (b)� F (a) ;

where F is any antiderivative of f:

11. Finding antiderivatives is a lot harder than �nding derivatives. It may
have taken some e¤ort to learn how to di¤erentiate products and quo-
tients, but at least there were rules. There are no rules like that for
integration! Knowing that there are such elaborate techniques for in-
tegrating products, one should never attempt to integrate products or
quotients of functions "one piece at a time".

12. The Chain Rule for di¤erentiation corresponds to the method of substi-
tution for integration. It does not work well for every integral and the
substituting variable (say u) must be chosen carefully. Make sure that all
the remains of the old variable are gone before attempting to integrate
with respect to the new variable. Also, do not forget that dx does not
automatically become du; but that du = u

0
dx = du

dxdx:




